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1 Preface

On Wednesday, April 20, 2011, at 8:00 PM, I was inspired by the existing Mathlinks marathons to create
a marathon on Geometric Inequalities - the fusion of the beautiful worlds of Geometry and Multivariable
Inequalities. It was the result of the need for expository material on GI techniques, such as the crucial Rrs,
which were well-explored by only a small fraction of the community. Four months later, the thread has over
100 problems with full solutions, and not a single pending problem. On Friday, August 26, 2011, at 5:30
PM, I locked the thread indefinitely with the following post:

The reason is that most of the known techniques have been displayed, which was my goal. Recent problems
are tending to to be similar to old ones or they require methods that few are capable of utilizing at this time.
Until the community is ready for a new wave of more diffcult GI, and until more of these new generation GI
have been distributed to the public (through journals, articles, books, internet, etc.), this topic will remain
locked.

This collection is a tribute to our hard work over the last few months, but, more importantly, it is a source
of creative problems for future students of GI. My own abilities have increased at least several fold since the
exposure to the ideas behind these problems, and all those who strive to find proofs independently will find
themselves ready to tackle nearly any geometric inequality on an olympiad or competition.

The following document is dedicated to my friends Constantin Mateescu and Réda Afare (Thalesmaster),
and the pioneers Panagiote Ligouras and Virgil Nicula, all four of whom have contributed much to the
evolution of GI through the collection and creation of GI on Mathlinks.

The file may be distributed physically or electronically, in whole or in part, but for and only for non-
commercial purposes. References to problems or solutions should credit the corresponding authors.

To report errors, a Mathlinks PM can be sent BigSams, or an email to samer_seraj@hotmail.com.

Samer Seraj
September 4, 2011

1The original thread: http://www.artofproblemsolving.com/Forum/viewtopic.php?f=151&t=403006/
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2 Notation

For a 4ABC:

• Let AB = c, BC = a, CA = b be the sides of 4ABC.

• Let A = m (∠BAC), B = m (∠ABC), C = m (∠BCA) be measures of the angles of 4ABC.

• Let ∆ be the area of 4ABC.

• Let P be any point inside 4ABC, and let Q be an arbitrary point in the plane. Let the cevians
through P and A, B, C intersect a, b, c at Pa, Pb, Pc respectively.

• Let the distance from P to a, b, c, extended if necessary, be da, db, dc respectively.

• Let arbitrary cevians issued from A, B, C be d, e, f respectively.

• Let the semiperimeter, inradius, and circumradius be s, r, R respectively.

• Let the heights issued from A, B, C be ha, hb, hc respectively, which meet at the orthocenter H.

• Let the feet of the perpendiculars from H to BC, CA, AB be Ha, Hb, Hc respectively.

• Let the medians issued from A, B, C be ma, mb, mc respectively, which meet at the centroid G.

• Let the midpoints of A, B, C be Ma, Mb, Mc respectively.

• Let the internal angle bisectors issued from A, B, C be la, lb, lc respectively, which meet at the incenter
I, and intersect their corresponding opposite sides at La, Lb, Lc respectively.

• Let the feet of the perpendiculars from I to BC, CA, AB be Γa, Γb, Γc respectively.

• Let the centers of the excircles tangent to BC, CA, AB be Ia, Ib, Ic respectively, and the excircles be
tangent to BC, CA, AB at Ea, Eb, Ec.

• Let the radii of the excircles tangent to BC, CA, AB be ra, rb, rc respectively.

• Let the symmedians issued from A, B, C be sa, sb, sc respectively, which meet at the Lemoine Point
S, and intersect their corresponding opposite sides at Sa, Sb, Sc respectively.

• Let Γ be the Gergonne Point, and the Gergonne cevians through A, B, C be ga, gb, gc respectively.

• Let N be the Nagel Point, and the Nagel cevians through A, B, C be na, nb, nc respectively.

Let [X] denote the area of polygon X.

All
∑

and
∏

symbols without indices are cyclic.

� denotes the end of a proof, either for a lemma or the original problem.

2



3 Problems

1. For 4ABC, prove that R ≥ 2r. (Euler’s Inequality)

2. For 4ABC, prove that
∑

AB >
∑

PA.

3. For 4ABC, prove that
ab+ bc+ ca

4∆2
≥
∑ 1

s(s− a)
.

4. For 4ABC, prove that r(4R+ r) ≥
√

3∆.

5. For 4ABC, prove that cos
B − C

2
≥
√

2r

R
.

6. For 4ABC, prove that
√

12(R2 −Rr + r2) ≥
∑

AI ≥ 6r.

7. A circle with center I is inscribed inside quadrilateral ABCD. Prove that
∑

AB ≥
√

2 ·
∑

AI.

8. For 4ABC, prove that 9R2 ≥
∑

a2. (Leibniz’s Inequality)

9. Prove that for any non-degenerate quadrilateral with sides a, b, c, d, it is true that
a2 + b2 + c2

d2
≥ 1

3
.

10. For 4ABC, prove that 3 ·
∑

a sinA ≥
(∑

a
)
·
(∑

sinA
)
≥ 3(a sinC + b sinB + c sinA).

11. For acute 4ABC, prove that
∑

cot3A+ 6 ·
∏

cotA ≥
∑

cotA.

12. For 4ABC, prove that

(∑
cos

A

2

)
·
(∑

csc
A

2

)
≥ 6
√

3 +
∑

cot
A

2
.

13. A 2-dimensional plane is partitioned into x regions by three families of lines. All lines in a family are
parallel to each other. What is the least number of lines to ensure that x ≥ 2010. (Toronto 2010)

14. For 4ABC, prove that 3
√

3R ≥ 2s.

15. For 4ABC, prove that
∑ 1

2− cosA
≥ 2 ≥ 3 ·

∑ 1

5− cosA
.

16. For 4ABC, prove that
1

8
≥
∏

sin
A

2
.

17. In right-angled 4ABC with ∠A = 90◦, prove that
3
√

3

4
· a ≥ ha + max{b, c}.

18. For 4ABC, prove that s ·
∑

ha ≥ 9∆ with equality holding if and only if 4ABC is equilateral.

19. Prove that the semiperimeter of a triangle is greater than or equal to the perimeter of its orthic triangle.

20. Prove that of all triangles with same base and area, the isosceles triangle has the least perimeter.

21. ABCD is a convex quadrilateral with area 1. Prove that AC +BD +
∑

AB ≥ 4 + 2
√

2.

22. For 4ABC, prove that
∑

csc
A

2
≥ 4

√
R

r
.

23. For 4ABC, prove that
∑

sin2 A

2
≥ 3

4
.
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24. Of all triangles with a fixed perimeter, dtermine the triangle with the greatest area.

25. Let ABCD be a parallelogram such that ∠A ≤ 90. Altitudes from A meet BC,CD at E,F respectively.
Let r be the inradius of 4CEF . Prove that AC ≥ 4r. Determine when equality holds.

26. For 4ABC, the feet of the altitudes from B,C to AC,AB respectively, are E,D respectively. Let the
feet of the altitudes from D,E to BC be G,H respectively. Prove that DG+ EH ≤ BC. Determine
when equality holds.

27. For 4ABC, a line l intersects AB,CA at M,N respectively. K is a point inside 4ABC such that it
lies on l. Prove that ∆ ≥ 8 ·

√
[BMK] + [CNK].

28. For 4ABC, prove that

√
15

4
+
∑

cos(A−B) ≥
∑

sinA.

29. Let pI be the perimeter of the Intouch/Contact Triangle of 4ABC. Prove that pI ≥ 6r
( s

4R

) 1
3

.

30. In addition to 4ABC, let 4A′B′C ′ be an arbitrary triangle. Prove that 1 +
R

r
≥
∑ sinA

sinA′
.

31. For 4ABC, prove that
∑

cos2 B − C
2

≥ 24 ·
∏

sin
A

2
.

32. For 4ABC, prove that
∑

ha ≥ 9r.

33. For 4ABC, prove that
∑

cos
A−B

2
≥
∑

sin
3A

2
.

34. For 4ABC, prove that
∑

sin2 A

2
+
∏

cos
B − C

2
≥ 1.

35. For 4ABC, AO,BO,CO are extended to meet the circumcircles of 4BOC,4COA,4AOB respec-

tively, at K,L,N respectively. Prove that
AK

OK
+
BL

OL
+
CM

OM
≥ 9

2
.

36. For 4ABC, prove that
9abc

a+ b+ c
≥ 4
√

3∆.

37. For 4ABC, prove that
∑

a2b(a− b) ≥ 0.

38. Show that for all 0 < a, b <
π

2
we have

sin3 a

sin b
+

cos3 a

cos b
≥ sec(a− b)

39. For all parallelograms with a given perimeter, explicitly define those with the maximum area.

40. Show that the sum of the lengths of the diagonals of a parallelogram is less than or equal to the
perimeter of the parallelogram.

41. For 4ABC, the parallels through P to AB,BC,CA meet BC,CA,AB respectively, at L,M,N

respectively. Prove that
1

8
≥ AN

NB
· BL
LC
· CM
MA

.

42. For 4ABC, prove that
∑

a sin
A

2
≥ s

43. For 4ABC, it is true that BC = CA and BC ⊥ CA. P is a point on AB, and Q,R are the feet
of the perpendiculars from P to BC,CA respectively. Prove that regardless of the location of P ,

max{[APR], [BPQ], [PQCR]} ≥ 4

9
∆. (Generalization of Canada 1969)
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44. For 4ABC, prove that
∑

a2 +
abc√
3R
≥ 4(abc)

2
3 .

45. For 4ABC, prove that 6R ≥
∑ a2 + b2

m2
c

.

46. For a convex hexagon ABCDEF with AB = BC,CD = DE,EF = FA, prove that
BC

BE
+
DE

DA
+
FA

FC
≥

3

2
. Determine when equality holds.

47. For 4ABC, prove that s
√

3 ≥
∑

la.

48. For 4ABC, prove that R− 2r ≥ 1

12
·
(

2 ·
∑

ma −
∑
ab

R

)
.

49. For 4ABC, prove that
∑

a2 ≥ 4
√

3∆ ·max

{
ma

ha
,
mb

hb
,
mc

hc

}
.

50. A1A2B1B2C1C2 is a hexagon with A1B2∩C1A2 = A, B1C2∩A1B2 = B, C1A2∩B1C2 = C and AA1 =
AA2 = BC, BB1 = BB2 = CA, CC1 = CC2 = AB. Prove that [A1A2B1B2C1C2] ≥ 13 · [ABC].

51. For 4ABC, let r1, r2 denote the inradii of 4ABMa,4ACMa. Prove that
1

r1
+

1

r2
≥ 2 ·

(
1

r
+

2

a

)
.

52. For 4ABC, prove that
∑

csc2 A

2
≥
∑

cos(A−B) + 9 ≥ 8 ·
∑

cosA.

53. For 4ABC, find the minimum of the expression
2s4 −

∑
a4

∆2
.

54. For 4ABC, prove that

√
3

2
·
∑

cos
B − C

4
≥
∑

cos
A

2
.

55. For 4ABC, prove that 3 ·
∑

a2 > ∆ ·
(∑

cot
A

2

)2

.

56. For 4ABC, c ≤ b ≤ a. Through interior point P and the vertices A,B,C, lines are drawn meeting
the opposite sides at X,Y, Z respectively. Prove that AX +BY + CZ < 2a+ b.

57. For 4ABC, prove that
s3

2abc
≥
∑

cos4 A

2
.

58. For 4ABC, let PA = x, PB = y, PC = z. Prove that ayz + bzx+ cxy ≥ abc, with equality holding if
and only if P ≡ O. (China 1998)

59. For 4ABC, prove that 3 ·
∑

d2
a ≥

∑
PA2 sin2A.

60. For 4ABC, if CA+AB > 2 ·BC, then prove that ∠ABC +∠ACB > ∠BAC. (Euclid Contest 2010)

61. For 4ABC, prove that

√
7 ·
∑
a2 + 2 ·

∑
ab

2
≥
∑

ma. (Dorin Andrica)

62. For 4ABC, prove that
∑

cos
A

2
≥
√

2

2
+

√
1

2
+ (3
√

3− 2
√

2) · s
2R

.

63. For 4ABC, prove that

√∑
a2b2

2∆
≥ max

{
a

b
+
b

a
,
b

c
+
c

b
,
c

a
+
a

c

}
.
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64. For 4ABC, prove the following and determine which is stronger: (Samer Seraj)

(a) ∆ ≥ r ·
√

1

3
·
∑

mamb +
1

2
·
∑

ab.

(b) ∆ ≥ r ·
√

2

3
·
∑

mamb + r(r + 4R).

65. For any convex pentagon A1A2A3A4A5, prove that

5∑
i=1

(AiAi+2 +Ai+1Ai+4) >

5∑
i=1

AiA
2
i2 . Ai+5 ≡ Ai.

66. For 4ABC, prove that s2 ≥
∑

l2a.

67. ABCD is a quadrilateral inscribed in a circle with center O. P is the intersection of its diagonals and
R is the intersection of the segments joining the midpoints of the opposite sides. Prove that OP ≥ OR.

68. For 4ABC, prove that
5

4
·
∑

bc >
∑

mbmc.

69. For 4ABC, let M ∈ [AC], N ∈ [BC] and L ∈ [MN ], where [XY ] denotes the line segment XY . Prove

that:
3
√

∆ ≥ 3
√
S1 + 3

√
S2, where S1 = [AML] and S2 = [BNL].

70. For 4ABC, prove that
∑

(b+ c)PA ≥ 8∆.

71. Right 4ABC has hypotenuse AB. The arbitrary point P is on segment CA, but different from the

vertices A,C. Prove that
AB −BP

AP
>
AB −BC

CA
.

72. For 4ABC, prove that max

{
BP

AC
,
CP

AB

}
≥
√

2− 1.

73. For 4ABC, prove that
∑ a2

s− a
≥ 6
√

3R.

