Geometric Inequalities Marathon
 The First 100 Problems and Solutions

Contributors Typesetting and Editing
Members of Mathlinks Samer Seraj (BigSams)

1 Preface

On Wednesday, April 20, 2011, at 8:00 PM, I was inspired by the existing Mathlinks marathons to create a marathon on Geometric Inequalities - the fusion of the beautiful worlds of Geometry and Multivariable Inequalities. It was the result of the need for expository material on GI techniques, such as the crucial Rrs , which were well-explored by only a small fraction of the community. Four months later, the thread has over 100 problems with full solutions, and not a single pending problem. On Friday, August 26, 2011, at 5:30 PM, I locked the thread indefinitely with the following post:

The reason is that most of the known techniques have been displayed, which was my goal. Recent problems are tending to to be similar to old ones or they require methods that few are capable of utilizing at this time. Until the community is ready for a new wave of more diffcult GI, and until more of these new generation GI have been distributed to the public (through journals, articles, books, internet, etc.), this topic will remain locked.

This collection is a tribute to our hard work over the last few months, but, more importantly, it is a source of creative problems for future students of GI. My own abilities have increased at least several fold since the exposure to the ideas behind these problems, and all those who strive to find proofs independently will find themselves ready to tackle nearly any geometric inequality on an olympiad or competition.

The following document is dedicated to my friends Constantin Mateescu and Réda Afare (Thalesmaster), and the pioneers Panagiote Ligouras and Virgil Nicula, all four of whom have contributed much to the evolution of GI through the collection and creation of GI on Mathlinks.

The file may be distributed physically or electronically, in whole or in part, but for and only for noncommercial purposes. References to problems or solutions should credit the corresponding authors.

To report errors, a Mathlinks PM can be sent BigSams, or an email to samer_seraj@hotmail.com.

September 4, 2011

[^0]
2 Notation

For a $\triangle A B C$:

- Let $A B=c, B C=a, C A=b$ be the sides of $\triangle A B C$.
- Let $A=m(\angle B A C), B=m(\angle A B C), C=m(\angle B C A)$ be measures of the angles of $\triangle A B C$.
- Let Δ be the area of $\triangle A B C$.
- Let P be any point inside $\triangle A B C$, and let Q be an arbitrary point in the plane. Let the cevians through P and A, B, C intersect a, b, c at P_{a}, P_{b}, P_{c} respectively.
- Let the distance from P to a, b, c, extended if necessary, be d_{a}, d_{b}, d_{c} respectively.
- Let arbitrary cevians issued from A, B, C be d, e, f respectively.
- Let the semiperimeter, inradius, and circumradius be s, r, R respectively.
- Let the heights issued from A, B, C be h_{a}, h_{b}, h_{c} respectively, which meet at the orthocenter H.
- Let the feet of the perpendiculars from H to $B C, C A, A B$ be H_{a}, H_{b}, H_{c} respectively.
- Let the medians issued from A, B, C be m_{a}, m_{b}, m_{c} respectively, which meet at the centroid G.
- Let the midpoints of A, B, C be M_{a}, M_{b}, M_{c} respectively.
- Let the internal angle bisectors issued from A, B, C be l_{a}, l_{b}, l_{c} respectively, which meet at the incenter I, and intersect their corresponding opposite sides at L_{a}, L_{b}, L_{c} respectively.
- Let the feet of the perpendiculars from I to $B C, C A, A B$ be $\Gamma_{a}, \Gamma_{b}, \Gamma_{c}$ respectively.
- Let the centers of the excircles tangent to $B C, C A, A B$ be I_{a}, I_{b}, I_{c} respectively, and the excircles be tangent to $B C, C A, A B$ at E_{a}, E_{b}, E_{c}.
- Let the radii of the excircles tangent to $B C, C A, A B$ be r_{a}, r_{b}, r_{c} respectively.
- Let the symmedians issued from A, B, C be s_{a}, s_{b}, s_{c} respectively, which meet at the Lemoine Point S, and intersect their corresponding opposite sides at S_{a}, S_{b}, S_{c} respectively.
- Let Γ be the Gergonne Point, and the Gergonne cevians through A, B, C be g_{a}, g_{b}, g_{c} respectively.
- Let N be the Nagel Point, and the Nagel cevians through A, B, C be n_{a}, n_{b}, n_{c} respectively.

Let $[X]$ denote the area of polygon X.
All \sum and \prod symbols without indices are cyclic.
\square denotes the end of a proof, either for a lemma or the original problem.

3 Problems

1. For $\triangle A B C$, prove that $R \geq 2 r$. (Euler's Inequality)
2. For $\triangle A B C$, prove that $\sum A B>\sum P A$.
3. For $\triangle A B C$, prove that $\frac{a b+b c+c a}{4 \Delta^{2}} \geq \sum \frac{1}{s(s-a)}$.
4. For $\triangle A B C$, prove that $r(4 R+r) \geq \sqrt{3} \Delta$.
5. For $\triangle A B C$, prove that $\cos \frac{B-C}{2} \geq \sqrt{\frac{2 r}{R}}$.
6. For $\triangle A B C$, prove that $\sqrt{12\left(R^{2}-R r+r^{2}\right)} \geq \sum A I \geq 6 r$.
7. A circle with center I is inscribed inside quadrilateral $A B C D$. Prove that $\sum A B \geq \sqrt{2} \cdot \sum A I$.
8. For $\triangle A B C$, prove that $9 R^{2} \geq \sum a^{2}$. (Leibniz's Inequality)
9. Prove that for any non-degenerate quadrilateral with sides a, b, c, d, it is true that $\frac{a^{2}+b^{2}+c^{2}}{d^{2}} \geq \frac{1}{3}$.
10. For $\triangle A B C$, prove that $3 \cdot \sum a \sin A \geq\left(\sum a\right) \cdot\left(\sum \sin A\right) \geq 3(a \sin C+b \sin B+c \sin A)$.
11. For acute $\triangle A B C$, prove that $\sum \cot ^{3} A+6 \cdot \prod \cot A \geq \sum \cot A$.
12. For $\triangle A B C$, prove that $\left(\sum \cos \frac{A}{2}\right) \cdot\left(\sum \csc \frac{A}{2}\right) \geq 6 \sqrt{3}+\sum \cot \frac{A}{2}$.
13. A 2-dimensional plane is partitioned into x regions by three families of lines. All lines in a family are parallel to each other. What is the least number of lines to ensure that $x \geq 2010$. (Toronto 2010)
14. For $\triangle A B C$, prove that $3 \sqrt{3} R \geq 2 s$.
15. For $\triangle A B C$, prove that $\sum \frac{1}{2-\cos A} \geq 2 \geq 3 \cdot \sum \frac{1}{5-\cos A}$.
16. For $\triangle A B C$, prove that $\frac{1}{8} \geq \prod \sin \frac{A}{2}$.
17. In right-angled $\triangle A B C$ with $\angle A=90^{\circ}$, prove that $\frac{3 \sqrt{3}}{4} \cdot a \geq h_{a}+\max \{b, c\}$.
18. For $\triangle A B C$, prove that $s \cdot \sum h_{a} \geq 9 \Delta$ with equality holding if and only if $\triangle A B C$ is equilateral.
19. Prove that the semiperimeter of a triangle is greater than or equal to the perimeter of its orthic triangle.
20. Prove that of all triangles with same base and area, the isosceles triangle has the least perimeter.
21. $A B C D$ is a convex quadrilateral with area 1. Prove that $A C+B D+\sum A B \geq 4+2 \sqrt{2}$.
22. For $\triangle A B C$, prove that $\sum \csc \frac{A}{2} \geq 4 \sqrt{\frac{R}{r}}$.
23. For $\triangle A B C$, prove that $\sum \sin ^{2} \frac{A}{2} \geq \frac{3}{4}$.
24. Of all triangles with a fixed perimeter, dtermine the triangle with the greatest area.
25. Let $A B C D$ be a parallelogram such that $\angle A \leq 90$. Altitudes from A meet $B C, C D$ at E, F respectively. Let r be the inradius of $\triangle C E F$. Prove that $A C \geq 4 r$. Determine when equality holds.
26. For $\triangle A B C$, the feet of the altitudes from B, C to $A C, A B$ respectively, are E, D respectively. Let the feet of the altitudes from D, E to $B C$ be G, H respectively. Prove that $D G+E H \leq B C$. Determine when equality holds.
27. For $\triangle A B C$, a line l intersects $A B, C A$ at M, N respectively. K is a point inside $\triangle A B C$ such that it lies on l. Prove that $\Delta \geq 8 \cdot \sqrt{[B M K]+[C N K]}$.
28. For $\triangle A B C$, prove that $\sqrt{\frac{15}{4}+\sum \cos (A-B)} \geq \sum \sin A$.
29. Let p_{I} be the perimeter of the Intouch/Contact Triangle of $\triangle A B C$. Prove that $p_{I} \geq 6 r\left(\frac{s}{4 R}\right)^{\frac{1}{3}}$.
30. In addition to $\triangle A B C$, let $\triangle A^{\prime} B^{\prime} C^{\prime}$ be an arbitrary triangle. Prove that $1+\frac{R}{r} \geq \sum \frac{\sin A}{\sin A^{\prime}}$.
31. For $\triangle A B C$, prove that $\sum \cos ^{2} \frac{B-C}{2} \geq 24 \cdot \prod \sin \frac{A}{2}$.
32. For $\triangle A B C$, prove that $\sum h_{a} \geq 9 r$.
33. For $\triangle A B C$, prove that $\sum \cos \frac{A-B}{2} \geq \sum \sin \frac{3 A}{2}$.
34. For $\triangle A B C$, prove that $\sum \sin ^{2} \frac{A}{2}+\prod \cos \frac{B-C}{2} \geq 1$.
35. For $\triangle A B C, A O, B O, C O$ are extended to meet the circumcircles of $\triangle B O C, \triangle C O A, \triangle A O B$ respectively, at K, L, N respectively. Prove that $\frac{A K}{O K}+\frac{B L}{O L}+\frac{C M}{O M} \geq \frac{9}{2}$.
36. For $\triangle A B C$, prove that $\frac{9 a b c}{a+b+c} \geq 4 \sqrt{3} \Delta$.
37. For $\triangle A B C$, prove that $\sum a^{2} b(a-b) \geq 0$.
38. Show that for all $0<a, b<\frac{\pi}{2}$ we have $\frac{\sin ^{3} a}{\sin b}+\frac{\cos ^{3} a}{\cos b} \geq \sec (a-b)$
39. For all parallelograms with a given perimeter, explicitly define those with the maximum area.
40. Show that the sum of the lengths of the diagonals of a parallelogram is less than or equal to the perimeter of the parallelogram.
41. For $\triangle A B C$, the parallels through P to $A B, B C, C A$ meet $B C, C A, A B$ respectively, at L, M, N respectively. Prove that $\frac{1}{8} \geq \frac{A N}{N B} \cdot \frac{B L}{L C} \cdot \frac{C M}{M A}$.
42. For $\triangle A B C$, prove that $\sum a \sin \frac{A}{2} \geq s$
43. For $\triangle A B C$, it is true that $B C=C A$ and $B C \perp C A . P$ is a point on $A B$, and Q, R are the feet of the perpendiculars from P to $B C, C A$ respectively. Prove that regardless of the location of P, $\max \{[A P R],[B P Q],[P Q C R]\} \geq \frac{4}{9} \Delta$. (Generalization of Canada 1969)
44. For $\triangle A B C$, prove that $\sum a^{2}+\frac{a b c}{\sqrt{3} R} \geq 4(a b c)^{\frac{2}{3}}$.
45. For $\triangle A B C$, prove that $6 R \geq \sum \frac{a^{2}+b^{2}}{m_{c}^{2}}$.
46. For a convex hexagon $A B C D E F$ with $A B=B C, C D=D E, E F=F A$, prove that $\frac{B C}{B E}+\frac{D E}{D A}+\frac{F A}{F C} \geq$ $\frac{3}{2}$. Determine when equality holds.
47. For $\triangle A B C$, prove that $s \sqrt{3} \geq \sum l_{a}$.
48. For $\triangle A B C$, prove that $R-2 r \geq \frac{1}{12} \cdot\left(2 \cdot \sum m_{a}-\frac{\sum a b}{R}\right)$.
49. For $\triangle A B C$, prove that $\sum a^{2} \geq 4 \sqrt{3} \Delta \cdot \max \left\{\frac{m_{a}}{h_{a}}, \frac{m_{b}}{h_{b}}, \frac{m_{c}}{h_{c}}\right\}$.
50. $A_{1} A_{2} B_{1} B_{2} C_{1} C_{2}$ is a hexagon with $A_{1} B_{2} \cap C_{1} A_{2}=A, B_{1} C_{2} \cap A_{1} B_{2}=B, C_{1} A_{2} \cap B_{1} C_{2}=C$ and $A A_{1}=$ $A A_{2}=B C, B B_{1}=B B_{2}=C A, C C_{1}=C C_{2}=A B$. Prove that $\left[A_{1} A_{2} B_{1} B_{2} C_{1} C_{2}\right] \geq 13 \cdot[A B C]$.
51. For $\triangle A B C$, let r_{1}, r_{2} denote the inradii of $\triangle A B M_{a}, \triangle A C M_{a}$. Prove that $\frac{1}{r_{1}}+\frac{1}{r_{2}} \geq 2 \cdot\left(\frac{1}{r}+\frac{2}{a}\right)$.
52. For $\triangle A B C$, prove that $\sum \csc ^{2} \frac{A}{2} \geq \sum \cos (A-B)+9 \geq 8 \cdot \sum \cos A$.
53. For $\triangle A B C$, find the minimum of the expression $\frac{2 s^{4}-\sum a^{4}}{\Delta^{2}}$.
54. For $\triangle A B C$, prove that $\frac{\sqrt{3}}{2} \cdot \sum \cos \frac{B-C}{4} \geq \sum \cos \frac{A}{2}$.
55. For $\triangle A B C$, prove that $3 \cdot \sum a^{2}>\Delta \cdot\left(\sum \cot \frac{A}{2}\right)^{2}$.
56. For $\triangle A B C, c \leq b \leq a$. Through interior point P and the vertices A, B, C, lines are drawn meeting the opposite sides at X, Y, Z respectively. Prove that $A X+B Y+C Z<2 a+b$.
57. For $\triangle A B C$, prove that $\frac{s^{3}}{2 a b c} \geq \sum \cos ^{4} \frac{A}{2}$.
58. For $\triangle A B C$, let $P A=x, P B=y, P C=z$. Prove that $a y z+b z x+c x y \geq a b c$, with equality holding if and only if $P \equiv O$. (China 1998)
59. For $\triangle A B C$, prove that $3 \cdot \sum d_{a}^{2} \geq \sum P A^{2} \sin ^{2} A$.
60. For $\triangle A B C$, if $C A+A B>2 \cdot B C$, then prove that $\angle A B C+\angle A C B>\angle B A C$. (Euclid Contest 2010)
61. For $\triangle A B C$, prove that $\frac{\sqrt{7 \cdot \sum a^{2}+2 \cdot \sum a b}}{2} \geq \sum m_{a}$. (Dorin Andrica)
62. For $\triangle A B C$, prove that $\sum \cos \frac{A}{2} \geq \frac{\sqrt{2}}{2}+\sqrt{\frac{1}{2}+(3 \sqrt{3}-2 \sqrt{2}) \cdot \frac{s}{2 R}}$.
63. For $\triangle A B C$, prove that $\frac{\sqrt{\sum a^{2} b^{2}}}{2 \Delta} \geq \max \left\{\frac{a}{b}+\frac{b}{a}, \frac{b}{c}+\frac{c}{b}, \frac{c}{a}+\frac{a}{c}\right\}$.
64. For $\triangle A B C$, prove the following and determine which is stronger: (Samer Seraj)
(a) $\Delta \geq r \cdot \sqrt{\frac{1}{3} \cdot \sum m_{a} m_{b}+\frac{1}{2} \cdot \sum a b}$.
(b) $\Delta \geq r \cdot \sqrt{\frac{2}{3} \cdot \sum m_{a} m_{b}+r(r+4 R)}$.
65. For any convex pentagon $A_{1} A_{2} A_{3} A_{4} A_{5}$, prove that $\sum_{i=1}^{5}\left(A_{i} A_{i+2}+A_{i+1} A_{i+4}\right)>\sum_{i=1}^{5} A_{i} A_{i_{2}}^{2} . A_{i+5} \equiv A_{i}$.
66. For $\triangle A B C$, prove that $s^{2} \geq \sum l_{a}^{2}$.
67. $A B C D$ is a quadrilateral inscribed in a circle with center $O . P$ is the intersection of its diagonals and R is the intersection of the segments joining the midpoints of the opposite sides. Prove that $O P \geq O R$.
68. For $\triangle A B C$, prove that $\frac{5}{4} \cdot \sum b c>\sum m_{b} m_{c}$.
69. For $\triangle A B C$, let $M \in[A C], N \in[B C]$ and $L \in[M N]$, where [$X Y$] denotes the line segment $X Y$. Prove that: $\sqrt[3]{\Delta} \geq \sqrt[3]{S_{1}}+\sqrt[3]{S_{2}}$, where $S_{1}=[A M L]$ and $S_{2}=[B N L]$.
70. For $\triangle A B C$, prove that $\sum(b+c) P A \geq 8 \Delta$.
71. Right $\triangle A B C$ has hypotenuse $A B$. The arbitrary point P is on segment $C A$, but different from the vertices A, C. Prove that $\frac{A B-B P}{A P}>\frac{A B-B C}{C A}$.
72. For $\triangle A B C$, prove that $\max \left\{\frac{B P}{A C}, \frac{C P}{A B}\right\} \geq \sqrt{2}-1$.
73. For $\triangle A B C$, prove that $\sum \frac{a^{2}}{s-a} \geq 6 \sqrt{3} R$.
74. Let P be a point inside a regular n-gon, with side length s, situated at the distances $x_{1}, x_{2}, \ldots, x_{n}$ from the sides, which are extended if necessary. Prove that $\sum_{i=1}^{n} \frac{1}{x_{i}}>\frac{2 \pi}{s}$.
75. A point A is taken inside an acute angle with vertex O. The line $O A$ forms angles α and β with the sides of the angle. Angle ϕ is given such that $\alpha+\beta+\phi<\pi$. On the sides of the former angle, find points M and N such that $\angle M A N=\phi$, and the area of the quadrilateral $O M A N$ is maximal.
76. For $\triangle A B C$, find the smallest constant k such that it always holds that $k \cdot \sum a b>\sum a^{2}$.
77. For $\triangle A B C$, prove that $\sum a b d_{a} d_{b} \leq \frac{4}{3} \Delta^{2}$, and determine when equality holds.
78. For $\triangle A B C$, let $A I, B I, C I$ extended intersect the circumcircle of $\triangle A B C$ again at X, Y, Z respectively. Prove that $\prod I X \geq \prod A I$.
79. Let $\{a, b, c\} \subset \mathbb{R}^{+}$such that $\sum \frac{a^{2}+b^{2}-c^{2}}{a b}>2$. Prove that a, b, c are sides of triangle.
80. Let $A P$ be the internal angle bisector of $\angle B A C$ and suppose Q is the point on segment $B C$ such that $B Q=P C$. Prove that $A Q \geq A P$.
81. For $\triangle A B C$, prove that $\Delta^{2} \geq r \cdot \prod l_{a}$.
82. For $\triangle A B C$, prove that $9 R^{2} \geq \sum a^{2} \geq 18 R r$.
83. For $\triangle A B C$, prove that $\sum(P A \cdot P B \cdot c) \geq a b c$.
84. For $\triangle A B C$, prove that $8 R^{3} \geq \prod I E_{a}$.
85. For $\triangle A B C$, prove that $\left(\sum \sin \frac{A}{2}\right) \cdot\left(\sum \tan \frac{A}{2}\right) \geq \frac{3 \sqrt{3}}{2}$.
86. For $\triangle A B C$, prove that $\sum a^{3}+6 a b c \geq\left(\sum a\right) \cdot\left(\sum a b\right)>\sum a^{3}+5 a b c$.
87. D and E are points on congruent sides $A B$ and $A C$, respectively, of isosceles $\triangle A B C$ such that $A D=$ $C E$. Prove that $2 E F \geq B C$. Determine when the equality holds.
88. For $\triangle A B C$, prove that $\sum \frac{A H}{a} \geq 3 \sqrt{3}$.
89. Let $M, A_{1}, A_{2}, \cdots, A_{n}(n \geq 3)$, be distinct points in the plane such that $A_{1} A_{2}=A_{2} A_{3}=\cdots A_{n-1} A_{n}=$ $A_{n} A_{1}$. Prove that $\sum_{i=1}^{n-1} \frac{1}{M A_{i} \cdot M A_{i+1}} \geq \frac{1}{M A_{1} \cdot M A_{n}}$.
90. For $\triangle A B C$, determine $\min \left\{\sum Q A^{2}\right\}$.
91. For $\triangle A B C$, prove that $\frac{\sqrt{8 \cdot \sum a^{2}+4 \sqrt{3} \Delta}}{3} \geq \sum G A$.
92. For $\triangle A B C$, prove that $a^{2}+b^{2}+R^{2} \geq c^{2}$, and determine when equality holds.
93. For $\triangle A B C$, prove that $\left(\sum a b\right) \cdot\left(s^{2}+r^{2}\right) \geq 4 a b c s+36 R^{2} r^{2}$.
94. For $\triangle A B C$, prove that $\frac{\sum a^{2}}{\sum a b} \geq 1+\sqrt{1-\frac{2 r}{R}}$.
95. For $\triangle A B C$, prove that $\frac{\sin B}{\sin ^{2} \frac{C}{2}}+\frac{\sin C}{\sin ^{2} \frac{B}{2}} \geq \frac{4 \cos \frac{A}{2}}{1-\sin \frac{A}{2}}$.
96. In $\triangle A B C$, the internal angle bisectors of angles A, B, C intersect the circumcircle of $\triangle A B C$ again at X, Y, Z respectively. Prove that $A X+B Y+C Z>a+b+c$. (Australia 1982)
97. An arbitrary line ℓ through the incenter I of $\triangle A B C$ cuts $\overline{A B}$ and $\overline{A C}$ at M and N. Show that $\frac{a^{2}}{4 b c} \geq \frac{B M}{A M} \cdot \frac{C N}{A N}$.
98. For $\triangle A B C$, prove that $\sum G A \geq \sqrt{\frac{2 \cdot \sum a^{2}+4 \sqrt{3} \Delta}{3}}$. (A sequel to Problem 91)
99. For $\triangle A B C$, prove that $3 \geq \sum \frac{S A}{G A}$.
100. Let $m \in \mathbb{R}^{+}$and $\phi \in(0, \pi)$. For $\triangle A B C$, prove that

