Đến nội dung


Hình ảnh

Chuyên đề vẽ thêm đường kẻ phụ trong hình học phẳng


  • Please log in to reply
Chủ đề này có 21 trả lời

#1 trandat

trandat

    Binh nhì

  • Thành viên
  • 14 Bài viết
  • 0 points
  • Giới tính:Nam
  • Đến từ:Thành phố Điện Biên

Đã gửi 03-11-2011 - 21:18

Vẽ thêm đường kẻ phụ để giải toán hình học phẳng luôn là một vấn đề đối với học sinh THCS. Vì vậy hôm nay mình lập topic này để chia sẻ kinh nghiệm đọc đc trong một cuốn sách về đường kẻ phụ

Sau đây sẽ là các cách chủ yếu đc dùng:
1.Vẽ đoạn thẳng, tia đường thẳng, đường tròn
2.Vẽ giao điểm của 2 đường
3.Vẽ trung điểm của đoạn thẳng, vẽ đoạn thẳng bằng đoạn thẳng cho trước
4.Vẽ tia phân giác của góc, vẽ góc bằng góc cho trước
5.Vẽ đường thẳng vuông góc
6.Vẽ đường thẳng song song
7.Vẽ tam giác
[COLOR=Indigo]Với mỗi cách mình sẽ đưa ví dụ cụ thể và các bài học luyện cách chứng minh:
1.Coi trọng bước vẽ hình
2.Khai thác giả thiết để phát hiện nhưng quan hệ mới
3.Phân tích kết luận để định hương chứng minh
4.Sử dụng hết các dư kiện
5.Đổi hương chứng minh khi đi vào ngõ cụt
6.Đại số giúp ích hình học
7.Đưa khó về dễ
8.Đưa lạ về quen
9.Phương pháp phản chứng.

:icon6: Cách thứ nhất:Vẽ đoạn thẳng, tia, đường thẳng, đường tròn
_Khi có trung điểm của một cạnh trong tam giác, ta thường kẻ đường trung tuyến, đườn trung bình.
_Khi cần tạo góc ngoài của tam giác, ta thường kẻ tia đối của tia chứa một cacnhj của tam giác.
_Kẻ hai đường chéo của tứ giác.
_Kẻ đương trung bình của hình thang khi có trung điểm của hai cạnh bên.
cái này còn một phần nữa nhưng nói sau.
:wub: Cách 2: Vẽ giao điểm của hai đường thẳng
Hãy chú ý vẽ giao điểm của hai đường thẳng nếu hình vẽ tạo ra các tam giác, tứ giác liên quan đến các quan hệ nêu trong đề bài; vẽ giao điểm của đường thẳng và đường tròn nếu hình vẽ tạo ra các cung có liên quan đến các dữ kiện trong bài.
Hãy nghĩ đến việc vẽ giao điểm của hai đường thẳng nếu hình vẽ tạo ra những hình mới có lợi trong chứng minh( tạo ra các tam giác đặc biệt, những tam giác bằng nhau, những tam giác đồng dạng, những cung bằng nhau hay bù nhau...)
>:) Cách thứ 3: Vẽ trung điểm của đoạn thẳng vẽ đoạn thẳng bằng đoạn thẳng bằng đoạn thẳng cho trước
Trong một tam giác,khi đã có trung điểm của một cạnh, ta thường vẽ thêm trung điểm của một cạnh khác.
Trong hình thang, khi đã có trung điểm của một cạnh bên, ta thường vẽ thêm trung điểm của cạnh bên thứ hai.
Việc vẽ thêm một đoạn thẳng bằng đoạn thẳng cho trước nhằm tạo ra:
- Một tam giác mới bằng một tam giác trong bài toán
- Một tam giác cân giúp thuận lợi trong chứng minh
- Tổng hiệu của hai đọn thẳng.
:icon10: Cách tứ tư: vẽ tia phân giác của góc, vẽ góc bằng góc cho trước
Ta thuờng vẽ tia phân giác của góc nếu góc đó gấp đôi đôi một góc kháctrong bài toán. Việc vẽ một góc bằng góc cho trước thường nhằm tạo ra một tam giác cân, một hình thang cân, hai tam giác bằng nhau, ai tam giác đồng dạng...
Bài này chính là bài của mình trên học mãi nên bạn nào đọc qua rùi thì đừng thắc mắc :lol:

#2 nguyenhuuhoa

nguyenhuuhoa

    Binh nhì

  • Thành viên
  • 12 Bài viết
  • 0 points
  • Giới tính:Nam
  • Đến từ:Son Tinh-Quang Ngai

Đã gửi 01-04-2012 - 17:49

Anh nên post lên vài bài tập làm thử xem
Mod: Mong bạn đừng spam. Vì bạn là thành viên mới nên tớ chưa xoá bài cậu. Hãy đóng góp vài bài hìnhđừng có Spam.