74. Let P be a point inside a regular n-gon, with side length s, situated at the distances x1, x2, . . . , xn

from the sides, which are extended if necessary. Prove that

n∑
i=1

1

xi
>

2π

s
.

75. A point A is taken inside an acute angle with vertex O. The line OA forms angles α and β with the
sides of the angle. Angle φ is given such that α + β + φ < π. On the sides of the former angle, find
points M and N such that ∠MAN = φ, and the area of the quadrilateral OMAN is maximal.

76. For 4ABC, find the smallest constant k such that it always holds that k ·
∑

ab >
∑

a2.

77. For 4ABC, prove that
∑

abdadb ≤
4

3
∆2, and determine when equality holds.

78. For 4ABC, let AI,BI,CI extended intersect the circumcircle of 4ABC again at X,Y, Z respectively.

Prove that
∏

IX ≥
∏

AI.

79. Let {a, b, c} ⊂ R+ such that
∑ a2 + b2 − c2

ab
> 2. Prove that a, b, c are sides of triangle.

80. Let AP be the internal angle bisector of ∠BAC and suppose Q is the point on segment BC such that
BQ = PC. Prove that AQ ≥ AP .

81. For 4ABC, prove that ∆2 ≥ r ·
∏

la.
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82. For 4ABC, prove that 9R2 ≥
∑

a2 ≥ 18Rr.

83. For 4ABC, prove that
∑

(PA · PB · c) ≥ abc.

84. For 4ABC, prove that 8R3 ≥
∏

IEa.

85. For 4ABC, prove that

(∑
sin

A

2

)
·
(∑

tan
A

2

)
≥ 3
√

3

2
.

86. For 4ABC, prove that
∑

a3 + 6abc ≥
(∑

a
)
·
(∑

ab
)
>
∑

a3 + 5abc.

87. D and E are points on congruent sides AB and AC, respectively, of isosceles 4ABC such that AD =
CE. Prove that 2EF ≥ BC. Determine when the equality holds.

88. For 4ABC, prove that
∑ AH

a
≥ 3
√

3.

89. Let M,A1, A2, · · · , An (n ≥ 3), be distinct points in the plane such that A1A2 = A2A3 = · · ·An−1An =

AnA1. Prove that

n−1∑
i=1

1

MAi ·MAi+1
≥ 1

MA1 ·MAn
.

90. For 4ABC, determine min
{∑

QA2
}

.

91. For 4ABC, prove that

√
8 ·
∑
a2 + 4

√
3∆

3
≥
∑

GA.

92. For 4ABC, prove that a2 + b2 +R2 ≥ c2, and determine when equality holds.

93. For 4ABC, prove that
(∑

ab
)
· (s2 + r2) ≥ 4abcs+ 36R2r2.

94. For 4ABC, prove that

∑
a2∑
ab
≥ 1 +

√
1− 2r

R
.

95. For 4ABC, prove that
sinB

sin2 C
2

+
sinC

sin2 B
2

≥
4 cos A2

1− sin A
2

.

96. In 4ABC, the internal angle bisectors of angles A,B,C intersect the circumcircle of 4ABC again at
X,Y, Z respectively. Prove that AX +BY + CZ > a+ b+ c. (Australia 1982)

97. An arbitrary line ` through the incenter I of 4ABC cuts AB and AC at M and N. Show that
a2

4bc
≥ BM

AM
· CN
AN

.

98. For 4ABC, prove that
∑

GA ≥

√
2 ·
∑
a2 + 4

√
3∆

3
. (A sequel to Problem 91)

99. For 4ABC, prove that 3 ≥
∑ SA

GA
.

100. Let m ∈ R+ and φ ∈ (0, π). For 4ABC, prove that

(1−m cosφ) · a2 +m (m− cosφ) · b2 +m cosφ · c2 ≥ 4m sinφ ·∆

Equality holds if and only if m =
a

b
and φ = C.

For m = 1 and φ = 60◦ obtain Weitzenböck’s Inequality. (Virgil Nicula)
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4 Solutions

1. Euler’s Original Proof
R(R− 2r) = OI2 ≥ 0 ⇐⇒ R ≥ 2r. �

1. Author: tonypr

Rewrite the inequality as 1 +
r

R
≤ 3

2
. Then note the identity 1 +

r

R
= cosA+ cosB + cosC.

So it is sufficient to prove that 2 cosA+ 2 cosB + 2 cosC ≤ 3.
It’s easy to verify that this inequality is equivalent to (1 − (cosB + cosC))2 + (sinB − sinC)2 ≥ 0,
which is true by the Trivial Inequality. �

1. Author: BigSams

For positive reals x, y, z it is true that (x+y)(y+ z)(z+x) ≥ 8xyz by AM-GM:
∏ x+ y

2
≥
∏√

xy =

xyz. By Ravi Substitution, let a, b, c be side lengths of a triangle such that a = x+y, b = y+z, c = z+x.
The inequality becomes abc ≥ 8(s − a)(s − b)(s − c). By Heron’s Theorem, the inequality is

sabc ≥ 8S2 ⇐⇒ abc

4∆
≥ 2∆

s
. Using the fact that ∆ =

abc

4R
= sr, R ≥ 2r. �

1. Author: BigSams

Note that
∑

ra = 4R+ r and
∑ 1

ra
=

1

r
.

By CS,
4R+ r

r
=
(∑

ra

)
·
(∑ 1

ra

)
≥ 9 ⇐⇒ R ≥ 2r. �

2. Author: 1=2

Lemma. AB +AC > PB +BC

Proof. Let the extension of BP intersect AC at N . Then the triangle inequality gives us

PN +NC > PC

AB +AN > BN = BP + PN

Adding NC to both sides of the second inequality gives AB+AN+NC > BP+PN+NC > PB+PC.
Note that AN +NC = AC, since N is on AC. Therefore AB +AC > PB + PC. �

This lemma implies that



AB +AC > PB + PC

BA+BC > PA+ PC

CA+ CB > PA+ PB

If we add all three inequalities together, we get 2(AB+BC+AC) > 2(PA+PB+PC), which implies
the desired result. �
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3. Author: Goutham

Let x = s− a, y = s− b, z = s− c all greater than 0, and s = x+ y + z, ∆2 = xyzs.

We have
∑

x2 ≥
∑

xy =⇒
∑

(x2 + 3xy) ≥ 4
∑

xy.

But
∑

(x2 + 3xy) =
∑

(x+ y)(x+ z) =
∑

ab.

And so,

∑
ab

4xyzs
≥
∑
xy

xyzs
. Therefore, we have

∑
ab

4∆
≥
∑ 1

s(s− a)
. �

4. Author: Mateescu Constantin

Using the well-known formula for area i.e. ∆ = sr, the inequality rewrites as: s
√

3 ≤ 4R + r (∗).
Of course, this is weaker than Gerretsen’s Inequality i.e. s2 ≤ 4R2 + 4Rr + 3r2, since the inequality:

4R2 + 4Rr+ 3r2 ≤ (4R+ r)2

3
reduces to Euler’s inequality i.e. R ≥ 2r. However, there is also a simple

method to obtain directly the inequality (∗). In the well known inequality:

3(xy + yz + zx) ≤ (x+ y + z)2 we take:

∥∥∥∥∥∥∥∥∥∥
x = (s− b)(s− c)

y = (s− c)(s− a)

z = (s− a)(s− b)

∥∥∥∥∥∥∥∥∥∥
and thus we obtain:

3s(s− a)(s− b)(s− c) ≤ [r(4R+ r)]
2
, whence

√
3∆ ≤ r(4R+ r) ⇐⇒ (∗). �

5. Author: Thalesmaster

Note the identities



cos
B − C

2
= cos

B

2
cos

C

2
+ sin

B

2
sin

C

2

cos
A

2
=

√
(s− b)(s− c)

bc

sin
B

2
=

√
s(s− a)

bc

and


r =

∆

s

R =
abc

4∆

Using Ravi’s substitution:


a = y + z

b = z + x

c = x+ y

, the inequality is equivalent to: (2x + y + z)2 ≥ 8x(y + z),

which is true according to AM-GM Inequality. �

6. Author: FantasyLover

Right Side.
Let (I) meet sides AB,BC,CA at P,Q,R, respectively. Furthermore, denote by a, b, c the lengths of
AR,BP,CQ.

The given inequality is equivalent to
√
a2 + r2 +

√
b2 + r2 +

√
c2 + r2 ≥ 6r. On the other hand,

r(a+ b+ c) =
√
abc(a+ b+ c) ⇐⇒ r =

√
abc

a+ b+ c
from Heron’s Formula.

Hence, it suffices to prove
∑√

a2 +
abc

a+ b+ c
≥ 6

√
abc

a+ b+ c
⇐⇒

∑√
a(a+ b)(a+ c) ≥ 6

√
abc.

However, using AM-GM Inequality twice gives
∑√

a(a+ b)(a+ c) ≥ 3 6
√
abc(a+ b)2(b+ c)2(c+ a)2 ≥
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3 6
√
abc · 64(abc)2 ≥ 6

√
abc, as desired. �

Left Side.
Lemma. AI +BI + CI ≤ 2(R+ r) (Author: Mateescu Constantin)

Proof. Show easily that AI =
bc

s
· cos

A

2
=

1

s
·
√
bc ·

√
s(s− a) a.s.o. Thus, we have:

(∑
AI
)2

=

1

s2
·
(∑√

bc ·
√
s(s− a)

)2 C.B.S.
≤ 1

s2
· (ab+ bc+ ca) ·

∑
s(s− a) = ab+ bc+ ca ≤ 4(R+ r)2.

The last inequality is due to Gerretsen i.e. s2 ≤ 4R2 + 4Rr + 3r2. Therefore, we have shown that:
AI +BI + CI ≤ 2(R+ r) . �

As a direct consequence of the lemma, it suffices to prove 2(R + r) ≤ 2
√

3(R2 −Rr + r2) ⇐⇒
2R2 − 5Rr + 2r2 ≥ 0.
However, ths is equivalent to (2R− r)(R− 2r) ≥ 0, which is indeed true. �
For both inequalities, equality holds for 4ABC equilateral.

6. Author: Thalesmaster

Left Side.

Note that:


AI2 = bc− 4Rr

BI2 = ca− 4Rr

CI2 = ab− 4Rr

According to C.S Inequality:

3(AI2 +BI2 + CI2) ≥ (AI +BI + CI)2 ⇐⇒
√

3(s2 + r2 − 8Rr) ≥ AI +BI + CI
So it suffices to show that√

3(s2 + r2 − 8Rr) ≤
√

12(R2 −Rr + r2)⇔ s2 + r2 + 8Rr ≤ 4R2 − 4Rr + 4r2

⇔ s2 ≤ 4R2 + 4Rr + 3r2, which is the Gerretsen Inequality. �

6. Author: tonypr

Right Side.

Note that AI =
r

sin A
2

. Applying this cyclically to BI and CI, the left hand side is equivalent to

6r ≤ r

sin A
2

+
r

sin B
2

+
r

sin C
2

⇐⇒ 2 ≤

1

sin A
2

+
1

sin B
2

+
1

sin C
2

3

2 ≤
csc A

2 + csc B
2 + csc C

2

3
⇐⇒ csc

(
A+B + C

6

)
≤

csc A
2 + csc B

2 + csc C
2

3

which follows from Jensen’s Inequality since csc
x

2
is convex for x ∈ (0, π). �

7. Author: BigSams

It is well-known that ∠AID + ∠BIC = 180◦. There are two implications: sin∠AID = sin∠BIC
and cos∠AID = − cos∠BIC. Let r be the inradius.

[AID] =
sin∠AID ·AI ·DI

2
=
AD · r

2
=⇒ AI ·DI

AD
=

r

sin∠AID
.

Similarly,
BI · CI
BC

=
r

sin∠BIC
.

10



Combining,
AI ·DI
AD

=
r

sin∠AID
=

r

sin∠BIC
=
BI · CI
BC

=⇒ AI ·DI
BI · CI

=
AD

BC
.

By the Cosine Law, 2 cos∠AID =
AI2 +DI2 −AD2

AI ·DI
and 2 cos∠BIC =

BI2 + CI2 −BC2

BI · CI
.

