
Problems in Algebra

Section 2 Polynomial Equations

For a polynomial equation
P (x) = c0x

n + c1x
n−1 + · · ·+ cn = 0,

where c0, c1, . . . , cn are complex numbers, we know from the Fundamental Theorem of Algebra that there
are complex numbers x that satisfy the equation. A root of the equation P (x) = 0 is also referred to as a
zero of the polynomial P . To solve the equation means to specify all of the roots of the equation exactly by
a finite number of standard operations (+,−,×,÷, n

√ ) applied to the coefficients.

Consider the quadratic equation ax2 + bx + c = 0. Completing the square, one finds the complete solution
set,

S =

{
−b±

√
b2 − 4ac

2a

}
.

Such formulas also exist for cubic and quartic equations. But, as Abel first proved, arbitrary equations of
degree five and higher cannot be solved in such away.

The following plan of attack is suggested:

• Rational roots?

• Special form?

• If all else fails ...

Recall the Rational Root Theorem If c0, c1, . . . , cn are integers and x = a/b is a rational root of the
equation

P (x) = c0x
n + c1x

n−1 + · · ·+ cn = 0,

then a|cn and b|c0.

Example 12 Solve the equation 3x3 − 7x2 + 17x− 5 = 0.

Solution We first look for rational solutions. From the Rational Root Theorem, if x = a/b is a root then
a|5 and b|3. Trying the possible combinations, we find that x = 1/3 is in fact a root. Now we can factor:

(3x− 1)(x2 − 2x + 5) = 0.

Thus the solution set is
S = {1/3, 1± 2i}.

An equation of even degree
c0x

2n + c1x
2n−1 + · · ·+ c2n = 0

is called a reciprocal equation if ck = c2n−k for all k. In other words, the sequence of coefficients reads the
same from right to left as it does from left to right. For such an equation, the transformation z = x + x−1

reduces the problem to that of solving a polynomial equation of degree n (half the original degree).

Example 13 (1973 IMO) Let a and b be real numbers for which that equation

x4 + ax3 + bx2 + ax + 1 = 0

has at least one real solution. For all such pairs (a, b), find the minimum value of a2 + b2.
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Solution Putting y = x + 1/x, the equation becomes y2 + ay + b− 2 = 0. We have

y =
−a±

√
a2 + 8− 2b

2
.

If the original equation has a real root, then |y| ≥ 2 and hence |a|+
√

a2 + 8− 2b ≥ 4. Simplifying, we get
2|a| − b ≥ 2, and

a2 + b2 ≥ a2 + (2− 2|a|)2 = 5(|a| − 4/5)2 + 4/5.

The least possible value of a2 + b2 is 4/5, achieved when a = 4/5, b = −2/5. In this case, the original
equation is

x4 + 4/5 x3 − 2/5 x2 + 4/5 x + 1 = (x + 1)2(x2 − 6/5 x + 1).

There are many other cases where the equation is special and can be solved easily if one makes the right
observation.

Example 14 Solve x4 + 2x3 + 7x2 + 6x + 8 = 0.

Solution Observe that the equation can be written as (x2 + x)2 + 6(x2 + x) + 8 = 0. Thus (x2 + x +
4)(x2 + x + 2) = 0, and the complete solution set is

S =

{
−1± i

√
15

2
,
−1± i

√
7

2

}
.

Exercise 12 (M& IQ 3) Solve the equation (x + 1)(x + 2)(x + 3)(x + 4) = −1.

Exercise 13 (1993 BO) Given the equation

(x2 − 3x− 2)2 − 3(x2 − 3x− 2)− 2− x = 0.

Prove that the roots of the equation x2 − 4x− 2 = 0 are roots of the initial equation and find all roots of the
given equation.

Exercise 14 (1991 MAΘ) The equation with roots 3 +
√

2, 3 −
√

2,−3 + i
√

2 and −3 − i
√

2 is in the
form x4 + Ax3 + Bx2 + Cx + D = 0. Find A + B + C + D.

Exercise 15 Prove that
a2 + ab + b2 ≥ 3(a + b− 1)

for all real numbers a, b.

Although there is no general formula that takes us from the coefficients c0, c1, . . . , cn of the polynomial
equation

c0x
n + c1x

n−1 + · · ·+ cn = 0

to its roots x1, x2, . . . , xn, there are formulas that take us from c0, c1, . . . , cn to a large and important class
of functions of the roots. These are the symmetric functions. A symmetric function of x1, x2, . . . , xn is one
whose value is unchanged if x1, x2, . . . , xn are permuted arbitrarily.

