Polynomial equations and symmetric functions.

While algorithms for solving polynomial equations of degree at most 4 exist, there are in general no such algorithms for polynomials of higher degree. A polynomial equation to be solved at an Olympiad is usually solvable by using the Rational Root Theorem (see the earlier handout Rational and irrational numbers), symmetry, special forms, and/or symmetric functions.
Here are, for the record, algorithms for solving 3rd and 4th degree equations.
Algorithm for solving cubic equations. The general cubic equation

$$
c_{0}+c_{1} x+c_{2} x^{2}+c_{3} x^{3}=0
$$

can be transformed (by dividing by c_{3} and letting $z:=x+\frac{c_{2}}{3 c_{3}}$) into an equation of the form

$$
z^{3}+p z+q=0
$$

To solve this equation, we substitute $x=u+v$ to obtain

$$
u^{3}+v^{3}+(u+v)(3 u v+p)+q=0
$$

Note that we are free to restrict u and v so that $u v=-p / 3$. Then u^{3} and v^{3} are the roots of the equation $z^{2}+q z-p^{3} / 27=0$. Solving this equation, we obtain

$$
u^{3}, v^{3}=-\frac{q}{2} \pm \sqrt{2},
$$

where

$$
R:=\left(\frac{q}{2}\right)^{2}+\left(\frac{p}{3}\right)^{3} .
$$

Now we may choose cube roots so that

$$
A:=\sqrt[3]{-\frac{q}{2}+\sqrt{R}}, \quad B:=\sqrt[3]{-\frac{q}{2}-\sqrt{R}}
$$

Then $A+B$ is a solution. It is easily checked that the other pairs are obtained by rotating A and B in the complex plane by angles $\pm 2 \pi / 3, \mp 2 \pi / 3$. So, the full set of solutions is

$$
\{A+B, \omega A+\bar{\omega} B, \bar{\omega} A+\omega B\} \quad \text { where } \omega:=e^{2 \pi \mathrm{i} / 3}
$$

Ferrari's method of solving quartic equations. The general quartic equation is reduced to a cubic equation called the resolvent. write the quartic equation as

$$
x^{4}+2 a x^{3}+b^{2}+2 c x+d=0 .
$$

Transpose to obtain

$$
x^{4}+2 a x^{3}=-b x^{2}-2 c x-d
$$

and then adding $2 r x^{2}+(a x+r)^{2}$ to both sides makes the left-hand side equal to $\left(x^{2}+a x+r\right)^{2}$. If r can be chosen to make the right-hand side a perfect square, then it will be easy to find all solutions. The right-hand side,

$$
\left(2 r+a^{2}-b\right) x^{2}+2(a r-c) x+\left(r^{2}-d\right)
$$

is a perfect square if and only if its discriminant is zero. Thus we require

$$
2 r^{3}-b r^{2}+2(a c-d) r+\left(b d-a^{2} d-c^{2}\right)=0
$$

This is the cubic resolvent.
Reciprocal or palindromic equations. If the equation the form $a_{0}+a_{1} x+\cdots+a_{n} x^{n}=0$ and $a_{j}=a_{n-j}$ for all $j=0, \ldots, n$, it is called palindromic. For even n, the transformation $z:=x+\frac{1}{x}$ reduces the equation to a new one of degree $n / 2$. After finding all solutions z_{j}, the solutions of the original equation are found by solving quadratic equations $x+\frac{1}{x}=z_{j}$.

Examples.

1. Solve $x^{4}+2 x^{3}+7 x^{2}+6 x+8=0$.
2. Solve $x^{4}+2 a x^{3}+b x^{2}+2 a x+1=0$.
3. Solve $x^{3}-3 x+1=0$.
4. Solve $x^{4}-26 x^{2}+72 x-11=0$.
5. Solve $z^{4}-2 z^{3}+z^{2}-a=0$ and find values of a for which all roots are real.

Definitions. A function of n variables is symmetric if it is invariant under any permutation of its variables. The k th elementary symmeric function is defined by

$$
\sigma_{k}\left(x_{1}, \ldots, x_{n}\right):=\sum x_{i_{1}} x_{i_{2}} \cdots x_{i_{k}},
$$

where the sum is taken over all $\binom{n}{k}$ choices of the indices $i_{1}, i_{2}, \ldots, i_{k}$ from the set $\{1,2, \ldots, n\}$.
Symmetric function theorem. Every symmetric polynomial function of x_{1}, \ldots, x_{n} is a polynomial function of $\sigma_{1}, \ldots, \sigma_{n}$. The same conclusion holds with "polynomial" replaced by "rational function".
Theorem. Let x_{1}, \ldots, x_{n} be the roots of the polynomial equation

$$
x^{n}+c_{1} x^{n-1}+\cdots+c_{n}=0,
$$

and let σ_{k} be the k th elementary symmetric function of x_{1}, \ldots, x_{n}. Then

$$
\sigma_{k}=(-1)^{k} c_{k}, \quad k=1, \ldots, n
$$

Newton's formula for power sums. Let

$$
S_{p}:=x_{1}^{p}+x_{2}^{p}+\cdots+x_{n}^{p}, \quad p \in \mathbb{N},
$$

where x_{1}, \ldots, x_{n} are the roots of

$$
x^{n}+c_{1} x^{n-1}+\cdots+c_{n}=0 .
$$

Then

$$
\begin{aligned}
S_{1}+c_{1} & =0 \\
S_{2}+c_{1} S_{1}+2 c_{2} & =0 \\
S_{3}+c_{1} S_{2}+c_{2} S_{1}+3 c_{3} & =0 \\
\cdots \cdots \cdots & \\
S_{n}+c_{1} S_{n-1}+\cdots+c_{n-1} S_{1}+n c_{n} & =0 \\
S_{p}+c_{1} S_{p-1}+\cdots+c_{n} S_{p-n} & =0, \quad p>n .
\end{aligned}
$$

Examples.

1. Find all solutions of the system

$$
\begin{aligned}
x+y+z & =0 \\
x^{2}+y^{2}+z^{2} & =6 a b \\
x^{3}+y^{3}+z^{3} & =3\left(a^{3}+b^{3}\right)
\end{aligned}
$$

2. If

$$
\begin{aligned}
x+y+z & =1 \\
x^{2}+y^{2}+z^{2} & =2 \\
x^{3}+y^{3}+z^{3} & =3
\end{aligned}
$$

determine the value of $x^{4}+y^{4}+z^{4}$.
3. Let $G_{n}:=a^{n} \sin (n A)+b^{n} \sin (n B)+c^{n} \sin (n C)$, where a, b, c, A, B, C are real numbers and $A+B+C$ is a multiple of π. Prove that if $G_{1}=G_{2}=0$, then $G_{k}=0$ for all $k \in \mathbb{N}$.
4. Find a cubic equation whose roots are the cubes of the roots of $x^{3}+a x^{2}+b x+c=0$.
5. Find all values of the parameter a such that all roots of the equation

$$
x^{6}+3 x^{5}+(6-a) x^{4}+(7-2 a) x^{3}+(6-a) x^{2}+3 x+1=0
$$

are real.
6. A student awoke at the end of an algebra class just in time to hear the teacher say, "...and I give you a hint that the roots form an arithmetic progression." Looking at the board, the student discovered a fifth degree equation to be solved for homework, but he had time to copy only

$$
x^{5}-5 x^{4}-35 x^{3}+
$$

before the teacher erased the blackboard. He was able to find all roots anyway. What are the roots?