$$
(1-m \cos \phi) \cdot a^{2}+m(m-\cos \phi) \cdot b^{2}+m \cos \phi \cdot c^{2} \geq 4 m \sin \phi \cdot \Delta
$$

Equality holds if and only if $m=\frac{a}{b}$ and $\phi=C$.
For $m=1$ and $\phi=60^{\circ}$ obtain Weitzenböck's Inequality. (Virgil Nicula)

4 Solutions

1. Euler's Original Proof
 $R(R-2 r)=O I^{2} \geq 0 \Longleftrightarrow R \geq 2 r$.

1. Author: tonypr

Rewrite the inequality as $1+\frac{r}{R} \leq \frac{3}{2}$. Then note the identity $1+\frac{r}{R}=\cos A+\cos B+\cos C$.
So it is sufficient to prove that $2 \cos A+2 \cos B+2 \cos C \leq 3$.
It's easy to verify that this inequality is equivalent to $(1-(\cos B+\cos C))^{2}+(\sin B-\sin C)^{2} \geq 0$, which is true by the Trivial Inequality.

1. Author: BigSams

For positive reals x, y, z it is true that $(x+y)(y+z)(z+x) \geq 8 x y z$ by AM-GM: $\prod \frac{x+y}{2} \geq \prod \sqrt{x y}=$ $x y z$. By Ravi Substitution, let a, b, c be side lengths of a triangle such that $a=x+y, b=y+z, c=z+x$. The inequality becomes $a b c \geq 8(s-a)(s-b)(s-c)$. By Heron's Theorem, the inequality is $s a b c \geq 8 S^{2} \Longleftrightarrow \frac{a b c}{4 \Delta} \geq \frac{2 \Delta}{s}$. Using the fact that $\Delta=\frac{a b c}{4 R}=s r, R \geq 2 r$.

1. Author: BigSams

Note that $\sum r_{a}=4 R+r$ and $\sum \frac{1}{r_{a}}=\frac{1}{r}$.
By CS, $\frac{4 R+r}{r}=\left(\sum r_{a}\right) \cdot\left(\sum \frac{1}{r_{a}}\right) \geq 9 \Longleftrightarrow R \geq 2 r$.
2. Author: $\mathbf{1 =}=\mathbf{2}$

Lemma. $A B+A C>P B+B C$

Proof. Let the extension of $B P$ intersect $A C$ at N. Then the triangle inequality gives us

$$
\begin{gathered}
P N+N C>P C \\
A B+A N>B N=B P+P N
\end{gathered}
$$

Adding $N C$ to both sides of the second inequality gives $A B+A N+N C>B P+P N+N C>P B+P C$. Note that $A N+N C=A C$, since N is on $A C$. Therefore $A B+A C>P B+P C$.

This lemma implies that $\left\{\begin{array}{l}A B+A C>P B+P C \\ B A+B C>P A+P C \\ C A+C B>P A+P B\end{array}\right.$
If we add all three inequalities together, we get $2(A B+B C+A C)>2(P A+P B+P C)$, which implies the desired result.

3. Author: Goutham

Let $x=s-a, y=s-b, z=s-c$ all greater than 0 , and $s=x+y+z, \Delta^{2}=x y z s$.
We have $\sum x^{2} \geq \sum x y \Longrightarrow \sum\left(x^{2}+3 x y\right) \geq 4 \sum x y$.
But $\sum\left(x^{2}+3 x y\right)=\sum(x+y)(x+z)=\sum a b$.
And so, $\frac{\sum a b}{4 x y z s} \geq \frac{\sum x y}{x y z s}$. Therefore, we have $\frac{\sum a b}{4 \Delta} \geq \sum \frac{1}{s(s-a)}$.

4. Author: Mateescu Constantin

Using the well-known formula for area i.e. $\Delta=s r$, the inequality rewrites as: $s \sqrt{3} \leq 4 R+r(*)$. Of course, this is weaker than Gerretsen's Inequality i.e. $s^{2} \leq 4 R^{2}+4 R r+3 r^{2}$, since the inequality: $4 R^{2}+4 R r+3 r^{2} \leq \frac{(4 R+r)^{2}}{3}$ reduces to Euler's inequality i.e. $R \geq 2 r$. However, there is also a simple method to obtain directly the inequality $(*)$. In the well known inequality:
$3(x y+y z+z x) \leq(x+y+z)^{2}$ we take: $\left\|\begin{array}{l}x=(s-b)(s-c) \\ y=(s-c)(s-a) \\ z=(s-a)(s-b)\end{array}\right\|$ and thus we obtain:
$3 s(s-a)(s-b)(s-c) \leq[r(4 R+r)]^{2}$, whence $\sqrt{3} \Delta \leq r(4 R+r) \Longleftrightarrow(*) . \square$

5. Author: Thalesmaster

Note the identities $\left\{\begin{array}{l}\cos \frac{B-C}{2}=\cos \frac{B}{2} \cos \frac{C}{2}+\sin \frac{B}{2} \sin \frac{C}{2} \\ \cos \frac{A}{2}=\sqrt{\frac{(s-b)(s-c)}{b c}} \\ \sin \frac{B}{2}=\sqrt{\frac{s(s-a)}{b c}}\end{array} \quad\right.$ and $\left\{\begin{array}{l}r=\frac{\Delta}{s} \\ R=\frac{a b c}{4 \Delta}\end{array}\right.$
Using Ravi's substitution: $\left\{\begin{array}{l}a=y+z \\ b=z+x \\ c=x+y\end{array}\right.$, the inequality is equivalent to: $(2 x+y+z)^{2} \geq 8 x(y+z)$, which is true according to AM-GM Inequality.

6. Author: FantasyLover

Right Side.

Let (I) meet sides $A B, B C, C A$ at P, Q, R, respectively. Furthermore, denote by a, b, c the lengths of $A R, B P, C Q$.
The given inequality is equivalent to $\sqrt{a^{2}+r^{2}}+\sqrt{b^{2}+r^{2}}+\sqrt{c^{2}+r^{2}} \geq 6 r$. On the other hand, $r(a+b+c)=\sqrt{a b c(a+b+c)} \Longleftrightarrow r=\sqrt{\frac{a b c}{a+b+c}}$ from Heron's Formula.
Hence, it suffices to prove $\sum \sqrt{a^{2}+\frac{a b c}{a+b+c}} \geq 6 \sqrt{\frac{a b c}{a+b+c}} \Longleftrightarrow \sum \sqrt{a(a+b)(a+c)} \geq 6 \sqrt{a b c}$. However, using AM-GM Inequality twice gives $\sum \sqrt{a(a+b)(a+c)} \geq 3 \sqrt[6]{a b c(a+b)^{2}(b+c)^{2}(c+a)^{2}} \geq$
$3 \sqrt[6]{a b c \cdot 64(a b c)^{2}} \geq 6 \sqrt{a b c}$, as desired.

Left Side.

Lemma. $A I+B I+C I \leq 2(R+r)$ (Author: Mateescu Constantin)
Proof. Show easily that $A I=\frac{b c}{s} \cdot \cos \frac{A}{2}=\frac{1}{s} \cdot \sqrt{b c} \cdot \sqrt{s(s-a)}$ a.s.o. Thus, we have: $\left(\sum A I\right)^{2}=$ $\frac{1}{s^{2}} \cdot\left(\sum \sqrt{b c} \cdot \sqrt{s(s-a)}\right)^{2} \stackrel{\text { C.B.S. }}{\leq} \frac{1}{s^{2}} \cdot(a b+b c+c a) \cdot \sum s(s-a)=a b+b c+c a \leq 4(R+r)^{2}$.
The last inequality is due to Gerretsen i.e. $s^{2} \leq 4 R^{2}+4 R r+3 r^{2}$. Therefore, we have shown that: $A I+B I+C I \leq 2(R+r)$.

As a direct consequence of the lemma, it suffices to prove $2(R+r) \leq 2 \sqrt{3\left(R^{2}-R r+r^{2}\right)} \Longleftrightarrow$ $2 R^{2}-5 R r+2 r^{2} \geq 0$.
However, ths is equivalent to $(2 R-r)(R-2 r) \geq 0$, which is indeed true.
For both inequalities, equality holds for $\triangle A B C$ equilateral.

6. Author: Thalesmaster

Left Side.

Note that: $\left\{\begin{array}{l}A I^{2}=b c-4 R r \\ B I^{2}=c a-4 R r \\ C I^{2}=a b-4 R r\end{array} \quad\right.$ According to C.S Inequality:
$3\left(A I^{2}+B I^{2}+C I^{2}\right) \geq(A I+B I+C I)^{2} \Longleftrightarrow \sqrt{3\left(s^{2}+r^{2}-8 R r\right)} \geq A I+B I+C I$
So it suffices to show that
$\sqrt{3\left(s^{2}+r^{2}-8 R r\right)} \leq \sqrt{12\left(R^{2}-R r+r^{2}\right)} \Leftrightarrow s^{2}+r^{2}+8 R r \leq 4 R^{2}-4 R r+4 r^{2}$
$\Leftrightarrow s^{2} \leq 4 R^{2}+4 R r+3 r^{2}$, which is the Gerretsen Inequality.

6. Author: tonypr

Right Side.

Note that $A I=\frac{r}{\sin \frac{A}{2}}$. Applying this cyclically to $B I$ and $C I$, the left hand side is equivalent to
$6 r \leq \frac{r}{\sin \frac{A}{2}}+\frac{r}{\sin \frac{B}{2}}+\frac{r}{\sin \frac{C}{2}} \Longleftrightarrow 2 \leq \frac{\frac{1}{\sin \frac{A}{2}}+\frac{1}{\sin \frac{B}{2}}+\frac{1}{\sin \frac{C}{2}}}{3}$
$2 \leq \frac{\csc \frac{A}{2}+\csc \frac{B}{2}+\csc \frac{C}{2}}{3} \Longleftrightarrow \csc \left(\frac{A+B+C}{6}\right) \leq \frac{\csc \frac{A}{2}+\csc \frac{B}{2}+\csc \frac{C}{2}}{3}$
which follows from Jensen's Inequality since $\csc \frac{x}{2}$ is convex for $x \in(0, \pi)$.

7. Author: BigSams

It is well-known that $\angle A I D+\angle B I C=180^{\circ}$. There are two implications: $\sin \angle A I D=\sin \angle B I C$ and $\cos \angle A I D=-\cos \angle B I C$. Let r be the inradius.
$[A I D]=\frac{\sin \angle A I D \cdot A I \cdot D I}{2}=\frac{A D \cdot r}{2} \Longrightarrow \frac{A I \cdot D I}{A D}=\frac{r}{\sin \angle A I D}$.
Similarly, $\frac{B I \cdot C I}{B C}=\frac{r}{\sin \angle B I C}$.

Combining, $\frac{A I \cdot D I}{A D}=\frac{r}{\sin \angle A I D}=\frac{r}{\sin \angle B I C}=\frac{B I \cdot C I}{B C}$
$\Longrightarrow \frac{A I \cdot D I}{B I \cdot C I}=\frac{A D}{B C}$.
By the Cosine Law, $2 \cos \angle A I D=\frac{A I^{2}+D I^{2}-A D^{2}}{A I \cdot D I}$ and $2 \cos \angle B I C=\frac{B I^{2}+C I^{2}-B C^{2}}{B I \cdot C I}$.
Combining, $\frac{A I^{2}+D I^{2}-A D^{2}}{A I \cdot D I}=2 \cos \angle A I D=-2 \cos \angle B I C=-\frac{B I^{2}+C I^{2}-B C^{2}}{B I \cdot C I}$
$\Longrightarrow \frac{A I^{2}+D I^{2}-A D^{2}}{A I \cdot D I}=\frac{B C^{2}-B I^{2}-C I^{2}}{B I \cdot C I}$
$\Longrightarrow \frac{A I^{2}}{A I \cdot D I}+\frac{D I^{2}}{A I \cdot D I}+\frac{B I^{2}}{B I \cdot C I}+\frac{C I^{2}}{B I \cdot C I}=\frac{A D^{2}}{A I \cdot D I}+\frac{B C^{2}}{B I \cdot C I}$
It is well-known that for a tangential quadrilateral, the sum of two opposite sides is equal to the semiperimeter.
So $A B+B C+C D+D A=2(A D+B C)=\sqrt{2(A D+B C)^{2}}$
$=\sqrt{4\left(A D^{2}+A D \cdot B C+B C \cdot A D+B C^{2}\right)}$
$=\sqrt{4\left(A D^{2}+\frac{A D^{2} \cdot B I \cdot C I}{A I \cdot D I}+\frac{B C^{2} \cdot A I \cdot D I}{B I \cdot C I}+B C^{2}\right)}$
$=\sqrt{4\left(\frac{A D^{2}}{A I \cdot D I}+\frac{B C^{2}}{B I \cdot C I}\right) \cdot(A I \cdot D I+B I \cdot C I)}$
By Cauchy-Schwarz, $\frac{A I^{2}}{A I \cdot D I}+\frac{D I^{2}}{A I \cdot D I}+\frac{B I^{2}}{B I \cdot C I}+\frac{C I^{2}}{B I \cdot C I}$
$\geq \frac{(A I+B I+C I+D I)^{2}}{2(A I \cdot D I+B I \cdot C I)}$
$\Longleftrightarrow \sqrt{4\left(\frac{A D^{2}}{A I \cdot D I}+\frac{B C^{2}}{B I \cdot C I}\right) \cdot(A I \cdot D I+B I \cdot C I) \geq \sqrt{2}(A I+B I+C I+D I)}$
$\Longleftrightarrow A B+B C+C D+D A \geq \sqrt{2}(A I+B I+C I+D I)$

8. Author: RSM

$$
R^{2}-\frac{a^{2}+b^{2}+c^{2}}{9}=O G^{2} \geq 0 \Longleftrightarrow 9 R^{2} \geq \sum a^{2}
$$

9. Author: RSM

By CS, $\frac{a^{2}+b^{2}+c^{2}}{3} \geq\left(\frac{a+b+c}{3}\right)^{2}$. By Triangle Inequality, $\left(\frac{a+b+c}{3}\right)^{2} \geq \frac{d^{2}}{9}$.

10. Author: Thalesmaster

The desired inequality is equivalent to $3\left(a^{2}+b^{2}+c^{2}\right) \geq(a+b+c)^{2} \geq 3(a b+b c+c a)$
$\Longleftrightarrow a^{2}+b^{2}+c^{2} \geq a b+b c+c a \Longleftrightarrow(a-b)^{2}+(b-c)^{2}+(c-a)^{2} \geq 0$
Which is true, with equality if and only if $a=b=c$.