For example, each of the following is a symmetric function of three variables:

P (x1, x2, x3) = x1x2 + x2x3 + x3x1,

Q(x1, x2, x3) = x3
1 + x3

2 + x3
3,

R(x1, x2, x3) = x2+x3
x1

+ x3+x1
x2

+ x1+x2
x3

.
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Certain symmetric functions serve as building blocks for all the rest. Let

σk =
∑

xi1xi2 · · ·xik
,

where the sum is taken over all
(
n
k

)
choices of the indices i1, i2, . . . , ik from {1, 2, . . . , n}. Then σk is called

the kth elementary symmetric function of x1, x2, . . . , xn.

Symmetric Function Theorem Every symmetric polynomial function of x1, x2, . . . , xn is a polynomial
function of σ1, σ2, . . . , σn.
The same conclusion holds if “polynomial” is replaced by “rational function.”

As an illustration, for n = 3 the elementary symmetric functions are

σ1 = x1 + x2 + x3,

σ2 = x1x2 + x2x3 + x3x1,

σ3 = x1x2x3,

and it is easy to check that the examples given earlier can be expressed in terms of these as follows:

x1x2 + x2x3 + x3x1 = σ1

x3
1 + x3

2 + x3
3 = σ3

1 − 3σ1σ2 + 3σ3

x2+x3
x1

+ x3+x1
x2

+ x1+x2
x3

= σ1σ2−3σ3
σ3

.

Another important fact involves the relationship between the coefficients of a polynomial and the elementary
symmetric functions of its zeros.

Theorem Let x1, x2, . . . , xn be the roots of the polynomial equation xn + c1x
n−1 + · · ·+ cn = 0, and let σk

be the kth elementary symmetric function of the xi. Then σk = (−1)kck, k = 1, 2, . . . , n.

Example 15 (1977 USAMO) If a and b are two roots of x4 + x3 − 1 = 0, prove that ab is a root of
x6 + x4 + x3 − x2 − 1 = 0.

Solution Suppose the roots of x4 + x3 − 1 = 0 are a, b, c, d. Then

a + b + c + d = −1,

ab + ac + ad + bc + bd + cd = 0,

abc + bcd + cda + dab = 0,

abcd = −1.

The equations can be rewritten as

(a + b) + (c + d) = −1,

ab + (a + b)(c + d) + cd = 0,

ab(c + d) + (a + b)cd = 0,

ab · cd = −1.

From the first and the last equations, we get (c + d) = −1 − (a + b) and cd = −1/(ab). Putting into the
second and the third equations,

ab + (a + b)(−1− (a + b))− 1/ab = 0,

ab(−1− (a + b))− (a + b)/ab = 0.
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Hence (a + b) = − (ab)2

1+(ab)2 , and

ab−
[
− (ab)2

1 + (ab)2
·
(

1− (ab)2

1 + (ab)2

)]
− 1

ab
= 0.

The result follows by simplifying the above equation.

Example 16 (1984 USAMO) The product of two of the four roots of the quartic equation x4 − 18x3 +
kx2 + 200x− 1984 = 0 is −32. Determine the value of k.

Solution Suppose the two roots satisfy the quadratic equation x2 +ax−32 = 0. The other two roots have
product (−1984)/(−32) = 62, and they satisfy a quadratic equation x2 + bx + 62 = 0. Hence

x4 − 18x3 + kx2 + 200x− 1984

= (x2 + ax− 32)(x2 + bx + 62)

= x4 + (a + b)x3 + (ab + 30)x2 + (62a− 32b)x− 1984

= 0.

Equating coefficients, we get a+ b = −18, and 62a−32b = 200. Solving the simultaneous equations, a = −4,
b = −14. Hence k = (−4)(−14) + 30 = 86.

Exercise 16 (1991 MAΘ) The equation x4− 16x3 +94x2 + px+ q = 0 has two double roots. Find p+ q.

Exercise 17 Let a, b, c be real numbers such that a + b + c > 0, bc + ca + ab > 0, abc > 0. Prove that
a, b, c are all positive.

Exercise 18 (1981 AHSME) If a, b, c, d are the solutions of the equation x4 − bx − 3 = 0, find the
polynomial with leading coefficient 3 whose roots are

a + b + c

d2
,

a + b + d

c2
,

a + c + d

b2
, and

b + c + d

a2
.

Exercise 19 The polynomial ax3 + bx2 + cx + d has integer coefficients a, b, c, d with ad odd and bc even.
Show that at least one zero of the polynomial is irrational.

Theorem (Newton’s Formulas for Power Sums) Let

Sp = xp
1 + xp

2 + · · ·+ xp
n,

where x1, x2, . . . , xn are the roots of xn + c1x
n−1 + · · ·+ cn = 0. Then

S1 + c1 = 0,

S2 + c1S1 + 2c2 = 0,

...