Vì Một VMF PHÁT TRIỂN

Bài viết đã được chỉnh sửa nội dung bởi yeutoan11: 01-04-2012 - 20:33


#3 yeutoan11

yeutoan11

    Sĩ quan

  • Thành viên
  • 307 Bài viết
  • 0 points
  • Giới tính:Nam

Đã gửi 01-04-2012 - 20:31

Tặng chú 2bài.
Bài 1.
Cho tam giác $ABC$ vuông tại $A$ và $\widehat{B}=75^o$. Trên tia đối tia $AB$ lấy điểm $H$ sao cho $BH=2AC$. Tính $\widehat{BHC}$
Bài 2.
Điểm $M$ nằm trong tam giác đều $ABC$ sao cho $MA:MB:MC=3:4:5$. Tính $\widehat{AMB}$
Dựng nước lấy việc học làm đầu. Muốn thịnh trị lấy nhân tài làm gốc.
NGUYỄN HUỆ
Nguyễn Trần Huy
Tự hào là thành viên VMF

#4 tubmt97

tubmt97

    Binh nhất

  • Thành viên
  • 35 Bài viết
  • 0 points
  • Giới tính:Nam

Đã gửi 03-04-2012 - 17:04

Tặng chú 2bài.
Bài 1.
Cho tam giác $ABC$ vuông tại $A$ và $\widehat{B}=75^o$. Trên tia đối tia $AB$ lấy điểm $H$ sao cho $BH=2AC$. Tính $\widehat{BHC}$
Bài 2.
Điểm $M$ nằm trong tam giác đều $ABC$ sao cho $MA:MB:MC=3:4:5$. Tính $\widehat{AMB}$


Do tớ mới tham gia diễn đàn nên chưa biết vẽ hình và up hình nên các bạn thông cảm.
Bài 1 làm như sau:
*Tính AC theo AB:
Đặt AB = x (hoặc 1 đơn vị)
Lấy D trên AC sao cho $ \widehat{ABD} = 60^{\circ} $
Áp dụng sin, cos trong tam giác ABD vuông, ta có:
AD = $x.\sqrt{3} $
DC = BD = 2x
AC = $2x + x. \sqrt{3} $
*Tính $ \widehat{BHC} $
HA = BH - AB = $ 3x + 2x. \sqrt{3} $
Ta có cotan $ (\widehat{BHC}) = \frac{3 + 2\sqrt{3}}{2 + \sqrt{3}} = \sqrt{3} $ nên $\widehat{BHC} = 30^{\circ}$
Bài này mình chỉ mới nhẩm tính, do chưa không phải ở nhà nên không có giấy bút, có thể có sai sót nên mọi người thông cảm.

Bài viết đã được chỉnh sửa nội dung bởi tubmt97: 03-04-2012 - 17:09


#5 Lnmn179

Lnmn179

    Hạ sĩ

  • Thành viên
  • 63 Bài viết
  • 0 points
  • Giới tính:Nam
  • Đến từ:Infinity Inferno

Đã gửi 06-04-2012 - 21:35

Mình xin đóng góp vài bài:
Bài 1: Cho $\Delta ABC$. M $\in$ đoạn BC. Lấy N, P thuộc AC và AB sao cho APMN là hình bình hành.
Cmr: đường tròn ngoại tiếp $\Delta ANP$ đi qua 1 điểm cố định khác A.
Bài 2 : Cho $\Delta ABC$ có trung tuyến BM vuông góc với trung tuyến CN.
Cmr: cotg B + cotg C $\geqslant \frac{2}{3}$
Bài 3 :Cho $\Delta ABC$ nội tiếp đường tròn (O). Kẻ AH, BE, CF lần lượt vuông góc với BC, AC, AB và cắt (O) ở M, N, K.
cmr : $\frac{AM}{AH} + \frac{BN}{BE} + \frac{CK}{CF} = 4$
Bài 4 : Cho $\Delta ABC$ nội tiếp đường tròn (O). M, N lần lượt là trung điểm của BC, AC. MN cắt (O) ở D. cmr : $\frac{BC}{AD} = \frac{AC}{BD} + \frac{AB}{CD}$
Bài 5 : Cho $\Delta ABC$ cân ở A nội tiếp đường tròn (O). D là trung điểm của AB. E là trọng tâm của $\Delta ACD$ . cmr : OE vuông góc với CD.