Combining,
AI2 +DI2 −AD2

AI ·DI
= 2 cos∠AID = −2 cos∠BIC = −BI

2 + CI2 −BC2

BI · CI
=⇒ AI2 +DI2 −AD2

AI ·DI
=
BC2 −BI2 − CI2

BI · CI
=⇒ AI2

AI ·DI
+

DI2

AI ·DI
+

BI2

BI · CI
+

CI2

BI · CI
=

AD2

AI ·DI
+

BC2

BI · CI

It is well-known that for a tangential quadrilateral, the sum of two opposite sides is equal to the
semiperimeter.
So AB +BC + CD +DA = 2(AD +BC) =

√
2(AD +BC)2

=
√

4(AD2 +AD ·BC +BC ·AD +BC2)

=

√
4

(
AD2 +

AD2 ·BI · CI
AI ·DI

+
BC2 ·AI ·DI

BI · CI
+BC2

)
=

√
4

(
AD2

AI ·DI
+

BC2

BI · CI

)
· (AI ·DI +BI · CI)

By Cauchy-Schwarz,
AI2

AI ·DI
+

DI2

AI ·DI
+

BI2

BI · CI
+

CI2

BI · CI
≥ (AI +BI + CI +DI)2

2(AI ·DI +BI · CI)

⇐⇒

√
4

(
AD2

AI ·DI
+

BC2

BI · CI

)
· (AI ·DI +BI · CI) ≥

√
2(AI +BI + CI +DI)

⇐⇒ AB +BC + CD +DA ≥
√

2(AI +BI + CI +DI) �

8. Author: RSM

R2 − a2 + b2 + c2

9
= OG2 ≥ 0 ⇐⇒ 9R2 ≥

∑
a2. �

9. Author: RSM

By CS,
a2 + b2 + c2

3
≥
(
a+ b+ c

3

)2

. By Triangle Inequality,

(
a+ b+ c

3

)2

≥ d2

9
. �

10. Author: Thalesmaster

The desired inequality is equivalent to 3(a2 + b2 + c2) ≥ (a+ b+ c)2 ≥ 3(ab+ bc+ ca)
⇐⇒ a2 + b2 + c2 ≥ ab+ bc+ ca ⇐⇒ (a− b)2 + (b− c)2 + (c− a)2 ≥ 0
Which is true, with equality if and only if a = b = c. �

11. Author: Thalesmaster
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Let



p =
∑

cotA

q =
∑

cotB cotC = 1

r =
∏

cotA

The inequality is equivalent to:
(p3 − 3pq + 3r) + 6r ≥ p ⇐⇒ p3 − 3pq + 9r ≥ pq ⇐⇒ p3 − 4pq + 9r ≥ 0
Which is Schur’s Inequality. �

12. Author: gaussintraining

Using the identities



cos
A

2
=

√
s(s− a)

bc

sin
A

2
=

√
(s− b)(s− c)

bc

∑
cot

A

2
=
s

r

,

the inequality is equivalent to

(∑√
s(s− a)

bc

)
·

(∑√
bc

(s− b)(s− c)

)
≥ 6
√

3 +
s

r

By Cauchy-Schwarz,

LHS =

(∑√
s(s− a)

bc

)
·

(∑√
bc

(s− a)(s− b)

)
≥

(∑
4

√
s(s− a)

(s− b)(s− c)

)2

=

(∑ √
s− a√
r

)2

using Heron’s Formula. Thus, we have to prove

(
√
s− a+

√
s− b+

√
s− c)2 ≥ 6

√
3 +

s

r
=⇒ 2(

∑√
s− a

√
s− b) ≥ 6r

√
3

By AM-GM,

√
(s− a)(s− b) +

√
(s− b)(s− c) +

√
(s− c)(s− a)

3
≥ 3
√

(s− a)(s− b)(s− c).

Using Heron’s Formula again, we find that 3
√

(s− a)(s− b)(s− c) =
3
√
r2s.

Therefore, we finally have to show that 3
3
√
r2s ≥ 3r

√
3 =⇒ s ≥ 3r

√
3, which is well-known. �

12. Author: Thalesmaster

After applying CS, it suffices to show that
∑√

cot
B

2
cot

C

2
≥ 3
√

3

Which is true according to AM-GM and Mitrinovic’s Inequality:∑√
cot

B

2
cot

C

2
≥ 3

3

√∏
cot

A

2
= 3 3

√
s

r
≥ 3
√

3. �

13. Author: applepi2000

Let sk denote the number of lines in family k. First, we draw the a and b families. It is not hard to
see that there are a maximum of (sa + 1)(sb + 1) regions. Now when we add each line from family c,
it intersects a maximum of sa + sb times, creating sa + sb + 1 new regions. Thus, the total number of

regions is sc(sa + sb + 1) + (sa + 1)(sb + 1) =
∑

sasb +
∑

sa + 1.

12



Let sa + sb + sc = n. Then the number of lines is 2010 ≤ n2

3
+ n+ 1. Thus, n ≥ 77. Indeed, plugging

in sa = sb = 26, sc = 25 works, so our answer is 77. �

14. Author: mcrasher

Since
∑

sinA =
s

R
, it suffices to show that

∑
sinA ≤ 3

√
3

2
, which is true by Jensen’s Inequality. �

15. Author: BigSams

Left Side.
By Euler’s Inequality, 2r ≤ R ⇐⇒ 8r2 ≤ 4Rr ⇐⇒ 4R2 + 4Rr + 3r2 ≤ 8Rr − 5r2 + 4R2.
By Gerretsen’s Inequality, s2 ≤ 4R2 + 4Rr + 3r2.
Combining, ⇐⇒ s2 ≤ 8Rr − 5r2 + 4R2.

⇐⇒ 4
(

1 +
r

R

)
+ 2

(
s2 − (2R+ r)2

4R2

)
≥ 4 + 3

(
s2 + r2 − 4R2

4R2

)
⇐⇒ 4

∑
cosA+ 2

∏
cosA ≥ 4 + 3

∑
cosA · cosB

⇐⇒
∑

(2− cosA) · (2− cosB) ≥ 2
∏

(2− cosA) ⇐⇒
∑ 1

2− cosA
≥ 2 �

Right Side.

By Euler’s Inequality, 2r ≤ R ⇐⇒ 72Rr − 9r2

5
≤ 16Rr − 5r2.

By Gerretsen’s Inequality, 16Rr − 5r2 ≤ s2. Combining, ⇐⇒ 72Rr − 9r2

5
≤ s2

⇐⇒ 20
(

1 +
r

R

)
+ 2

(
s2 − (2R+ r)2

4R2

)
≤ 25 + 7

(
s2 + r2 − 4R2

4R2

)
⇐⇒ 20

∑
cosA+ 2

∏
cosA ≤ 25 + 7

∑
cosA · cosB

⇐⇒
∑

(5− cosA) · (5− cosB)∏
(5− cosA)

≤ 2

3
⇐⇒

∑ 1

5− cosA
≤ 2

3
. �

16. Author: Mateescu Constantin

Using the relation:
∏

sin
A

2
=

r

4R
, the inequality reduces to 2r ≤ R, which is due to Euler. �

17. Author: ftong

Let θ = ∠C, and assume without loss of generality that 0◦ ≤ θ ≤ 45◦, or equivalently, b ≥ c.

Now hA = b sin θ, and a =
b

cos θ
, so we wish to prove that cos θ(sin θ + 1) ≤ 3

√
3

4
It seems now that we must use resort calculus to find the maximum of f(θ) = cos θ(sin θ+ 1) over the
given interval.

Taking the derivative, we have f ′(θ) = 1− sin θ− 2 sin2 θ, so that f takes extremal values at sin θ =
1

2
and sin θ = −1.
We discard the latter because sin θ is positive in our interval, so the maximum occurs at θ =

π

6
, at

which point f(θ) =
3
√

3

4
as desired. �
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18. Author: BigSams

By CS, 9 ≤ (a+ b+ c)

(
1

a
+

1

b
+

1

c

)
=

(
a+ b+ c

2[ABC]

)(
2[ABC]

a
+

2[ABC]

b
+

2[ABC]

c

)
=

sh

[ABC]
⇐⇒ 9[ABC] ≤ sh

Equality holds if and only if a = b = c, which is derived from the CS equality condition. �

19. Author: Goutham

Lemma. In 4ABC,M,N, P are points on sides BC,CA,AB respectively such that perimeter of
the 4MNP is minimal. Then 4MNP is the orthic triangle of 4ABC. (Author: Farenhajt)

Proof.
Let M be an arbitrary point on BC, and M ′ and M ′′ its reflections about AB and AC respectively.
Then, for a given M , the points N,P which minimize the perimeter of 4MNP are the intersections
of M ′M ′′ with AB and AC.
Triangles AMM ′ and AMM ′′ are isosceles, hence ∠M ′AM ′′ = 2∠A = const, thus M ′M ′′, i.e. the
required perimeter, is minimal when AM ′ = AM ′′ = AM is minimal, which is obviously attained if M
is the foot of the perpendicular from A to BC (∗).
Now we note that the orthic triangle has the property that, when one of its vertices is reflected about
the remaining two sides of the initial triangle, the two reflections are collinear with the two remaining
vertices of the orthic triangle - which is easy to prove: ∠MPN = π − 2∠C ∧ ∠MPB = ∠C.
Therefore the triangle obtained by the argument (∗) is indeed the orthic triangle, as claimed. �

Using the lemma, the orthic triangle does not have a greater perimeter than the medial triangle, which
has a perimeter equal to the semiperimeter of the original triangle. �

20. Author: BigSams

Let 4ABC be an arbitrary triangle with a constant area ∆ and constant base a. Since the area
and a base are constant, then the height ha with foot on a is also constant since it can be expressed in

terms of constants:
a · ha

2
= ∆ =⇒ ha =

2X

a
.

Let AB = c, CA = b. Let ha intersect BC = a (extended if necessary) at P . Let PC = a1, PB = a2.
Note that the perimeter is minimized when b+ c is minimized, since a is a constant.
Case 1. ∠B,∠C ≤ 90◦

Note that a1 + a2 = a. Also by the Pythagorean Theorem, b =
√
a2

1 + h2
a, c =

√
a2

2 + h2
a.

By Minkowski’s Inequality, b+c =
√
a2

1 + h2
a+
√
a2

2 + h2
a ≥

√
(a1 + a2)2 + (2ha)2 =

√
a2 + 4h2

a, which

is a constant.

Equality holds if and only if a1 = a2 =⇒
√
a2

1 + h2
a =

√
a2

2 + h2
a =⇒ b = c.

Case 2. One of ∠B,∠C > 90◦

In an obtuse4ABC, as P moves farther away fromB,C, a1, a2 both increase, meaning
√
a2

1 + h2
a,
√
a2

2 + h2
a

both increase, implying that b, c both grow without bound, so each of these triangles hav Thus, the
perimeter for a triangle with a constant area and a constant base is the one where the two variable
sides are equal, resulting in an isosceles triangle. �
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21. Author: r1234

Let O be the point of intersection of the two diagonals. Now [ABCD] =
1

2
·AC ·BD · sin∠ACD. So

[ABCD] ≤ AC ·BD.

Now again [ABCD] =
1

2
·AB ·BC · sinB ≤ 1

2
·AB ·BC similarly we get [ABCD] ≤ 1

2
· CD ·DA on

the other hand we get other two inequalities [ABCD] ≤ 1

2
·AB · CD and [ABCD] ≤ 1

2
·BC ·AD.

Adding the last four inequalities we get(AB + CD)(BC + DA) ≥ 4. This implies that (AB + BC +
CD +DA)2 ≥ 4(AB + CD)(BC +AD) ≥ 16 or AB +BC + CD +DA ≥ 4.

On the other hand we get AC ·BD ≥ 2 or (AC +BD)2 ≥ 8 or AC +BD ≥ 2
√

2.

Adding we get AB +BC + CD +DA+AC +BD ≥ 4 + 2
√

2. �

22. Author: Thalesmaster

Using Ravi’s substitution


a = x+ y

b = y + z

c = z + x

We have sin
A

2
=

√
(s− b)(s− c)

bc
=

√
yz

(x+ y)(x+ z)
.

So the inequality is equivalent to
∑(

sin
B

2
· sin C

2

)
≥ 2 ·

√∏
sin

A

2
⇐⇒

∑√
x

y + z
≥ 2

According to Holder’s Inequality,

(∑ x√
x(y + z)

)2

·
(∑

x2(y + z)
)
≥
(∑

x
)3

⇐⇒

(∑ x√
x(y + z)

)2

≥ (x+ y + z)3

(x+ y + z)(xy + yz + zx)− 3xyz

It suffices to show that
(x+ y + z)3

(x+ y + z)(xy + yz + zx)− 3xyz
≥ 4

⇐⇒ (x+ y + z)3 − 4(x+ y + z)(xy + yz + zx) + 9xyz + 3xyz ≥ 0, which is Schur’s Inequality. �

23. Author: professordad

Using the half angle identites,
∑

sin2 A

2
=
∑ 1− cosA

2
=

3−
∑

cosA

2
≥ 3

4
. This is equivalent

to
∑

cosA ≥ 3

2
, which was proven by tonypr in his solution to Problem 1. �

24. Author: ryanstone

The area is
√
s(s− a)(s− b)(s− c) by Heron’s Theorem.

By AM-GM,
(s− a) + (s− b) + (s− c)

3
≥ 3
√

(s− a)(s− b)(s− c)
1
3 ⇐⇒ (s− a)(s− b)(s− c) ≥ s3

27
.

So the maximum value of the area is

√
s4

27
=

s2

3
√

3
, which occurs when a = b = c. �

25. Author: math explorer
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Since ∠AEC and ∠AFC are both right, the points AECF are cyclic and AC is a diameter. Therefore
AC is twice the circumradius of 4CEF .
By Euler’s inequality of a triangle in 4CEF the circumradius is at least twice the inradius, so
AC ≥ 4r1, with equality iff 4CEF is equilateral iff ∠C = 60◦ and A lies on the angle bisector of
∠ECF iff ABCD is a rhombus and ∠C = 60◦. �

26. Author: truongtansang89

Note that DG ·BC = DB ·DC ⇒ DG ·BC = BC2 · cosB sinB ⇒ DG =
1

2
BC sin 2B.

Similarly, EH =
1

2
BC sin 2C ⇒ DG+ EH = BC · sinA · cos(B − C) ≤ BC.

Hence, equality holds when A =
π

2
and B = C =

π

4
. �

27. Author: Mateescu Constantin

Let us denote:
AM

MB
= q ,

AN

NC
= r ,

MK

KN
= t, where q, r, t > 0.

Observe that:
[AMN ]

[ABC]
=
AM ·AN

bc
=

qr

(q + 1)(r + 1)
,

From where: [AMN ] =
qr

(q + 1)(r + 1)
· [ABC](∗). Moreover, we can write the following relations:

∥∥∥∥∥∥∥∥∥∥

[BMK]

[AMK]
=

1

q
=⇒ [BMK] =

[AMK]

q

[AMK]

[ANK]
= t =⇒ [AMK] =

t · [AMN ]

t+ 1

∥∥∥∥∥∥∥∥∥∥
=⇒ [BMK] =

t · [AMN ]

q(t+ 1)

(∗)
=

rt · [ABC]

(q + 1)(r + 1)(t+ 1)

∥∥∥∥∥∥∥∥∥∥

[CNK]

[ANK]
=

1

r
=⇒ [CNK] =

[ANK]

r

[ANK]

[AMK]
=

1

t
=⇒ [ANK] =

[AMN ]

t+ 1

∥∥∥∥∥∥∥∥∥∥
=⇒ [CNK] =

[AMN ]

r(t+ 1)

(∗)
=

q · [ABC]

(q + 1)(r + 1)(t+ 1)

Thus, the proposed inequality reduces to: [ABC] ≥ 8 ·

√
qrt

(q + 1)2(r + 1)2(t+ 1)2
· [ABC]2 ⇐⇒

(q+ 1)(r+ 1)(t+ 1) ≥ 8
√
qrt, which is clearly true by AM-GM inequality. Equality occurs if and only

if q = r = t = 1, i.e.
AM

MB
=
AN

NC
=
MK

KN
= 1. �

28. Author: BigSams

By Euler’s Inequality, R ≥ 2r ⇐⇒ 11R2 + 4Rr + 2r2

2
≥ 4R2 + 4Rr + 3r2

By Gerretsen’s Inequality, 4R2 + 4Rr + 3r2 ≥ s2.