Sn + c1Sn−1 + · · · + cn−1S1 + ncn = 0.

and
Sp + c1Sp−1 + · · ·+ cnSp−n = 0

for p > n.
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Example 17 If
x + y + z = 1,

x2 + y2 + z2 = 2,

x3 + y3 + z3 = 3,

determine the value of x4 + y4 + z4.

Solution Let P (t) = (t− x)(t− y)(t− z) = t3 + c1t
2 + c2t + c3. The relevant formulas are

S1 + c1 = 0,

S2 + c1S1 + 2c2 = 0,

S3 + c1S2 + c2S1 + 3c2 = 0,

S4 + c1S3 + c2S2 + c3S1 = 0.

Substituting S1 = 1, S2,= 2, S3 = 3 and solving for c1, c2, c3, using the first three equations, we find
c1 = −1, c2 = −1/2, c3 = −1/6. Thus x, y, z are the roots of t3− t2− 1

2 t− 1
6 = 0. We don’t have to solve this

equation in order to find S4. Simply note that the fourth equation now reads S4 − 3 − 1 − 1/6 = 0. Thus
x4 + y4 + z4 = 25/6.

Example 18 Find all solutions of the system of equations

x + y + z = 0,

x2 + y2 + z2 = 6ab

x3 + y3 + z3 = 3(a3 + b3).

Solution The key is that the left side of each equation is a symmetric function of x, y, z. This suggests
that we can use the information given to construct a polynomial equation whose roots are x, y, z. Let

P (t) = (t− x)(t− y)(t− z) = t3 + c1t
2 + c2t + c3.

Then c1 = −(x + y + z) = 0 and

c2 = xy + yz + zx =
(x + y + z)2 − (x2 + y2 + z2)

2
= −3ab.

Moreover, P (x) = P (y) = P (z) = 0 yields (x3 +y3 + z3)+ c1(x2 +y2 + z2)+ c2(x+y + z)+3c3 = 0. We find

c3 = −x3 + y3 + z3

3
= −(a3 + b3).

Thus x, y, z are the roots of the cubic equation t3− 3abt− (a3 + b3) = 0. Observe that t = a+ b is one of the
roots; we can factor to obtain [t− (a + b)][t2 + (a + b)t + (a2 − ab + b2)], and so find the complete solution
set:

S = {a + b, aω + bω, aω + bω}.

(As before, ω and ω are the two complex cubic roots of unity.)

By Newton’s formulas, all power sums of the roots of the equation xn + c1x
n−1 + · · ·+ cn = 0 are real if all

of the coefficients c1, c2, . . . , cn are real.
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Example 19 (1980 USAMO) Let Gn = an sin(nA) + bn sin(nB) + cn sin(nC), where a, b, c, A,B,C are
real numbers and A + B + C is a multiple of π. Prove that if G1 = G2 = 0, then Gn = 0 for every natural
number n.

Solution Let z1 = a(cos A+ i sinA), z2 = b(cos B+ i sinB), and z3 = c(cos C + i sinC). Using De Moivre’s
formula, we see that since G1 = G2 = 0 and A + B + C is a multiple of π,

Im (z1 + z2 + z3) = Im (z2
1 + z2

2 + z2
3) = Im (z1z2z3) = 0.

Thus σ1 and σ3 are real. Since S1 = z1 + z2 + z3 and S2 = z2
1 + z2

2 + z2
3 are real, so is

σ2 = z1z2 + z2z3 + z3z1 =
S2

1 − S2

2
.

Thus σ1, σ2, σ3 are real and P (z) = (z − z1)(z − z2)(z − z3) is a polynomial with real coefficients. Hence
Sn = zn

1 + zn
2 + zn

3 is real for all n ≥ 0. This gives us the desired conclusion since Gn = Im Sn .

Exercise 20 Let a, b, c be real numbers such that

a + b + c = 3,

a2 + b2 + c2 = 5,

a3 + b3 + c3 = 7.

Find x4 + y4 + z4.

Exercise 21 Suppose that all the coefficient of the polynomial P (x) = c0x
n + c1x

n−1 + · · ·+ x2 + x + 1 are
real numbers. Show that P (x) has at least one non-real zero.

Exercise 22 (1991 MAΘ) Let r, s, and t be the roots of x3 − 6x2 + 5x− 7 = 0. Find

1
r2

+
1
s2

+
1
t2

.

Exercise 23 Let a, b, c be real numbers such that a + b + c = 0. Show that

a5 + b5 + c5

5
=

(
a2 + b2 + c2

2

) (
a3 + b3 + c3

3

)
.
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