Đến nội dung


Hình ảnh

Chứng minh tổng bình phương các cạnh trong hình bình bình hành ABCD bằng tổng bình phương hai đường chéo.


  • Please log in to reply
Chủ đề này có 4 trả lời

#1 henry0905

henry0905

    Trung úy

  • Thành viên
  • 881 Bài viết
  • 0 points
  • Giới tính:Nam
  • Đến từ:THPT chuyên Trần Đại Nghĩa
  • Sở thích:Đi ngủ

Đã gửi 11-09-2012 - 22:28

Chứng minh tổng bình phương các cạnh trong hình bình bình hành ABCD bằng tổng bình phương hai đường chéo.
Tổng quát: Nếu ABCD là tứ giác lồi thì hệ thức trên trở thành như thế nào?

#2 BlackSelena

BlackSelena

    $\mathbb{Sayonara}$

  • Điều hành viên OLYMPIC
  • 1521 Bài viết
  • 0 points
  • Giới tính:Nữ
  • Sở thích:$\mathfrak{Geometry} \heartsuit$

Đã gửi 12-09-2012 - 15:51

Xét hình bình hành $ABCD$
Theo định lý hàm $\cos$ cho $\triangle ABC$, ta có:
$AC^2 = AB^2 + BC^2 - 2AB.BC.\cos B$
Tương tự, áp dụng vào tam giác $BCD$.
$BD^2 =CD^2 + BC^2 - 2BC.CD.\cos D$
Vậy $AC^2 + BD^2 = AB^2 + BC^2 + CD^2 + BC^2 - 2AB.BC.\cos B - 2BC.CD.\cos D$
Mà $AB=CD,BC=AD$ nên ta có đpcm.

Bài viết đã được chỉnh sửa nội dung bởi BlackSelena: 16-09-2012 - 00:04

    "The raindrops are my tears.
        The wind is my breath, with which I speak.
            The leaves and branches are my hands.
                This is because my body is being enveloped."

201430b106e4-d1d5-4f50-b713-892904b9b8e3

~ Shu ... doko ? ~

  



 


#3 giapvansu

giapvansu

    Binh nhất

  • Thành viên
  • 45 Bài viết
  • 0 points
  • Giới tính:Nam

Đã gửi 15-09-2012 - 17:52

Xét hình bình hành $ABCD$
Áp dụng định lý cosin trong các tam giác $ABC$ và $BCD$ ta có
$AC^2=AB^2+BC^2-2.AB.BC.\cos{B}$
$BD^2=BC^2+CD^2-2.BC.CD.\cos{C}$
Cộng vế với vế của hai phương trình ta được
$AC^2+BD^2= AB^2+BC^2-2.AB.BC.\cos{B}+BC^2+CD^2-2.BC.CD.\cos{C}$
Chúng ta cần lưu ý trong hình bình hành có các tính chất sau: $AB = CD$, $AD = BC$, $\angle{B}+\angle{D}=180^{\circ}\Rightarrow \cos{B}= -\cos{D}$
Chúng ta dễ dàng có điều phải chứng minh

Ngoài ra đối với bài toán này chúng ta co thể sử dụng phương pháp vécto, sẽ giúp ích rất nhiều cho các em học sinh lớp 10 về phép toán cộng vecto, tích vô hướng và bình phương của một véc tơ
Nếu bạn nào yêu càu bài viết tới mình sẽ trình bày cách giải này!
Thân ái!

Bài viết đã được chỉnh sửa nội dung bởi HAIBARA AI loves ZHAOYUN: 15-09-2012 - 20:33


#4 nthoangcute

nthoangcute

    Đại úy

  • Thành viên
  • 1989 Bài viết
  • 0 points
  • Giới tính:Nam
  • Đến từ:Lớp 11

Đã gửi 15-09-2012 - 23:52

Ngoài ra đối với bài toán này chúng ta co thể sử dụng phương pháp vécto, sẽ giúp ích rất nhiều cho các em học sinh lớp 10 về phép toán cộng vecto, tích vô hướng và bình phương của một véc tơ

Cám ơn thầy về nhận xét này, từ đó em đã tìm được 2 cách mới:
Gọi $O$ là giao điểm hai đường chéo hình bình hành
Cách 1: Theo định lý về đường trung tuyến trong tam giác ta có:
$AO^2=\frac{AD^2+AB^2}{2}-\frac{BD^2}{4}$
Hay $\frac{AC^2}{4}=\frac{AD^2+AB^2}{2}-\frac{BD^2}{4}$
Suy ra $AC^2+BD^2=2AD^2+2AB^2=AB^2+BC^2+CD^2+DA^2$
Cách 2: Ta thấy:
$2\overrightarrow{AO}=\overrightarrow{AD}+\overrightarrow{AB}$
Suy ra $AC^2=4AO^2=(\overrightarrow{AD}+\overrightarrow{AB})^2=AD^2+AB^2+2\overrightarrow{AD}\overrightarrow{AB}=AB^2+AB^2+(AD^2+AB^2-BD^2)=AB^2+BC^2+CD^2+DA^2-BD^2$
Suy ra $AC^2+BD^2=2AD^2+2AB^2=AB^2+BC^2+CD^2+DA^2$

Xem thêm các thủ thuật CASIO ở đây :
www.youtube.com/nthoangcute/

Các bạn có thể Like, Subscribe, Share, ... để kênh của mình phát triển hơn !
Thanks All !


#5 giapvansu

giapvansu

    Binh nhất

  • Thành viên
  • 45 Bài viết
  • 0 points
  • Giới tính:Nam

Đã gửi 26-09-2012 - 18:00

Cám ơn thầy về nhận xét này, từ đó em đã tìm được 2 cách mới:
Gọi $O$ là giao điểm hai đường chéo hình bình hành
Cách 1: Theo định lý về đường trung tuyến trong tam giác ta có:
$AO^2=\frac{AD^2+AB^2}{2}-\frac{BD^2}{4}$
Hay $\frac{AC^2}{4}=\frac{AD^2+AB^2}{2}-\frac{BD^2}{4}$
Suy ra $AC^2+BD^2=2AD^2+2AB^2=AB^2+BC^2+CD^2+DA^2$
Cách 2: Ta thấy:
$2\overrightarrow{AO}=\overrightarrow{AD}+\overrightarrow{AB}$
Suy ra $AC^2=4AO^2=(\overrightarrow{AD}+\overrightarrow{AB})^2=AD^2+AB^2+2\overrightarrow{AD}\overrightarrow{AB}=AB^2+AB^2+(AD^2+AB^2-BD^2)=AB^2+BC^2+CD^2+DA^2-BD^2$
Suy ra $AC^2+BD^2=2AD^2+2AB^2=AB^2+BC^2+CD^2+DA^2$

Hãy cứ cố gắng suy nghĩ để tìm các cách giải khác nhau cho mỗi bài toán nhé, m tin bạn sẽ học tốt. Chúc thành công!




0 người đang xem chủ đề

0 thành viên, 0 khách, 0 thành viên ẩn danh