SYMMETRIC POLYNOMIALS

1. Definition of the Symmetric Polynomials

Let n be a positive integer, and let r_{1}, \cdots, r_{n} be indeterminates over \mathbb{Z} (they are algebraically independent, meaning that there is no nonzero polynomial relation among them).

The monic polynomial $g \in \mathbb{Z}\left[r_{1}, \cdots, r_{n}\right][X]$ having roots r_{1}, \cdots, r_{n} expands as

$$
g(X)=\prod_{i=1}^{n}\left(X-r_{i}\right)=\sum_{j \in \mathbb{Z}}(-1)^{j} \sigma_{j} X^{n-j}
$$

whose coefficients are (up to sign) the elementary symmetric functions of r_{1}, \cdots, r_{n},

$$
\sigma_{j}=\sigma_{j}\left(r_{1}, \cdots, r_{n}\right)= \begin{cases}\sum_{1 \leq i_{1}<\cdots<i_{j} \leq n} \prod_{k=1}^{j} r_{i_{k}} & \text { for } j \geq 0 \\ 0 & \text { for } j<0\end{cases}
$$

Note the special cases $\sigma_{0}=1$ and $\sigma_{j}=0$ for $j>n$. For example, if $n=4$ then the nonzero elementary symmetric functions are

$$
\begin{aligned}
& \sigma_{0}=1 \\
& \sigma_{1}=r_{1}+r_{2}+r_{3}+r_{4} \\
& \sigma_{2}=r_{1} r_{2}+r_{1} r_{3}+r_{1} r_{4}+r_{2} r_{3}+r_{2} r_{4}+r_{3} r_{4}, \\
& \sigma_{3}=r_{1} r_{2} r_{3}+r_{1} r_{2} r_{4}+r_{1} r_{3} r_{4}+r_{2} r_{3} r_{4} \\
& \sigma_{4}=r_{1} r_{2} r_{3} r_{4}
\end{aligned}
$$

It seems clear that because r_{1}, \cdots, r_{n} are algebraically independent, so are $\sigma_{1}, \cdots, \sigma_{n}$, but a small argument is required to show this. The problem is that although a nontrivial integer polynomial relation $f\left(\sigma_{1}, \cdots, \sigma_{n}\right)=0$ expands to an integer polynomial relation $g\left(r_{1}, \cdots, r_{n}\right)=0$, the polynomial g could conceivably be trivial. So, suppose a relation

$$
f\left(\sigma_{1}, \cdots, \sigma_{n}\right)=0, \quad f \in \mathbb{Z}\left[X_{1}, \cdots, X_{n}\right] .
$$

Any nonzero term of $f\left(X_{1}, \cdots, X_{n}\right)$ takes the form

$$
a X_{1}^{d_{1}} X_{2}^{d_{2}} \cdots X_{n}^{d_{n}}
$$

Set

$$
\begin{aligned}
e_{n} & =d_{n} \\
e_{n-1} & =d_{n-1}+e_{n} \\
e_{n-2} & =d_{n-2}+e_{n-1} \\
& \vdots \\
e_{1} & =d_{1}+e_{2} .
\end{aligned}
$$

Then the nonzero term of f is now

$$
a X_{1}^{e_{1}-e_{2}} X_{2}^{e_{2}-e_{3}} \cdots X_{n}^{e_{n}}, \quad e_{1} \geq e_{2} \geq \cdots \geq e_{n} \geq 0
$$

Sort the nonzero terms lexicographically, i.e., first by total degree, then by X_{1} exponent, then X_{2}-exponent, and so on. In the lex-initial term, substituting the σ_{i} for the X_{i} gives

$$
a \sigma_{1}^{e_{1}-e_{2}} \sigma_{2}^{e_{2}-e_{3}} \cdots \sigma_{n}^{e_{n}}=a\left(r_{1}^{e_{1}} r_{2}^{e_{2}} \cdots r_{n}^{e_{n}}+\cdots\right)
$$

Now $a r_{1}^{e_{1}} r_{2}^{e_{2}} \cdots r_{n}^{e_{n}}$ is the lex-initial nonzero term of $g\left(r_{1}, \cdots, r_{n}\right)$, sorting here by r_{i}-exponents rather than X_{i}-exponents. Thus no other term can cancel it in the relation $g\left(r_{1}, \cdots, r_{n}\right)=0$. Therefore, no nonzero term of $f\left(X_{1}, \cdots, X_{n}\right)$ exists.