Hình đã gửi


#6 hamdvk

hamdvk

    Trung sĩ

  • Thành viên
  • 153 Bài viết
  • 0 points
  • Giới tính:Nữ
  • Đến từ:High School for Gifted Student HNUE
  • Sở thích:toán~...~

Đã gửi 08-04-2012 - 21:33

các bạn tìm xem sách vẽ hình phụ của nguyễn đức tấn cũng có
sau đây xin gửi 1 bài
thank trước nhá

Bài 7 Cho tam giác ABC vuông cân tại A đường cao AH ,D CHC vẽ hcn ADHO, vẽ (O;OD) cắt tia đối tia AB tại E cắt AC tại F
CMR AE=AF

:icon6:

Bài viết đã được chỉnh sửa nội dung bởi hamdvk: 05-07-2012 - 21:39

~.......................................................~


$\Phi \frac{\because Nguyen Thai Ha\therefore }{14/07/97}\Phi$

~.............................................................................................~


#7 ducthinh26032011

ducthinh26032011

    Thượng sĩ

  • Thành viên
  • 290 Bài viết
  • 0 points
  • Giới tính:Nam
  • Đến từ:Hội những người độc thân thích chém gió !

Đã gửi 18-04-2012 - 15:59

Mình xin đóng góp vài bài:

Bài 2 : Cho $\Delta ABC$ có trung tuyến BM vuông góc với trung tuyến CN.
Cmr: cotg B + cotg C $\geqslant \frac{2}{3}$

AH là đường cao
Gọi G là giao điểm của BM,CN
Ta có:$cotgB+cotgC=\frac{BC}{AH}$
AG cắt BC tại I
Ta có $BC=2GI$ do $\Delta BGC$ có $\widehat{BGC}=90^{\circ}$
$AH\leq AI=3GI$
$\Rightarrow \frac{BC}{AH} \geq \frac{2}{3}$
$\Rightarrow ...$

Hình đã gửi


#8 ducthinh26032011

ducthinh26032011

    Thượng sĩ

  • Thành viên
  • 290 Bài viết
  • 0 points
  • Giới tính:Nam
  • Đến từ:Hội những người độc thân thích chém gió !

Đã gửi 19-04-2012 - 20:33

Mình xin đóng góp vài bài:

Bài 3 :Cho $\Delta ABC$ nội tiếp đường tròn (O). Kẻ AH, BE, CF lần lượt vuông góc với BC, AC, AB và cắt (O) ở M, N, K.
cmr : $\frac{AM}{AH} + \frac{BN}{BE} + \frac{CK}{CF} = 4$

Gọi I giao điểm của AH,BE,CF
$\frac{AM}{AH}=1+\frac{HM}{AH}(1)$
Ta dễ dàng c/m được $HI=HM(2)$
$\frac{HI}{AH}=\frac{S _{\Delta BIC}}{S_{\Delta ABC}}$
$(1),(2),(3)\Rightarrow \frac{AM}{AH}=1+\frac{S _{\Delta BIC}}{S_{\Delta ABC}}$

Tương tự:
$\frac{BN}{BE}=1+\frac{S_{\Delta CIA}}{S_{\Delta ABC}}$
$\frac{CK}{CF}=1+\frac{S_{\Delta BIA}}{S_{\Delta ABC}}$
$\Rightarrow \frac{AM}{AH}+\frac{BN}{BE}+\frac{CK}{CF}=1+1+1+\frac{S_{\Delta BIC}+S_{\Delta AIC}+S_{\Delta BIC}}{S_{\Delta ABC}}=3+1=4$
$\Rightarrow$ điều phải c/m đúng

Bài viết đã được chỉnh sửa nội dung bởi perfectstrong: 19-04-2012 - 20:47

Hình đã gửi


#9 Mylovemath

Mylovemath

    Thượng sĩ

  • Thành viên
  • 225 Bài viết
  • 0 points
  • Giới tính:Không khai báo
  • Đến từ:Trái Đất
  • Sở thích:Thích Đinh Khánh Linh !