Combining, ⇐⇒ 11R2 + 4Rr + 2r2

2
≥ s2 ⇐⇒ 9

2
+
(

1 +
r

R

)2

≥
( s
R

)2

.

Using the well-known identities


∑

sinA =
s

R∑
cosA = 1 +

r

R

, the above inequality becomes
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⇐⇒ 9

2
+
(∑

cosA
)2

≥
(∑

sinA
)2

⇐⇒
∑

sinA ≤

√
9

4
+

(
∑

cosA)
2

+ (
∑

sinA)
2

2

Note that sin2A+ cos2A = 1 =⇒
∑

sin2A+
∑

cos2A = 3.

Note that cos(A−B) = cosA cosB + sinA sinB

=⇒ 2
∑

cos(A−B) = 2
∑

(cosA cosB) + 2
∑

(sinA sinB).

Adding these gives 3 + 2
∑

cos(A−B)

=
∑

sin2A+
∑

cos2A+ 2
∑

(cosA cosB) + 2
∑

(sinA sinB)

=
(∑

cosA
)2

+
(∑

sinA
)2

.

So 3 + 2
∑

cos(A−B) =
(∑

cosA
)2

+
(∑

sinA
)2

.

Applying the above identity, the previously derived
∑

sinA ≤

√
9

4
+

(
∑

cosA)
2

+ (
∑

sinA)
2

2

becomes ⇐⇒
∑

sinA ≤
√

15

4
+
∑

cos(A−B), as desired. �

29. Author: BigSams

Let the sides of 4ABC be AB = c,BC = a,CA = b, with corresponding sides of the intouch cir-
cle being a′, b′, c′ respectively.

Note that



a′ = 2(s− a) sin
A

2

b′ = 2(s− b) sin
B

2

c′ = 2(s− c) sin
C

2

, and


∏

(s− a) = sr2

∏
sin

A

2
=

r

4R

By AM-GM, s =
∑

a′ ≥ 3 ·
(∏

a′
) 1

3

= 3 ·
(∏

2(s− a) sin
A

2

) 1
3

= 6r
( s

4R

) 1
3

. �

30. Author: Thalesmaster

Let x, y, z be positive real numbers.

Klamkin’s Inequality states that x sinA′ + y sinB′ + z sinC ′ ≤ 1

2
(xy + yz + zx)

√
x+ y + z

xyz
.

For x =
1

sinA
, y =

1

sinB
, z =

1

sinC
, we obtain

∑ sinA′

sinA
≤ 1

2

∑
sinA∏
sinA

√∑
sinB sinC

⇐⇒
∑ sinA′

sinA
≤ 1

2r

√
ab+ bc+ ca.

Gerretsen’s Inequality gives us s2 ≤ 4R2 + 4Rr + 3r2 ⇐⇒ ab+ bc+ ca ≤ 4(R+ r)2

So
∑ sinA′

sinA
≤ 2(R+ r)

2r
= 1 +

R

r
. �

31. Author: BigSams
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By Euler’s Inequality, R ≥ 2r ⇐⇒ (2R+ r)(R− 2r) ≥ 0 ⇐⇒ 16Rr − 5r2 ≥ 22Rr − 4R2 − r2.
By Gerretsen’s Inequality, s2 ≥ 16Rr − 5r2.

Combining, s2 ≥ 22Rr − 4R2 − r2 ⇐⇒
3 +

(
1 + r

R

)2
+
(
s
R

)2
4

≥ 24
( r

4R

)

Note the identities:



∑
sinA =

s

R∑
cosA = 1 +

r

R∏
sin

A

2
=

r

4R

⇐⇒ 24 ·
∏

sin
A

2
≤ 3 + (

∑
cosA)

2
+ (
∑

sinA)
2

4

=
1

4
·
(

3 +
∑

cos2A+ 2
∑

cosA · cosB +
∑

sin2A+ 2
∑

sinA · sinB
)

Note the identities:



sin2A+ cos2A = 1

cos(A−B) = cosA cosB + sinA sinB

cos2 x

2
=

1 + cosx

2

⇐⇒ 24 ·
∏

sin
A

2
≤
∑ 1 + cosA · cosB + sinA · sinB

2
=
∑ 1 + cos(A−B)

2
=
∑

cos2 A−B
2

Thus,
∑

cos2 A−B
2

≥ 24 ·
∏

sin
A

2
. �

32. Author: applepi2000

Note that ∆ = rs. Let hi be the altitude to side i. We wish to prove ha + hb + hc ≥ 9r ⇐⇒

2∆

(
1

a
+

1

b
+

1

c

)
≥ 18∆

a+ b+ c
⇐⇒ 1

a
+

1

b
+

1

c
≥ 9

a+ b+ c

Take the reciprocal of both sides, then multiply by 3:
3

1
a + 1

b + 1
c

≤ a+ b+ c

3
. This is just AM-HM,

so we are done. �

33. Author: Thalesmaster

After expanding it, the inequality is equivalent to:

4 ·
(∑

sin
A

2

)3

+
∑

sin
B

2
sin

C

2
+
∑

cos
B

2
cos

C

2
+ 12 ·

∏
sin

A

2

≥ 12 ·
(∑

sin
A

2

)
·
(∑

sin
B

2
sin

C

2

)
+ 3 ·

∑
sin

A

2

Use the substitution:



X =
π −A

2

Y =
π −B

2

Z =
π − C

2

, and the identities:



∑
cosX = 1 +

r

R∑
cosY cosZ =

s2 + r2 − 4R2

4R2∏
cosX =

s2 − (2R+ r)2

4R2∑
sinY sinZ =

s2 + r2 + 4Rr

4R2

where s, R, r respectively denote the semiperimeter, circumradius and inradius of 4XY Z.
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We find that the previous inequality is equivalent to:

4 ·
(∑

cosX
)3

+
∑

cosY cosZ +
∑

sinY sinZ + 12 ·
∏

cosX

≥ 12 ·
(∑

cosX
)
·
(∑

cosY · cosZ
)

+ 3 ·
∑

cosX

⇐⇒ s2(R− 6r) + 20R2r + 13Rr2 + 2r3 ≥ 0

If R ≥ 6r, this is it. If R ≤ 6r, then it’s equivalent to
20R2r + 13Rr2 + 2r3

6r −R
≥ s2 Using the inequality

4R + r ≥
√

3s, it suffices to show that:
20R2r + 13Rr2 + 2r3

6r −R
≥ (4R+ r)2

3
⇐⇒ 4R2 − 7Rr − 2r2 ≥

0 ⇐⇒ (R− 2r)(4R+ r) ≥ 0, which is true by Euler’s Inequality. �

34. Author: r1234

Note sin2 A

2
=

1− cosA

2
and then putting

∑
cosA = 1 + 4 ·

∏
sin

A

2
the inequality reduces to∏

cos
B − C

2
≥ 8 ·

∏
sin

A

2
.

Using cos
B − C

2
=

(ra + r)

4R sin A
2

and r = 4R
∏

sin
A

2
the inequality reduces to

∏
(ra + r) ≥ 32Rr2.

We know that r =
∆

s
and ra =

∆

s− a
. So writing rb, rc and putting R =

abc

4∆
the inequality reduces to∏

(b+ c) ≥ 8abc which trivially comes from AM-GM inequality. �

34. Author: Thalesmaster

Note that cos
B − C

2
=
b+ c

a
sin

A

2
.

Then
∏

cos
B − C

2
≥ 8

∏
sin

A

2
⇐⇒

∏
(b+ c) ≥ 8abc, which is true according to AM-GM. �

35. Author: truongtansang89

Let R be the radius of (O).
AK

OK
+
BL

OL
+
CM

OM
≥ 9

2
⇐⇒ OK +OA

OK
+
OB +OL

OL
+
OC +OM

OM
≥ 9

2
⇐⇒ R

OK
+

R

OL
+

R

OM
≥ 3

2

Using Ptolemy’s Theorem on the cyclic quadrilateral BOCK,
OB · CK +OC ·BK = BC ·OK
⇐⇒ R

OK
=

BC

BK + CK
=

sinBOC

sinBOK + sinCOK
⇐⇒ R

OK
=

| sin 2A|
| sin 2B|+ | sin 2C|

Similarly, we have
R

OK
+

R

OL
+

R

OM
≥
∑ | sin 2A|
| sin 2B|+ | sin 2C|

≥ 3

2
, which is Nesbitt’s Inequality. �

35. Author: r1234

Let us invert this figure w.r.t the circumcircle of 4ABC. Let AO meet the side BC at D. De-
fine E, F similarly. Now the circumcircle of BOC is inverted to the line BC. Hence D is the inverse

of K. Hence we get AK =
R2 ·AD
OA ·OD

=
R ·AD
OD

. Similarly we get OK =
R2

OD
Hence

AK

OK
=
AD

R
.

Similarly
BL

OL
=

BE

R
and

CM

OM
=

CF

R
. So now we have to prove that

1

R
(AD + BE + CF ) ≥ 9

2
.
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Now let BD : DC = x : y, CE : EA = y : z and AF : FB = z : x. Now using Menelaus’s theorem
we get OD : OA = (x + y + z) : (y + z) and similar for others. Hence the inequality reduces to

(x+ y + z) ·
(∑ 1

y + z

)
≥ 9

2
which comes from AM-GM or CS. �

36. Author: bzprules

We have that 2s ≤ 3R
√

3 =⇒ 6s ≤ 9R
√

3 =⇒ 2rs2
√

3 ≤ 9Rrs =⇒ 8rs2
√

3 ≤ 36Rrs =⇒
4(2s)∆

√
3 ≤ 36Rrs. Since 4∆R = 4Rrs = abc, we have 4(2s)∆

√
3 ≤ 9abc.

Dividing yields 4
√

3 ·∆ ≤ 9abc

a+ b+ c
, as desired. �

37. Author: applepi2000

Use Ravi Substitution a = x+ y, b = x+ z, c = y + z.

Then it becomes
∑

(x2 + y2 + 2xy)(xy + yz − xz − z2) ≥ 0

After expanding and simplifying
∑

x3y − 2xyz
∑

x ≥ 0 ⇐⇒
∑

x3y ≥ 2xyz
∑

x

By Cauchy-Schwarz we have
(x3y + xy3 + x3z + xz3 + y3z + yz3)(xyz2 + xyz2 + xy2z + xy2z + x2yz + x2yz)
≥ (x2yz + x2yz + xy2z + x2yz + xyz2 + xyz2)2.

Dividing by 2xyz ·
∑

x gives the desired result. �

37. Author: Thalesmaster

Lemma.
Let a, b, c be three reals and x, y, z be three nonnegative reals. The inequality

∑
x(a− b)(a− c) ≥ 0

holds if x, y, z are the side-lengths of a triangle (sufficient condition).

Proof. Use the identity
∑

x(a− b)(a− c) =
1

2

∑
(y + z − x)(b− c)2 ≥ 0. �

We have
∑

a2b(a− b) ≥ 0 ⇐⇒
∑

c(a+ b− c)(a− b)(a− c) ≥ 0, which is true according to the

lemma, since c(a+ b− c), b(c+ a− b) and a(b+ c− a) are the side lengths of a triangle. �

38. Author: BigSams

By CS, (sin a · sin b+ cos a · cos b) ·
(

sin3 a

sin b
+

cos3 a

cos b

)
≥
(
sin2 a+ cos2 a

)2
= 1

⇐⇒ sin3 a

sin b
+

cos3 a

cos b
≥ 1

sin a · sin b+ cos a · cos b
= sec(a− b). �

39. Author: applepi2000

Let’s first assume that the parallelogram is not a rectangle. Then putting it on its base and straighten-
ing its slanted side will increase the height, and keep the base constant. Thus, the greatest area must
be a rectangle.
Now, we must maximize ab given 2(a+ b). By AM-GM we know this is maximized when a = b. Thus,
the figure is a square. �

20



40. Author: KrazyFK

Clearly AC ≤ AB +BC and AC ≤ CD +DA.
We have two similar inequalities for BD and adding them we get the result.

41. Author: xyy

Let A1, B1, C1 be the intersection of PA,PB,PB with BC,CA,AB, respectively.

We have S =
BL

LC
· CM
MA

· AN
NB

=
PC1

PC
· PA1

PA
· PB1

PB
.

Let x =
PA1

AA1
, y =

PB1

BB1
, z =

PC1

CC1
.

We know that x+ y + z =
SPBC
SABC

+
SPCA
SABC

+
SPAB
SABC

= 1.

S =
x

1− x
· z

1− z
· z

1− z
≤ 1

8
⇐⇒ (x+ y)(y + z)(z + x) ≥ 8xyz, which is true by AM-GM. �

42. Author: Mateescu Constantin

The inequality rewrites as: 2R ·
∑

sinA sin
A

2
≥ s ⇐⇒ 2

∑
sinA sin

A

2
≥
∑

sinA (∗), be-

cause it is well-known that:∑
sinA =

s

R
. Using the substitutions

∥∥∥∥∥∥
A = π − 2X
B = π − 2Y
C = π − 2Z

∥∥∥∥∥∥, where X,Y, Z ∈
(

0,
π

2

)
we will transform

the inequality in any triangle (∗) into one restricted to an acute-angled triangle. Indeed, the inequality

(∗) is now equivalent to: 2
∑

sin 2X cosX ≥
∑

sin 2X ⇐⇒
4
∑

sinX
(
1− sin2X

)
≥
∑

sin 2X ⇐⇒ 4
∑

sinX ≥ 4
∑

sin3X +
∑

sin 2X.