Give the ring of polynomials in r_{1}, \cdots, r_{n} a name,

$$
R=\mathbb{Z}\left[r_{1}, \cdots, r_{n}\right]
$$

The symmetric group S_{n} acts on R,

$$
\sigma f\left(r_{1}, \cdots, r_{n}\right)=f\left(r_{\sigma 1}, \cdots, r_{\sigma n}\right), \quad \sigma \in S_{n}, f \in \mathbb{Z}\left[r_{1}, \cdots, r_{n}\right]
$$

The polynomials in R that are invariant under the action form a subring of R,

$$
R_{o}=\left\{S_{n} \text {-invariant polynomials in } R\right\}
$$

The product form in the earlier equality

$$
g(X)=\prod_{i=1}^{n}\left(X-r_{i}\right)=\sum_{j \in \mathbb{Z}}(-1)^{j} \sigma_{j} X^{n-j}
$$

shows that the σ_{j} are invariant under the action, and hence

$$
\mathbb{Z}\left[\sigma_{1}, \cdots, \sigma_{n}\right] \subset R_{o} .
$$

In fact the containment is an equality.
Theorem 1.1 (Fundamental Theorem of Symmetric Polynomials). The subring of polynomials in $\mathbb{Z}\left[r_{1}, \cdots, r_{n}\right]$ that are fixed under the action of S_{n} is $\mathbb{Z}\left[\sigma_{1}, \cdots, \sigma_{n}\right]$.
Proof. Consider a nonzero polynomial $f \in \mathbb{Z}\left[r_{1}, \cdots, r_{n}\right]$ that is fixed under the action of S_{n}. Sort its nonzero terms lexicographically, first by total degree, then by r_{1}-exponent, then r_{2}-exponent, and so on. Consider its lex-initial term,

$$
a r_{1}^{e_{1}} \cdots r_{n}^{e_{n}}
$$

For any $\sigma \in S_{n}$ the polynomial f contains a term having the same coefficient but with the variables permuted by σ. Thus the lex-initial term takes the form

$$
t=a r_{1}^{e_{1}} \cdots r_{n}^{e_{n}}, \quad e_{1} \geq \cdots \geq e_{n} \geq 0
$$

Now consider the coefficient of t times a product of elementary symmetric functions,

$$
g_{t}=a \sigma_{1}^{e_{1}-e_{2}} \sigma_{2}^{e_{2}-e_{3}} \cdots \sigma_{n}^{e_{n}} \in \mathbb{Z}\left[\sigma_{1}, \cdots, \sigma_{n}\right]
$$

(the exponents are all nonnegative because of the conditions on the e_{i}). This polynomial's lexicographically-highest term is exactly t. Thus, recalling that f is our S_{n}-invariant polynomial and noting that g_{t} is certainly S_{n}-invariant as well, we see that the polynomial $f-g_{t}$ is also S_{n}-fixed, and it has a smaller lex-initial term than f. Replace f by $f-g_{t}$ and continue in this fashion until the original f is expressed as a polynomial in the σ_{i}.

The discriminant of r_{1}, \cdots, r_{n} (also called the discriminant of g) is

$$
\Delta=\Delta\left(r_{1}, \cdots, r_{n}\right)=\Delta(g)=\prod_{1 \leq i<j \leq n}\left(r_{i}-r_{j}\right)^{2}
$$

Being visibly invariant under S_{n}, the discriminant lies in the coefficient field of g. For example, if $n=2$ then

$$
\Delta=\left(r_{1}-r_{2}\right)^{2}=\left(r_{1}+r_{2}\right)^{2}-4 r_{1} r_{2}=\sigma_{1}^{2}-4 \sigma_{2}
$$

Trying similarly to analyze the case $n=3$ quickly shows that expressing Δ in terms of the σ_{j} is not easy, although the proof of the Fundamental Theorem shows us how to do it. (Answer: $\sigma_{1}^{2} \sigma_{2}^{2}-4 \sigma_{2}^{3}-4 \sigma_{1}^{3} \sigma_{3}-27 \sigma_{3}^{2}+18 \sigma_{1} \sigma_{2} \sigma_{3}$.) Soon we will develop a general discriminant algorithm.