Đã gửi 22-04-2012 - 18:53

Mình xin đóng góp vài bài:

Bài 2 : Cho $\Delta ABC$ có trung tuyến BM vuông góc với trung tuyến CN.
Cmr: cotg B + cotg C $\geqslant \frac{2}{3}$


Bài 2 mình chứng minh một lần rồi :icon6: nhưng chỉ kẻ có mỗi một đường phụ à
i LOVE u

""Yêu hay sao mà Nhìn ""

#10 thoconlk

thoconlk

    Binh nhất

  • Thành viên
  • 20 Bài viết
  • 0 points
  • Giới tính:Không khai báo
  • Đến từ:everywhere

Đã gửi 26-05-2012 - 20:10

Các anh chị ơi cho em hỏi bài này:Từ điểm M nằm ngoài đường tròn (O;R) vẽ cát tuyến MAB của đường tròn đó. Trung trực của MB cắt đường tròn tại P,Q.Cmr: H là trung điểm của PQ thuộc một đường tròn cố định.

#11 CaptainAmerica

CaptainAmerica

    Hạ sĩ

  • Thành viên
  • 64 Bài viết
  • 0 points
  • Giới tính:Không khai báo
  • Đến từ:THPT Chuyên Nguyễn Bỉnh Khiêm
  • Sở thích:Ma \m/

Đã gửi 27-05-2012 - 16:47

Các anh chị ơi cho em hỏi bài này:Từ điểm M nằm ngoài đường tròn (O;R) vẽ cát tuyến MAB của đường tròn đó. Trung trực của MB cắt đường tròn tại P,Q.Cmr: H là trung điểm của PQ thuộc một đường tròn cố định.

Nếu như bài này là tìm quỹ tích của điểm H thì phải cho biết cái gì cố định chứ bạn? Bạn viết đề bài có đủ k?

Mình xin đóng góp vài bài:
Bài 1: Cho $\Delta ABC$. M $\in$ đoạn BC. Lấy N, P thuộc AC và AB sao cho APMN là hình bình hành.
Cmr: đường tròn ngoại tiếp $\Delta ANP$ đi qua 1 điểm cố định khác A.
Bài 2 : Cho $\Delta ABC$ có trung tuyến BM vuông góc với trung tuyến CN.
Cmr: cotg B + cotg C $\geqslant \frac{2}{3}$
Bài 3 :Cho $\Delta ABC$ nội tiếp đường tròn (O). Kẻ AH, BE, CF lần lượt vuông góc với BC, AC, AB và cắt (O) ở M, N, K.
cmr : $\frac{AM}{AH} + \frac{BN}{BE} + \frac{CK}{CF} = 4$
Bài 4 : Cho $\Delta ABC$ nội tiếp đường tròn (O). M, N lần lượt là trung điểm của BC, AC. MN cắt (O) ở D. cmr : $\frac{BC}{AD} = \frac{AC}{BD} + \frac{AB}{CD}$
Bài 5 : Cho $\Delta ABC$ cân ở A nội tiếp đường tròn (O). D là trung điểm của AB. E là trọng tâm của $\Delta ACD$ . cmr : OE vuông góc với CD.

Xí bài 5:
Gọi K là trọng tâm của tam giác ABC.
$\frac{CK}{CD} = \frac{2}{3}$ ($K$ là trọng tâm $\Delta ABC$) (1)
. . $\frac{CE}{CC'}=\frac{2}{3}$ ( $E$ là trọng tâm $\Delta ADC$, $C'$ là chân đường trung tuyến kẻ từ $C$ của $\Delta ADC$) $(2)$.
$(1)(2)\Rightarrow \frac{CK}{CD} = \frac{CE}{CC'} \Rightarrow KE \parallel AB$(đlý Thales đảo)
Lại có: $OD \perp AB$ (Quan hệ đường kính và dây) $\Rightarrow DO \perp KE. (a)$
Lại có: $DE \parallel BC$ ($DD'$ là đường trung bình $\Delta ABC, E \in DD', D'$ là chân đường trung tuyến từ $D$ của $\Delta ADC$ ,(đoạn này giải hơi tắc )).
Mà $AK \perp BC$ (Trung tuyến là đường cao trong $\Delta ABC$ cân $A$)
$\Rightarrow OK \perp DE (b)$
$(a)(b)\Rightarrow O$ là trực tâm $\Delta DEK \Rightarrow Q.E.D$

Tặng chú 2bài.
Bài 1.
Cho tam giác $ABC$ vuông tại $A$ và $\widehat{B}=75^o$. Trên tia đối tia $AB$ lấy điểm $H$ sao cho $BH=2AC$. Tính $\widehat{BHC}$
Bài 2.
Điểm $M$ nằm trong tam giác đều $ABC$ sao cho $MA:MB:MC=3:4:5$. Tính $\widehat{AMB}$


