Symmetric Functions

Putnam Practice

September 7, 2005

Although there is no general formula that takes us from coefficients $c_{0}, c_{1}, \ldots, c_{n}$ of the polynomial equation

$$
c_{0} x^{n}+c_{1} x^{n-1}+\ldots+c_{n}=0
$$

to its roots $x_{1}, \ldots x_{n}$, there are formulas that take us from $c_{0}, c_{1}, \ldots c_{n}$ to a large and important class of symmetric functions. A symmetric function of x_{1}, \ldots, x_{n} is one whose value is unchanged if $x_{1}, x_{2}, \ldots, x_{n}$ are permuted arbitrarily. For example, the following are symmetric functions of three variables:

$$
\begin{gathered}
Q\left(x_{1}, x_{2}, x_{3}\right)=x_{1}^{3}+x_{2}^{3}+x_{3}^{3} \\
R\left(x_{1}, x_{2}, x_{3}\right)=\frac{x_{1}+x_{2}}{x_{3}}+\frac{x_{2}+x_{3}}{x_{1}}+\frac{x_{3}+x_{1}}{x_{2}}
\end{gathered}
$$

Certain symmetric functions serve as building blocks for all the rest. Let

$$
\sigma_{k}=\sum x_{i_{1}} x_{i_{2}} \ldots x_{i_{k}}
$$

where the sum is taken over all C_{k}^{n} choices of the indices $i_{1}, \ldots i_{k}$ from $\{1,2, \ldots n\}$. Then σ_{k} is called the k-th elementary symmetric function of x_{1}, \ldots, x_{n}.

Theorem 1 Every symmetric polynomial function of $x_{1}, x_{2}, \ldots, x_{n}$ is a polynomial function of $\sigma_{1}, \sigma_{2}, \ldots, \sigma_{n}$. The same conclusion holds if polynomial is replaced by rational function.

For $n=3$,

$$
\begin{gathered}
\sigma_{1}=x_{1}+x_{2}+x_{3} \\
\sigma_{2}=x_{1} x_{2}+x_{2} x_{3}+x_{3} x_{1} \\
\sigma_{3}=x_{1} x_{2} x_{3}
\end{gathered}
$$

It is easy to check that $Q\left(x_{1}, x_{2}, x_{3}\right)=\sigma_{1}^{3}-3 \sigma_{1} \sigma_{2}+3 \sigma_{3}$ and $R\left(x_{1}, x_{2}, x_{3}\right)=$ $\frac{\sigma_{1} \sigma_{2}-3 \sigma_{3}}{\sigma_{3}}$.

Theorem 2 Let $x_{1}, x_{2}, \ldots, x_{n}$ be the roots of the polynomial equation

$$
x^{n}+c_{1} x^{n-1}+\ldots+c_{n}=0
$$

and let σ_{k} be the k-th elementary function of the x_{i}. Then $\sigma_{k}=(-1)^{k} c_{k}$, $k=1,2, \ldots, n$.

Proof:

$$
x^{n}+c_{1} x^{n-1}+\ldots+c_{n}=\left(x-x_{1}\right)\left(x-x_{2}\right) \ldots\left(x-x_{n}\right)
$$

Example 1: Find all solutions of the system of equations

$$
\begin{gathered}
x+y+z=0 \\
x^{2}+y^{2}+z^{2}=6 a b \\
x^{3}+y^{3}+z^{3}=3\left(a^{3}+b^{3}\right)
\end{gathered}
$$

Theorem 3 Let $S_{p}=x_{1}^{p}+x_{2}^{p}+\ldots+x_{n}^{p}$, where $x_{1}, \ldots x_{n}$ are roots of the polynomial $x^{n}+c_{1} x^{n-1}+\ldots+c_{n}=0$. Then

$$
\begin{gathered}
S_{1}+c_{1}=0 \\
S_{2}+c_{1} S_{1}+2 c_{2}=0 \\
S_{n}+c_{1} S_{n-1}+\ldots+n c_{n}=0 \\
S_{p}+c_{1} S_{p-1}+\ldots+c_{n} S_{p-n}=0, p>n
\end{gathered}
$$

$x^{4} \frac{\text { Example 2: If } x+y+z=1, x^{2}+y^{2}+z^{2}=2 \text { and } x^{3}+y^{3}+z^{3}=3 \text {, find }}{}$

Problems:

1. If x, y, z satisfy $x+y+z=3, x^{2}+y^{2}+z^{2}=5$ and $x^{3}+y^{3}+z^{3}=12$ determine $x^{4}+y^{4}+z^{4}$.
2. If $x^{2}+y^{2}=9$ and $x^{3}+y^{3}=27$ determine all possible values of $x^{4}+y^{4}$.
3. Let a, b, c be real numbers such that $a+b+c=0$. show that

$$
\frac{a^{5}+b^{5}+c^{5}}{5}=\left(\frac{a^{2}+b^{2}+c^{2}}{2}\right)\left(\frac{a^{3}+b^{3}+c^{3}}{3}\right) .
$$