The square root of the discriminant,

$$
\sqrt{\Delta}=\prod_{1 \leq i<j \leq n}\left(r_{i}-r_{j}\right)
$$

changes its sign when any two of the r 's are exchanged, i.e., $(k \ell) \sqrt{\Delta}=-\sqrt{\Delta}$ for any transposition $(k \ell) \in S_{n}$. That is, $\sqrt{\Delta}$ is fixed by A_{n} but not by S_{n}.

2. Guided example: Solving the Cubic Equation

To solve the general cubic equation, the task is to express r_{1}, r_{2}, r_{3} in terms of $\sigma_{1}, \sigma_{2}, \sigma_{3}$. Let

$$
r=r_{1}+\zeta_{3} r_{2}+\zeta_{3}^{2} r_{3}
$$

Show that r^{3} is invariant under the alternating group A_{3}. Let S_{3} act on $\mathbb{Z}\left[r_{1}, r_{2}, r_{3}\right]$. Then we have

$$
(23) r=r_{1}+\zeta_{3} r_{3}+\zeta_{3}^{2} r_{2}
$$

Show that $((23) r)^{3} \neq r^{3}$ and hence that $(23)\left(r^{3}\right) \neq r^{3}$. Thus r^{3} is not invariant under the full symmetric group S_{3}. Since a set of coset representatives for S_{3} / A_{3} is $\{1,(23)\}$, the polynomial

$$
R_{r^{3}}(X)=\left(X-r^{3}\right)\left(X-(23)\left(r^{3}\right)\right)=X^{2}-\left(r^{3}+(23)\left(r^{3}\right)\right) X+r^{3} \cdot(23)\left(r^{3}\right)
$$

lies in $\mathbb{Z}\left[\sigma_{1}, \sigma_{2}, \sigma_{3}\right]$. (This polynomial is the resolvent of r^{3}.) Use the proof of the Fundamental Theorem of Symmetric Functions for $n=3$ to show that

$$
\begin{aligned}
r \cdot(23) r & =\sigma_{1}^{2}-3 \sigma_{2} \\
r^{3}+(23)\left(r^{3}\right) & =2 \sigma_{1}^{3}-9 \sigma_{1} \sigma_{2}+27 \sigma_{3}
\end{aligned}
$$

so that the resolvent expands as

$$
R_{r^{3}}(X)=X^{2}-\left(2 \sigma_{1}^{3}-9 \sigma_{1} \sigma_{2}+27 \sigma_{3}\right) X+\left(\sigma_{1}^{2}-3 \sigma_{2}\right)^{3}
$$

Taking a square root over the coefficient field gives r^{3} and $\left(r^{3}\right)^{(23)}$. (We don't know which is which because there is no canonical labeling of r_{1}, r_{2}, r_{3}, so just designate one as r^{3}.) Now r is a root of

$$
R_{r}(X)=X^{3}-r^{3}
$$

(there are three roots, but again they are indistinguishable under relabeling of the $\left.r_{i}\right)$, and $r^{(23)}=\left(\sigma_{1}^{2}-3 \sigma_{2}\right) / r$ as computed above. Now that we have r and $r^{(23)}$, find r_{1}, r_{2}, r_{3} by solving the linear system

$$
\begin{aligned}
r_{1}+\zeta_{3} r_{2}+\zeta_{3}^{2} r_{3} & =r \\
r_{1}+\zeta_{3}^{2} r_{2}+\zeta_{3} r_{3} & =r^{(23)} \\
r_{1}+r_{2}+r_{3} & =\sigma_{1}
\end{aligned}
$$