11. Author: Thalesmaster

Let $\left\{\begin{array}{l}p=\sum \cot A \\ q=\sum \cot B \cot C=1 \\ r=\prod \cot A\end{array}\right.$
The inequality is equivalent to:
$\left(p^{3}-3 p q+3 r\right)+6 r \geq p \Longleftrightarrow p^{3}-3 p q+9 r \geq p q \Longleftrightarrow p^{3}-4 p q+9 r \geq 0$
Which is Schur's Inequality.

12. Author: gaussintraining

Using the identities $\left\{\begin{array}{l}\cos \frac{A}{2}=\sqrt{\frac{s(s-a)}{b c}} \\ \sin \frac{A}{2}=\sqrt{\frac{(s-b)(s-c)}{b c}}, \\ \sum \cot \frac{A}{2}=\frac{s}{r}\end{array}\right.$,
the inequality is equivalent to $\left(\sum \sqrt{\frac{s(s-a)}{b c}}\right) \cdot\left(\sum \sqrt{\frac{b c}{(s-b)(s-c)}}\right) \geq 6 \sqrt{3}+\frac{s}{r}$
By Cauchy-Schwarz,
LHS $=\left(\sum \sqrt{\frac{s(s-a)}{b c}}\right) \cdot\left(\sum \sqrt{\frac{b c}{(s-a)(s-b)}}\right) \geq\left(\sum \sqrt[4]{\frac{s(s-a)}{(s-b)(s-c)}}\right)^{2}=\left(\sum \frac{\sqrt{s-a}}{\sqrt{r}}\right)^{2}$
using Heron's Formula. Thus, we have to prove
$(\sqrt{s-a}+\sqrt{s-b}+\sqrt{s-c})^{2} \geq 6 \sqrt{3}+\frac{s}{r}$
$\Longrightarrow 2\left(\sum \sqrt{s-a} \sqrt{s-b}\right) \geq 6 r \sqrt{3}$
By AM-GM, $\frac{\sqrt{(s-a)(s-b)}+\sqrt{(s-b)(s-c)}+\sqrt{(s-c)(s-a)}}{3} \geq \sqrt[3]{(s-a)(s-b)(s-c)}$.
Using Heron's Formula again, we find that $\sqrt[3]{(s-a)(s-b)(s-c)}=\sqrt[3]{r^{2} s}$.
Therefore, we finally have to show that $3 \sqrt[3]{r^{2} s} \geq 3 r \sqrt{3} \Longrightarrow s \geq 3 r \sqrt{3}$, which is well-known.

12. Author: Thalesmaster

After applying CS, it suffices to show that $\sum \sqrt{\cot \frac{B}{2} \cot \frac{C}{2}} \geq 3 \sqrt{3}$
Which is true according to AM-GM and Mitrinovic's Inequality:
$\sum \sqrt{\cot \frac{B}{2} \cot \frac{C}{2}} \geq 3 \sqrt[3]{\prod \cot \frac{A}{2}}=3 \sqrt[3]{\frac{s}{r}} \geq 3 \sqrt{3}$.

13. Author: applepi2000

Let s_{k} denote the number of lines in family k. First, we draw the a and b families. It is not hard to see that there are a maximum of $\left(s_{a}+1\right)\left(s_{b}+1\right)$ regions. Now when we add each line from family c, it intersects a maximum of $s_{a}+s_{b}$ times, creating $s_{a}+s_{b}+1$ new regions. Thus, the total number of regions is $s_{c}\left(s_{a}+s_{b}+1\right)+\left(s_{a}+1\right)\left(s_{b}+1\right)=\sum s_{a} s_{b}+\sum s_{a}+1$.

Let $s_{a}+s_{b}+s_{c}=n$. Then the number of lines is $2010 \leq \frac{n^{2}}{3}+n+1$. Thus, $n \geq 77$. Indeed, plugging in $s_{a}=s_{b}=26, s_{c}=25$ works, so our answer is 77 .

14. Author: mcrasher

Since $\sum \sin A=\frac{s}{R}$, it suffices to show that $\sum \sin A \leq \frac{3 \sqrt{3}}{2}$, which is true by Jensen's Inequality.

15. Author: BigSams

Left Side.

By Euler's Inequality, $2 r \leq R \Longleftrightarrow 8 r^{2} \leq 4 R r \Longleftrightarrow 4 R^{2}+4 R r+3 r^{2} \leq 8 R r-5 r^{2}+4 R^{2}$.
By Gerretsen's Inequality, $s^{2} \leq 4 R^{2}+4 R r+3 r^{2}$.
Combining, $\Longleftrightarrow s^{2} \leq 8 R r-5 r^{2}+4 R^{2}$.
$\Longleftrightarrow 4\left(1+\frac{r}{R}\right)+2\left(\frac{s^{2}-(2 R+r)^{2}}{4 R^{2}}\right) \geq 4+3\left(\frac{s^{2}+r^{2}-4 R^{2}}{4 R^{2}}\right)$
$\Longleftrightarrow 4 \sum \cos A+2 \prod \cos A \geq 4+3 \sum \cos A \cdot \cos B$
$\Longleftrightarrow \sum(2-\cos A) \cdot(2-\cos B) \geq 2 \prod(2-\cos A) \Longleftrightarrow \sum \frac{1}{2-\cos A} \geq 2$

Right Side.

By Euler's Inequality, $2 r \leq R \Longleftrightarrow \frac{72 R r-9 r^{2}}{5} \leq 16 R r-5 r^{2}$.
By Gerretsen's Inequality, $16 R r-5 r^{2} \leq s^{2}$. Combining, $\Longleftrightarrow \frac{72 R r-9 r^{2}}{5} \leq s^{2}$
$\Longleftrightarrow 20\left(1+\frac{r}{R}\right)+2\left(\frac{s^{2}-(2 R+r)^{2}}{4 R^{2}}\right) \leq 25+7\left(\frac{s^{2}+r^{2}-4 R^{2}}{4 R^{2}}\right)$
$\Longleftrightarrow 20 \sum \cos A+2 \prod \cos A \leq 25+7 \sum \cos A \cdot \cos B$
$\Longleftrightarrow \frac{\sum(5-\cos A) \cdot(5-\cos B)}{\prod(5-\cos A)} \leq \frac{2}{3} \Longleftrightarrow \sum \frac{1}{5-\cos A} \leq \frac{2}{3}$.

16. Author: Mateescu Constantin

Using the relation: $\prod \sin \frac{A}{2}=\frac{r}{4 R}$, the inequality reduces to $2 r \leq R$, which is due to Euler.

17. Author: ftong

Let $\theta=\angle C$, and assume without loss of generality that $0^{\circ} \leq \theta \leq 45^{\circ}$, or equivalently, $b \geq c$.
Now $h_{A}=b \sin \theta$, and $a=\frac{b}{\cos \theta}$, so we wish to prove that $\cos \theta(\sin \theta+1) \leq \frac{3 \sqrt{3}}{4}$
It seems now that we must use resort calculus to find the maximum of $f(\theta)=\cos \theta(\sin \theta+1)$ over the given interval.
Taking the derivative, we have $f^{\prime}(\theta)=1-\sin \theta-2 \sin ^{2} \theta$, so that f takes extremal values at $\sin \theta=\frac{1}{2}$ and $\sin \theta=-1$.
We discard the latter because $\sin \theta$ is positive in our interval, so the maximum occurs at $\theta=\frac{\pi}{6}$, at which point $f(\theta)=\frac{3 \sqrt{3}}{4}$ as desired.

18. Author: BigSams

By CS, $9 \leq(a+b+c)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)$
$=\left(\frac{a+b+c}{2[A B C]}\right)\left(\frac{2[A B C]}{a}+\frac{2[A B C]}{b}+\frac{2[A B C]}{c}\right)$
$=\frac{s h}{[A B C]} \Longleftrightarrow 9[A B C] \leq s h$
Equality holds if and only if $a=b=c$, which is derived from the CS equality condition.

19. Author: Goutham

Lemma. In $\triangle A B C, M, N, P$ are points on sides $B C, C A, A B$ respectively such that perimeter of the $\triangle M N P$ is minimal. Then $\triangle M N P$ is the orthic triangle of $\triangle A B C$. (Author: Farenhajt)

Proof.

Let M be an arbitrary point on $B C$, and M^{\prime} and $M^{\prime \prime}$ its reflections about $A B$ and $A C$ respectively. Then, for a given M, the points N, P which minimize the perimeter of $\triangle M N P$ are the intersections of $M^{\prime} M^{\prime \prime}$ with $A B$ and $A C$.
Triangles $A M M^{\prime}$ and $A M M^{\prime \prime}$ are isosceles, hence $\angle M^{\prime} A M^{\prime \prime}=2 \angle A=$ const, thus $M^{\prime} M^{\prime \prime}$, i.e. the required perimeter, is minimal when $A M^{\prime}=A M^{\prime \prime}=A M$ is minimal, which is obviously attained if M is the foot of the perpendicular from A to $B C \quad(*)$.
Now we note that the orthic triangle has the property that, when one of its vertices is reflected about the remaining two sides of the initial triangle, the two reflections are collinear with the two remaining vertices of the orthic triangle - which is easy to prove: $\angle M P N=\pi-2 \angle C \wedge \angle M P B=\angle C$.
Therefore the triangle obtained by the argument $(*)$ is indeed the orthic triangle, as claimed.

Using the lemma, the orthic triangle does not have a greater perimeter than the medial triangle, which has a perimeter equal to the semiperimeter of the original triangle.

20. Author: BigSams

Let $\triangle A B C$ be an arbitrary triangle with a constant area Δ and constant base a. Since the area and a base are constant, then the height h_{a} with foot on a is also constant since it can be expressed in terms of constants: $\frac{a \cdot h_{a}}{2}=\Delta \Longrightarrow h_{a}=\frac{2 X}{a}$.
Let $A B=c, C A=b$. Let h_{a} intersect $B C=a$ (extended if necessary) at P. Let $P C=a_{1}, P B=a_{2}$. Note that the perimeter is minimized when $b+c$ is minimized, since a is a constant.
Case 1. $\angle B, \angle C \leq 90^{\circ}$
Note that $a_{1}+a_{2}=a$. Also by the Pythagorean Theorem, $b=\sqrt{a_{1}^{2}+h_{a}^{2}}, c=\sqrt{a_{2}^{2}+h_{a}^{2}}$.
By Minkowski's Inequality, $b+c=\sqrt{a_{1}^{2}+h_{a}^{2}}+\sqrt{a_{2}^{2}+h_{a}^{2}} \geq \sqrt{\left(a_{1}+a_{2}\right)^{2}+\left(2 h_{a}\right)^{2}}=\sqrt{a^{2}+4 h_{a}^{2}}$, which is a constant.
Equality holds if and only if $a_{1}=a_{2} \Longrightarrow \sqrt{a_{1}^{2}+h_{a}^{2}}=\sqrt{a_{2}^{2}+h_{a}^{2}} \Longrightarrow b=c$.
Case 2. One of $\angle B, \angle C>90^{\circ}$
In an obtuse $\triangle A B C$, as P moves farther away from B, C, a_{1}, a_{2} both increase, meaning $\sqrt{a_{1}^{2}+h_{a}^{2}}, \sqrt{a_{2}^{2}+h_{a}^{2}}$ both increase, implying that b, c both grow without bound, so each of these triangles hav Thus, the perimeter for a triangle with a constant area and a constant base is the one where the two variable sides are equal, resulting in an isosceles triangle.

21. Author: r1234

Let O be the point of intersection of the two diagonals. Now $[A B C D]=\frac{1}{2} \cdot A C \cdot B D \cdot \sin \angle A C D$. So $[A B C D] \leq A C \cdot B D$.
Now again $[A B C D]=\frac{1}{2} \cdot A B \cdot B C \cdot \sin B \leq \frac{1}{2} \cdot A B \cdot B C$ similarly we get $[A B C D] \leq \frac{1}{2} \cdot C D \cdot D A$ on the other hand we get other two inequalities $[A B C D] \leq \frac{1}{2} \cdot A B \cdot C D$ and $[A B C D] \leq \frac{1}{2} \cdot B C \cdot A D$.
Adding the last four inequalities we $\operatorname{get}(A B+C D)(B C+D A) \geq 4$. This implies that $(A B+B C+$ $C D+D A)^{2} \geq 4(A B+C D)(B C+A D) \geq 16$ or $A B+B C+C D+D A \geq 4$.
On the other hand we get $A C \cdot B D \geq 2$ or $(A C+B D)^{2} \geq 8$ or $A C+B D \geq 2 \sqrt{2}$.
Adding we get $A B+B C+C D+D A+A C+B D \geq 4+2 \sqrt{2}$.

22. Author: Thalesmaster

Using Ravi's substitution $\left\{\begin{array}{l}a=x+y \\ b=y+z \\ c=z+x\end{array}\right.$
We have $\sin \frac{A}{2}=\sqrt{\frac{(s-b)(s-c)}{b c}}=\sqrt{\frac{y z}{(x+y)(x+z)}}$.
So the inequality is equivalent to $\sum\left(\sin \frac{B}{2} \cdot \sin \frac{C}{2}\right) \geq 2 \cdot \sqrt{\prod \sin \frac{A}{2}} \Longleftrightarrow \sum \sqrt{\frac{x}{y+z}} \geq 2$
According to Holder's Inequality, $\left(\sum \frac{x}{\sqrt{x(y+z)}}\right)^{2} \cdot\left(\sum x^{2}(y+z)\right) \geq\left(\sum x\right)^{3}$
$\Longleftrightarrow\left(\sum \frac{x}{\sqrt{x(y+z)}}\right)^{2} \geq \frac{(x+y+z)^{3}}{(x+y+z)(x y+y z+z x)-3 x y z}$
It suffices to show that $\frac{(x+y+z)^{3}}{(x+y+z)(x y+y z+z x)-3 x y z} \geq 4$
$\Longleftrightarrow(x+y+z)^{3}-4(x+y+z)(x y+y z+z x)+9 x y z+3 x y z \geq 0$, which is Schur's Inequality.

23. Author: professordad

Using the half angle identites, $\sum \sin ^{2} \frac{A}{2}=\sum \frac{1-\cos A}{2}=\frac{3-\sum \cos A}{2} \geq \frac{3}{4}$. This is equivalent to $\sum \cos A \geq \frac{3}{2}$, which was proven by tonypr in his solution to Problem 1 .

24. Author: ryanstone

The area is $\sqrt{s(s-a)(s-b)(s-c)}$ by Heron's Theorem.
By AM-GM, $\frac{(s-a)+(s-b)+(s-c)}{3} \geq \sqrt[3]{(s-a)(s-b)(s-c)^{\frac{1}{3}}} \Longleftrightarrow(s-a)(s-b)(s-c) \geq \frac{s^{3}}{27}$.
So the maximum value of the area is $\sqrt{\frac{s^{4}}{27}}=\frac{s^{2}}{3 \sqrt{3}}$, which occurs when $a=b=c$.

25. Author: math_explorer

Since $\angle A E C$ and $\angle A F C$ are both right, the points $A E C F$ are cyclic and $A C$ is a diameter. Therefore $A C$ is twice the circumradius of $\triangle C E F$.
By Euler's inequality of a triangle in $\triangle C E F$ the circumradius is at least twice the inradius, so $A C \geq 4 r_{1}$, with equality iff $\triangle C E F$ is equilateral iff $\angle C=60^{\circ}$ and A lies on the angle bisector of $\angle E C F$ iff $A B C D$ is a rhombus and $\angle C=60^{\circ}$.

26. Author: truongtansang89

Note that $D G \cdot B C=D B \cdot D C \Rightarrow D G \cdot B C=B C^{2} \cdot \cos B \sin B \Rightarrow D G=\frac{1}{2} B C \sin 2 B$.
Similarly, $E H=\frac{1}{2} B C \sin 2 C \Rightarrow D G+E H=B C \cdot \sin A \cdot \cos (B-C) \leq B C$.
Hence, equality holds when $A=\frac{\pi}{2}$ and $B=C=\frac{\pi}{4}$.

27. Author: Mateescu Constantin

Let us denote: $\frac{A M}{M B}=q, \frac{A N}{N C}=r, \frac{M K}{K N}=t$, where $q, r, t>0$.
Observe that: $\frac{[A M N]}{[A B C]}=\frac{A M \cdot A N}{b c}=\frac{q r}{(q+1)(r+1)}$,
From where: $\quad[A M N]=\frac{q r}{(q+1)(r+1)} \cdot[A B C](*)$. Moreover, we can write the following relations:

$$
\left\{\begin{array}{lll}
\| \begin{array}{l}
\frac{[B M K]}{[A M K]}=\frac{1}{q}
\end{array} \quad \Longrightarrow & {[B M K]=\frac{[A M K]}{q}} \\
\frac{[A M K]}{[A N K]}=t & \Longrightarrow & {[A M K]=\frac{t \cdot[A M N]}{t+1}}
\end{array} \| \Longrightarrow[B M K]=\frac{t \cdot[A M N]}{q(t+1)} \stackrel{(*)}{=} \frac{r t \cdot[A B C]}{(q+1)(r+1)(t+1)}\right.
$$

Thus, the proposed inequality reduces to: $[A B C] \geq 8 \cdot \sqrt{\frac{q r t}{(q+1)^{2}(r+1)^{2}(t+1)^{2}} \cdot[A B C]^{2}} \Longleftrightarrow$ $(q+1)(r+1)(t+1) \geq 8 \sqrt{q r t}$, which is clearly true by AM-GM inequality. Equality occurs if and only if $q=r=t=1$, i.e. $\frac{A M}{M B}=\frac{A N}{N C}=\frac{M K}{K N}=1$.

28. Author: BigSams

By Euler's Inequality, $R \geq 2 r \Longleftrightarrow \frac{11 R^{2}+4 R r+2 r^{2}}{2} \geq 4 R^{2}+4 R r+3 r^{2}$
By Gerretsen's Inequality, $4 R^{2}+4 R r+3 r^{2} \geq s^{2}$.
Combining, $\Longleftrightarrow \frac{11 R^{2}+4 R r+2 r^{2}}{2} \geq s^{2} \Longleftrightarrow \frac{9}{2}+\left(1+\frac{r}{R}\right)^{2} \geq\left(\frac{s}{R}\right)^{2}$.
Using the well-known identities $\left\{\begin{array}{l}\sum \sin A=\frac{s}{R} \\ \sum \cos A=1+\frac{r}{R}\end{array}\right.$
$\Longleftrightarrow \frac{9}{2}+\left(\sum \cos A\right)^{2} \geq\left(\sum \sin A\right)^{2}$
$\Longleftrightarrow \sum \sin A \leq \sqrt{\frac{9}{4}+\frac{\left(\sum \cos A\right)^{2}+\left(\sum \sin A\right)^{2}}{2}}$
Note that $\sin ^{2} A+\cos ^{2} A=1 \Longrightarrow \sum \sin ^{2} A+\sum \cos ^{2} A=3$.
Note that $\cos (A-B)=\cos A \cos B+\sin A \sin B$
$\Longrightarrow 2 \sum \cos (A-B)=2 \sum(\cos A \cos B)+2 \sum(\sin A \sin B)$.
Adding these gives $3+2 \sum \cos (A-B)$
$=\sum \sin ^{2} A+\sum \cos ^{2} A+2 \sum(\cos A \cos B)+2 \sum(\sin A \sin B)$
$=\left(\sum \cos A\right)^{2}+\left(\sum \sin A\right)^{2}$.
So $3+2 \sum \cos (A-B)=\left(\sum \cos A\right)^{2}+\left(\sum \sin A\right)^{2}$.
Applying the above identity, the previously derived $\sum \sin A \leq \sqrt{\frac{9}{4}+\frac{\left(\sum \cos A\right)^{2}+\left(\sum \sin A\right)^{2}}{2}}$ becomes $\Longleftrightarrow \sum \sin A \leq \sqrt{\frac{15}{4}+\sum \cos (A-B)}$, as desired.