For convenience, we will denote by s, R, r the semiperimeter, circumradius and inradius respectively
of the acute triangle XY Z.

Since:



∑
sinX =

s

R

∑
sin3X =

2s(s2 − 6Rr − 3r2)

8R3

∑
sin 2X =

2rs

R2

our last inequality finally becomes:
4s

R
≥ s(s2 − 6Rr − 3r2)

R3
+

2rs

R2
⇐⇒ 4R2 + 4Rr + 3r2 ≥ s2,

which is Gerretsen’s Inequality. �

43. Author: Mateescu Constantin

The triangle ABC is right-isosceles in C, so we can consider:


AC = BC = a

AB = a
√

2

. Also, denote the

ratio
AP

PB
= k, where k > 0.

Note that triangles ARP and PQB are right-isosceles in R and Q respectively and that:
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
AR

AC
=
AP

AB
=⇒ AR = a · k

k + 1

BQ

BC
=
BP

BA
=⇒ BQ = a · 1

k + 1

. Consequently:



[ARP ] =
a2

2
· k2

(k + 1)2

[PQB] =
a2

2
· 1

(k + 1)2

[PQCR] = a2 · k

(k + 1)2

and since: [ABC] =

2a2

9
, the conclusion can be restated as:

k > 0 =⇒ max

{
k2

2(k + 1)2
,

1

2(k + 1)2
,

k

(k + 1)2

}
≥ 2

9
, which follows from the following:

k2

2(k + 1)2
≥ 2

9
=⇒ 5k2 − 8k − 4 ≥ 0 =⇒ k ≥ 2

1

2(k + 1)2
≥ 2

9
=⇒ −4k2 − 8k + 5 ≥ 0 =⇒ k ∈

(
0,

1

2

]
k

(k + 1)2
≥ 2

9
=⇒ −2k2 + 5k − 2 ≥ 0 =⇒ k ∈

[
1

2
, 2

]
�

44. Author: fractals

By the AM-GM,
1

3
=

(s−a)
s + (s−b)

s + (s−c)
s

3
≥ 3

√
(s− a)(s− b)(s− c)

s3
.

Thus,
(s− a)(s− b)(s− c)

s3
≤ 1

27
, so s(s− a)(s− b)(s− c) ≤ s4

27
. Thus rs =

√
s(s− a)(s− b)(s− c) ≤

s2

3
√

3
, so

r

s
≤ 1

3
√

3
, so

s

r
≥ 3
√

3, which is Mitrinovic’s Inequality. �

45. Author: r1234

Let AD be the median of triangle ABC which intersects the circumcircle at the point D′. Due to

secant property, we get AD ·DD′ =
BC2

4
=
a2

4
. So DD′ =

a2

4ma
.

Now AD′ ≤ 2R ⇐⇒ AD +DD′ ≤ 2R ⇐⇒ ma +
a2

4ma
≤ 2R ⇐⇒ 4m2

a + a2

2ma
≤ 2R.

Now putting m2
a =

b2 + c2

2
− a2

4
we get

b2 + c2

ma
≤ 2R.

The cyclic summation will give us the desired result. �

46. Author: KrazyFK

By Ptolemy’s Inequality in quadrilateral ABCE we have (AB)(CE) + (BC)(AE) ≥ (AC)(BE), and

since AB = BC this becomes BC(CE +AE) ≥ (AC)(BE) ⇐⇒ BC

BE
≥ AC

CE +AE
.

Similarly, we have
DE

DA
≥ CE

AE +AC
and

FA

FC
≥ AE

AC + CE
.

Summing the three, we get
BC

BE
+
DE

DA
+
FA

FC
≥ AC

CE +AE
+

CE

AE +AC
+

AE

AC + CE
≥ 3

2
, which is

22



true by Nesbitt’s Inequality.
Equality holds if, and only if, all of the following conditions are true:
ACE is equilateral, ABCE is cyclic, CDEA is cyclic, EFAC is cyclic.
From this we easily infer the congruence of ABC, CDE and EFA which tells us the hexagon is equi-
lateral. We can also easily get that it is equiangular, and so it is regular, which is therefore the only
equality case. �

47. Author: Mateescu Constantin

We will prove that: la + lb +mc

(1)

≤
√
s(s− a) +

√
s(s− b) +mc

(2)

≤
√

2 ·
√
s2 −m2

c +mc

(3)

≤ s
√

3.

Inequality (1) follows from the well-known fact: la ≤
√
s(s− a).

Indeed, la =
2
√
bc

b+ c
·
√
s(s− a) ≤

√
s(s− a).

For inequality (2) let’s note that:



4m2
c =

(
a+ b+ 2

√
(s− a)(s− b)

)(
a+ b− 2

√
(s− a)(s− b)

)
a+ b− 2

√
(s− a)(s− b) = 2s−

(√
s− a+

√
s− b

)2

2
√

(s− b)(s− c) ≤ (s− a) + (s− b) = c

.

Whence we obtain that: 4m2
c ≤ 2s ·

(
2s−

(√
s− a+

√
s− b

)2
)

=⇒
√
s(s− a) +

√
s(s− b) ≤

√
2 ·
√
s2 −m2

c .
The inequality (3) is clearly true since it follows from Cauchy-Schwarz Inequality, so we are done. �

48. Author: powerofzeta

It’s known that: ma =
1

2

√
2b2 + 2c2 − a2

By CS
∑

ma =
1

2

∑√
2b2 + 2c2 − a2 ≤ 1

2

√
3 ·
∑

(2b2 + 2c2 − a2) =
3

2

√∑
a2 =

3

2

√
2s2 − 2r2 − 8Rr

By Gerresten’s Inequality, s2 ≤ 4R2 + 4Rr + 3r2

=⇒
∑

ma ≤
3

2

√
2(4R2 + 4Rr + 3r2)− 2r2 − 8Rr = 3

√
2R2 + r2

and by Euler’s Inequality R ≥ 2r, we get:
∑

ma ≤ 3

√
2R2 +

R2

4
=

9

2
R

So it suffices to prove that 12(R− 2r) +
ab+ ac+ bc

R
≥ 18

2
R ⇐⇒ 12(R− 2r) +

s2 + r2 + 4Rr

R
≥ 18

2
R

By Gerresten’s inequality s2 + r2 ≥ 16Rr − 4r2 ≥ 14Rr.

It suffice to prove that 12(R− 2r) +
14Rr + 4Rr

R
≥ 9R which is true because it’s equivalent to R ≥ 2r.

Equality holds when R = 2r, i.e. 4ABC is equilateral. �

48. Author: Thalesmaster

We use the well-known inequality ma+mb+mc ≤ 4R+r and the identity ab+bc+ca = s2 +r2 +4Rr.

Then, we just have to show that: 2(4R+ r)− s
2 + r2 + 4Rr

R
≤ 12(R−2r) ⇐⇒ s2 + r2 + 4R2 ≥ 22Rr.

Which immediately follows by summing up the knows results s2 + r2 ≥ 14Rr and 4R2 ≥ 8Rr. �
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49. Author: BigSams

Lemmata.

(1) m2
a =

2b2 + 2c2 − a2

4
, and the cyclic versions hold as well.

(2)
1

h2
a

=
a2

4S2
, and the cyclic versions hold as well.

(1)× (2) =
m2
a

h2
a

=
a2(2b2 + 2c2 − a2)

16S2
=⇒ a2(2b2 + 2c2 − a2) =

16S2m2
a

h2
a

,

and the cyclic versions hold as well. �

By Trivial Inequality, (2a2 − b2 − c2)2 ≥ 0

⇐⇒ (a2 + b2 + c2)2 ≥ 3a2(2b2 + 2c2 − a2) =
3 · 16S2m2

a

h2
a

⇐⇒ a2 + b2 + c2 ≥ 4
√

3Sma

ha
.

Clearly the cyclic versions of the above result can be derived by starting with the cyclic versions of
(2a2− b2− c2)2 ≥ 0 and proceeding by the same manipulations and cyclic versions of identities, so the

inequality always holds for any of
ma

ha
,
mb

hb
,
mc

hc
.

Thus, a2 + b2 + c2 ≥ 4
√

3S ·max

(
ma

ha
,
mb

hb
,
mc

hc

)
. �

50. Author: RSM

AB2 = AC1 = b+ c, so [AB2C1] =
(b+ c)2 sinA

2
and similar for others.

[CC1C2] =
c2 sinC

2
. Adding up all these we get the desired result.

[A1A2B1B2C1C2] =
(a+ b+ c)(a2 + b2 + c2)

4R
+ 4[ABC] where R is the circumradius of ∆ABC and

a, b, c are its sides.
Note that, (a+ b+ c)(a2 + b2 + c2) ≥ 9abc

So [A1A2B1B2C1C2] ≥ 9abc

4R
+ 4[ABC] = 13[ABC] �

51. Author: RSM

Note that, r1 =
∆

2sABD
, r2 =

∆

2sACD
where sX denotes the semi-perimeter of ∆X.

Substituting this in the inequality we get that the inequality is equivalent to
sABC +ma

∆
≥ 1

r
+

2

a
⇐⇒ ma

∆
≥ 2

a
⇐⇒ 1

2
·maa ≥ ∆, which is true since

1

2
·maa ≥

1

2
·haa = ∆. �

52. Author: Mateescu Constantin

Right Side.

24



We make use of the identities:



∑
cosA = 1 +

r

R

∑
cosB cosC =

s2 + r2 − 4R2

4R2

∑
sinB sinC =

s2 + r2 + 4Rr

4R2

∑ 1

sin2 A
2

=
s2 + r2 − 8Rr

r2

.

Thus, 8
∑

cosA ≤ 9 +
∑

cos(A − B) ⇐⇒ s2 ≥ 14Rr − r2, which is true since it is weaker than

Gerretsen’s Inequality: s2 ≥ 16Rr − 5r2.

Left Side.

9 +
∑

cos(A−B) ≤
∑ 1

sin2 A
2

⇐⇒ s2 + r2 + 2Rr − 2R2

2R2
≤ s2 − 8Rr − 8r2

r2
.

Since:


s2 + r2 + 2Rr − 2R2

2R2

(G)

≤ R2 + 3Rr + 2r2

R2

8Rr − 13r2

r2

(G)

≤ s2 − 8Rr − 8r2

r2

It suffices to show that:
R2 + 3Rr + 2r2

R2
≤ 8R− 13r

r
⇐⇒ (R − 2r)(8R2 + 2Rr + r2) ≥ 0, which is

true by Euler’s Inequality. �

53. Author: Thalesmaster

Using the system:


a+ b+ c = 2s

ab+ bc+ ca = s2 + r2 + 4Rr

abc = 4sRr

We have:
2s4 − (a4 + b4 + c4)

[ABC]2
≥ 38 ⇐⇒ 12s2r2 + 16s2Rr − 16Rr3 − 32R2r2 − 2r4

s2r2
≥ 38

⇐⇒ y2(8x− 13) ≥ 16x2 + 8x+ 1, where x =
R

r
≥ 2 and y =

s

r
≥ 3
√

3.

Using Gerretsen’s Inequality: y2 + 5 ≥ 16x, we just have to show that (16x − 5)(8x − 13) ≥
16x2 + 8x+ 1 ⇐⇒ 7x2 − 16x+ 4 ≥ 0 ⇐⇒ (x− 2)(7x− 2) ≥ 0
which is true by Euler’s Inequality.
The value 38 is attained for an equilateral 4ABC. �

54. Author: Thalesmaster

Using the substitutions


A = π − 2X

B = π − 2Y

C = π − 2Z

, for X,Y, Z ∈
(

0,
π

2

)
we will transform the given inequali-

ty into an one restricted to an acute-angled triangle with side lengths x, y, z corresponding to angles

X,Y, Z respectively:
∑

sinX ≤
√

3

2
·
∑

cos
Y − Z

2
. This inequality is actually true in any triangle:

25



Expressing everything in terms of x, y, z using well-known formulas and then Ravi Substitution:

x = u+ v

y = w + u

z = v + w

⇐⇒

(∑ u+ v + 2w√
w(u+ v)

)2 (∑
w(u+ v + 2w)(u+ v)

)
≥
(∑

u+ v + 2w
)3

Which is clearly true according to Hölder’s Inequality. �

55. Author: gaussintraining

By CS, 3 ·
∑

a2 ≥
(∑

a
)2

= 4s2 > πs2 = πr2 ·
(
s2

r2

)
= Z ·

(∑
cot

A

2

)2

.

56. Author: malcolm

Using AX < max{AB,AC} for X interior to BC and similarly for the other sides we have
AX +BY +CZ < max{AB,AC}+ max{BC,BA}+ max{CA,CB} = AC +BC +BC = 2a+ b. �

57. Author: Michael Niland

Use the following:


∑ 1

a
cos2 A

2
=

s2

abc∑
cos2 A

2
= 2 +

r

2R
≤ 9

4

By Chebyshev’s Inequality,∑
cos4 A

2
=
∑[(

a cos2 A

2

)
·
(

1

a
cos2 A

2

)]
≤ 1

3

(
·
∑

a cos2 A

2

)
·
(∑ 1

a
cos2 A

2

)
=

1

3
·
(∑

a cos2 A

2

)
· s

2

abc

Again using Chebyshev’s Inequality,
∑

a cos2 A

2
≤ 1

3
·
(∑

a
)
·
(∑

cos2 A

2

)
≤ 2s

3
· 9

4
.