Use these methods to solve the cubic polynomial $X^{3}-3 X+1$.
The strategy of this example is very general. Suppose that a polynomial

$$
g(X)=\prod_{i=1}^{n}\left(X-r_{i}\right)
$$

has roots r_{1}, \cdots, r_{n} that need not be algebraically independent, and suppose that a group G acts on the roots, fixing some underlying ring A. If we can find some polynomial expression in the roots,

$$
s=s\left(r_{1}, \cdots, r_{n}\right), \quad s \in A\left[X_{1}, \cdots, X_{n}\right]
$$

that is invariant under the action of a subgroup H of G, then the associated resolvent polynomial is

$$
f_{s}(X)=\prod_{g H \in G / H}(X-g s)
$$

(The name g for group-elements in the formula for the resolvent has no connection to the name g of the original polynomial from a moment ago.) The resolvent has degree $[G: H]$, and it has s as a root, and it is invariant under the action of the full group G because the map $g H \mapsto \gamma g H$ permutes the coset space G / H,

$$
\left(\gamma f_{s}\right)(X)=\prod_{g H \in G / H}(X-\gamma g s)=\prod_{\gamma g H \in G / H}(X-\gamma g s)=f_{s}(X)
$$

Thus, the coefficients of f_{s} are G-invariant. An algorithm might consequently be available to compute them, and then perhaps we can find the roots of f_{s}, one of which is s. Thus the problem of finding the roots of g given only the elementary symmetric functions of the roots would be reduced to finding the roots of g given also the roots of f_{s}, those roots being $\{g s: g H \in G / H\}$.

Depending on the context, one can bring various artfulnesses to bear on choosing a subgroup H of G and then finding an H-invariant expression s.

3. Guided Example: Solving the Quartic Equation

Let $n=4$. Let

$$
\begin{aligned}
& r=r_{1}-r_{2}+r_{3}-r_{4} \\
& s=r^{2}
\end{aligned}
$$

Show that the subgroup of S_{4} leaving s invariant is the dihedral group

$$
D=\langle(1234),(13)\rangle
$$

and that a set of coset representatives for S_{4} / D is $\{1,(12),(14)\}$. Show that the Fundamental Theorem of Symmetric Functions gives

$$
\begin{aligned}
r \cdot(12) r \cdot(14) r & =\sigma_{1}^{3}-4 \sigma_{1} \sigma_{2}+8 \sigma_{3} \\
s+(12) s+(14) s & =3 \sigma_{1}^{2}-8 \sigma_{2} \\
s \cdot(12) s+s \cdot(14) s+(12) s \cdot(14) s & =3 \sigma_{1}^{4}-16 \sigma_{1}^{2} \sigma_{2}+16 \sigma_{1} \sigma_{3}+16 \sigma_{2}^{2}-64 \sigma_{4} .
\end{aligned}
$$

To solve the quartic, take the cubic resolvent of s,

$$
\begin{aligned}
R_{s}(X)= & (X-s)(X-(12) s)(X-(14) s) \\
= & X^{3}-\left(3 \sigma_{1}^{2}-8 \sigma_{2}\right) X^{2}+\left(3 \sigma_{1}^{4}-16 \sigma_{1}^{2} \sigma_{2}+16 \sigma_{1} \sigma_{3}+16 \sigma_{2}^{2}-64 \sigma_{4}\right) X \\
& \quad-\left(\sigma_{1}^{3}-4 \sigma_{1} \sigma_{2}+8 \sigma_{3}\right)^{2}
\end{aligned}
$$

The three roots are $s,(12) s$, and (14) s; taking square roots of the first two gives r and (12)r, so as computed above, (14)r=($\left.\sigma_{1}^{3}-4 \sigma_{1} \sigma_{2}+8 \sigma_{3}\right) /(r \cdot(1,2) r)$. Now to solve the original quartic, solve the linear system

$$
\begin{aligned}
r_{1}-r_{2}+r_{3}-r_{4} & =r \\
-r_{1}+r_{2}+r_{3}-r_{4} & =r^{(12)} \\
-r_{1}-r_{2}+r_{3}+r_{4} & =r^{(14)} \\
r_{1}+r_{2}+r_{3}+r_{4} & =\sigma_{1} .
\end{aligned}
$$