29. Author: BigSams

Let the sides of $\triangle A B C$ be $A B=c, B C=a, C A=b$, with corresponding sides of the intouch circle being $a^{\prime}, b^{\prime}, c^{\prime}$ respectively.
Note that $\left\{\begin{array}{l}a^{\prime}=2(s-a) \sin \frac{A}{2} \\ b^{\prime}=2(s-b) \sin \frac{B}{2} \\ c^{\prime}=2(s-c) \sin \frac{C}{2}\end{array} \quad\right.$, and $\left\{\begin{array}{l}\prod(s-a)=s r^{2} \\ \prod \sin \frac{A}{2}=\frac{r}{4 R}\end{array}\right.$
By AM-GM, $s=\sum a^{\prime} \geq 3 \cdot\left(\prod a^{\prime}\right)^{\frac{1}{3}}=3 \cdot\left(\prod 2(s-a) \sin \frac{A}{2}\right)^{\frac{1}{3}}=6 r\left(\frac{s}{4 R}\right)^{\frac{1}{3}}$.

30. Author: Thalesmaster

Let x, y, z be positive real numbers.
Klamkin's Inequality states that $x \sin A^{\prime}+y \sin B^{\prime}+z \sin C^{\prime} \leq \frac{1}{2}(x y+y z+z x) \sqrt{\frac{x+y+z}{x y z}}$.
For $x=\frac{1}{\sin A}, y=\frac{1}{\sin B}, z=\frac{1}{\sin C}$, we obtain $\sum \frac{\sin A^{\prime}}{\sin A} \leq \frac{1}{2} \frac{\sum \sin A}{\prod \sin A} \sqrt{\sum \sin B \sin C}$
$\Longleftrightarrow \sum \frac{\sin A^{\prime}}{\sin A} \leq \frac{1}{2 r} \sqrt{a b+b c+c a}$.
Gerretsen's Inequality gives us $s^{2} \leq 4 R^{2}+4 R r+3 r^{2} \Longleftrightarrow a b+b c+c a \leq 4(R+r)^{2}$
So $\sum \frac{\sin A^{\prime}}{\sin A} \leq \frac{2(R+r)}{2 r}=1+\frac{R}{r}$.

31. Author: BigSams

By Euler's Inequality, $R \geq 2 r \Longleftrightarrow(2 R+r)(R-2 r) \geq 0 \Longleftrightarrow 16 R r-5 r^{2} \geq 22 R r-4 R^{2}-r^{2}$.
By Gerretsen's Inequality, $s^{2} \geq 16 R r-5 r^{2}$.
Combining, $s^{2} \geq 22 R r-4 R^{2}-r^{2} \Longleftrightarrow \frac{3+\left(1+\frac{r}{R}\right)^{2}+\left(\frac{s}{R}\right)^{2}}{4} \geq 24\left(\frac{r}{4 R}\right)$
Note the identities: $\left\{\begin{array}{l}\sum \sin A=\frac{s}{R} \\ \sum \cos A=1+\frac{r}{R} \\ \prod \sin \frac{A}{2}=\frac{r}{4 R}\end{array}\right.$
$=\frac{1}{4} \cdot\left(3+\sum \cos ^{2} A+2 \sum \cos A \cdot \cos B+\sum \sin ^{2} A+2 \sum \sin A \cdot \sin B\right)$
Note the identities: $\left\{\begin{array}{l}\sin ^{2} A+\cos ^{2} A=1 \\ \cos (A-B)=\cos A \cos B+\sin A \sin B \\ \cos ^{2} \frac{x}{2}=\frac{1+\cos x}{2}\end{array}\right.$
$\Longleftrightarrow 24 \cdot \prod \sin \frac{A}{2} \leq \sum \frac{1+\cos A \cdot \cos B+\sin A \cdot \sin B}{2}=\sum \frac{1+\cos (A-B)}{2}=\sum \cos ^{2} \frac{A-B}{2}$
Thus, $\sum \cos ^{2} \frac{A-B}{2} \geq 24 \cdot \prod \sin \frac{A}{2}$.

32. Author: applepi2000

Note that $\Delta=r s$. Let h_{i} be the altitude to side i. We wish to prove $h_{a}+h_{b}+h_{c} \geq 9 r \Longleftrightarrow$ $2 \Delta\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right) \geq \frac{18 \Delta}{a+b+c} \Longleftrightarrow \frac{1}{a}+\frac{1}{b}+\frac{1}{c} \geq \frac{9}{a+b+c}$
Take the reciprocal of both sides, then multiply by $3: \frac{3}{\frac{1}{a}+\frac{1}{b}+\frac{1}{c}} \leq \frac{a+b+c}{3}$. This is just AM-HM, so we are done.

33. Author: Thalesmaster

After expanding it, the inequality is equivalent to:
$4 \cdot\left(\sum \sin \frac{A}{2}\right)^{3}+\sum \sin \frac{B}{2} \sin \frac{C}{2}+\sum \cos \frac{B}{2} \cos \frac{C}{2}+12 \cdot \prod \sin \frac{A}{2}$
$\geq 12 \cdot\left(\sum \sin \frac{A}{2}\right) \cdot\left(\sum \sin \frac{B}{2} \sin \frac{C}{2}\right)+3 \cdot \sum \sin \frac{A}{2}$
Use the substitution: $\left\{\begin{array}{l}X=\frac{\pi-A}{2} \\ Y=\frac{\pi-B}{2} \\ Z=\frac{\pi-C}{2}\end{array}\right.$, and the identities: $\left\{\begin{array}{l}\sum \cos X=1+\frac{r}{R} \\ \sum \cos Y \cos Z=\frac{s^{2}+r^{2}-4 R^{2}}{4 R^{2}} \\ \prod \cos X=\frac{s^{2}-(2 R+r)^{2}}{4 R^{2}} \\ \sum \sin Y \sin Z=\frac{s^{2}+r^{2}+4 R r}{4 R^{2}}\end{array}\right.$
where s, R, r respectively denote the semiperimeter, circumradius and inradius of $\triangle X Y Z$.

We find that the previous inequality is equivalent to:
$4 \cdot\left(\sum \cos X\right)^{3}+\sum \cos Y \cos Z+\sum \sin Y \sin Z+12 \cdot \prod \cos X$
$\geq 12 \cdot\left(\sum \cos X\right) \cdot\left(\sum \cos Y \cdot \cos Z\right)+3 \cdot \sum \cos X$
$\Longleftrightarrow s^{2}(R-6 r)+20 R^{2} r+13 R r^{2}+2 r^{3} \geq 0$
If $R \geq 6 r$, this is it. If $R \leq 6 r$, then it's equivalent to $\frac{20 R^{2} r+13 R r^{2}+2 r^{3}}{6 r-R} \geq s^{2}$ Using the inequality $4 R+r \geq \sqrt{3} s$, it suffices to show that: $\frac{20 R^{2} r+13 R r^{2}+2 r^{3}}{6 r-R} \geq \frac{(4 R+r)^{2}}{3} \Longleftrightarrow 4 R^{2}-7 R r-2 r^{2} \geq$ $0 \Longleftrightarrow(R-2 r)(4 R+r) \geq 0$, which is true by Euler's Inequality.

34. Author: r1234

Note $\sin ^{2} \frac{A}{2}=\frac{1-\cos A}{2}$ and then putting $\sum \cos A=1+4 \cdot \prod \sin \frac{A}{2}$ the inequality reduces to
$\prod \cos \frac{B-C}{2} \geq 8 \cdot \prod \sin \frac{A}{2}$.
Using $\cos \frac{B-C}{2}=\frac{\left(r_{a}+r\right)}{4 R \sin \frac{A}{2}}$ and $r=4 R \prod \sin \frac{A}{2}$ the inequality reduces to $\prod\left(r_{a}+r\right) \geq 32 R r^{2}$.
We know that $r=\frac{\Delta}{s}$ and $r_{a}=\frac{\Delta}{s-a}$. So writing r_{b}, r_{c} and putting $R=\frac{a b c}{4 \Delta}$ the inequality reduces to $\prod(b+c) \geq 8 a b c$ which trivially comes from AM-GM inequality.

34. Author: Thalesmaster

Note that $\cos \frac{B-C}{2}=\frac{b+c}{a} \sin \frac{A}{2}$.
Then $\prod \cos \frac{B-C}{2} \geq 8 \prod \sin \frac{A}{2} \Longleftrightarrow \prod(b+c) \geq 8 a b c$, which is true according to AM-GM.

35. Author: truongtansang89

Let R be the radius of (O).
$\frac{A K}{O K}+\frac{B L}{O L}+\frac{C M}{O M} \geq \frac{9}{2} \Longleftrightarrow \frac{O K+O A}{O K}+\frac{O B+O L}{O L}+\frac{O C+O M}{O M} \geq \frac{9}{2} \Longleftrightarrow \frac{R}{O K}+\frac{R}{O L}+\frac{R}{O M} \geq \frac{3}{2}$
Using Ptolemy's Theorem on the cyclic quadrilateral $B O C K$,
$O B \cdot C K+O C \cdot B K=B C \cdot O K$
$\Longleftrightarrow \frac{R}{O K}=\frac{B C}{B K+C K}=\frac{\sin B O C}{\sin B O K+\sin C O K} \Longleftrightarrow \frac{R}{O K}=\frac{|\sin 2 A|}{|\sin 2 B|+|\sin 2 C|}$
Similarly, we have $\frac{R}{O K}+\frac{R}{O L}+\frac{R}{O M} \geq \sum \frac{|\sin 2 A|}{|\sin 2 B|+|\sin 2 C|} \geq \frac{3}{2}$, which is Nesbitt's Inequality.

35. Author: r1234

Let us invert this figure w.r.t the circumcircle of $\triangle A B C$. Let $A O$ meet the side $B C$ at D. Define E, F similarly. Now the circumcircle of $B O C$ is inverted to the line $B C$. Hence D is the inverse of K. Hence we get $A K=\frac{R^{2} \cdot A D}{O A \cdot O D}=\frac{R \cdot A D}{O D}$. Similarly we get $O K=\frac{R^{2}}{O D}$ Hence $\frac{A K}{O K}=\frac{A D}{R}$. Similarly $\frac{B L}{O L}=\frac{B E}{R}$ and $\frac{C M}{O M}=\frac{C F}{R}$. So now we have to prove that $\frac{1}{R}(A D+B E+C F) \geq \frac{9}{2}$.

Now let $B D: D C=x: y, C E: E A=y: z$ and $A F: F B=z: x$. Now using Menelaus's theorem we get $O D: O A=(x+y+z):(y+z)$ and similar for others. Hence the inequality reduces to $(x+y+z) \cdot\left(\sum \frac{1}{y+z}\right) \geq \frac{9}{2}$ which comes from AM-GM or CS.

36. Author: bzprules

We have that $2 s \leq 3 R \sqrt{3} \Longrightarrow 6 s \leq 9 R \sqrt{3} \Longrightarrow 2 r s^{2} \sqrt{3} \leq 9 R r s \Longrightarrow 8 r s^{2} \sqrt{3} \leq 36 R r s \Longrightarrow$ $4(2 s) \Delta \sqrt{3} \leq 36 R r s$. Since $4 \Delta R=4 R r s=a b c$, we have $4(2 s) \Delta \sqrt{3} \leq 9 a b c$.
Dividing yields $4 \sqrt{3} \cdot \Delta \leq \frac{9 a b c}{a+b+c}$, as desired.

37. Author: applepi2000

Use Ravi Substitution $a=x+y, b=x+z, c=y+z$.
Then it becomes $\sum\left(x^{2}+y^{2}+2 x y\right)\left(x y+y z-x z-z^{2}\right) \geq 0$
After expanding and simplifying $\sum x^{3} y-2 x y z \sum x \geq 0 \Longleftrightarrow \sum x^{3} y \geq 2 x y z \sum x$
By Cauchy-Schwarz we have
$\left(x^{3} y+x y^{3}+x^{3} z+x z^{3}+y^{3} z+y z^{3}\right)\left(x y z^{2}+x y z^{2}+x y^{2} z+x y^{2} z+x^{2} y z+x^{2} y z\right)$
$\geq\left(x^{2} y z+x^{2} y z+x y^{2} z+x^{2} y z+x y z^{2}+x y z^{2}\right)^{2}$.
Dividing by $2 x y z \cdot \sum x$ gives the desired result.

37. Author: Thalesmaster

Lemma.

Let a, b, c be three reals and x, y, z be three nonnegative reals. The inequality $\sum x(a-b)(a-c) \geq 0$ holds if x, y, z are the side-lengths of a triangle (sufficient condition).

Proof. Use the identity $\sum x(a-b)(a-c)=\frac{1}{2} \sum(y+z-x)(b-c)^{2} \geq 0$.
We have $\sum a^{2} b(a-b) \geq 0 \Longleftrightarrow \sum c(a+b-c)(a-b)(a-c) \geq 0$, which is true according to the lemma, since $c(a+b-c), b(c+a-b)$ and $a(b+c-a)$ are the side lengths of a triangle.

38. Author: BigSams

By CS, $(\sin a \cdot \sin b+\cos a \cdot \cos b) \cdot\left(\frac{\sin ^{3} a}{\sin b}+\frac{\cos ^{3} a}{\cos b}\right) \geq\left(\sin ^{2} a+\cos ^{2} a\right)^{2}=1$
$\Longleftrightarrow \frac{\sin ^{3} a}{\sin b}+\frac{\cos ^{3} a}{\cos b} \geq \frac{1}{\sin a \cdot \sin b+\cos a \cdot \cos b}=\sec (a-b)$.

39. Author: applepi2000

Let's first assume that the parallelogram is not a rectangle. Then putting it on its base and straightening its slanted side will increase the height, and keep the base constant. Thus, the greatest area must be a rectangle.
Now, we must maximize $a b$ given $2(a+b)$. By AM-GM we know this is maximized when $a=b$. Thus, the figure is a square.

40. Author: KrazyFK

Clearly $A C \leq A B+B C$ and $A C \leq C D+D A$.
We have two similar inequalities for $B D$ and adding them we get the result.

41. Author: xyy

Let A_{1}, B_{1}, C_{1} be the intersection of $P A, P B, P B$ with $B C, C A, A B$, respectively.
We have $S=\frac{B L}{L C} \cdot \frac{C M}{M A} \cdot \frac{A N}{N B}=\frac{P C_{1}}{P C} \cdot \frac{P A_{1}}{P A} \cdot \frac{P B_{1}}{P B}$.
Let $x=\frac{P A_{1}}{A A_{1}}, y=\frac{P B_{1}}{B B_{1}}, z=\frac{P C_{1}}{C C_{1}}$.
We know that $x+y+z=\frac{S_{P B C}}{S_{A B C}}+\frac{S_{P C A}}{S_{A B C}}+\frac{S_{P A B}}{S_{A B C}}=1$.
$S=\frac{x}{1-x} \cdot \frac{z}{1-z} \cdot \frac{z}{1-z} \leq \frac{1}{8} \Longleftrightarrow(x+y)(y+z)(z+x) \geq 8 x y z$, which is true by AM-GM.

42. Author: Mateescu Constantin

The inequality rewrites as: $2 R \cdot \sum \sin A \sin \frac{A}{2} \geq s \Longleftrightarrow 2 \sum \sin A \sin \frac{A}{2} \geq \sum \sin A$ (*), because it is well-known that:
$\sum \sin A=\frac{s}{R}$. Using the substitutions $\left\|\begin{array}{l}A=\pi-2 X \\ B=\pi-2 Y \\ C=\pi-2 Z\end{array}\right\|$, where $X, Y, Z \in\left(0, \frac{\pi}{2}\right)$ we will transform the inequality in any triangle $(*)$ into one restricted to an acute-angled triangle. Indeed, the inequality $(*)$ is now equivalent to: $2 \sum \sin 2 X \cos X \geq \sum \sin 2 X \Longleftrightarrow$
$4 \sum \sin X\left(1-\sin ^{2} X\right) \geq \sum \sin 2 X \Longleftrightarrow 4 \sum \sin X \geq 4 \sum \sin ^{3} X+\sum \sin 2 X$.
For convenience, we will denote by s, R, r the semiperimeter, circumradius and inradius respectively of the acute triangle $X Y Z$.
Since: $\left\{\begin{array}{l}\sum \sin X=\frac{s}{R} \\ \sum \sin ^{3} X=\frac{2 s\left(s^{2}-6 R r-3 r^{2}\right)}{8 R^{3}} \\ \sum \sin 2 X=\frac{2 r s}{R^{2}}\end{array}\right.$
our last inequality finally becomes: $\frac{4 s}{R} \geq \frac{s\left(s^{2}-6 R r-3 r^{2}\right)}{R^{3}}+\frac{2 r s}{R^{2}} \Longleftrightarrow 4 R^{2}+4 R r+3 r^{2} \geq s^{2}$, which is Gerretsen's Inequality.