Xí bài 2 nhé :P.
Bài này ta sử dụng phép quay thì 1 cái 1 là ra nhưng thôi cứ kẻ đường phụ như ý của các bạn ( thật ra là topic ~~ ).
Đặt: $MA =a, MB= b, MC = c$
Ta có $a^2 + b^2 = c^2$
$\frac{AM}{a} = \frac{BM}{b}= \frac{MC}{c} = \frac{AM + BM + CM}{a+b+c}$
Dựng tam giác đều $BMM'$ sao cho $M'$ khác phía với $A$ & $C$
Xét $\Delta MBC$ và $\Delta M'BA$ có $M'B=MB=b; \widehat{MBC}= \widehat{ABM'}$( cùng phụ $\widehat{MBA}$)
$AB = CB$ (cạnh $\Delta$ đều)
$\Rightarrow \Delta MBC = \Delta M'BA \Rightarrow M'A = MC = c$
Lại có: $a^2+b^2=c^2 \Rightarrow MA^2+M'M^2=M'A^2$
$\Rightarrow \widehat{AMM'} = 90^{\circ} \Rightarrow \widehat{AMB}= 90^{\circ}+60^{\circ} = 150^{\circ}$

.... k vẽ hình cho nên có lẽ sẽ bị sai một số điểm... nhưng chỉ cần các bạn biết tư tưởng để cm bài này là tốt quá rồi :D

hừm hình như mấy định lý như céva, ménélaus cũng kẻ đường phụ hay gì đó. Mấy bạn mần thử nhé :P.
Bài 1:Trên các cạnh $BC, CA, AB$ của $\Delta ABC$ lấy tương các điểm $P,Q,R$ sao cho $AP, BQ, CR$ đồng quy tại 1 điểm . CMR $\frac{AR}{RB}.\frac{BP}{PC}.\frac{CQ}{QA}=1$ (Đlý Cê-va)

Bài 2:Một đường thẳng bất kỳ cắt các cạnh ( phần kéo dài của các cạnh ) của $\Delta ABC$ tại $P,Q,R$. CMR $\frac{RB.QA.PC}{RA.CQ.BP}=1$ (Đlý Mê-nê-la-uýt)

Bài viết đã được chỉnh sửa nội dung bởi perfectstrong: 27-05-2012 - 18:12

Y so serious?


#12 thoconlk

thoconlk

    Binh nhất

  • Thành viên
  • 20 Bài viết
  • 0 points
  • Giới tính:Không khai báo
  • Đến từ:everywhere

Đã gửi 27-05-2012 - 22:00

Nếu như bài này là tìm quỹ tích của điểm H thì phải cho biết cái gì cố định chứ bạn? Bạn viết đề bài có đủ k?


Xí bài 5:
Gọi K là trọng tâm của tam giác ABC.
$\frac{CK}{CD} = \frac{2}{3}$ ($K$ là trọng tâm $\Delta ABC$) (1)
. . $\frac{CE}{CC'}=\frac{2}{3}$ ( $E$ là trọng tâm $\Delta ADC$, $C'$ là chân đường trung tuyến kẻ từ $C$ của $\Delta ADC$) $(2)$.
$(1)(2)\Rightarrow \frac{CK}{CD} = \frac{CE}{CC'} \Rightarrow KE \parallel AB$(đlý Thales đảo)
Lại có: $OD \perp AB$ (Quan hệ đường kính và dây) $\Rightarrow DO \perp KE. (a)$
Lại có: $DE \parallel BC$ ($DD'$ là đường trung bình $\Delta ABC, E \in DD', D'$ là chân đường trung tuyến từ $D$ của $\Delta ADC$ ,(đoạn này giải hơi tắc )).
Mà $AK \perp BC$ (Trung tuyến là đường cao trong $\Delta ABC$ cân $A$)
$\Rightarrow OK \perp DE (b)$
$(a)(b)\Rightarrow O$ là trực tâm $\Delta DEK \Rightarrow Q.E.D$