4. Newton's identities

Retaining the notation from before, now define the power sums of r_{1}, \cdots, r_{n} to be

$$
s_{j}=s_{j}\left(r_{1}, \cdots, r_{n}\right)= \begin{cases}\sum_{i=1}^{n} r_{i}^{j} & \text { for } j \geq 0 \\ 0 & \text { for } j<0\end{cases}
$$

including $s_{0}=n$. The power sums are clearly invariant under the action of S_{n}. We want to relate them to the elementary symmetric functions σ_{j}. Start from the general polynomial,

$$
g(X)=\prod_{i=1}^{n}\left(X-r_{i}\right)=\sum_{j \in \mathbb{Z}}(-1)^{j} \sigma_{j} X^{n-j}
$$

Certainly

$$
g^{\prime}(X)=\sum_{j \in \mathbb{Z}}(-1)^{j} \sigma_{j}(n-j) X^{n-j-1}
$$

But also, the logarithmic derivative and geometric series formulas,

$$
\frac{g^{\prime}(X)}{g(X)}=\sum_{i=1}^{n} \frac{1}{X-r_{i}} \quad \text { and } \quad \frac{1}{X-r}=\sum_{k=0}^{\infty} \frac{r^{k}}{X^{k+1}}
$$

give

$$
\begin{aligned}
g^{\prime}(X) & =g(X) \cdot \frac{g^{\prime}(X)}{g(X)}=g(X) \sum_{i=1}^{n} \sum_{k=0}^{\infty} \frac{r_{i}^{k}}{X^{k+1}}=g(X) \sum_{k \in \mathbb{Z}} \frac{s_{k}}{X^{k+1}} \\
& =\sum_{k, \ell \in \mathbb{Z}}(-1)^{\ell} \sigma_{\ell} s_{k} X^{n-k-\ell-1} \\
& \left.=\sum_{j \in \mathbb{Z}}\left[\sum_{\ell \in \mathbb{Z}}(-1)^{\ell} \sigma_{\ell} s_{j-\ell}\right] X^{n-j-1} \quad \text { (letting } j=k+\ell\right)
\end{aligned}
$$

Equate the coefficients of the two expressions for $g^{\prime}(X)$ to get

$$
\sum_{\ell=0}^{j-1}(-1)^{\ell} \sigma_{\ell} s_{j-\ell}+(-1)^{j} \sigma_{j} n=(-1)^{j} \sigma_{j}(n-j)
$$

Newton's identities follow,

$$
\sum_{\ell=0}^{j-1}(-1)^{\ell} \sigma_{\ell} s_{j-\ell}+(-1)^{j} \sigma_{j} j=0 \quad \text { for all } j
$$

Explicitly, Newton's identities are

$$
\begin{aligned}
& s_{1}-\sigma_{1}=0 \\
& s_{2}-s_{1} \sigma_{1}+2 \sigma_{2}=0 \\
& s_{3}-s_{2} \sigma_{1}+s_{1} \sigma_{2}-3 \sigma_{3}=0 \\
& s_{4}-s_{3} \sigma_{1}+s_{2} \sigma_{2}-s_{1} \sigma_{3}+4 \sigma_{4}=0 \\
& \text { and so on. }
\end{aligned}
$$

The identities show (exercise) that for any $j \in\{1, \cdots, n\}$, the power sums s_{1}, \cdots, s_{j} are integer polynomials (with constant terms zero) in the elementary symmetric functions $\sigma_{1}, \cdots, \sigma_{j}$, while the elementary symmetric functions $\sigma_{1}, \cdots, \sigma_{j}$ are rational polynomials with constant terms zero) in the power sums s_{1}, \cdots, s_{j}. Consequently,

Proposition 4.1. The first j coefficients a_{1}, \cdots, a_{j} of the polynomial $f(X)=$ $X^{n}+a_{1} X^{n-1}+\cdots+a_{n}$ are zero exactly when the first j power sums of its roots are zero.