Therefore
∑

cos4 A

2
≤ 1

3
·
(

2s

3
· 9

4

)
·
(
s2

abc

)
=

s3

2abc
. �

58. Author: Thalesmaster

Using complex numbers A(a), B(b), C(c) and P (p) and the identity
(b− c)(p− b)(p− c) + (c− a)(p− c)(p− a) + (a− b)(p− a)(p− b) = (a− b)(b− c)(c− a).
We have
BC · PB · PC + CA · PC · PA+AB · PA · PB
= |(b− c)(p− b)(p− c)|+ |(c− a)(p− c)(p− a)|+ |(a− b)(p− a)(p− b)|
≥ |(b− c)(p− b)(p− c) + (c− a)(p− c)(p− a) + (a− b)(p− a)(p− b)|
= |(a− b)(b− c)(c− a)| = AB ·BC · CA
Which yields to the desired result.
Equality holds if and only if P = H where H is the orthocenter of 4ABC. �
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59. Author: RSM

Suppose, PA′, PB′, PC ′ are the perpendiculars from P to the sides BC,CA,AB and PA′ = p, PB′ =
q, PC ′ = r.
Note that B′C ′ = dA sinA and similar for others.
So the inequality is equivalent to A′B′2 +B′C ′2 + C ′A′2 ≤ 3(PA′2 + PB′2 + PC ′2)

Which is true since (PA′2 +PB′2 +PC ′2) =
A′B′2 +B′C ′2 + C ′A′2

3
+3PG2 where is G is the centroid

of A′B′C ′.
Equality holds when P and G coincides, i.e. when P is the symmedian point of ABC. �

60. Author: Thalesmaster

Using the condition , we have (b ≥ c or c > b) =⇒ (b > a or c > a).

In the two cases, a is not the greatest side, so A <
π

2
We want to show that: ∠BAC <

∠ABC + ∠ACB
2

⇔ A <
π

3
We have: a <

b+ c

2
⇐⇒ a

R
<

b

2R
+

c

2R
⇐⇒ 2 sinA < sinB + sinC

⇐⇒ 3 sinA <
∑

sinA =
s

R
≤ 3
√

3

2
So: sinA ≤

√
3

2
= sin

π

3
The function sin is increasing on

the interval ]0;
π

2
[. Hence A ≤ π

3
since we proved that A <

π

2
. �

61. Author: Mateescu Constantin

By squaring both sides of this inequality and taking into account the identity: m2
a + m2

b + m2
c =

3(a2 + b2 + c2)

4
, we are left to prove that:

∑
mbmc ≤

1

2

∑
a2 +

1

4

∑
bc, which follows by sum-

ming up the inequalities: mbmc ≤
a2

2
+
bc

4
a.s.o. Indeed, mbmc ≤

a2

2
+
bc

4
⇐⇒ 16m2

bm
2
c ≤(

2a2 + bc
)2 ⇐⇒ 16 · 2(c2 + a2)− b2

4
· 2(a2 + b2)− c2

4
≤
(
2a2 + bc

)2 ⇐⇒ (b − c)2(a + b + c)

(a− b− c) ≤ 0, which is true from the Trivial and Triangle Inequslities. �

(BigSams used the same method in his submission to the Mathematical Reflections bi-monthly journal,
where the problem was originally from)

62. Author: Thalesmaster

The inequality is equivalent to
∑

cos
A

2
≥
√

2

2
+

√
1

2
+ 2(3

√
3− 2

√
2)
∏

cos
A

2

Use the substitution:


X =

π −A
2

Y =
π −B

2

Z =
π − C

2
Denote s, R, r the semi-perimeter, the circumradius and the inradius of acute4XY Z, then the desired
inequality is equivalent to:

⇐⇒
∑

sinX ≥
√

2

2
+

√
1

2
+ 2(3

√
3− 2

√
2)
∏

sinX

⇐⇒ s ≥
√

2R+ (3
√

3− 2
√

2)r
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⇐⇒ s2 ≥ 2R2 + (6
√

6− 8)Rr + (35− 12
√

6)r2

Using Walker’s Inequality: s2 ≥ 2R2 + 8Rr+ 3r2 (since 4XY Z is acute-angled), we just have to show
that:
2R2 + 8Rr + 3r2 ≥ 2R2 + (6

√
6− 8)Rr + (35− 12

√
6)r2

⇔ (16− 6
√

6)Rr ≥ 2(16− 6
√

6)r2

⇔ R ≥ 2r, which is Euler’s Inequality. �

63. Author: Mateescu Constantin

Lemma. Let ABC be a triangle and let D be a point on the side [BC] so that:
BD

DC
= k, k > 0. Then:

c2 + kb2√
(1 + k)(c2 + kb2)− ka2

≤ 2R.

Proof. Using the dot product, one can show the distance: AD2 =
c2 + kb2

1 + k
− ka2

(1 + k)2
(∗).

Let w be the circumcircle of 4ABC and let {X} = AD ∩ w.

Thus,

 AD ·DX = BD · CD

BD =
ka

1 + k
; CD =

a

1 + k

∥∥∥∥∥∥ =⇒ AD ·DX =
ka2

(1 + k)2
=⇒ DX =

ka2

(1 + k)2 ·AD
.

Moreover, since AX is a chord in the circle w, it follows that: AX ≤ 2R ⇐⇒ AD +DX ≤ 2R ⇐⇒

AD +
ka2

(1 + k)2 ·AD
≤ 2R ⇐⇒

⇐⇒ (1 + k)2 ·AD2 + ka2 ≤ 2R ·AD ·(1 + k)2 (∗)⇐⇒ c2 + k · b2 ≤ 2R ·AD · (1 + k)

⇐⇒ c2 + kb2√
(1 + k)(c2 + kb2)− ka2

≤ 2R, which is exactly what we wanted to prove. �

Particularly, for k =
a2

b2
in the previous lemma we obtain:

b(c2 + a2)√
a2b2 + b2c2 + c2a2

≤ 2R and making use

of the well-known relation R =
abc

4∆
, our last inequality simplifies to:

c

a
+
a

c
≤
√
a2b2 + b2c2 + c2a2

2∆
.

In a similar manner we can prove the analogous inequalities, therefore solving the problem. �

64. Author: Mateescu Constantin

It will be shown that: ∆
(1)

≥ r ·
√

1

3
·
∑

mbmc +
1

2
·
∑

bc
(2)

≥ r ·
√

2

3
·
∑

mbmc + r(4R+ r)

Proof of Inequality (1)

Taking into account the known identities: ∆ = r · s and
∑

bc = s2 + r2 + 4Rr our inequality is

succesively equivalent to: s ≥
√

1

3
·
∑

mbmc +
1

2
·
∑

bc

⇐⇒ s2 ≥ 1

3
·
∑

mbmc +
1

2
·
(
s2 + r2 + 4Rr

)
⇐⇒ s2 − 4Rr − r2

2
≥ 1

3
·
∑

mbmc

⇐⇒ 3(a2 + b2 + c2)

4
≥
∑

mbmc ⇐⇒
∑

m2
a ≥

∑
mbmc, which is obviously true. �

Proof of Inequality (2)
Squaring both sides of this inequality, we are left to show that:

2
∑

mbmc + 3(s2 + r2 + 4Rr) ≥ 4
∑

mbmc + 6r(4R+ r)

⇐⇒ 3(s2 − 4Rr − r2) ≥ 2
∑

mbmc ⇐⇒
∑

m2
a ≥

∑
mbmc, which is clearly true. �

28



65. Author: BigSams

Problem Rewording. In pentagon ABCDE, prove that:

(AC +BE)AB + (BD + CA)BC + (CE +DB)CD + (DA+ EC)DE + (EB +AD)EA

> AC2 +BD2 + CE2 +DA2 + EB2

Solution. By Triangle Inequality, AB +BC > CA =⇒ (AB +BC)AC > AC2.
Repeating with 4BCD,4CDE,4DEA,4EAB and summing all five yields the result. �

66. Author: gaussintraining

Since la =
2bc

b+ c
cos

A

2
=

2
√
bc

b+ c

√
s(s− a) ≤

√
s(s− a) by AM-GM, it follows that l2a ≤ s(s− a).

The analogous relationships also hold, yielding
∑

l2a ≤ 3s2 − (a+ b+ c)s = s2. �

67. Author: jatin

Let E and F be the midpoints of AC and BD respectively. We know R is the midpoint of EF .
Note that E and F lie on the circle with diameter OP . And hence OP ≥ OE as well as OP ≥ OF .
Now, OR is a median of 4OEF . Therefore, OR ≤ OF or OR ≤ OE. Hence, OP ≥ OR. �

68. Author: Mateescu Constantin

Problem 61 from this marathon was equivalent to:
∑

mbmc ≤
1

2

∑
a2 +

1

4

∑
bc. Thus we are

left to prove that:
1

2

∑
a2 <

∑
bc which is obviously true, since it rewrites as: 2(s2 − r2 − 4Rr) <

2(s2 + r2 + 4Rr) ⇐⇒ 0 < r2 + 4Rr. �

Note. BigSams commented afterwards that a more elementary final step is by Triangle Inequality,∑
a(b+ c− a) > 0 ⇐⇒ 2 ·

∑
ab >

∑
a2.

69. Author: Mateescu Constantin

Problem Rewording.
Let ABC be a triangle and let M ∈ [AC], N ∈ [BC], L ∈ [MN ].

Prove that the following inequality holds:
3
√
S ≥ 3

√
S1 + 3

√
S2 , where

∥∥∥∥∥∥∥∥∥∥
S = [ABC]

S1 = [AML]

S2 = [BNL]

∥∥∥∥∥∥∥∥∥∥
.

Soliution.
It is obvious that the given inequality holds when at least one of the points M , N or L coincide with
one of the end points of the segments they lie on. Also, note that in such cases equality is attained
when either A = M = L and C = N OR B = N = L and C = M . Now we will draw our attention

to the case in which M ∈ (AC), N ∈ (BC) and L ∈ (MN). Let us consider
AM

MC
= k,

BN

NC
= q,
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ML

LN
= r, where k, q, r > 0. Therefore,

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

AM

MC
= k =⇒ [AML]

[CML]
= k =⇒ S1 = k · [CML]

ML

LN
= r =⇒ [CML]

[CNL]
= r =⇒ [CML] =

r

r + 1
· [MNC]

BN

NC
= q =⇒ [BMN ]

[MNC]
= q =⇒ [MNC] =

1

q + 1
· [BMC]

AM

MC
= k =⇒ [BMA]

[BMC]
= k =⇒ [BMC] =

1

k + 1
· S

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥
=⇒ S1 =

kr

(k + 1)(q + 1)(r + 1)
· S

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

BN

NC
= q =⇒ [BNL]

[CNL]
= q =⇒ S2 = q · [CNL]

ML

LN
= r =⇒ [CML]

[CNL]
= r =⇒ [CNL] =

1

r + 1
· [MNC]

BN

NC
= q =⇒ [BMN ]

[MNC]
= q =⇒ [MNC] =

1

q + 1
· [BMC]

AM

MC
= k =⇒ [BMA]

[BMC]
= k =⇒ [BMC] =

1

k + 1
· S

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥
=⇒ S2 =

q

(k + 1)(q + 1)(r + 1)
· S

Consequently, the proposed inequality reduces to:

3
√
S ≥ 3

√
kr

(k + 1)(q + 1)(r + 1)
· S + 3

√
q

(k + 1)(q + 1)(r + 1)
· S ⇐⇒ 3

√
(k + 1)(q + 1)(r + 1) ≥

3
√
kr + 3

√
q.

Taking k = x3, r = y3 and q = z3, where x, y, z > 0 it suffices to show that:(
x3 + 1

) (
y3 + 1

) (
z3 + 1

)
≥ (xy + z)

3 ⇐⇒ x3y3z3 + x3z3 + y3z3 + x3 + y3 + 1 ≥ 3x2y2z + 3xyz2,
which follows by adding the following two inequalities obtained from AM-GM inequality:
x3y3z3 + x3 + y3 ≥ 3x2y2z

x3z3 + y3z3 + 1 ≥ 3xyz2

.

In this case, equality occurs iff x = y = z = 1, in other words, when the points M , N and L are the
midpoints of the segments [AC], [BC] and [MN ] respectively. �

70. Author: Goutham
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Let P1 be the symmetric of point P w.r.t. the midpoint of side [BC]. Define P2 and P3 in a similar
manner.
By Ptolemy’s Theorem, for a convex quadrilater MNPQ, MN · PQ + NP ·MQ ≥ 2[MNPQ], with
equality if and only if MNPQ is cyclic and MP ⊥ NQ.
Applying this to convex quadrilaterals ABP1C,BCP2A,CAP3B, we get:

b · PC + c · PB ≥ 2(∆ + [P1BC])

a · PC + c · PA ≥ 2(∆ + [P2CA])

a · PB + b · PA ≥ 2(∆ + [P3AB])

Adding them gives that LHS ≥ 2(3∆+[P1BC]+[P2AC]+[P3AB]) for which we use [P1BC] = [PBC]
and so on to get that LHS ≥ 8∆ = RHS. �

71. Author: Mateescu Constantin

Let us denote
AP

PC
= k, where k > 0. Thus,


AP =

k

k + 1
· b

PC =
1

k + 1
· b

By Pythagoras’ theorem, applied in 4PBC one obtains: PB =

√
a2 +

b2

(k + 1)2
. Hence, we are left

to show that:
c−

√
a2 + b2

(k+1)2

k
k+1 · b

>
c− a
b
⇐⇒ c−

√
a2 +

b2

(k + 1)2
>

k

k + 1
· (c− a) ⇐⇒

⇐⇒ c+ ak

k + 1
>

√
a2 +

b2

(k + 1)2
⇐⇒ (c+ ak)2 > a2(k + 1)2 + b2 ⇐⇒

⇐⇒ c2 + 2ack + a2k2 > a2k2 + 2a2k + a2 + b2
c2=a2+b2⇐⇒ c > a, which is true. �

72. Author: Mateescu Constantin

Construct the lines passing through the vertices of triangle ABC so that they are parallel to the
sides BC, CA and AB respectively. The intersection of these three lines determines a new triangle

A′B′C ′, where A is the midpoint of segment B′C ′. Thus, AP = BC = AB′ = AC ′, so B̂′PC ′ = 90◦.

