"Số nguyên tố là để nhân chứ không phải để cộng."
Lev Landau
Bạn đang ở: Trang chủToán OlympicĐề thi, Kiểm tra Đề thi học sinh giỏi Quốc gia môn Toán năm 2013

Đề thi học sinh giỏi Quốc gia môn Toán năm 2013

Tải về.

 

BỘ GIÁO DỤC VÀ ĐÀO TẠO_______________KỲ THI CHỌN HỌC SINH GIỎI QUỐC GIA THPT
  ĐỀ THI CHÍNH THỨC _____________________________________NĂM 2013
_____________________________________________Môn:Toán
_____________________________________________Thời gian:180 phút
_____________________________________________Ngày thi thứ nhất: 11/01/2013

 

matholymiad

Bài 1(5,0 điểm):
Giải hệ phương trình sau:
$$\left\{\begin{matrix}\sqrt{\sin^2x+\dfrac{1}{\sin^2x}}+\sqrt{\cos^2y+\dfrac{1}{\cos ^2y}}=\sqrt{\dfrac{20y}{x+y}} \textbf{ (1)}\\ \sqrt{\sin^2y+\dfrac{1}{\sin^2y}}+\sqrt{\cos^2x+\dfrac{1}{\cos ^2x}}=\sqrt{\dfrac{20x}{x+y}} \textbf{ (2)} \end{matrix}\right.$$


Bài 2(5,0 điểm):
Cho dãy số xác định như sau:
$$\left \{ \begin{matrix} a_1&=&1 &\\a_{n+1}&=&3-\dfrac{a_n+2}{2^{a_n}}&, \forall \geq 1 \end{matrix}\right. $$

Chứng minh dãy số có giới hạn và tìm giới hạn đó

Bài 3(5,0 điểm):

Cho tam giác không cân $ABC$. Kí hiệu $(I)$ là đường tròn tâm $I$ nội tiếp tam giác $ABC$ và $D,E,F$ là các tiếp điểm của $(I)$ với $BC,CA,AB$. Đường thẳng qua $E$ vuông góc $BI$ cắt $(I)$ tại $K$ khác $E$, đường thẳng qua $F$ vuông góc $CI$ cắt $(I)$ tại $L$ khác $F$. Gọi $J$ là trung điểm $KL$.
a) Chứng minh $D,I,J$ thẳng hàng
b) Giả sử $B,C$ cố định, $A$ thay đổi sao cho tỷ số $\frac{AB}{AC}=k$ không đổi. Gọi $M,N$ tương ứng là các giao điểm $IE, IF$ với $(I)$ ($M$ khác $E$, $N$ khác $F$). $MN$ cắt $IB, IC$ tại $P,Q$. Chứng minh đường trung trực $PQ$ luôn qua 1 điểm cố định

Bài 4(5,0 điểm): Cho trước một số số tự nhiên được viết trên một đường thẳng. Ta thực hiện các bước điền số lên đường thẳng như sau: tại mỗi bước, trước tiên xác định tất cả các cặp số kề nhau hiện có trên đường thẳng theo thứ tự từ trái qua phải, sau đó điền vào giữa mỗi cặp một số bẳng tổng của hai số thuộc cặp đó. Hỏi sau $2013$ bước, số $2013$ xuất hiện bao nhiêu lần trên đường thẳng trong các trường hợp sau:

   a) Các số cho trước là: $1$ và $1000$?
   b) Các số cho trước là: $1,2,...,1000$ và được xếp theo thức tự tăng dần từ trái qua phải

 

Mời bạn thảo luận tại đây

Bình luận (2)

  • Khách - fuck

    :):D:o:p:(;)

    0 Thích
  • Khách - Đáp án ??

    Ko đáp án thì dù rất hay xem cũng như ko

    0 Thích

Gửi bình luận

Đăng bình luận như là khách viếng thăm

0
điều khoản sử dụng.

Cộng đồng Toán học

Là cộng đồng Toán học trực tuyến lâu đời nhất Việt Nam, Diễn đàn Toán học là nơi quy tụ của học sinh, giáo viên và những người yêu Toán ở trong nước và nước ngoài. 

Tham gia...

Sách và tài liệu tham khảo

Diễn đàn Toán học và nơi tập trung hàng trăm ngàn tài liệu miễn phí phục vụ cho học tập và nghiên cứu, trong đó có rất nhiều chuyên đề, bài viết được chính các thành viên của diễn đàn tham gia soạn thảo.

Xem và tải về...

Các cuộc thi Toán học online

Nhiều cuộc thi về Toán dành cho học sinh các cấp đang diễn ra sôi động. Hãy tham gia thi tài với bạn bè từ khắp nơi trên đất nước để giao lưu học hỏi và nâng cao kiến thức !

Tham gia...