5. Resultants

Given polynomials p and q, we can determine whether they have a root in common without actually finding their roots.

Let m and n be nonnegative integers. Let

$$
a_{0}, \cdots, a_{m}, \quad b_{0}, \cdots, b_{n}, \quad\left(a_{0} \neq 0, \quad b_{0} \neq 0\right)
$$

be symbols (possibly elements of the base field \mathbb{Q}). Let the coefficient field be

$$
k=\mathbb{Q}\left(a_{0}, \cdots, a_{m}, b_{0}, \cdots, b_{n}\right)
$$

The polynomials

$$
p(X)=\sum_{i=0}^{m} a_{i} X^{m-i}, \quad q(X)=\sum_{i=0}^{n} b_{i} X^{n-i}
$$

in $k[X]$ are utterly general when the a_{i} 's and the b_{i} 's form an algebraically independent set, or conversely they can be explicit polynomials when all the coefficients lie in \mathbb{Q} or in \mathbb{R} or in \mathbb{C} or in some other extension field of \mathbb{Q}. It is an exercise to show that the polynomials p and q share a nonconstant factor in $k[X]$ if and only if there exist nonzero polynomials in $k[X]$,

$$
P(X)=\sum_{i=0}^{n-1} c_{i} X^{n-1-i}, \quad Q(X)=\sum_{i=0}^{m-1} d_{i} X^{m-1-i},
$$

having respective degrees less than n and m, such that $p P=q Q$. Such P and Q exist if and only if the system

$$
v M=0
$$

of $m+n$ linear equations over k in $m+n$ unknowns has a nonzero solution v, where

$$
v=\left[c_{0}, c_{1}, \cdots, c_{n-1},-d_{0},-d_{1}, \cdots,-d_{m-1}\right]
$$

lies in k^{m+n}, and M is the Sylvester matrix

$$
M=\left[\begin{array}{ccccccc}
a_{0} & a_{1} & \cdots & \cdots & a_{m} & & \\
& \ddots & \ddots & & & \ddots & \\
& & a_{0} & a_{1} & \cdots & \cdots & a_{m} \\
b_{0} & b_{1} & \cdots & b_{n} & & & \\
& b_{0} & b_{1} & \cdots & b_{n} & & \\
& & \ddots & \ddots & & \ddots & \\
& & & b_{0} & b_{1} & \cdots & b_{n}
\end{array}\right]
$$

(n staggered rows of a_{i} 's, m staggered rows of b_{j} 's, all other entries 0), an $(m+n)$ -by- $(m+n)$ matrix. Such a nonzero solution exists in turn if and only if $\operatorname{det} M=0$. This determinant is called the resultant of p and q,

$$
R(p, q)=\operatorname{det} M \in \mathbb{Z}\left[a_{0}, \cdots, a_{m}, b_{0}, \cdots, b_{n}\right]
$$

The condition that p and q share a factor in $k[X]$ is equivalent to their sharing a root in the splitting field over k of $p q$. Thus the result is

Theorem 5.1. The polynomials p and q in $k[X]$ share a nonconstant factor in $k[X]$, or equivalently, share a root in the splitting field over k of their product, if and only if $R(p, q)=0$.

When the coefficients of p and q are algebraically independent, $R(p, q)$ is a master formula that applies to all polynomials of degrees m and n. At the other extreme, if the coefficients lie in some numerical superfield of \mathbb{Q} then $R(p, q)$ is a number that is zero or nonzero depending on whether the particular polynomials p and q share a factor.

Taking the resultant of p and q to check whether they share a root can also be viewed as eliminating the variable X from the pair of equations $p(X)=0$ and $q(X)=0$, leaving one equation $R(p, q)=0$ in the remaining variables a_{0}, \cdots, a_{m}, b_{0}, \cdots, b_{n}.