Now it follows that: Â′PC ′+B̂′PA′ = 270◦, wherefrom one has either B̂′PA′ ≤ 135◦ or Â′PC ′ ≤ 135◦.
Let us consider the first case. By denoting x = PB′, y = PA′, 2c = A′B′ and using the Law of Cosines
in triangle B′PA′ we obtain:

4c2 = x2 + y2 − 2xy · cos
(
B̂′PA′

)
≤ x2 + y2 + 2xy ·

√
2

2
≤
(
x2 + y2

)(
1 +

√
2

2

)
(∗)

Moreover, by the theorem of median applied in triangle B′PA′ we get:

CP 2 =
2(x2 + y2)− 4c2

4

(∗)
≥ 1

4

(
2 · 4c2

1 +
√

2
2

− 4c2

)
=
[(√

2− 1
)
·AB

]2
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which implies
CP

AB
≥
√

2 − 1. Equality occurs when x = y and Â′PC ′ = B̂′PA′ = 135◦, so when

A = 45◦, B = C = 67.5◦ and P is the orthocenter of triangle ABC. �

73. Author: Mateescu Constantin

Using the identities:


∑

a2(s− b)(s− c) = 4s2r(R− r)

(s− a)(s− b)(s− c) = sr2

the given inequality is equivalent to:

∑
a2(s− b)(s− c)∏

(s− a)
≥ 6R

√
3 ⇐⇒ 4s2r(R− r)

sr2
≥ 6R

√
3 ⇐⇒ s ≥ 3Rr

√
3

2(R− r)
We will now show that this inequality is weaker than the known Gerretsen s2 ≥ 16Rr − 5r2.
Indeed, by squaring both sides of our previous inequality, it suffices to prove that:

16Rr−5r2 ≥ 27R2r2

4(R− r)2
⇐⇒ 4(R−r)2(16Rr−5r2) ≥ 27R2r2 ⇐⇒ r (R− 2r)

(
64R2 − 47Rr + 10r2

)
≥

0, which is obviously true since R ≥ 2r (Euler).
Equality is attained if and only if 4ABC is equilateral. �

Remark. Here is a sketch of obtaining the first mentioned identity. Since (s−b)(s−c) = bc−s(s−a),

we get:
∑

a2(s− b)(s− c) =
∑

a2 [bc− s (s− a)] = abc
∑

a− s2
∑

a2 + s
∑

a3, and further one

has to use the well known identities:


a2 + b2 + c2 = 2(s2 − r2 − 4Rr)

a3 + b3 + c3 = 2s(s2 − 6Rr − 3r2)

.

74. Author: BigSams

In an arbitrary regular polygon X, let the inradius be r and the sidelength be s.
Note that the perimeter of X is always greater than the circumference of the incircle.

=⇒ sn > 2πr ⇐⇒ n

r
>

2π

s
.

Also note that [X] =
s ·
∑n
i=1 xi
2

= n · sr
2

=⇒
n∑
i=1

xi = nr.

By CS,

n∑
i=1

1

xi
≥ n2∑n

i=1 xi
=
n2

nr
=
n

r
. Thus,

n∑
i=1

1

xi
>

2π

s
. �

75. Author: jatin

Lemma.
The vertex of an angle α is at O. A is a fixed point inside the acute angle. On the sides of the angle,
points M and N are taken such that ∠MAN = β where α+β < π. Then the area of the quadrilateral
OMAN reaches its maximum when AM = AN .

Proof.
Let M,N be points satisfying the given conditions such that AM = AN . Let M ′, N ′ be any [b]other[/b]
points satisfying the given conditions.
Then we will prove that [OM ′AN ′] < [OMAN ]. Now, ∠M ′AN ′ = β,∠AM ′M = 2π−α−β−∠ON ′A >
π − ∠ON ′A = ∠AN ′N . Also, ∠MAM ′ = ∠NAN ′ and hence M ′A < N ′A.
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Thus, [M ′AM ] < [N ′AN ]⇒ [OM ′AN ′] < [OMAN ]. �

So we have to find out on what conditions we can find on the sides on the sides of the angle points
M and N such that ∠MAN = φ and MA = AN . Circumscribe a circle about the triangle MON .
Since α + β + φ < π, the point A is located outside the circle. If L is the point of intersection of OA

and the circle, then: ∠AMN =
π − φ

2
> ∠LMN = ∠LON and ∠ANM =

π − φ
2

> ∠LOM . Thus,

if α, β <
π − φ

2
, then it is possible to find points M and N such that MA = AN and ∠MAN = φ.

If the conditions are not fulfilled then such points cannot be found. In this case, the quadrilateral of
maximal area degenerates into a triangle (either M or N coincides with O). �

76. Author: dr Civot

Take a = b = c to get that k > 1.
Let a = x+ y, b = y + z, c = z + x by Ravi Transformation.

The inequality becomes 3k
∑

xy + k
∑

x2 > 2
∑

x2 + 2
∑

xy.

k = 2 works because by Triangle Inequality
∑

a(b+ c− a) > 0 ⇐⇒ 2 ·
∑

ab >
∑

a2, so k ≤ 2.

Suppose that there exists a 1 < k < 2 which works. Take x =

√
A

2− k
, y = z =

1

x
.

The inequality becomes LHS = (3k − 2)
∑

xy > (2− k)
∑

x2 = RHS.

It will be shown that there is value of A for each 1 < k < 2 such that RHS − LHS > 0, which will
mean that 1 < k < 2 does not exist work.
RHS > (2− k)x2 = A

LHS =
A(6k − 4) + (2− k)(3k − 2)

A
RHS −LHS > 0 ⇐⇒ A2−A(6k− 4) + (k− 2)(3k− 2) > 0, which is true for sufficiently large A. �

77. Author: applepi2000

Let ada = x, bdb = y, cdc = z.

Then from triangles MAB,MAC,MBC we have
1

2
(x+ y + z) = S =⇒ 2∆ = x+ y + z.

We need to show xy + yz + zx ≤ 4∆2

3
. But this is true by Cauchy-Schwarz:

xy + yz + zx ≤ 1

3
(x+ y + z)2 =

4

3
∆2 and we are done. Equality holds iff x = y = z, i.e. M = G. �
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A power of point I is P (I) = AI · IX = OI2 −R2 = 2rR, so IX =
2rR

AI
.

Hence, inequality becomes 8r3R3 ≥ (AI ·BI · CI)2.

On the other hand r =
∆

s
and R =

abc

4∆
, so rR =

abc

4s
.

Let a = x+ y, b = y + z, c = z + x, where x, y, z are segments that incircle divide sides of triangle.

Then rR =
(x+ y)(y + z)(z + x)

4(x+ y + z)
.

AI2 = x2 + r2 = x2 +
P 2

s2
= x2 +

xyz

(x+ y + z)
. Now inequality becomes
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((x+ y)(y + z)(z + x))3 ≥ 8(x2(x+ y + z) + xyz)(y2(x+ y + z) + xyz)(z2(x+ y + z) + xyz).
But we have x2(x+y+z)+xyz = x(x+y)(x+z), so our inequality is equivalent to (x+y)(y+z)(z+x) ≥
8xyz, which is true by AM-GM. �
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Say without loss of generality a ≥ b ≥ c > 0, since the inequality is symmetric.

Multiplying the given by abc gives
∑

c(a2 + b2 − c2) > 2abc ⇐⇒
∑

a2b+
∑

a2c >
∑

a3 + 2abc

Now, use the identity (a+ b− c)(a− b+ c)(−a+ b+ c) =
∑

a2b−
∑

a3 − 2abc.

Then the given is (a+ b− c)(a− b+ c)(−a+ b+ c) > 0.
Now note that a+ (b− c) ≥ a > 0 and (a− b) + c ≥ c > 0, this becomes −a+ b+ c > 0 ⇐⇒ b+ c > a
Also, rearranging the two strict inequalities above gives a+ b > c and a+ c > b. Thus, a, b, c are sides
of a triangle. �
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If ∠B = ∠C then it’s clear that AP = AQ.
Now assume that ∠B < ∠C. Then ∠APB > 90. Let M be midpoint of BC, then is B −M − P [∗].
CP = BQ and CM = BM =⇒ MP = MQ, but that is possible just if Q−M − P [∗∗].
[∗], [∗∗], Q ∈ [BC] =⇒ B −Q− P . =⇒ In triangle AQP ∠QPA > 90 > ∠PQA so AQ > AP . �
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If D is a point belonging to the segment [BC] and
BD

DC
= k ∈ R+ then: AD2 =

c2 + kb2

1 + k
− ka2

(1 + k)2

(this can be easily proved by using the dot product i.e. AD2 =
−−→
AD ·

−−→
AD, where

−−→
AD =

−−→
AB + k ·

−→
AC

1 + k
a.s.o.)

Returning to our problem, let’s observe that:
BP

PC
=
b

c
(by Angle Bisector Theorem) and

BQ

QC
=
PC

BP
=

c

b
, whence, by using the previous relation for D ∈ {P,Q} one has:


AP 2 = bc− a2bc

(b+ c)2

AQ2 =
b3 + c3

b+ c
− a2bc

(b+ c)2

(also note that the first equality can be derived from the known identity AP =
2bc

b+ c
cos

A

2
- the length

of the internal bisector drawn from vertex A).

Thus, AQ ≥ AP ⇐⇒ b3 + c3

b+ c
≥ bc ⇐⇒ b2 − bc+ c2 ≥ bc ⇐⇒ (b− c)2 ≥ 0, which is true. �
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Using the identities:
∏

la =
16Rr2s2

s2 + r2 + 2Rr
and ∆ = r · s the given inequality reduces to:

16Rr2s2

s2 + r2 + 2Rr
≤ r2s2

r
⇐⇒ 16Rr ≤ s2 + r2 + 2Rr ⇐⇒ s2 ≥ 14Rr − r2, which is weaker than the

well known Gerretsen’s Inequality s2 ≥ 16Rr − 5r2.

34



Indeed 16Rr − 5r2 ≥ 14Rr − r2 ⇐⇒ 2Rr ≥ 4r2 ⇐⇒ R ≥ 2r ⇐⇒ Euler’s Inequality. �

Remark. The first mentioned identity can be proved like this:∏
la =

∏ 2bc

b+ c
cos

A

2
=

8a2b2c2
∏

cos A2
(a+ b+ c)(ab+ bc+ ca)− abc

=
16Rr2s2

s2 + r2 + 2Rr
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Left Side.
Since

∑
a2 = 2s2 − 2r2 − 8Rr, the inequality is equivalent to 2s2 ≤ 2r2 + 8Rr + 9R2. By

comparison to Gerretsen’s Inequality i.e. s2 ≤ 4R2 + 4Rr + 3r2, we see that it is weaker since
9R2 + 8Rr + 2r2 ≥ 8R2 + 8Rr + 6r2 =⇒ R2 ≥ 4r2, which follows from Euler’s Inequality. �

Right Side.

Again, since
∑

a2 = 2s2 − 2r2 − 8Rr, the inequality is equivalent to s2 ≥ r2 + 13Rr. Again, by

comparison to Gerretsen’s Inequality i.e s2 ≥ 16Rr − 5r2, we see that it is weaker since 16Rr − 5r2 ≥
r2 + 13Rr =⇒ 3Rr ≥ 6r2, which again follows from Euler’s Inequality. �
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We prove it using complex numbers. Let z1,z2,z3 be the three vertices of the triangle ABC.

Now we consider the function g(z) =
∑ (z − z1)(z − z2)

(z3 − z1)(z3 − z2)
.

We see that g(z1) = g(z2) = g(z3) = 1. Since this a two degree polynomial so we conclude that
g(z) = 1.

So 1 = g(z) ≤
∑ |z − z1||z − z2|
|z3 − z1||z3 − z2|

=
∑ DA ·DB

BC · CA
and hence the result follows.

It can be checked that the equality holds when D is the orthocenter. �
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Note that 4 IaIbIc is acute-angled and I is its orthocenter. Thus, IIa = 2R4IaIbIc cos
(
ÎbIaIc

)
and

since R4 IaIbIc = 2R and ∠Ia = 90◦ − A

2
we obtain: IIa = 4R sin

A

2
. The proposed inequality is now

equivalent to: 64R3 · r
4R
≤ 8R3 ⇐⇒ 2r ≤ R, which is Euler’s Inequality. �

Remark. The identity R4 IaIbIc = 2R can be easily derived. Since IbIc = 4R cos
A

2
and by using the

law of sines one gets: R4 IaIbIc =
IbIc

2 sin Ia
=

4R cos A2
2 sin

(
90◦ − A

2

) = 2R.
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The inequality is equivalent to (cosA + cosB + cosC)(cotA + cotB + cotC) ≥ 3
√

3

2
, where A,B,C

are angles of an acute triangle.
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The function f(x) =
cosx√
sinx

is concave upward for 0 < x <
π

2
and therefore we are done using

Cauchy-Schwarz and Jensen inequality. �
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Left Side.
For the left hand side of the problem, we have (a+ b+ c)(ab+ ac+ bc) = a2b+ a2c+ ab2 + b2c+ ac2 +
bc2 + 3abc. By Schur’s Inequality, RHS ≤ a3 + b3 + c3 + 3abc+ 3abc = a3 + b3 + c3 + 6abc. �

Right Side.
For the right hand side of the problem, we use the fact that a, b, c are the sides of a triangle, so we let
a = x+ y, b = x+ z, c = y + z.
Thus the inequality becomes (3, 0, 0) + 8(2, 1, 0) + 18xyz > (3, 0, 0) + 8(2, 1, 0) + 10xyz, which is clearly
true since x, y, z > 0. �
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Assuming F = D. Then it is equivalent with 4(ED)2 ≥ (BC)2.
Let AD = a,AE = b. Then by Law of Cosines, (ED)2 = a2 + b2 − 2ab cosA.
(BC)2 = 2(a+ b)2 − 2(a+ b)2 cosA
Now note that we need 4(ED)2 − (BC)2 ≥ 0.
Or, in other words 2a2 + 2b2 − 4ab+ (2a2 + 2b2 − 4ab) cosA ≥ 0.
2(a− b)2(1 + cosA) ≥ 0. This is true since cosA > −1. For equality to hold, we must have a = b, or
D,E are the midpoints of AB,AC respectively. �

88. Author: chronondecay

First assume that the triangle has an obtuse angle at A. It is well-known that A is also the orthocentre
of HBC, which is an acute triangle. Thus we have BH ≥ BA,CA ≤ CH since ∠HAB,∠HAC are
obtuse. Thus we may swap H and A, and the LHS of the inequality decreases.