43. Author: Mateescu Constantin

The triangle $A B C$ is right-isosceles in C, so we can consider: $\left\{\begin{array}{l}A C=B C=a \\ A B=a \sqrt{2}\end{array}\right.$. Also, denote the ratio $\frac{A P}{P B}=k$, where $k>0$.
Note that triangles $A R P$ and $P Q B$ are right-isosceles in R and Q respectively and that:
$\left\{\begin{array}{l}\frac{A R}{A C}=\frac{A P}{A B} \Longrightarrow A R=a \cdot \frac{k}{k+1} \\ \frac{B Q}{B C}=\frac{B P}{B A} \Longrightarrow B Q=a \cdot \frac{1}{k+1}\end{array}\right.$. Consequently: $\left\{\begin{array}{l}{[A R P]=\frac{a^{2}}{2} \cdot \frac{k^{2}}{(k+1)^{2}}} \\ {[P Q B]=\frac{a^{2}}{2} \cdot \frac{1}{(k+1)^{2}} \quad \text { and since: }[A B C]=} \\ {[P Q C R]=a^{2} \cdot \frac{k}{(k+1)^{2}}}\end{array}\right.$
$\frac{2 a^{2}}{9}$, the conclusion can be restated as:
$k>0 \Longrightarrow \max \left\{\frac{k^{2}}{2(k+1)^{2}}, \frac{1}{2(k+1)^{2}}, \frac{k}{(k+1)^{2}}\right\} \geq \frac{2}{9}$, which follows from the following:

$$
\left\{\begin{array}{l}
\frac{k^{2}}{2(k+1)^{2}} \geq \frac{2}{9} \Longrightarrow 5 k^{2}-8 k-4 \geq 0 \Longrightarrow k \geq 2 \\
\frac{1}{2(k+1)^{2}} \geq \frac{2}{9} \Longrightarrow-4 k^{2}-8 k+5 \geq 0 \Longrightarrow k \in\left(0, \frac{1}{2}\right] \\
\frac{k}{(k+1)^{2}} \geq \frac{2}{9} \Longrightarrow-2 k^{2}+5 k-2 \geq 0 \Longrightarrow k \in\left[\frac{1}{2}, 2\right]
\end{array}\right.
$$

44. Author: fractals

By the AM-GM, $\frac{1}{3}=\frac{\frac{(s-a)}{s}+\frac{(s-b)}{s}+\frac{(s-c)}{s}}{3} \geq \sqrt[3]{\frac{(s-a)(s-b)(s-c)}{s^{3}}}$.
Thus, $\frac{(s-a)(s-b)(s-c)}{s^{3}} \leq \frac{1}{27}$, so $s(s-a)(s-b)(s-c) \leq \frac{s^{4}}{27}$. Thus $r s=\sqrt{s(s-a)(s-b)(s-c)} \leq$ $\frac{s^{2}}{3 \sqrt{3}}$, so $\frac{r}{s} \leq \frac{1}{3 \sqrt{3}}$, so $\frac{s}{r} \geq 3 \sqrt{3}$, which is Mitrinovic's Inequality.

45. Author: r1234

Let $A D$ be the median of triangle $A B C$ which intersects the circumcircle at the point D^{\prime}. Due to secant property, we get $A D \cdot D D^{\prime}=\frac{B C^{2}}{4}=\frac{a^{2}}{4}$. So $D D^{\prime}=\frac{a^{2}}{4 m_{a}}$.
Now $A D^{\prime} \leq 2 R \Longleftrightarrow A D+D D^{\prime} \leq 2 R \Longleftrightarrow m_{a}+\frac{a^{2}}{4 m_{a}} \leq 2 R \Longleftrightarrow \frac{4 m_{a}^{2}+a^{2}}{2 m_{a}} \leq 2 R$.
Now putting $m_{a}^{2}=\frac{b^{2}+c^{2}}{2}-\frac{a^{2}}{4}$ we get $\frac{b^{2}+c^{2}}{m_{a}} \leq 2 R$.
The cyclic summation will give us the desired result.

46. Author: KrazyFK

By Ptolemy's Inequality in quadrilateral $A B C E$ we have $(A B)(C E)+(B C)(A E) \geq(A C)(B E)$, and since $A B=B C$ this becomes $B C(C E+A E) \geq(A C)(B E) \Longleftrightarrow \frac{B C}{B E} \geq \frac{A C}{C E+A E}$.
Similarly, we have $\frac{D E}{D A} \geq \frac{C E}{A E+A C}$ and $\frac{F A}{F C} \geq \frac{A E}{A C+C E}$.
Summing the three, we get $\frac{B C}{B E}+\frac{D E}{D A}+\frac{F A}{F C} \geq \frac{A C}{C E+A E}+\frac{C E}{A E+A C}+\frac{A E}{A C+C E} \geq \frac{3}{2}$, which is
true by Nesbitt's Inequality.
Equality holds if, and only if, all of the following conditions are true:
$A C E$ is equilateral, $A B C E$ is cyclic, $C D E A$ is cyclic, $E F A C$ is cyclic.
From this we easily infer the congruence of $A B C, C D E$ and $E F A$ which tells us the hexagon is equilateral. We can also easily get that it is equiangular, and so it is regular, which is therefore the only equality case.

47. Author: Mateescu Constantin

We will prove that: $l_{a}+l_{b}+m_{c} \stackrel{(1)}{\leq} \sqrt{s(s-a)}+\sqrt{s(s-b)}+m_{c} \stackrel{(2)}{\leq} \sqrt{2} \cdot \sqrt{s^{2}-m_{c}^{2}}+m_{c} \stackrel{(3)}{\leq} s \sqrt{3}$. Inequality (1) follows from the well-known fact: $l_{a} \leq \sqrt{s(s-a)}$.
Indeed, $l_{a}=\frac{2 \sqrt{b c}}{b+c} \cdot \sqrt{s(s-a)} \leq \sqrt{s(s-a)}$.
For inequality (2) let's note that: $\left\{\begin{array}{l}4 m_{c}^{2}=(a+b+2 \sqrt{(s-a)(s-b)})(a+b-2 \sqrt{(s-a)(s-b)}) \\ a+b-2 \sqrt{(s-a)(s-b)}=2 s-(\sqrt{s-a}+\sqrt{s-b})^{2} \\ 2 \sqrt{(s-b)(s-c)} \leq(s-a)+(s-b)=c\end{array}\right.$
Whence we obtain that: $4 m_{c}^{2} \leq 2 s \cdot\left(2 s-(\sqrt{s-a}+\sqrt{s-b})^{2}\right)$
$\Longrightarrow \sqrt{s(s-a)}+\sqrt{s(s-b)} \leq \sqrt{2} \cdot \sqrt{s^{2}-m_{c}^{2}}$.
The inequality (3) is clearly true since it follows from Cauchy-Schwarz Inequality, so we are done.

48. Author: powerofzeta

It's known that: $m_{a}=\frac{1}{2} \sqrt{2 b^{2}+2 c^{2}-a^{2}}$
By CS $\sum m_{a}=\frac{1}{2} \sum \sqrt{2 b^{2}+2 c^{2}-a^{2}} \leq \frac{1}{2} \sqrt{3 \cdot \sum\left(2 b^{2}+2 c^{2}-a^{2}\right)}=\frac{3}{2} \sqrt{\sum a^{2}}=\frac{3}{2} \sqrt{2 s^{2}-2 r^{2}-8 R r}$
By Gerresten's Inequality, $s^{2} \leq 4 R^{2}+4 R r+3 r^{2}$
$\Longrightarrow \sum m_{a} \leq \frac{3}{2} \sqrt{2\left(4 R^{2}+4 R r+3 r^{2}\right)-2 r^{2}-8 R r}=3 \sqrt{2 R^{2}+r^{2}}$
and by Euler's Inequality $R \geq 2 r$, we get: $\sum m_{a} \leq 3 \sqrt{2 R^{2}+\frac{R^{2}}{4}}=\frac{9}{2} R$
So it suffices to prove that $12(R-2 r)+\frac{a b+a c+b c}{R} \geq \frac{18}{2} R \Longleftrightarrow 12(R-2 r)+\frac{s^{2}+r^{2}+4 R r}{R} \geq \frac{18}{2} R$
By Gerresten's inequality $s^{2}+r^{2} \geq 16 R r-4 r^{2} \geq 14 R r$.
It suffice to prove that $12(R-2 r)+\frac{14 R r+4 R r}{R} \geq 9 R$ which is true because it's equivalent to $R \geq 2 r$.
Equality holds when $R=2 r$, i.e. $\triangle A B C$ is equilateral.

48. Author: Thalesmaster

We use the well-known inequality $m_{a}+m_{b}+m_{c} \leq 4 R+r$ and the identity $a b+b c+c a=s^{2}+r^{2}+4 R r$. Then, we just have to show that: $2(4 R+r)-\frac{s^{2}+r^{2}+4 R r}{R} \leq 12(R-2 r) \Longleftrightarrow s^{2}+r^{2}+4 R^{2} \geq 22 R r$. Which immediately follows by summing up the knows results $s^{2}+r^{2} \geq 14 R r$ and $4 R^{2} \geq 8 R r$.

49. Author: BigSams

Lemmata.

(1) $m_{a}^{2}=\frac{2 b^{2}+2 c^{2}-a^{2}}{4}$, and the cyclic versions hold as well.
(2) $\frac{1}{h_{a}^{2}}=\frac{a^{2}}{4 S^{2}}$, and the cyclic versions hold as well.
$(1) \times(2)=\frac{m_{a}^{2}}{h_{a}^{2}}=\frac{a^{2}\left(2 b^{2}+2 c^{2}-a^{2}\right)}{16 S^{2}} \Longrightarrow a^{2}\left(2 b^{2}+2 c^{2}-a^{2}\right)=\frac{16 S^{2} m_{a}^{2}}{h_{a}^{2}}$,
and the cyclic versions hold as well.

By Trivial Inequality, $\left(2 a^{2}-b^{2}-c^{2}\right)^{2} \geq 0$
$\Longleftrightarrow\left(a^{2}+b^{2}+c^{2}\right)^{2} \geq 3 a^{2}\left(2 b^{2}+2 c^{2}-a^{2}\right)=\frac{3 \cdot 16 S^{2} m_{a}^{2}}{h_{a}^{2}} \Longleftrightarrow a^{2}+b^{2}+c^{2} \geq \frac{4 \sqrt{3} S m_{a}}{h_{a}}$.
Clearly the cyclic versions of the above result can be derived by starting with the cyclic versions of $\left(2 a^{2}-b^{2}-c^{2}\right)^{2} \geq 0$ and proceeding by the same manipulations and cyclic versions of identities, so the inequality always holds for any of $\frac{m_{a}}{h_{a}}, \frac{m_{b}}{h_{b}}, \frac{m_{c}}{h_{c}}$.
Thus, $a^{2}+b^{2}+c^{2} \geq 4 \sqrt{3} S \cdot \max \left(\frac{m_{a}}{h_{a}}, \frac{m_{b}}{h_{b}}, \frac{m_{c}}{h_{c}}\right)$.

50. Author: RSM

$A B_{2}=A C_{1}=b+c$, so $\left[A B_{2} C_{1}\right]=\frac{(b+c)^{2} \sin A}{2}$ and similar for others.
$\left[C C_{1} C_{2}\right]=\frac{c^{2} \sin C}{2}$. Adding up all these we get the desired result.
$\left[A_{1} A_{2} B_{1} B_{2} C_{1} C_{2}\right]=\frac{(a+b+c)\left(a^{2}+b^{2}+c^{2}\right)}{4 R}+4[A B C]$ where R is the circumradius of $\triangle A B C$ and a, b, c are its sides.
Note that, $(a+b+c)\left(a^{2}+b^{2}+c^{2}\right) \geq 9 a b c$
So $\left[A_{1} A_{2} B_{1} B_{2} C_{1} C_{2}\right] \geq \frac{9 a b c}{4 R}+4[A B C]=13[A B C]$

51. Author: RSM

Note that, $r_{1}=\frac{\Delta}{2 s_{A B D}}, r_{2}=\frac{\Delta}{2 s_{A C D}}$ where s_{X} denotes the semi-perimeter of ΔX.
Substituting this in the inequality we get that the inequality is equivalent to
$\frac{s_{A B C}+m_{a}}{\Delta} \geq \frac{1}{r}+\frac{2}{a} \Longleftrightarrow \frac{m_{a}}{\Delta} \geq \frac{2}{a} \Longleftrightarrow \frac{1}{2} \cdot m_{a} a \geq \Delta$, which is true since $\frac{1}{2} \cdot m_{a} a \geq \frac{1}{2} \cdot h_{a} a=\Delta$.

52. Author: Mateescu Constantin

Right Side.

We make use of the identities: $\left\{\begin{array}{l}\sum \cos A=1+\frac{r}{R} \\ \sum \cos B \cos C=\frac{s^{2}+r^{2}-4 R^{2}}{4 R^{2}} \\ \sum \sin B \sin C=\frac{s^{2}+r^{2}+4 R r}{4 R^{2}} \\ \sum \frac{1}{\sin ^{2} \frac{A}{2}}=\frac{s^{2}+r^{2}-8 R r}{r^{2}}\end{array}\right.$.
Thus, $8 \sum_{\text {Gerretsen's Inequality: }} \cos A \leq 9+s^{2} \geq 16 R r-5 r^{2}$. $\cos (A-B) \Longleftrightarrow s^{2} \geq 14 R r-r^{2}$, which is true since it is weaker than
G

Left Side.

$9+\sum \cos (A-B) \leq \sum \frac{1}{\sin ^{2} \frac{A}{2}} \Longleftrightarrow \frac{s^{2}+r^{2}+2 R r-2 R^{2}}{2 R^{2}} \leq \frac{s^{2}-8 R r-8 r^{2}}{r^{2}}$.
Since: $\left\{\begin{array}{l}\frac{s^{2}+r^{2}+2 R r-2 R^{2}}{2 R^{2}} \stackrel{(\mathrm{G})}{\leq} \frac{R^{2}+3 R r+2 r^{2}}{R^{2}} \\ \frac{8 R r-13 r^{2}}{r^{2}} \stackrel{(\mathrm{G})}{\leq} \frac{s^{2}-8 R r-8 r^{2}}{r^{2}}\end{array}\right.$
It suffices to show that: $\frac{R^{2}+3 R r+2 r^{2}}{R^{2}} \leq \frac{8 R-13 r}{r} \Longleftrightarrow(R-2 r)\left(8 R^{2}+2 R r+r^{2}\right) \geq 0$, which is true by Euler's Inequality.

53. Author: Thalesmaster

Using the system: $\left\{\begin{array}{l}a+b+c=2 s \\ a b+b c+c a=s^{2}+r^{2}+4 R r \\ a b c=4 s R r\end{array}\right.$
We have: $\frac{2 s^{4}-\left(a^{4}+b^{4}+c^{4}\right)}{[A B C]^{2}} \geq 38 \Longleftrightarrow \frac{12 s^{2} r^{2}+16 s^{2} R r-16 R r^{3}-32 R^{2} r^{2}-2 r^{4}}{s^{2} r^{2}} \geq 38$
$\Longleftrightarrow y^{2}(8 x-13) \geq 16 x^{2}+8 x+1$, where $x=\frac{R}{r} \geq 2$ and $y=\frac{s}{r} \geq 3 \sqrt{3}$.
Using Gerretsen's Inequality: $y^{2}+5 \geq 16 x$, we just have to show that $(16 x-5)(8 x-13) \geq$ $16 x^{2}+8 x+1 \Longleftrightarrow 7 x^{2}-16 x+4 \geq 0 \Longleftrightarrow(x-2)(7 x-2) \geq 0$
which is true by Euler's Inequality.
The value 38 is attained for an equilateral $\triangle A B C$.

54. Author: Thalesmaster

Using the substitutions $\left\{\begin{array}{l}A=\pi-2 X \\ B=\pi-2 Y \\ C=\pi-2 Z\end{array} \quad\right.$, for $X, Y, Z \in\left(0, \frac{\pi}{2}\right)$ we will transform the given inequality into an one restricted to an acute-angled triangle with side lengths x, y, z corresponding to angles X, Y, Z respectively: $\sum \sin X \leq \frac{\sqrt{3}}{2} \cdot \sum \cos \frac{Y-Z}{2}$. This inequality is actually true in any triangle:

Expressing everything in terms of x, y, z using well-known formulas and then Ravi Substitution:
$\left\{\begin{array}{l}x=u+v \\ y=w+u \\ z=v+w\end{array} \Longleftrightarrow\left(\sum \frac{u+v+2 w}{\sqrt{w(u+v)}}\right)^{2}\left(\sum w(u+v+2 w)(u+v)\right) \geq\left(\sum u+v+2 w\right)^{3}\right.$
Which is clearly true according to Hölder's Inequality.
55. Author: gaussintraining

By CS, $3 \cdot \sum a^{2} \geq\left(\sum a\right)^{2}=4 s^{2}>\pi s^{2}=\pi r^{2} \cdot\left(\frac{s^{2}}{r^{2}}\right)=Z \cdot\left(\sum \cot \frac{A}{2}\right)^{2}$.

56. Author: malcolm

Using $A X<\max \{A B, A C\}$ for X interior to $B C$ and similarly for the other sides we have
$A X+B Y+C Z<\max \{A B, A C\}+\max \{B C, B A\}+\max \{C A, C B\}=A C+B C+B C=2 a+b$.

57. Author: Michael Niland

Use the following: $\left\{\begin{array}{l}\sum \frac{1}{a} \cos ^{2} \frac{A}{2}=\frac{s^{2}}{a b c} \\ \sum \cos ^{2} \frac{A}{2}=2+\frac{r}{2 R} \leq \frac{9}{4}\end{array}\right.$
By Chebyshev's Inequality,
$\sum \cos ^{4} \frac{A}{2}=\sum\left[\left(a \cos ^{2} \frac{A}{2}\right) \cdot\left(\frac{1}{a} \cos ^{2} \frac{A}{2}\right)\right]$
$\leq \frac{1}{3}\left(\cdot \sum a \cos ^{2} \frac{A}{2}\right) \cdot\left(\sum \frac{1}{a} \cos ^{2} \frac{A}{2}\right)=\frac{1}{3} \cdot\left(\sum a \cos ^{2} \frac{A}{2}\right) \cdot \frac{s^{2}}{a b c}$
Again using Chebyshev's Inequality, $\sum a \cos ^{2} \frac{A}{2} \leq \frac{1}{3} \cdot\left(\sum a\right) \cdot\left(\sum \cos ^{2} \frac{A}{2}\right) \leq \frac{2 s}{3} \cdot \frac{9}{4}$.
Therefore $\sum \cos ^{4} \frac{A}{2} \leq \frac{1}{3} \cdot\left(\frac{2 s}{3} \cdot \frac{9}{4}\right) \cdot\left(\frac{s^{2}}{a b c}\right)=\frac{s^{3}}{2 a b c}$.

58. Author: Thalesmaster

Using complex numbers $A(a), B(b), C(c)$ and $P(p)$ and the identity
$(b-c)(p-b)(p-c)+(c-a)(p-c)(p-a)+(a-b)(p-a)(p-b)=(a-b)(b-c)(c-a)$.
We have
$B C \cdot P B \cdot P C+C A \cdot P C \cdot P A+A B \cdot P A \cdot P B$
$=|(b-c)(p-b)(p-c)|+|(c-a)(p-c)(p-a)|+|(a-b)(p-a)(p-b)|$
$\geq|(b-c)(p-b)(p-c)+(c-a)(p-c)(p-a)+(a-b)(p-a)(p-b)|$
$=|(a-b)(b-c)(c-a)|=A B \cdot B C \cdot C A$
Which yields to the desired result.
Equality holds if and only if $P=H$ where H is the orthocenter of $\triangle A B C$.