In principle, evaluating $R(p, q)=\operatorname{det} M$ can be carried out via a process of row and column operations. (Using only row operations encompasses computing the greatest common divisor of p and q by the Euclidean algorithm.) In practice, evaluating a large determinant is an error-prone process by hand. The next theorem will supply as a corollary a more efficient method to compute $R(p, q)$. In any
case, since any worthwhile computer symbolic algebra package is equipped with a resultant function, nontrivial resultants can often be found by machine.

In their splitting field over k, the polynomials p and q factor as

$$
p(X)=a_{0} \prod_{i=1}^{m}\left(X-r_{i}\right), \quad q(X)=b_{0} \prod_{j=1}^{n}\left(X-s_{j}\right)
$$

To express the resultant $R(p, q)$ explicitly in terms of the roots of p and q introduce the quantity $\tilde{R}(p, q)=a_{0}^{n} b_{0}^{m} \prod_{i=1}^{m} \prod_{j=1}^{n}\left(r_{i}-s_{j}\right)$. This polynomial vanishes if and only if p and q share a root, so it divides $R(p, q)$. Note that $\tilde{R}(p, q)$ is homogeneous of degree $m n$ in the r_{i} and s_{j}. On the other hand, each coefficient $a_{i}=a_{0}(-1)^{i} \sigma_{i}\left(r_{1}, \cdots, r_{m}\right)$ of p has homogeneous degree i in r_{1}, \cdots, r_{m}, and similarly for each b_{j} and s_{1}, \cdots, s_{n}. Thus in the Sylvester matrix the (i, j) th entry has degree

$$
\begin{cases}j-i \text { in the } r_{i} & \text { if } 1 \leq i \leq n, i \leq j \leq i+m \\ j-i+n \text { in the } s_{j} & \text { if } n+1 \leq i \leq n+m, i-n \leq j \leq i\end{cases}
$$

It quickly follows that any nonzero term in the determinant $R(p, q)$ has degree $m n$ in the r_{i} and the s_{j}, so $\tilde{R}(p, q)$ and $R(p, q)$ agree up to multiplicative constant. Matching coefficients of $\left(s_{1} \cdots s_{n}\right)^{m}$ shows that the constant is 1 . This proves
Theorem 5.2. The resultant of the polynomials

$$
p(X)=\sum_{i=0}^{m} a_{i} X^{m-i}=a_{0} \prod_{i=1}^{m}\left(X-r_{i}\right), \quad q(X)=\sum_{j=0}^{n} b_{j} X^{n-j}=b_{0} \prod_{j=1}^{n}\left(X-s_{j}\right)
$$

is given by the formulas

$$
R(p, q)=a_{0}^{n} b_{0}^{m} \prod_{i=1}^{m} \prod_{j=1}^{n}\left(r_{i}-s_{j}\right)=a_{0}^{n} \prod_{i=1}^{m} q\left(r_{i}\right)=(-1)^{m n} b_{0}^{m} \prod_{j=1}^{n} p\left(s_{j}\right)
$$

A special case of this theorem gives the efficient formula for the discriminant promised earlier. See the exercises.

Computing resultants can now be carried out via a Euclidean algorithm procedure: repeatedly do polynomial division with remainder and apply formula (4) in

Corollary 5.3. The following formulas hold:
(1) $R(q, p)=(-1)^{m n} R(p, q)$.
(2) $R(p \tilde{p}, q)=R(p, q) R(\tilde{p}, q)$ and $R(p, q \tilde{q})=R(p, q) R(p, \tilde{q})$.
(3) $R\left(a_{0}, q\right)=a_{0}^{n}$ and $R\left(a_{0} X+a_{1}, q\right)=a_{0}^{n} q\left(-a_{1} / a_{0}\right)$.
(4) If $q=Q p+\tilde{q}$ with $\operatorname{deg}(\tilde{q})<\operatorname{deg}(p)$ then

$$
R(p, q)=a_{0}^{\operatorname{deg}(q)-\operatorname{deg}(\tilde{q})} R(p, \tilde{q})
$$

The proof of the corollary is an exercise.