Now assume that ABC is non-obtuse.
Let the feet of altitudes from A,B be A′, B′ respectively. Then

AA′ =
2[ABC]

BC
=
AB ·AC · sinA

BC
, AB′ = AC cosA, AH ·AA′ = AB ·AB′ =⇒ AH

BC
= cotA.

Finally by Jensen’s Inequality on cotx, which is concave up on
[
0,
π

2

)
, we get∑

cotA ≥ 3 cot

∑
A

3
= 3 cot

π

3
= 3
√

3.

Equality occurs iff A = B = C =
π

3
, ie. when 4ABC is equilateral. �
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Consider inversion with respect to A1 with power 1. Let A′i be image of Ai.
Applying triangle inequality, we have A′1A

′
n ≤ A′1A′2 + · · ·+A′n−1A

′
n

=⇒ A1An

(
1

MA1 ·MA2
+

1

MA2 ·MA3
+ · · ·+ 1

MAn−1 ·MAn

)
≥ A1An
MA1 ·MAn

=⇒ 1

MA1 ·MA2
+

1

MA2 ·MA3
+ · · ·+ 1

MAn−1 ·MAn
≥ 1

MA1 ·MAn
as desired. �
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It is well-known that: 3 ·
(
QA2 +QB2 +QC2

)
= 9 ·QG2 +

(
a2 + b2 + c2

)
. Therefore, QA2 + QB2 +

QC2 ≥ 1

3
·
(
a2 + b2 + c2

)
, so the minimum is

a2 + b2 + c2

3
, which is attained for Q = G. �
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Let 4m be the median with side lengths equal to the medians of 4.
Applying the reverse Hadwiger-Finsler Inequality to 4m,∑

m2
a ≤ 4

√
3Sm + 3 ·

∑
(ma −mb)

2 = 4
√

3Sm + 6 ·
∑

m2
a − 6 ·

∑
mamb

⇐⇒ 6 ·
∑

mamb ≤ 4
√

3Sm + 5 ·
∑

m2
a

Note the identities Sm =
3

4
· S and

∑
m2
a =

3

4
·
∑

a2.

⇐⇒ 6 ·
∑

mamb ≤ 4
√

3

(
3

4
· S
)

+ 5 ·
(

3

4
·
∑

a2

)
⇐⇒ 8 ·

∑
mamb ≤ 4

√
3S + 5 ·

∑
a2

⇐⇒ 2

3
·
∑

ma ≤
1

3
·
√

8 ·
∑

a2 + 4
√

3S. Note that
∑

GA =
2

3
·
∑

ma. �
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The inequality is equivalent to
a2 + b2 − c2 +R2

2ab
≥ 0 ⇐⇒ cosC +

R2

2ab
≥ 0

If cosC > 0 the problem has been solved. If not, then the ineq is equivalent to
R2

2ab
≥ − cosC = cos(A+B) ⇐⇒ 2ab cos(A+B) ≤ R2

sinA sinB sin
(π

2
−A−B

)
≤ 1

8
, which is true because

LHS ≤

(
sinA+ sinB + sin

(
π
2 −A−B

)
3

)3

≤ sin

(
A+B + π

2 −A−B
3

)3

=
1

8
. �
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Let the reflection P of A w.r.t. the midpoint M of [BC], i.e. ABPC is a parallelogram =⇒
4
(
OB2 −MB2

)
= 4 ·OM2 =

2
(
OA2 +OP 2

)
−AP 2 =⇒ 4R2 − a2 = 2

(
R2 +OP 2

)
− 4m2

a

=⇒ 2R2 = a2 + 2 ·OP 2 − 2
(
b2 + c2

)
+ a2 =⇒ OP 2 = b2 + c2 +R2 − a2 =⇒ b2 + c2 +R2 ≥ a2,

with equality iff M is the midpoint of [AO] ⇐⇒ b = c =
a√
3

. �
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b2 + c2 + R2 − a2 ≥ 0 ⇐⇒ 2bc · cosA + R2 ≥ 0 ⇐⇒ 8 sinB sinC cosA + 1 ≥ 0 ⇐⇒
4 cosA [cos(B − C) + cosA] + 1 ≥ 0 ⇐⇒ 4 cos2A + 4 cos(B − C) cosA + 1 ≥ 0 ⇐⇒
[2 cosA+ cos(B − C)]

2
+ sin2(B − C) ≥ 0. Equality holds iff B = C = 30◦ and A = 120◦.�
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We will rewrite the whole inequality in terms of R, r, s by using the identities: ab+bc+ca = s2+r2+4Rr
and abc = 4Rrs(
s2 + r2 + 4Rr

) (
s2 + r2

)
≥ 16Rrs2 + 36R2r2

⇐⇒ s4 + s2
(
2r2 − 12Rr

)
≥ 36R2r2 − 4Rr3 − r4

⇐⇒
(
s2 − 6Rr + r2

)2 ≥ (6Rr − r2
)2

+ 36R2r2 − 4Rr3 − r4

⇐⇒
(
s2 − 6Rr + r2

)2 ≥ 72R2r2 − 16Rr3.

By Gerretsen’s Inequality i.e. s2 ≥ 16Rr − 5r2, one gets:
(
s2 − 6Rr + r2

)2 ≥ (10Rr − 4r2
)2

,

Thus it suffices to prove the following inequality
(
10Rr − 4r2

)2 ≥ 72R2r2 − 16Rr3 which reduces to
the obvious one: (R− 2r) (7R− 2r) ≥ 0. Equality holds iff 4ABC is equilateral. �
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a2∑
ab
− 1 ≤

√
1− 2r

R
⇐⇒

(
s2 − 3r2 − 12Rr

s2 + r2 + 4Rr

)2

≤ 1− 2r

R

LHS ≤
(

4R2 + 3r2 + 4Rr − 3r2 − 12Rr

16Rr − 5r2 + r2 + 4Rr

)2

=

(
R2 − 2Rr

5Rr − r2

)2

=

(
1− 2t

5t− t2

)2

where t =
r

R

We need to prove

(
1− 2t

5t− t2

)2

≤ (1− 2t), which is true, since Euler’s Inequality states t ≤ 1

2
. �
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2∆
ac

(s−b)(s−a)
ab

+
2∆
ab

(s−c)(s−a)
ac

≥ 4

√
s(s−a)
bc

1−
√

(s−b)(s−c)
bc

⇐⇒ 2∆

s− a

(
b

c (s− b)
+

c

b (s− c)

)
≥ 4

√
s (s− a)√

bc−
√

(s− b)(s− c)

⇐⇒
√

(s− b) (s− c)
s− a

(
b

c (s− b)
+

c

b (s− c)

)
≥ 2

√
bc+

√
(s− b) (s− c)

s (s− a)

⇐⇒ s
√

(s− b) (s− c)
(

b

c (s− b)
+

c

b (s− c)

)
≥ 2

(√
bc+

√
(s− b) (s− c)

)
By AM-GM, s ≥

√
bc+

√
(s− b) (s− c) and

√
(s− b) (s− c)

(
b

c (s− b)
+

c

b (s− c)

)
≥ 2

Multiplying them yields the necessary result. �
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Let XB = XC = L. By Ptolemy’s theorem for the cyclic quadrilateral ABXC, we get

AB · L+AC · L = AX ·BC =⇒ AX =
L(AB +AC)

BC
.

By triangle inequality we obtain XB +XC > BC =⇒ 2L > BC
Thus, AX >

1

2
(AB +AC). Adding the cyclic expressions together yields the result. �
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Since the points M , I, N are collinear, we will have to find a relationship between the ratios
BM

MA
and

CN

AN
. In order to do this, we will express the vectors

−−→
IM and

−→
IN in terms of

−−→
AB and

−−→
BC and the

collinearity of the former vectors will yield a relationship between the previous ratios.
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For convenience, let us denote


BM

AM
= k

CN

AN
= q

, where k, q ∈ R+. Note:



−→
IA =

b
−−→
BA+ c

−→
CA

2s

−→
IB =

c
−−→
CB + a

−−→
AB

2s

−→
IC =

a
−→
AC + b

−−→
BC

2s

and:

−−→
IM =

−→
IB + k ·

−→
IA

1 + k
=

(
c
−−→
CB + a

−−→
AB
)

+ k
[
b
−−→
BA+ c

(−−→
CB +

−−→
BA
)]

2s (1 + k)

=
(a− kb− kc)

−−→
AB + (−c− kc)

−−→
BC

2s (1 + k)

−→
IN =

−→
IC + q ·

−→
IA

1 + q
=

[
a
(−−→
AB +

−−→
BC

)
+ b
−−→
BC

]
+ q

[
b
−−→
BA+ c

(−−→
CB +

−−→
BA
)]

2s (1 + q)

=
(a− qb− qc)

−−→
AB + (a+ b− qc)

−−→
BC

2s (1 + q)

Therefore, the colinearity of vectors
−−→
IM and

−→
IN implies: (a− kb− kc) (a+ b− qc) = (−c− kc) (a− qb− qc)

which after expanding is equivalent to q =
a− bk
c

. The inequality becomes:
a2

4bc
≥ k · a− bk

c
⇐⇒ a2 ≥ 4bk (a− bk) ⇐⇒ a2 + 4k2b2 ≥ 4abk ⇐⇒ (a− 2kb)

2 ≥ 0, which is clearly true.

Equality is attained iff a = 2k · b i.e.
MB

AM
=

a

2b
and

NC

AN
=

a

2c
. �

97. Author: Virgil Nicula

Lemma. Let d be a line, three points {A,B,C} ⊂ d and a point P 6∈ d. For another line δ de-
note intersections K, L, M of δ with the lines PA, PB, PC respectively. Prove that there is the

relation
LA

LP
·BC +

MB

MP
· CA+

NC

NP
·AB = 0.

Proof. Let d′ for which P ∈ d′, d′ ‖ d. Denote X ∈ d ∩ δ, Y ∈ d′ ∩ δ. Thus,
LA

LP
· BC +

MB

MP
·

CA+
NC

NP
·AB = 0 ⇐⇒ AX

PY
·BC+

BX

PY
·CA+

CX

PY
·AB = 0 ⇐⇒ AX ·BC+BX ·CA+CX ·AB = 0. �

Denote D ∈ AI ∩ BC and apply the lemma. Obtain that
MB

MA
·DC +

NC

NA
· BD =

ID

IA
· BC ⇐⇒

b · MB

MA
+ c · NC

NA
= a.

In conclusion, a2 =

(
b · MB

MA
+ c · NC

NA

)2

≥ 4 ·
(
b · MB

MA

)
·
(
c · NC
NA

)
= 4bc · MB

MA
· NC
NA

=⇒

MB

MA
· NC
NA

≤ a2

4bc
. �
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Applying the Hadwiger-Finsler Inequality to 4m,
∑

m2
a ≥

∑
(ma −mb)

2 + 4
√

3Sm

⇐⇒ 2 ·
∑

mamb ≥
∑

m2
a + 4

√
3Sm
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Note the identities Sm =
3

4
· S and

∑
m2
a =

3

4
·
∑

a2.

⇐⇒ 2 ·
∑

mamb ≥
3

4
·
∑

a2 + 3
√

3S ⇐⇒ 4

3
·
∑

mamb ≥
1

2
·
∑

a2 + 2
√

3S

⇐⇒ 2

3
·
∑

ma ≥

√
2 (a2 + b2 + c2) + 4

√
3S

3
. Note that

∑
GA =

2

3
·
∑

ma. �
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Denote the midpoint M of [BC] and N ∈ AS ∩ BC. Is well-known that
NB

c2
=

NC

b2
=

a

b2 + c2
.

Apply van Aubel’s relation to S
AS

b2 + c2
=
SN

a2
=

AN

a2 + b2 + c2
.

Denote AM = ma , AN = sa , m
(
B̂AN

)
= m(

(
ĈAM

)
= φ.

Apply the Sine Law to :


4MAC

MC

sinφ
=

ma

sinC

4NAB sa
sinB

=
NB

sinφ

∥∥∥∥∥∥∥∥∥ =⇒ sa
ma

=
2bc

b2 + c2

=⇒ AS

AG
=

sa(b2+c2)
a2+b2+c2

2ma

3

=
3
(
b2 + c2

)
2 (a2 + b2 + c2)

· sa
ma

=
3
(
b2 + c2

)
2 (a2 + b2 + c2)

· 2bc

b2 + c2
=

3bc

a2 + b2 + c2
a.s.o.

=⇒
∑ AS

AG
=

3(ab+ bc+ ca)

a2 + b2 + c2
≤ 3. �
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Note that the inequality can be written as: a2 +m2b2 ≥ m cosφ ·
(
a2 + b2 − c2

)
+ 4m sinφ ·∆.

And since


a2 + b2 − c2 = 2ab cosC

2∆ = ab sinC

Our inequality becomes: a2 +m2b2 ≥ 2ab cosC ·m cosφ+ 2ab sinC ·m sinφ
⇐⇒ a2 +m2b2 ≥ 2abm · (cosC cosφ+ sinC sinφ) ⇐⇒ a2 +m2b2 ≥ 2ab ·m cos (C − φ),
which is obviously true because a2 +m2b2 ≥ 2abm ≥ 2abm cos (C − φ).
Equality occurs if and only if a = m · b and φ = C. �
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