59. Author: RSM

Suppose, $P A^{\prime}, P B^{\prime}, P C^{\prime}$ are the perpendiculars from P to the sides $B C, C A, A B$ and $P A^{\prime}=p, P B^{\prime}=$ $q, P C^{\prime}=r$.
Note that $B^{\prime} C^{\prime}=d_{A} \sin A$ and similar for others.
So the inequality is equivalent to $A^{\prime} B^{\prime 2}+B^{\prime} C^{\prime 2}+C^{\prime} A^{\prime 2} \leq 3\left(P A^{\prime 2}+P B^{\prime 2}+P C^{\prime 2}\right)$
Which is true since $\left(P A^{\prime 2}+P B^{\prime 2}+P C^{\prime 2}\right)=\frac{A^{\prime} B^{\prime 2}+B^{\prime} C^{\prime 2}+C^{\prime} A^{\prime 2}}{3}+3 P G^{2}$ where is G is the centroid of $A^{\prime} B^{\prime} C^{\prime}$.
Equality holds when P and G coincides, i.e. when P is the symmedian point of $A B C$.

60. Author: Thalesmaster

Using the condition, we have $(b \geq c$ or $c>b) \Longrightarrow(b>a$ or $c>a)$.
In the two cases, a is not the greatest side, so $A<\frac{\pi}{2}$ We want to show that: $\angle B A C<\frac{\angle A B C+\angle A C B}{2}$ $\Leftrightarrow A<\frac{\pi}{3}$ We have: $a<\frac{b+c}{2} \Longleftrightarrow \frac{a}{R}<\frac{b}{2 R}+\frac{c}{2 R} \Longleftrightarrow 2 \sin A<\sin B+\sin C$ $\Longleftrightarrow 3 \sin A<\sum \sin A=\frac{s}{R} \leq \frac{3 \sqrt{3}}{2}$ So: $\sin A \leq \frac{\sqrt{3}}{2}=\sin \frac{\pi}{3}$ The function \sin is increasing on the interval $] 0 ; \frac{\pi}{2}$. Hence $A \leq \frac{\pi}{3}$ since we proved that $A<\frac{\pi}{2}$.

61. Author: Mateescu Constantin

By squaring both sides of this inequality and taking into account the identity: $m_{a}^{2}+m_{b}^{2}+m_{c}^{2}=$ $\frac{3\left(a^{2}+b^{2}+c^{2}\right)}{4}$, we are left to prove that: $\sum m_{b} m_{c} \leq \frac{1}{2} \sum a^{2}+\frac{1}{4} \sum b c$, which follows by summing up the inequalities: $m_{b} m_{c} \leq \frac{a^{2}}{2}+\frac{b c}{4}$ a.s.o. Indeed, $m_{b} m_{c} \leq \frac{a^{2}}{2}+\frac{b c}{4} \Longleftrightarrow 16 m_{b}^{2} m_{c}^{2} \leq$ $\left(2 a^{2}+b c\right)^{2} \Longleftrightarrow 16 \cdot \frac{2\left(c^{2}+a^{2}\right)-b^{2}}{4} \cdot \frac{2\left(a^{2}+b^{2}\right)-c^{2}}{4} \leq\left(2 a^{2}+b c\right)^{2} \Longleftrightarrow(b-c)^{2}(a+b+c)$ $(a-b-c) \leq 0$, which is true from the Trivial and Triangle Inequslities.
(BigSams used the same method in his submission to the Mathematical Reflections bi-monthly journal, where the problem was originally from)

62. Author: Thalesmaster

The inequality is equivalent to $\sum \cos \frac{A}{2} \geq \frac{\sqrt{2}}{2}+\sqrt{\frac{1}{2}}+2(3 \sqrt{3}-2 \sqrt{2}) \prod \cos \frac{A}{2}$
Use the substitution: $\left\{\begin{array}{l}X=\frac{\pi-A}{2} \\ Y=\frac{\pi-B}{2} C \\ Z=\frac{\pi-C}{2}\end{array}\right.$
Denote s, R, r the semi-perimeter, the circumradius and the inradius of acute $\triangle X Y Z$, then the desired inequality is equivalent to:
$\Longleftrightarrow \sum \sin X \geq \frac{\sqrt{2}}{2}+\sqrt{\frac{1}{2}}+2(3 \sqrt{3}-2 \sqrt{2}) \prod \sin X$
$\Longleftrightarrow s \geq \sqrt{2} R+(3 \sqrt{3}-2 \sqrt{2}) r$
$\Longleftrightarrow s^{2} \geq 2 R^{2}+(6 \sqrt{6}-8) R r+(35-12 \sqrt{6}) r^{2}$
Using Walker's Inequality: $s^{2} \geq 2 R^{2}+8 R r+3 r^{2}$ (since $\triangle X Y Z$ is acute-angled), we just have to show that:
$2 R^{2}+8 R r+3 r^{2} \geq 2 R^{2}+(6 \sqrt{6}-8) R r+(35-12 \sqrt{6}) r^{2}$
$\Leftrightarrow(16-6 \sqrt{6}) R r \geq 2(16-6 \sqrt{6}) r^{2}$
$\Leftrightarrow R \geq 2 r$, which is Euler's Inequality.

63. Author: Mateescu Constantin

Lemma. Let $A B C$ be a triangle and let D be a point on the side $[B C]$ so that:
$\frac{B D}{D C}=k, k>0$. Then: $\frac{c^{2}+k b^{2}}{\sqrt{(1+k)\left(c^{2}+k b^{2}\right)-k a^{2}}} \leq 2 R$.
Proof. Using the dot product, one can show the distance: $A D^{2}=\frac{c^{2}+k b^{2}}{1+k}-\frac{k a^{2}}{(1+k)^{2}}(*)$.
Let w be the circumcircle of $\triangle A B C$ and let $\{X\}=A D \cap w$.
Thus, $\left\{\begin{array}{c}A D \cdot D X=B D \cdot C D \\ B D=\frac{k a}{1+k} ; C D=\frac{a}{1+k}\end{array} \| \Longrightarrow A D \cdot D X=\frac{k a^{2}}{(1+k)^{2}} \Longrightarrow D X=\frac{k a^{2}}{(1+k)^{2} \cdot A D}\right.$.
Moreover, since $A X$ is a chord in the circle w, it follows that: $A X \leq 2 R \Longleftrightarrow A D+D X \leq 2 R \Longleftrightarrow$ $A D+\frac{k a^{2}}{(1+k)^{2} \cdot A D} \leq 2 R \Longleftrightarrow$
$\Longleftrightarrow(1+k)^{2} \cdot A D^{2}+k a^{2} \leq 2 R \cdot A D \cdot(1+k)^{2} \stackrel{(*)}{\Longleftrightarrow} c^{2}+k \cdot b^{2} \leq 2 R \cdot A D \cdot(1+k)$
$\Longleftrightarrow \frac{c^{2}+k b^{2}}{\sqrt{(1+k)\left(c^{2}+k b^{2}\right)-k a^{2}}} \leq 2 R$, which is exactly what we wanted to prove.
Particularly, for $k=\frac{a^{2}}{b^{2}}$ in the previous lemma we obtain: $\frac{b\left(c^{2}+a^{2}\right)}{\sqrt{a^{2} b^{2}+b^{2} c^{2}+c^{2} a^{2}}} \leq 2 R$ and making use
of the well-known relation $R=\frac{a b c}{4 \Delta}$, our last inequality simplifies to: $\frac{c}{a}+\frac{a}{c} \leq \frac{\sqrt{a^{2} b^{2}+b^{2} c^{2}+c^{2} a^{2}}}{2 \Delta}$. In a similar manner we can prove the analogous inequalities, therefore solving the problem.

64. Author: Mateescu Constantin

It will be shown that: $\Delta \stackrel{(1)}{\geq} r \cdot \sqrt{\frac{1}{3} \cdot \sum m_{b} m_{c}+\frac{1}{2} \cdot \sum b c} \stackrel{(2)}{\geq} r \cdot \sqrt{\frac{2}{3} \cdot \sum m_{b} m_{c}+r(4 R+r)}$

Proof of Inequality (1)

Taking into account the known identities: $\Delta=r \cdot s$ and $\sum b c=s^{2}+r^{2}+4 R r$ our inequality is succesively equivalent to: $s \geq \sqrt{\frac{1}{3} \cdot \sum m_{b} m_{c}+\frac{1}{2} \cdot \sum b c}$
$\Longleftrightarrow s^{2} \geq \frac{1}{3} \cdot \sum m_{b} m_{c}+\frac{1}{2} \cdot\left(s^{2}+r^{2}+4 R r\right) \Longleftrightarrow \frac{s^{2}-4 R r-r^{2}}{2} \geq \frac{1}{3} \cdot \sum m_{b} m_{c}$
$\Longleftrightarrow \frac{3\left(a^{2}+b^{2}+c^{2}\right)}{4} \geq \sum m_{b} m_{c} \Longleftrightarrow \sum m_{a}^{2} \geq \sum m_{b} m_{c}$, which is obviously true.

Proof of Inequality (2)

Squaring both sides of this inequality, we are left to show that:
$2 \sum m_{b} m_{c}+3\left(s^{2}+r^{2}+4 R r\right) \geq 4 \sum m_{b} m_{c}+6 r(4 R+r)$
$\Longleftrightarrow 3\left(s^{2}-4 R r-r^{2}\right) \geq 2 \sum m_{b} m_{c} \Longleftrightarrow \sum m_{a}^{2} \geq \sum m_{b} m_{c}$, which is clearly true.

65. Author: BigSams

Problem Rewording. In pentagon $A B C D E$, prove that:

$$
\begin{gathered}
(A C+B E) A B+(B D+C A) B C+(C E+D B) C D+(D A+E C) D E+(E B+A D) E A \\
>A C^{2}+B D^{2}+C E^{2}+D A^{2}+E B^{2}
\end{gathered}
$$

Solution. By Triangle Inequality, $A B+B C>C A \Longrightarrow(A B+B C) A C>A C^{2}$.
Repeating with $\triangle B C D, \triangle C D E, \triangle D E A, \triangle E A B$ and summing all five yields the result.

66. Author: gaussintraining

Since $l_{a}=\frac{2 b c}{b+c} \cos \frac{A}{2}=\frac{2 \sqrt{b c}}{b+c} \sqrt{s(s-a)} \leq \sqrt{s(s-a)}$ by AM-GM, it follows that $l_{a}^{2} \leq s(s-a)$. The analogous relationships also hold, yielding $\sum l_{a}^{2} \leq 3 s^{2}-(a+b+c) s=s^{2}$.

67. Author: jatin

Let E and F be the midpoints of $A C$ and $B D$ respectively. We know R is the midpoint of $E F$. Note that E and F lie on the circle with diameter $O P$. And hence $O P \geq O E$ as well as $O P \geq O F$. Now, $O R$ is a median of $\triangle O E F$. Therefore, $O R \leq O F$ or $O R \leq O E$. Hence, $O P \geq O R$.

68. Author: Mateescu Constantin

Problem 61 from this marathon was equivalent to: $\sum m_{b} m_{c} \leq \frac{1}{2} \sum a^{2}+\frac{1}{4} \sum b c$. Thus we are left to prove that: $\frac{1}{2} \sum a^{2}<\sum b c$ which is obviously true, since it rewrites as: $2\left(s^{2}-r^{2}-4 R r\right)<$ $2\left(s^{2}+r^{2}+4 R r\right) \Longleftrightarrow 0<r^{2}+4 R r$.

Note. BigSams commented afterwards that a more elementary final step is by Triangle Inequality, $\sum a(b+c-a)>0 \Longleftrightarrow 2 \cdot \sum a b>\sum a^{2}$.

69. Author: Mateescu Constantin

Problem Rewording.

Let $A B C$ be a triangle and let $M \in[A C], N \in[B C], L \in[M N]$.
Prove that the following inequality holds: $\sqrt[{\sqrt[3]{S} \geq \sqrt[3]{S_{1}}+\sqrt[3]{S_{2}}}]{ }$, where $\left\|\begin{array}{l}S=[A B C] \\ S_{1}=[A M L] \\ S_{2}=[B N L]\end{array}\right\|$.

Soliution.

It is obvious that the given inequality holds when at least one of the points M, N or L coincide with one of the end points of the segments they lie on. Also, note that in such cases equality is attained when either $A=M=L$ and $C=N$ OR $B=N=L$ and $C=M$. Now we will draw our attention to the case in which $M \in(A C), N \in(B C)$ and $L \in(M N)$. Let us consider $\frac{A M}{M C}=k, \frac{B N}{N C}=q$,
$\frac{M L}{L N}=r$, where $k, q, r>0$. Therefore,

$$
\begin{aligned}
& \frac{A M}{M C}=k \quad \Longrightarrow \quad \frac{[A M L]}{[C M L]}=k \quad \Longrightarrow \quad S_{1}=k \cdot[C M L] \\
& \frac{M L}{L N}=r \quad \Longrightarrow \quad \frac{[C M L]}{[C N L]}=r \quad \Longrightarrow \quad[C M L]=\frac{r}{r+1} \cdot[M N C] \\
& \frac{B N}{N C}=q \quad \Longrightarrow \quad \frac{[B M N]}{[M N C]}=q \quad \Longrightarrow \quad[M N C]=\frac{1}{q+1} \cdot[B M C] \\
& \frac{A M}{M C}=k \quad \Longrightarrow \quad \frac{[B M A]}{[B M C]}=k \quad \Longrightarrow \quad[B M C]=\frac{1}{k+1} \cdot S \\
& \Longrightarrow S_{1}=\frac{k r}{(k+1)(q+1)(r+1)} \cdot S \\
& \| \begin{array}{llll}
\frac{B N}{N C}=q & \Longrightarrow & \frac{[B N L]}{[C N L]}=q & \Longrightarrow
\end{array} \\
& \Longrightarrow S_{2}=\frac{q}{(k+1)(q+1)(r+1)} \cdot S
\end{aligned}
$$

Consequently, the proposed inequality reduces to:
$\sqrt[3]{S} \geq \sqrt[3]{\frac{k r}{(k+1)(q+1)(r+1)} \cdot S}+\sqrt[3]{\frac{q}{(k+1)(q+1)(r+1)} \cdot S} \Longleftrightarrow \sqrt[3]{(k+1)(q+1)(r+1)} \geq$ $\sqrt[3]{k r}+\sqrt[3]{q}$.

Taking $k=x^{3}, r=y^{3}$ and $q=z^{3}$, where $x, y, z>0$ it suffices to show that:
$\left(x^{3}+1\right)\left(y^{3}+1\right)\left(z^{3}+1\right) \geq(x y+z)^{3} \Longleftrightarrow x^{3} y^{3} z^{3}+x^{3} z^{3}+y^{3} z^{3}+x^{3}+y^{3}+1 \geq 3 x^{2} y^{2} z+3 x y z^{2}$, which follows by adding the following two inequalities obtained from AM-GM inequality:
$\left\{\begin{array}{l}x^{3} y^{3} z^{3}+x^{3}+y^{3} \geq 3 x^{2} y^{2} z \\ x^{3} z^{3}+y^{3} z^{3}+1 \geq 3 x y z^{2}\end{array}\right.$.
In this case, equality occurs iff $x=y=z=1$, in other words, when the points M, N and L are the midpoints of the segments $[A C],[B C]$ and $[M N]$ respectively.

70. Author: Goutham

Let P_{1} be the symmetric of point P w.r.t. the midpoint of side $[B C]$. Define P_{2} and P_{3} in a similar manner.
By Ptolemy's Theorem, for a convex quadrilater $M N P Q, M N \cdot P Q+N P \cdot M Q \geq 2[M N P Q]$, with equality if and only if $M N P Q$ is cyclic and $M P \perp N Q$.
Applying this to convex quadrilaterals $A B P_{1} C, B C P_{2} A, C A P_{3} B$, we get:
$\left\{\begin{array}{l}b \cdot P C+c \cdot P B \geq 2\left(\Delta+\left[P_{1} B C\right]\right) \\ a \cdot P C+c \cdot P A \geq 2\left(\Delta+\left[P_{2} C A\right]\right) \\ a \cdot P B+b \cdot P A \geq 2\left(\Delta+\left[P_{3} A B\right]\right)\end{array}\right.$
Adding them gives that $L H S \geq 2\left(3 \Delta+\left[P_{1} B C\right]+\left[P_{2} A C\right]+\left[P_{3} A B\right]\right)$ for which we use $\left[P_{1} B C\right]=[P B C]$ and so on to get that $L H S \geq 8 \Delta=R H S$.

71. Author: Mateescu Constantin

Let us denote $\frac{A P}{P C}=k$, where $k>0$. Thus, $\left\{\begin{array}{l}A P=\frac{k}{k+1} \cdot b \\ P C=\frac{1}{k+1} \cdot b\end{array}\right.$
By Pythagoras' theorem, applied in $\triangle P B C$ one obtains: $P B=\sqrt{a^{2}+\frac{b^{2}}{(k+1)^{2}}}$. Hence, we are left to show that: $\frac{c-\sqrt{a^{2}+\frac{b^{2}}{(k+1)^{2}}}}{\frac{k}{k+1} \cdot b}>\frac{c-a}{b} \Longleftrightarrow c-\sqrt{a^{2}+\frac{b^{2}}{(k+1)^{2}}}>\frac{k}{k+1} \cdot(c-a) \Longleftrightarrow$
$\Longleftrightarrow \frac{c+a k}{k+1}>\sqrt{a^{2}+\frac{b^{2}}{(k+1)^{2}}} \Longleftrightarrow(c+a k)^{2}>a^{2}(k+1)^{2}+b^{2} \Longleftrightarrow$
$\Longleftrightarrow c^{2}+2 a c k+a^{2} k^{2}>a^{2} k^{2}+2 a^{2} k+a^{2}+b^{2} \stackrel{c^{2}=a^{2}+b^{2}}{\Longleftrightarrow} c>a$, which is true.