Xí bài 2 nhé :P.
Bài này ta sử dụng phép quay thì 1 cái 1 là ra nhưng thôi cứ kẻ đường phụ như ý của các bạn ( thật ra là topic ~~ ).
Đặt: $MA =a, MB= b, MC = c$
Ta có $a^2 + b^2 = c^2$
$\frac{AM}{a} = \frac{BM}{b}= \frac{MC}{c} = \frac{AM + BM + CM}{a+b+c}$
Dựng tam giác đều $BMM'$ sao cho $M'$ khác phía với $A$ & $C$
Xét $\Delta MBC$ và $\Delta M'BA$ có $M'B=MB=b; \widehat{MBC}= \widehat{ABM'}$( cùng phụ $\widehat{MBA}$)
$AB = CB$ (cạnh $\Delta$ đều)
$\Rightarrow \Delta MBC = \Delta M'BA \Rightarrow M'A = MC = c$
Lại có: $a^2+b^2=c^2 \Rightarrow MA^2+M'M^2=M'A^2$
$\Rightarrow \widehat{AMM'} = 90^{\circ} \Rightarrow \widehat{AMB}= 90^{\circ}+60^{\circ} = 150^{\circ}$

.... k vẽ hình cho nên có lẽ sẽ bị sai một số điểm... nhưng chỉ cần các bạn biết tư tưởng để cm bài này là tốt quá rồi :D

hừm hình như mấy định lý như céva, ménélaus cũng kẻ đường phụ hay gì đó. Mấy bạn mần thử nhé :P.
Bài 1:Trên các cạnh $BC, CA, AB$ của $\Delta ABC$ lấy tương các điểm $P,Q,R$ sao cho $AP, BQ, CR$ đồng quy tại 1 điểm . CMR $\frac{AR}{RB}.\frac{BP}{PC}.\frac{CQ}{QA}=1$ (Đlý Cê-va)

Bài 2:Một đường thẳng bất kỳ cắt các cạnh ( phần kéo dài của các cạnh ) của $\Delta ABC$ tại $P,Q,R$. CMR $\frac{RB.QA.PC}{RA.CQ.BP}=1$ (Đlý Mê-nê-la-uýt)

Bài trên em lấy từ vẽ thêm yếu tố phụ lớp 9 của tác giả Nguyễn Đức Tấn mà. Điểm M và (O) cố định mà

#13 thoconlk

thoconlk

    Binh nhất

  • Thành viên
  • 20 Bài viết
  • 0 points
  • Giới tính:Không khai báo
  • Đến từ:everywhere

Đã gửi 28-05-2012 - 21:33

Cho em hỏi bài này : Cho hai nửa đường thẳng Ax,By phân biệt cắt nhau tại O. Hai động tử xuất phát từ A và từ B bắt đầu chuyển động theo hướng Ax,By cùng một lúc và cùng một vận tốc không đổi là v. Hỏi sau bao lâu hai động tử đó gần nhau nhât, và lúc đó hai động tử đã đi dược quãng đường dài bao nhiêu? Biết khoảng cách từ A đến O bằng a, khoảng cách từ B đến O bằng b và a$\neq$b

#14 nguyenhuuhoa

nguyenhuuhoa

    Binh nhì

  • Thành viên
  • 12 Bài viết
  • 0 points
  • Giới tính:Nam
  • Đến từ:Son Tinh-Quang Ngai

Đã gửi 04-06-2012 - 07:57

Cho $\widehat{xAy }$ nhọn, B và C lần lượt là điểm cố định trên các tia Ax và Ay sao cho AB < AC, M là điểm di động trong góc xAy sao cho $\frac{MA}{MB}= \frac{1}{2}$.
Xác định vị trí điểm M để có MB + 2MC đạt giá trị nhỏ nhất.

#15 o0o Math Lover o0o

o0o Math Lover o0o

    Binh nhất

  • Thành viên
  • 33 Bài viết
  • 0 points
  • Giới tính:Nam
  • Đến từ:Trường THCS Hà Huy Tập
  • Sở thích:math

Đã gửi 28-08-2012 - 14:42

Vẽ thêm đường kẻ phụ để giải toán hình học phẳng luôn là một vấn đề đối với học sinh THCS. Vì vậy hôm nay mình lập topic này để chia sẻ kinh nghiệm đọc đc trong một cuốn sách về đường kẻ phụ

Sau đây sẽ là các cách chủ yếu đc dùng:
1.Vẽ đoạn thẳng, tia đường thẳng, đường tròn
2.Vẽ giao điểm của 2 đường
3.Vẽ trung điểm của đoạn thẳng, vẽ đoạn thẳng bằng đoạn thẳng cho trước
4.Vẽ tia phân giác của góc, vẽ góc bằng góc cho trước
5.Vẽ đường thẳng vuông góc
6.Vẽ đường thẳng song song
7.Vẽ tam giác
[COLOR=Indigo]Với mỗi cách mình sẽ đưa ví dụ cụ thể và các bài học luyện cách chứng minh:
1.Coi trọng bước vẽ hình
2.Khai thác giả thiết để phát hiện nhưng quan hệ mới
3.Phân tích kết luận để định hương chứng minh
4.Sử dụng hết các dư kiện
5.Đổi hương chứng minh khi đi vào ngõ cụt
6.Đại số giúp ích hình học
7.Đưa khó về dễ
8.Đưa lạ về quen
9.Phương pháp phản chứng.

