Symmetric Functions

Putnam Practice

September 7, 2005

Although there is no general formula that takes us from coefficients $c_0, c_1, ..., c_n$ of the polynomial equation

$$c_0 x^n + c_1 x^{n-1} + \dots + c_n = 0$$

to its roots $x_1, ..., x_n$, there are formulas that take us from $c_0, c_1, ..., c_n$ to a large and important class of symmetric functions. A symmetric function of $x_1, ..., x_n$ is one whose value is unchanged if $x_1, x_2, ..., x_n$ are permuted arbitrarily. For example, the following are symmetric functions of three variables:

$$Q(x_1, x_2, x_3) = x_1^3 + x_2^3 + x_3^3$$
$$R(x_1, x_2, x_3) = \frac{x_1 + x_2}{x_3} + \frac{x_2 + x_3}{x_1} + \frac{x_3 + x_1}{x_2}$$

Certain symmetric functions serve as building blocks for all the rest. Let

$$\sigma_k = \sum x_{i_1} x_{i_2} \dots x_{i_k}$$

where the sum is taken over all C_k^n choices of the indices $i_1, ... i_k$ from $\{1, 2, ... n\}$. Then σ_k is called the *k*-th elementary symmetric function of $x_1, ..., x_n$.

Theorem 1 Every symmetric polynomial function of $x_1, x_2, ..., x_n$ is a polynomial function of $\sigma_1, \sigma_2, ..., \sigma_n$. The same conclusion holds if polynomial is replaced by rational function.

For n = 3,

$$\sigma_1 = x_1 + x_2 + x_3$$

 $\sigma_2 = x_1 x_2 + x_2 x_3 + x_3 x_1$
 $\sigma_3 = x_1 x_2 x_3$

It is easy to check that $Q(x_1, x_2, x_3) = \sigma_1^3 - 3\sigma_1\sigma_2 + 3\sigma_3$ and $R(x_1, x_2, x_3) = \frac{\sigma_1\sigma_2 - 3\sigma_3}{\sigma_3}$.

Theorem 2 Let $x_1, x_2, ..., x_n$ be the roots of the polynomial equation

$$x^{n} + c_{1}x^{n-1} + \dots + c_{n} = 0$$

and let σ_k be the k-th elementary function of the x_i . Then $\sigma_k = (-1)^k c_k$, k = 1, 2, ..., n.

Proof:

$$x^{n} + c_{1}x^{n-1} + \dots + c_{n} = (x - x_{1})(x - x_{2})\dots(x - x_{n})$$

Example 1: Find all solutions of the system of equations

$$x + y + z = 0$$
$$x2 + y2 + z2 = 6ab$$
$$x3 + y3 + z3 = 3(a3 + b3)$$

Theorem 3 Let $S_p = x_1^p + x_2^p + \dots + x_n^p$, where $x_1, \dots x_n$ are roots of the polynomial $x^n + c_1 x^{n-1} + \dots + c_n = 0$. Then

$$S_1 + c_1 = 0$$

$$S_2 + c_1 S_1 + 2c_2 = 0$$

$$S_n + c_1 S_{n-1} + \dots + nc_n = 0$$

$$S_p + c_1 S_{p-1} + \dots + c_n S_{p-n} = 0, p > n$$

Example 2: If x + y + z = 1, $x^2 + y^2 + z^2 = 2$ and $x^3 + y^3 + z^3 = 3$, find $x^4 + y^4 + z^4$.

Problems:

- 1. If x, y, z satisfy x + y + z = 3, $x^2 + y^2 + z^2 = 5$ and $x^3 + y^3 + z^3 = 12$ determine $x^4 + y^4 + z^4$.
- 2. If $x^2 + y^2 = 9$ and $x^3 + y^3 = 27$ determine all possible values of $x^4 + y^4$.
- 3. Let a, b, c be real numbers such that a + b + c = 0. show that

$$\frac{a^5 + b^5 + c^5}{5} = (\frac{a^2 + b^2 + c^2}{2})(\frac{a^3 + b^3 + c^3}{3}).$$