72. Author: Mateescu Constantin

Construct the lines passing through the vertices of triangle $A B C$ so that they are parallel to the sides $B C, C A$ and $A B$ respectively. The intersection of these three lines determines a new triangle $A^{\prime} B^{\prime} C^{\prime}$, where A is the midpoint of segment $B^{\prime} C^{\prime}$. Thus, $A P=B C=A B^{\prime}=A C^{\prime}$, so $\widehat{B^{\prime} P C^{\prime}}=90^{\circ}$. Now it follows that: $\widehat{A^{\prime} P C^{\prime}}+\widehat{B^{\prime} P A^{\prime}}=270^{\circ}$, wherefrom one has either $\widehat{B^{\prime} P A^{\prime}} \leq 135^{\circ}$ or $\widehat{A^{\prime} P C^{\prime}} \leq 135^{\circ}$. Let us consider the first case. By denoting $x=P B^{\prime}, y=P A^{\prime}, 2 c=A^{\prime} B^{\prime}$ and using the Law of Cosines in triangle $B^{\prime} P A^{\prime}$ we obtain:

$$
\begin{equation*}
4 c^{2}=x^{2}+y^{2}-2 x y \cdot \cos \left(\widehat{B^{\prime} P A^{\prime}}\right) \leq x^{2}+y^{2}+2 x y \cdot \frac{\sqrt{2}}{2} \leq\left(x^{2}+y^{2}\right)\left(1+\frac{\sqrt{2}}{2}\right) \tag{*}
\end{equation*}
$$

Moreover, by the theorem of median applied in triangle $B^{\prime} P A^{\prime}$ we get:

$$
C P^{2}=\frac{2\left(x^{2}+y^{2}\right)-4 c^{2}}{4} \stackrel{(*)}{\geq} \frac{1}{4}\left(2 \cdot \frac{4 c^{2}}{1+\frac{\sqrt{2}}{2}}-4 c^{2}\right)=[(\sqrt{2}-1) \cdot A B]^{2}
$$

which implies $\frac{C P}{A B} \geq \sqrt{2}-1$. Equality occurs when $x=y$ and $\widehat{A^{\prime} P C^{\prime}}=\widehat{B^{\prime} P A^{\prime}}=135^{\circ}$, so when $A=45^{\circ}, B=C=67.5^{\circ}$ and P is the orthocenter of triangle $A B C$.

73. Author: Mateescu Constantin

Using the identities: $\left\{\begin{array}{l}\sum a^{2}(s-b)(s-c)=4 s^{2} r(R-r) \\ (s-a)(s-b)(s-c)=s r^{2}\end{array} \quad\right.$ the given inequality is equivalent to:
$\frac{\sum a^{2}(s-b)(s-c)}{\prod(s-a)} \geq 6 R \sqrt{3} \Longleftrightarrow \frac{4 s^{2} r(R-r)}{s r^{2}} \geq 6 R \sqrt{3} \Longleftrightarrow s \geq \frac{3 R r \sqrt{3}}{2(R-r)}$
We will now show that this inequality is weaker than the known Gerretsen $s^{2} \geq 16 R r-5 r^{2}$.
Indeed, by squaring both sides of our previous inequality, it suffices to prove that:
$16 R r-5 r^{2} \geq \frac{27 R^{2} r^{2}}{4(R-r)^{2}} \Longleftrightarrow 4(R-r)^{2}\left(16 R r-5 r^{2}\right) \geq 27 R^{2} r^{2} \Longleftrightarrow r(R-2 r)\left(64 R^{2}-47 R r+10 r^{2}\right) \geq$
0 , which is obviously true since $R \geq 2 r$ (Euler).
Equality is attained if and only if $\triangle A B C$ is equilateral.

Remark. Here is a sketch of obtaining the first mentioned identity. Since $(s-b)(s-c)=b c-s(s-a)$, we get: $\sum a^{2}(s-b)(s-c)=\sum a^{2}[b c-s(s-a)]=a b c \sum a-s^{2} \sum a^{2}+s \sum a^{3}$, and further one has to use the well known identities: $\left\{\begin{array}{l}a^{2}+b^{2}+c^{2}=2\left(s^{2}-r^{2}-4 R r\right) \\ a^{3}+b^{3}+c^{3}=2 s\left(s^{2}-6 R r-3 r^{2}\right)\end{array}\right.$

74. Author: BigSams

In an arbitrary regular polygon X, let the inradius be r and the sidelength be s.
Note that the perimeter of X is always greater than the circumference of the incircle.
$\Longrightarrow s n>2 \pi r \Longleftrightarrow \frac{n}{r}>\frac{2 \pi}{s}$.
Also note that $[X]=\frac{s \cdot \sum_{i=1}^{n} x_{i}}{2}=n \cdot \frac{s r}{2} \Longrightarrow \sum_{i=1}^{n} x_{i}=n r$.
By CS, $\sum_{i=1}^{n} \frac{1}{x_{i}} \geq \frac{n^{2}}{\sum_{i=1}^{n} x_{i}}=\frac{n^{2}}{n r}=\frac{n}{r}$. Thus, $\sum_{i=1}^{n} \frac{1}{x_{i}}>\frac{2 \pi}{s}$.

75. Author: jatin

Lemma.

The vertex of an angle α is at O. A is a fixed point inside the acute angle. On the sides of the angle, points M and N are taken such that $\angle M A N=\beta$ where $\alpha+\beta<\pi$. Then the area of the quadrilateral $O M A N$ reaches its maximum when $A M=A N$.

Proof.
Let M, N be points satisfying the given conditions such that $A M=A N$. Let M^{\prime}, N^{\prime} be any [b]other[/b] points satisfying the given conditions.
Then we will prove that $\left[O M^{\prime} A N^{\prime}\right]<[O M A N]$. Now, $\angle M^{\prime} A N^{\prime}=\beta, \angle A M^{\prime} M=2 \pi-\alpha-\beta-\angle O N^{\prime} A>$ $\pi-\angle O N^{\prime} A=\angle A N^{\prime} N$. Also, $\angle M A M^{\prime}=\angle N A N^{\prime}$ and hence $M^{\prime} A<N^{\prime} A$.

Thus, $\left[M^{\prime} A M\right]<\left[N^{\prime} A N\right] \Rightarrow\left[O M^{\prime} A N^{\prime}\right]<[O M A N]$.
So we have to find out on what conditions we can find on the sides on the sides of the angle points M and N such that $\angle M A N=\phi$ and $M A=A N$. Circumscribe a circle about the triangle $M O N$. Since $\alpha+\beta+\phi<\pi$, the point A is located outside the circle. If L is the point of intersection of $O A$ and the circle, then: $\angle A M N=\frac{\pi-\phi}{2}>\angle L M N=\angle L O N$ and $\angle A N M=\frac{\pi-\phi}{2}>\angle L O M$. Thus, if $\alpha, \beta<\frac{\pi-\phi}{2}$, then it is possible to find points M and N such that $M A=A N$ and $\angle M A N=\phi$. If the conditions are not fulfilled then such points cannot be found. In this case, the quadrilateral of maximal area degenerates into a triangle (either M or N coincides with O).

76. Author: dr_Civot

Take $a=b=c$ to get that $k>1$.
Let $a=x+y, b=y+z, c=z+x$ by Ravi Transformation.
The inequality becomes $3 k \sum x y+k \sum x^{2}>2 \sum x^{2}+2 \sum x y$.
$k=2$ works because by Triangle Inequality $\sum a(b+c-a)>0 \Longleftrightarrow 2 \cdot \sum a b>\sum a^{2}$, so $k \leq 2$.
Suppose that there exists a $1<k<2$ which works. Take $x=\sqrt{\frac{A}{2-k}}, y=z=\frac{1}{x}$.
The inequality becomes $L H S=(3 k-2) \sum x y>(2-k) \sum x^{2}=R H S$.
It will be shown that there is value of A for each $1<k<2$ such that $R H S-L H S>0$, which will mean that $1<k<2$ does not exist work.
$R H S>(2-k) x^{2}=A$
$L H S=\frac{A(6 k-4)+(2-k)(3 k-2)}{A}$
RHS $-L H S>0 \Longleftrightarrow A^{2}-A(6 k-4)+(k-2)(3 k-2)>0$, which is true for sufficiently large A.

77. Author: applepi2000

Let $a d_{a}=x, b d_{b}=y, c d_{c}=z$.
Then from triangles $M A B, M A C, M B C$ we have $\frac{1}{2}(x+y+z)=S \Longrightarrow 2 \Delta=x+y+z$.
We need to show $x y+y z+z x \leq \frac{4 \Delta^{2}}{3}$. But this is true by Cauchy-Schwarz:
$x y+y z+z x \leq \frac{1}{3}(x+y+z)^{2}=\frac{4}{3} \Delta^{2}$ and we are done. Equality holds iff $x=y=z$, i.e. $M=G$.

78. Author: dr_Civot

A power of point I is $P(I)=A I \cdot I X=O I^{2}-R^{2}=2 r R$, so $I X=\frac{2 r R}{A I}$.
Hence, inequality becomes $8 r^{3} R^{3} \geq(A I \cdot B I \cdot C I)^{2}$.
On the other hand $r=\frac{\Delta}{s}$ and $R=\frac{a b c}{4 \Delta}$, so $r R=\frac{a b c}{4 s}$.
Let $a=x+y, b=y+z, c=z+x$, where x, y, z are segments that incircle divide sides of triangle.
Then $r R=\frac{(x+y)(y+z)(z+x)}{4(x+y+z)}$.
$A I^{2}=x^{2}+r^{2}=x^{2}+\frac{P^{2}}{s^{2}}=x^{2}+\frac{x y z}{(x+y+z)}$. Now inequality becomes
$((x+y)(y+z)(z+x))^{3} \geq 8\left(x^{2}(x+y+z)+x y z\right)\left(y^{2}(x+y+z)+x y z\right)\left(z^{2}(x+y+z)+x y z\right)$.
But we have $x^{2}(x+y+z)+x y z=x(x+y)(x+z)$, so our inequality is equivalent to $(x+y)(y+z)(z+x) \geq$ $8 x y z$, which is true by AM-GM.

79. Author: applepi2000

Say without loss of generality $a \geq b \geq c>0$, since the inequality is symmetric.
Multiplying the given by $a b c$ gives $\sum c\left(a^{2}+b^{2}-c^{2}\right)>2 a b c \Longleftrightarrow \sum a^{2} b+\sum a^{2} c>\sum a^{3}+2 a b c$
Now, use the identity $(a+b-c)(a-b+c)(-a+b+c)=\sum a^{2} b-\sum a^{3}-2 a b c$.
Then the given is $(a+b-c)(a-b+c)(-a+b+c)>0$.
Now note that $a+(b-c) \geq a>0$ and $(a-b)+c \geq c>0$, this becomes $-a+b+c>0 \Longleftrightarrow b+c>a$ Also, rearranging the two strict inequalities above gives $a+b>c$ and $a+c>b$. Thus, a, b, c are sides of a triangle.

80. Author: dr_Civot

If $\angle B=\angle C$ then it's clear that $A P=A Q$.
Now assume that $\angle B<\angle C$. Then $\angle A P B>90$. Let M be midpoint of $B C$, then is $B-M-P[*]$. $C P=B Q$ and $C M=B M \Longrightarrow M P=M Q$, but that is possible just if $Q-M-P[* *]$.
$[*],[* *], Q \in[B C] \Longrightarrow B-Q-P . \Longrightarrow$ In triangle $A Q P \angle Q P A>90>\angle P Q A$ so $A Q>A P$.

80. Author: Mateescu Constantin

If D is a point belonging to the segment $[B C]$ and $\frac{B D}{D C}=k \in \mathbb{R}_{+}$then: $A D^{2}=\frac{c^{2}+k b^{2}}{1+k}-\frac{k a^{2}}{(1+k)^{2}}$ (this can be easily proved by using the dot product i.e. $A D^{2}=\overrightarrow{A D} \cdot \overrightarrow{A D}$, where $\overrightarrow{A D}=\frac{\overrightarrow{A B}+k \cdot \overrightarrow{A C}}{1+k}$ a.s.o.)

Returning to our problem, let's observe that: $\frac{B P}{P C}=\frac{b}{c}$ (by Angle Bisector Theorem) and $\frac{B Q}{Q C}=\frac{P C}{B P}=$
$\frac{c}{b}$, whence, by using the previous relation for $D \in\{P, Q\}$ one has: $\left\{\begin{array}{l}A P^{2}=b c-\frac{a^{2} b c}{(b+c)^{2}} \\ A Q^{2}=\frac{b^{3}+c^{3}}{b+c}-\frac{a^{2} b c}{(b+c)^{2}}\end{array}\right.$
(also note that the first equality can be derived from the known identity $A P=\frac{2 b c}{b+c} \cos \frac{A}{2}$ - the length of the internal bisector drawn from vertex A).
Thus, $A Q \geq A P \Longleftrightarrow \frac{b^{3}+c^{3}}{b+c} \geq b c \Longleftrightarrow b^{2}-b c+c^{2} \geq b c \Longleftrightarrow(b-c)^{2} \geq 0$, which is true.

81. Author: Mateescu Constantin

Using the identities: $\prod l_{a}=\frac{16 R r^{2} s^{2}}{s^{2}+r^{2}+2 R r}$ and $\Delta=r \cdot s$ the given inequality reduces to:
$\frac{16 R r^{2} s^{2}}{s^{2}+r^{2}+2 R r} \leq \frac{r^{2} s^{2}}{r} \Longleftrightarrow 16 R r \leq s^{2}+r^{2}+2 R r \Longleftrightarrow s^{2} \geq 14 R r-r^{2}$, which is weaker than the well known Gerretsen's Inequality $s^{2} \geq 16 R r-5 r^{2}$.

Indeed $16 R r-5 r^{2} \geq 14 R r-r^{2} \Longleftrightarrow 2 R r \geq 4 r^{2} \Longleftrightarrow R \geq 2 r \Longleftrightarrow$ Euler's Inequality.

Remark. The first mentioned identity can be proved like this:
$\prod l_{a}=\prod \frac{2 b c}{b+c} \cos \frac{A}{2}=\frac{8 a^{2} b^{2} c^{2} \prod \cos \frac{A}{2}}{(a+b+c)(a b+b c+c a)-a b c}=\frac{16 R r^{2} s^{2}}{s^{2}+r^{2}+2 R r}$

82. Author: gaussintraining

Left Side.

Since $\sum a^{2}=2 s^{2}-2 r^{2}-8 R r$, the inequality is equivalent to $2 s^{2} \leq 2 r^{2}+8 R r+9 R^{2}$. By comparison to Gerretsen's Inequality i.e. $s^{2} \leq 4 R^{2}+4 R r+3 r^{2}$, we see that it is weaker since $9 R^{2}+8 R r+2 r^{2} \geq 8 R^{2}+8 R r+6 r^{2} \Longrightarrow R^{2} \geq 4 r^{2}$, which follows from Euler's Inequality.

Right Side.

Again, since $\sum a^{2}=2 s^{2}-2 r^{2}-8 R r$, the inequality is equivalent to $s^{2} \geq r^{2}+13 R r$. Again, by comparison to Gerretsen's Inequality i.e $s^{2} \geq 16 R r-5 r^{2}$, we see that it is weaker since $16 R r-5 r^{2} \geq$ $r^{2}+13 R r \Longrightarrow 3 R r \geq 6 r^{2}$, which again follows from Euler's Inequality.

83. Author: r1234

We prove it using complex numbers. Let z_{1}, z_{2}, z_{3} be the three vertices of the triangle $A B C$.
Now we consider the function $g(z)=\sum \frac{\left(z-z_{1}\right)\left(z-z_{2}\right)}{\left(z_{3}-z_{1}\right)\left(z_{3}-z_{2}\right)}$.
We see that $g\left(z_{1}\right)=g\left(z_{2}\right)=g\left(z_{3}\right)=1$. Since this a two degree polynomial so we conclude that $g(z)=1$.
So $1=g(z) \leq \sum \frac{\left|z-z_{1}\right|\left|z-z_{2}\right|}{\left|z_{3}-z_{1}\right|\left|z_{3}-z_{2}\right|}=\sum \frac{D A \cdot D B}{B C \cdot C A}$ and hence the result follows.
It can be checked that the equality holds when D is the orthocenter.

84. Author: Mateescu Constantin

Note that $\triangle I_{a} I_{b} I_{c}$ is acute-angled and I is its orthocenter. Thus, $I I_{a}=2 R_{\Delta I_{a} I_{b} I_{c}} \cos \left(\widehat{I_{b} I_{a} I_{c}}\right)$ and since $R_{\triangle I_{a} I_{b} I_{c}}=2 R$ and $\angle I_{a}=90^{\circ}-\frac{A}{2}$ we obtain: $I I_{a}=4 R \sin \frac{A}{2}$. The proposed inequality is now equivalent to: $64 R^{3} \cdot \frac{r}{4 R} \leq 8 R^{3} \Longleftrightarrow 2 r \leq R$, which is Euler's Inequality.

Remark. The identity $R_{\triangle I_{a} I_{b} I_{c}}=2 R$ can be easily derived. Since $I_{b} I_{c}=4 R \cos \frac{A}{2}$ and by using the law of sines one gets: $R_{\triangle I_{a} I_{b} I_{c}}=\frac{I_{b} I_{c}}{2 \sin I_{a}}=\frac{4 R \cos \frac{A}{2}}{2 \sin \left(90^{\circ}-\frac{A}{2}\right)}=2 R$.

85. Author: crazyfehmy

The inequality is equivalent to $(\cos A+\cos B+\cos C)(\cot A+\cot B+\cot C) \geq \frac{3 \sqrt{3}}{2}$, where A, B, C are angles of an acute triangle.

The function $f(x)=\frac{\cos x}{\sqrt{\sin x}}$ is concave upward for $0<x<\frac{\pi}{2}$ and therefore we are done using Cauchy-Schwarz and Jensen inequality.

86. Author: KingSmasher3

Left Side.

For the left hand side of the problem, we have $(a+b+c)(a b+a c+b c)=a^{2} b+a^{2} c+a b^{2}+b^{2} c+a c^{2}+$ $b c^{2}+3 a b c$. By Schur's Inequality, RHS $\leq a^{3}+b^{3}+c^{3}+3 a b c+3 a b c=a^{3}+b^{3}+c^{3}+6 a b c$.

Right Side.

For the right hand side of the problem, we use the fact that a, b, c are the sides of a triangle, so we let $a=x+y, b=x+z, c=y+z$.
Thus the inequality becomes $(3,0,0)+8(2,1,0)+18 x y z>(3,0,0)+8(2,1,0)+10 x y z$, which is clearly true since $x, y, z>0$.

87. Author: applepi2000

Assuming $F=D$. Then it is equivalent with $4(E D)^{2} \geq(B C)^{2}$.
Let $A D=a, A E=b$. Then by Law of Cosines, $(E D)^{2}=a^{2}+b^{2}-2 a b \cos A$.
$(B C)^{2}=2(a+b)^{2}-2(a+b)^{2} \cos A$
Now note that we need $4(E D)^{2}-(B C)^{2} \geq 0$.
Or, in other words $2 a^{2}+2 b^{2}-4 a b+\left(2 a^{2}+2 b^{2}-4 a b\right) \cos A \geq 0$.
$2(a-b)^{2}(1+\cos A) \geq 0$. This is true since $\cos A>-1$. For equality to hold, we must have $a=b$, or D, E are the midpoints of $A B, A C$ respectively.