:icon6: Cách thứ nhất:Vẽ đoạn thẳng, tia, đường thẳng, đường tròn
_Khi có trung điểm của một cạnh trong tam giác, ta thường kẻ đường trung tuyến, đườn trung bình.
_Khi cần tạo góc ngoài của tam giác, ta thường kẻ tia đối của tia chứa một cacnhj của tam giác.
_Kẻ hai đường chéo của tứ giác.
_Kẻ đương trung bình của hình thang khi có trung điểm của hai cạnh bên.
cái này còn một phần nữa nhưng nói sau.
:wub: Cách 2: Vẽ giao điểm của hai đường thẳng
Hãy chú ý vẽ giao điểm của hai đường thẳng nếu hình vẽ tạo ra các tam giác, tứ giác liên quan đến các quan hệ nêu trong đề bài; vẽ giao điểm của đường thẳng và đường tròn nếu hình vẽ tạo ra các cung có liên quan đến các dữ kiện trong bài.
Hãy nghĩ đến việc vẽ giao điểm của hai đường thẳng nếu hình vẽ tạo ra những hình mới có lợi trong chứng minh( tạo ra các tam giác đặc biệt, những tam giác bằng nhau, những tam giác đồng dạng, những cung bằng nhau hay bù nhau...)
>:) Cách thứ 3: Vẽ trung điểm của đoạn thẳng vẽ đoạn thẳng bằng đoạn thẳng bằng đoạn thẳng cho trước
Trong một tam giác,khi đã có trung điểm của một cạnh, ta thường vẽ thêm trung điểm của một cạnh khác.
Trong hình thang, khi đã có trung điểm của một cạnh bên, ta thường vẽ thêm trung điểm của cạnh bên thứ hai.
Việc vẽ thêm một đoạn thẳng bằng đoạn thẳng cho trước nhằm tạo ra:
- Một tam giác mới bằng một tam giác trong bài toán
- Một tam giác cân giúp thuận lợi trong chứng minh
- Tổng hiệu của hai đọn thẳng.
:icon10: Cách tứ tư: vẽ tia phân giác của góc, vẽ góc bằng góc cho trước
Ta thuờng vẽ tia phân giác của góc nếu góc đó gấp đôi đôi một góc kháctrong bài toán. Việc vẽ một góc bằng góc cho trước thường nhằm tạo ra một tam giác cân, một hình thang cân, hai tam giác bằng nhau, ai tam giác đồng dạng...
Bài này chính là bài của mình trên học mãi nên bạn nào đọc qua rùi thì đừng thắc mắc :lol:

anh có thể cho em biết là cuốn sách gì được không? một quyển sách hay thì cũng nên tham khảo :lol:

"Trên con đường đi đến thành công,


thì không có vết chân của kẻ làm biếng."



"Những thành quả đạt được trong tương lai,


là kết quả của việc học ngày hôm nay"


#16 BlackSelena

BlackSelena

    $\mathbb{Sayonara}$

  • Điều hành viên OLYMPIC
  • 1523 Bài viết
  • 0 points
  • Giới tính:Nữ
  • Sở thích:$\mathfrak{Geometry} \heartsuit$

Đã gửi 31-08-2012 - 00:31

anh có thể cho em biết là cuốn sách gì được không? một quyển sách hay thì cũng nên tham khảo :lol:

Bạn tham khảo thêm cuốn "Cẩm nang hình phụ trong giải toán hình học phẳng" của thầy Nguyễn Đức Tấn.
    "The raindrops are my tears.
        The wind is my breath, with which I speak.
            The leaves and branches are my hands.
                This is because my body is being enveloped."

201430b106e4-d1d5-4f50-b713-892904b9b8e3

~ Shu ... doko ? ~

  



 


#17 nhokyeutoan

nhokyeutoan

    Lính mới

  • Thành viên
  • 3 Bài viết
  • 0 points
  • Giới tính:Nam
  • Đến từ:THPT Chuyên Nguyễn Tất Thành Kon Tum

Đã gửi 10-11-2012 - 11:38

Bạn tham khảo thêm cuốn "Cẩm nang hình phụ trong giải toán hình học phẳng" của thầy Nguyễn Đức Tấn.