88. Author: chronondecay

First assume that the triangle has an obtuse angle at A. It is well-known that A is also the orthocentre of $H B C$, which is an acute triangle. Thus we have $B H \geq B A, C A \leq C H$ since $\angle H A B, \angle H A C$ are obtuse. Thus we may swap H and A, and the LHS of the inequality decreases.

Now assume that $A B C$ is non-obtuse.
Let the feet of altitudes from A, B be A^{\prime}, B^{\prime} respectively. Then
$A A^{\prime}=\frac{2[A B C]}{B C}=\frac{A B \cdot A C \cdot \sin A}{B C}, A B^{\prime}=A C \cos A, A H \cdot A A^{\prime}=A B \cdot A B^{\prime} \Longrightarrow \frac{A H}{B C}=\cot A$.
Finally by Jensen's Inequality on $\cot x$, which is concave up on $\left[0, \frac{\pi}{2}\right)$, we get
$\sum \cot A \geq 3 \cot \frac{\sum A}{3}=3 \cot \frac{\pi}{3}=3 \sqrt{3}$.
Equality occurs iff $A=B=C=\frac{\pi}{3}$, ie. when $\triangle A B C$ is equilateral.

89. Author: gold46

Consider inversion with respect to A_{1} with power 1 . Let A_{i}^{\prime} be image of A_{i}. Applying triangle inequality, we have $A_{1}^{\prime} A_{n}^{\prime} \leq A_{1}^{\prime} A_{2}^{\prime}+\cdots+A_{n-1}^{\prime} A_{n}^{\prime}$
$\Longrightarrow A_{1} A_{n}\left(\frac{1}{M A_{1} \cdot M A_{2}}+\frac{1}{M A_{2} \cdot M A_{3}}+\cdots+\frac{1}{M A_{n-1} \cdot M A_{n}}\right) \geq \frac{A_{1} A_{n}}{M A_{1} \cdot M A_{n}}$
$\Longrightarrow \frac{1}{M A_{1} \cdot M A_{2}}+\frac{1}{M A_{2} \cdot M A_{3}}+\cdots+\frac{1}{M A_{n-1} \cdot M A_{n}} \geq \frac{1}{M A_{1} \cdot M A_{n}}$ as desired.

90. Author: Mateescu Constantin

It is well-known that: $3 \cdot\left(Q A^{2}+Q B^{2}+Q C^{2}\right)=9 \cdot Q G^{2}+\left(a^{2}+b^{2}+c^{2}\right)$. Therefore, $Q A^{2}+Q B^{2}+$ $Q C^{2} \geq \frac{1}{3} \cdot\left(a^{2}+b^{2}+c^{2}\right)$, so the minimum is $\frac{a^{2}+b^{2}+c^{2}}{3}$, which is attained for $Q=G$.

91. Author: BigSams

Let \triangle_{m} be the median with side lengths equal to the medians of \triangle.
Applying the reverse Hadwiger-Finsler Inequality to \triangle_{m},
$\sum m_{a}^{2} \leq 4 \sqrt{3} S_{m}+3 \cdot \sum\left(m_{a}-m_{b}\right)^{2}=4 \sqrt{3} S_{m}+6 \cdot \sum m_{a}^{2}-6 \cdot \sum m_{a} m_{b}$
$\Longleftrightarrow 6 \cdot \sum m_{a} m_{b} \leq 4 \sqrt{3} S_{m}+5 \cdot \sum m_{a}^{2}$
Note the identities $S_{m}=\frac{3}{4} \cdot S$ and $\sum m_{a}^{2}=\frac{3}{4} \cdot \sum a^{2}$.
$\Longleftrightarrow 6 \cdot \sum m_{a} m_{b} \leq 4 \sqrt{3}\left(\frac{3}{4} \cdot S\right)+5 \cdot\left(\frac{3}{4} \cdot \sum a^{2}\right) \Longleftrightarrow 8 \cdot \sum m_{a} m_{b} \leq 4 \sqrt{3} S+5 \cdot \sum a^{2}$
$\Longleftrightarrow \frac{2}{3} \cdot \sum m_{a} \leq \frac{1}{3} \cdot \sqrt{8 \cdot \sum a^{2}+4 \sqrt{3} S}$. Note that $\sum G A=\frac{2}{3} \cdot \sum m_{a}$.

92. Author: creatorvn

The inequality is equivalent to $\frac{a^{2}+b^{2}-c^{2}+R^{2}}{2 a b} \geq 0 \Longleftrightarrow \cos C+\frac{R^{2}}{2 a b} \geq 0$
If $\cos C>0$ the problem has been solved. If not, then the ineq is equivalent to
$\frac{R^{2}}{2 a b} \geq-\cos C=\cos (A+B) \Longleftrightarrow 2 a b \cos (A+B) \leq R^{2}$
$\sin A \sin B \sin \left(\frac{\pi}{2}-A-B\right) \leq \frac{1}{8}$, which is true because
$L H S \leq\left(\frac{\sin A+\sin B+\sin \left(\frac{\pi}{2}-A-B\right)}{3}\right)^{3} \leq \sin \left(\frac{A+B+\frac{\pi}{2}-A-B}{3}\right)^{3}=\frac{1}{8}$.

92. Author: Virgil Nicula

Let the reflection P of A w.r.t. the midpoint M of $[B C]$, i.e. $A B P C$ is a parallelogram \Longrightarrow $4\left(O B^{2}-M B^{2}\right)=4 \cdot O M^{2}=$
$2\left(O A^{2}+O P^{2}\right)-A P^{2} \Longrightarrow 4 R^{2}-a^{2}=2\left(R^{2}+O P^{2}\right)-4 m_{a}^{2}$
$\Longrightarrow 2 R^{2}=a^{2}+2 \cdot O P^{2}-2\left(b^{2}+c^{2}\right)+a^{2} \Longrightarrow O P^{2}=b^{2}+c^{2}+R^{2}-a^{2} \Longrightarrow b^{2}+c^{2}+R^{2} \geq a^{2}$,
with equality iff M is the midpoint of $[A O] \Longleftrightarrow b=c=\frac{a}{\sqrt{3}}$.

92. Author: Virgil Nicula

$b^{2}+c^{2}+R^{2}-a^{2} \geq 0 \Longleftrightarrow 2 b c \cdot \cos A+R^{2} \geq 0 \Longleftrightarrow 8 \sin B \sin C \cos A+1 \geq 0 \Longleftrightarrow$ $4 \cos A[\cos (B-C)+\cos A]+1 \geq 0 \Longleftrightarrow 4 \cos ^{2} A+4 \cos (B-C) \cos A+1 \geq 0 \Longleftrightarrow$ $[2 \cos A+\cos (B-C)]^{2}+\sin ^{2}(B-C) \geq 0$. Equality holds iff $B=C=30^{\circ}$ and $A=120^{\circ}$.

93. Author: Mateescu Constantin

We will rewrite the whole inequality in terms of R, r, s by using the identities: $a b+b c+c a=s^{2}+r^{2}+4 R r$ and $a b c=4 R r s$
$\left(s^{2}+r^{2}+4 R r\right)\left(s^{2}+r^{2}\right) \geq 16 R r s^{2}+36 R^{2} r^{2}$
$\Longleftrightarrow s^{4}+s^{2}\left(2 r^{2}-12 R r\right) \geq 36 R^{2} r^{2}-4 R r^{3}-r^{4}$
$\Longleftrightarrow\left(s^{2}-6 R r+r^{2}\right)^{2} \geq\left(6 R r-r^{2}\right)^{2}+36 R^{2} r^{2}-4 R r^{3}-r^{4}$
$\Longleftrightarrow\left(s^{2}-6 R r+r^{2}\right)^{2} \geq 72 R^{2} r^{2}-16 R r^{3}$.
By Gerretsen's Inequality i.e. $s^{2} \geq 16 R r-5 r^{2}$, one gets: $\left(s^{2}-6 R r+r^{2}\right)^{2} \geq\left(10 R r-4 r^{2}\right)^{2}$,
Thus it suffices to prove the following inequality $\left(10 R r-4 r^{2}\right)^{2} \geq 72 R^{2} r^{2}-16 R r^{3}$ which reduces to the obvious one: $(R-2 r)(7 R-2 r) \geq 0$. Equality holds iff $\triangle A B C$ is equilateral.

94. Author: creatorvn

$\frac{\sum a^{2}}{\sum a b}-1 \leq \sqrt{1-\frac{2 r}{R}} \Longleftrightarrow\left(\frac{s^{2}-3 r^{2}-12 R r}{s^{2}+r^{2}+4 R r}\right)^{2} \leq 1-\frac{2 r}{R}$
$L H S \leq\left(\frac{4 R^{2}+3 r^{2}+4 R r-3 r^{2}-12 R r}{16 R r-5 r^{2}+r^{2}+4 R r}\right)^{2}=\left(\frac{R^{2}-2 R r}{5 R r-r^{2}}\right)^{2}=\left(\frac{1-2 t}{5 t-t^{2}}\right)^{2}$ where $t=\frac{r}{R}$
We need to prove $\left(\frac{1-2 t}{5 t-t^{2}}\right)^{2} \leq(1-2 t)$, which is true, since Euler's Inequality states $t \leq \frac{1}{2}$.

95. Author: creatorvn

$\frac{\frac{2 \Delta}{a c}}{\frac{(s-b)(s-a)}{a b}}+\frac{\frac{2 \Delta}{a b}}{\frac{(s-c)(s-a)}{a c}} \geq 4 \frac{\sqrt{\frac{s(s-a)}{b c}}}{1-\sqrt{\frac{(s-b)(s-c)}{b c}}} \Longleftrightarrow \frac{2 \Delta}{s-a}\left(\frac{b}{c(s-b)}+\frac{c}{b(s-c)}\right) \geq 4 \frac{\sqrt{s(s-a)}}{\sqrt{b c}-\sqrt{(s-b)(s-c)}}$
$\Longleftrightarrow \frac{\sqrt{(s-b)(s-c)}}{s-a}\left(\frac{b}{c(s-b)}+\frac{c}{b(s-c)}\right) \geq 2 \frac{\sqrt{b c}+\sqrt{(s-b)(s-c)}}{s(s-a)}$
$\Longleftrightarrow s \sqrt{(s-b)(s-c)}\left(\frac{b}{c(s-b)}+\frac{c}{b(s-c)}\right) \geq 2(\sqrt{b c}+\sqrt{(s-b)(s-c)})$
By AM-GM, $s \geq \sqrt{b c}+\sqrt{(s-b)(s-c)}$ and $\sqrt{(s-b)(s-c)}\left(\frac{b}{c(s-b)}+\frac{c}{b(s-c)}\right) \geq 2$
Multiplying them yields the necessary result.

96. Author: luisgeometra

Let $X B=X C=L$. By Ptolemy's theorem for the cyclic quadrilateral $A B X C$, we get
$A B \cdot L+A C \cdot L=A X \cdot B C \Longrightarrow A X=\frac{L(A B+A C)}{B C}$.
By triangle inequality we obtain $X B+X C>B C \Longrightarrow 2 L>B C$
Thus, $A X>\frac{1}{2}(A B+A C)$. Adding the cyclic expressions together yields the result.

97. Author: Mateescu Constantin

Since the points M, I, N are collinear, we will have to find a relationship between the ratios $\frac{B M}{M A}$ and $\frac{C N}{A N}$. In order to do this, we will express the vectors $\overrightarrow{I M}$ and $\overrightarrow{I N}$ in terms of $\overrightarrow{A B}$ and $\overrightarrow{B C}$ and the collinearity of the former vectors will yield a relationship between the previous ratios.

Therefore, the colinearity of vectors $\overrightarrow{I M}$ and $\overrightarrow{I N}$ implies: $(a-k b-k c)(a+b-q c)=(-c-k c)(a-q b-q c)$ which after expanding is equivalent to $q=\frac{a-b k}{c}$. The inequality becomes: $\frac{a^{2}}{4 b c} \geq k \cdot \frac{a-b k}{c}$ $\Longleftrightarrow a^{2} \geq 4 b k(a-b k) \Longleftrightarrow a^{2}+4 k^{2} b^{2} \geq 4 a b k \Longleftrightarrow(a-2 k b)^{2} \geq 0$, which is clearly true. Equality is attained iff $a=2 k \cdot b$ i.e. $\frac{M \bar{B}}{A M}=\frac{a}{2 b}$ and $\frac{N C}{A N}=\frac{a}{2 c}$.

97. Author: Virgil Nicula

Lemma. Let d be a line, three points $\{A, B, C\} \subset d$ and a point $P \notin d$. For another line δ denote intersections K, L, M of δ with the lines $P A, P B, P C$ respectively. Prove that there is the relation $\frac{\overline{L A}}{\overline{L P}} \cdot \overline{B C}+\frac{\overline{M B}}{\overline{M P}} \cdot \overline{C A}+\frac{\overline{N C}}{\overline{N P}} \cdot \overline{A B}=0$.
Proof. Let d^{\prime} for which $P \in d^{\prime}, d^{\prime} \| d$. Denote $X \in d \cap \delta, Y \in d^{\prime} \cap \delta$. Thus, $\frac{\overline{L A}}{\overline{L P}} \cdot \overline{B C}+\frac{\overline{M B}}{\overline{M P}}$. $\overline{C A}+\frac{\overline{N C}}{\overline{N P}} \cdot \overline{A B}=0 \Longleftrightarrow \frac{\overline{A X}}{\overline{P Y}} \cdot \overline{B C}+\frac{\overline{B X}}{\overline{P Y}} \cdot \overline{C A}+\frac{\overline{C X}}{\overline{P Y}} \cdot \overline{A B}=0 \Longleftrightarrow \overline{A X} \cdot \overline{B C}+\overline{B X} \cdot \overline{C A}+\overline{C X} \cdot \overline{A B}=0$.
Denote $D \in A I \cap B C$ and apply the lemma. Obtain that $\frac{M B}{M A} \cdot D C+\frac{N C}{N A} \cdot B D=\frac{I D}{I A} \cdot B C \Longleftrightarrow$ $b \cdot \frac{M B}{M A}+c \cdot \frac{N C}{N A}=a$.
In conclusion, $a^{2}=\left(b \cdot \frac{M B}{M A}+c \cdot \frac{N C}{N A}\right)^{2} \geq 4 \cdot\left(b \cdot \frac{M B}{M A}\right) \cdot\left(c \cdot \frac{N C}{N A}\right)=4 b c \cdot \frac{M B}{M A} \cdot \frac{N C}{N A} \Longrightarrow$ $\frac{M B}{M A} \cdot \frac{N C}{N A} \leq \frac{a^{2}}{4 b c}$.

98. Author: BigSams

Applying the Hadwiger-Finsler Inequality to $\triangle_{m}, \sum m_{a}^{2} \geq \sum\left(m_{a}-m_{b}\right)^{2}+4 \sqrt{3} S_{m}$ $\Longleftrightarrow 2 \cdot \sum m_{a} m_{b} \geq \sum m_{a}^{2}+4 \sqrt{3} S_{m}$

Note the identities $S_{m}=\frac{3}{4} \cdot S$ and $\sum m_{a}^{2}=\frac{3}{4} \cdot \sum a^{2}$.
$\Longleftrightarrow 2 \cdot \sum m_{a} m_{b} \geq \frac{3}{4} \cdot \sum a^{2}+3 \sqrt{3} S \Longleftrightarrow \frac{4}{3} \cdot \sum m_{a} m_{b} \geq \frac{1}{2} \cdot \sum a^{2}+2 \sqrt{3} S$
$\Longleftrightarrow \frac{2}{3} \cdot \sum m_{a} \geq \sqrt{\frac{2\left(a^{2}+b^{2}+c^{2}\right)+4 \sqrt{3} S}{3}}$. Note that $\sum G A=\frac{2}{3} \cdot \sum m_{a}$.

99. Author: Virgil Nicula

Denote the midpoint M of $[B C]$ and $N \in A S \cap B C$. Is well-known that $\frac{N B}{c^{2}}=\frac{N C}{b^{2}}=\frac{a}{b^{2}+c^{2}}$.
Apply van Aubel's relation to $S \frac{A S}{b^{2}+c^{2}}=\frac{S N}{a^{2}}=\frac{A N}{a^{2}+b^{2}+c^{2}}$.
Denote $A M=m_{a}, A N=s_{a}, m(\widehat{B A N})=m((\widehat{C A M})=\phi$.
Apply the Sine Law to : $\left\{\begin{array}{cc}\triangle M A C & \frac{M C}{\sin \phi}=\frac{m_{a}}{\sin C} \\ \triangle N A B & \frac{s_{a}}{\sin B}=\frac{N B}{\sin \phi}\end{array} \| \Longrightarrow \frac{s_{a}}{m_{a}}=\frac{2 b c}{b^{2}+c^{2}}\right.$
$\Longrightarrow \frac{A S}{A G}=\frac{\frac{s_{a}\left(b^{2}+c^{2}\right)}{a^{2}+b^{2}+c^{2}}}{\frac{2 m_{a}}{3}}=\frac{3\left(b^{2}+c^{2}\right)}{2\left(a^{2}+b^{2}+c^{2}\right)} \cdot \frac{s_{a}}{m_{a}}=\frac{3\left(b^{2}+c^{2}\right)}{2\left(a^{2}+b^{2}+c^{2}\right)} \cdot \frac{2 b c}{b^{2}+c^{2}}=\frac{3 b c}{a^{2}+b^{2}+c^{2}}$ a.s.o.
$\Longrightarrow \sum \frac{A S}{A G}=\frac{3(a b+b c+c a)}{a^{2}+b^{2}+c^{2}} \leq 3$.

100. Author: Mateescu Constantin

Note that the inequality can be written as: $a^{2}+m^{2} b^{2} \geq m \cos \phi \cdot\left(a^{2}+b^{2}-c^{2}\right)+4 m \sin \phi \cdot \Delta$.
And since $\left\{\begin{array}{l}a^{2}+b^{2}-c^{2}=2 a b \cos C \\ 2 \Delta=a b \sin C\end{array}\right.$
Our inequality becomes: $a^{2}+m^{2} b^{2} \geq 2 a b \cos C \cdot m \cos \phi+2 a b \sin C \cdot m \sin \phi$ $\Longleftrightarrow a^{2}+m^{2} b^{2} \geq 2 a b m \cdot(\cos C \cos \phi+\sin C \sin \phi) \Longleftrightarrow a^{2}+m^{2} b^{2} \geq 2 a b \cdot m \cos (C-\phi)$, which is obviously true because $a^{2}+m^{2} b^{2} \geq 2 a b m \geq 2 a b m \cos (C-\phi)$.
Equality occurs if and only if $a=m \cdot b$ and $\phi=C$.

[^0]: ${ }^{1}$ The original thread: http://www.artofproblemsolving.com/Forum/viewtopic.php?f=151\&t=403006/