Cuốn này là dành cho cả cấp THCS luôn hay là sao ạ?

#18 BlackSelena

BlackSelena

    $\mathbb{Sayonara}$

  • Điều hành viên OLYMPIC
  • 1523 Bài viết
  • 0 points
  • Giới tính:Nữ
  • Sở thích:$\mathfrak{Geometry} \heartsuit$

Đã gửi 10-11-2012 - 11:44

Cuốn này là dành cho cả cấp THCS luôn hay là sao ạ?

Phần cuối tài liệu có vẻ hơi nặng THPT 1 xíu :)
Nói chung phải tự lựa mà học thôi bạn à!
    "The raindrops are my tears.
        The wind is my breath, with which I speak.
            The leaves and branches are my hands.
                This is because my body is being enveloped."

201430b106e4-d1d5-4f50-b713-892904b9b8e3

~ Shu ... doko ? ~

  



 


#19 Super Fields

Super Fields

    Sĩ quan

  • Thành viên
  • 468 Bài viết
  • 1 points
  • Giới tính:Nam
  • Đến từ:$\color{indigo}{\boxed{\boxed{\heartsuit♥\rightarrow \mathbb{S}\mathbb{K}\mathbb{Y}\mathbb{P}\mathbb{I}\mathbb{E}\mathbb{A}\leftarrow ♥\heartsuit}}}$
  • Sở thích:$\color{indigo}{\boxed{\boxed{\rightarrow ◘♥\mathbb{N}\mathbb{T}\mathbb{T}\mathbb{N}♥◘\leftarrow}}}$

Đã gửi 16-08-2013 - 10:45

hừm hình như mấy định lý như céva, ménélaus cũng kẻ đường phụ hay gì đó. Mấy bạn mần thử nhé :P.
Bài 1:Trên các cạnh $BC, CA, AB$ của $\Delta ABC$ lấy tương các điểm $P,Q,R$ sao cho $AP, BQ, CR$ đồng quy tại 1 điểm . CMR $\frac{AR}{RB}.\frac{BP}{PC}.\frac{CQ}{QA}=1$ (Đlý Cê-va)

Bài 2:Một đường thẳng bất kỳ cắt các cạnh ( phần kéo dài của các cạnh ) của $\Delta ABC$ tại $P,Q,R$. CMR $\frac{RB.QA.PC}{RA.CQ.BP}=1$ (Đlý Mê-nê-la-uýt)

 

Mới học xong Định lý Cesva và ménélaus :icon6: :

3.png

1/ Kẻ 1 đường thẳng // BC, cắt CR kéo dài tại H, cắt BQ kéo dài tại K 

 

+Sử dụng Thales, ta có:

 

$\frac{AR}{RB} = \frac{HA}{BC}$                                 (1)

$\frac{CQ}{QA} = \frac{BC}{AK}$                                 (2)

$\frac{HA}{PC} = \frac{AK}{BP} (=\frac{AO}{OP})$

=>$\frac{BP}{PC} = \frac{AK}{HA}$                             (3)

(1).(2).(3) vế theo vế

=>ĐPCM ( Q.E.D )


Bài viết đã được chỉnh sửa nội dung bởi Super Fields: 16-08-2013 - 10:46

$\dagger$God made the integers, and else is the work of man.$\dagger$

 

$\boxed{\textrm{My Blog}}$


#20 neversaynever99

neversaynever99

    Thượng sĩ

  • Thành viên
  • 243 Bài viết
  • 0 points
  • Giới tính:Không khai báo
  • Sở thích:Đọc sách
    Làm toán
    Làm thơ con cóc

Đã gửi 02-09-2013 - 08:48

Sao lại kém sôi nổi thế? Hâm nong topic lại nào!

Bài 1.Cho hình vuông ABCD.P là một điểm bất kì trên cạnh AB(P khác A,B). Tia DP cắt tia CB tại điểm E.Các đường thẳng CP và AE cắt nhau tại M. Chứng minh rằng đường thẳng DE vuông góc với đường thẳng BM.

Bài 2. Đường tròn nội tiếp tam giác ABC tiếp xúc với cạnh BC,AC,AB tại M,N,P. Gọi Q là hình chiếu vuông góc của M xuống NP.Chứng minh rằng QM là phân giác của góc BQC.






0 người đang xem chủ đề

0 thành viên, 0 khách, 0 thành viên ẩn danh