
ANALYSIS AGAINST NUMBER THEORY?

”Olympiad problems can be solved without the aid of analysis or

linear algebra” is a sentence always heard when speaking about the el-

ementary problems given in contests. This is true, but the true nature

and essence of some of these problems is in analysis and this is the reason

for which such type of problems are always the highlight of a contest.

Their elementary solutions are very tricky and sometimes extremely dif-

ficult, while using analysis they can be solved quickly. Well, of course,

”quickly” only if you see the sequence that hides after each problem.

Practically, our aim is to exhibit convergent sequences formed by in-

teger numbers. These sequences must become constant and from here

the problem is much easier. The difficulty is in finding those sequences.

Sometimes, this is easy, but most of the time this is a very difficult task.

We will develop our skills in ”hunting” these sequences by solving first

some easy problems (anyway, ”easy” is a relative concept: try to solve

them elementary and you will see if they really are easy) and after that

we will attack the chestnuts.

As usual, we begin with a classic beautiful problem, which has lots

of applications and extensions.

Example 1. Let f, g ∈ Z[X] be two non-constant polynomials such

that f(n)|g(n) for an infinite natural numbers n. Prove that f divides g

in Q[X].

Solution. Indeed, we need to look at the remainder of g when di-

vided with f in Q[X]! Let us write g = fh+r, were h, r are polynomials

from Q[X] and deg r < deg f . Now, multiplying by the common denom-

inator of all coefficients of polynomials h, r, the hypothesis becomes:

there exists two infinite sequences (an)n≥1, (bn)n≥1 of integer numbers

and a positive integer N such that bn = N
r(an)
f(an)

(we could have some
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problems with the roots of f , but they are in finite number and the

sequence (an)n≥1 tends to infinity, so from a certain point, an is not a

root of f). Since deg r < deg f , it follows that
r(an)
f(an)

→ 0, thus (bn)n≥1

is a sequence of integer numbers that tends to 0. This implies that from

a certain point, all the terms of these sequence are 0. Well, this is the

same as r(an) = 0 from a certain point n0, which is practically the same

thing with r = 0 (don’t forget that any non-zero polynomial has only a

finite number of roots!). But in this moment the problem is solved.

The next problem we are going to discuss is a particular case of a

much more general and classical result: if f is a polynomial with integer

coefficients, k > 1 is a natural number and k
√

f(n) ∈ Q for all natural

numbers n, then there exists a polynomial g ∈ Q[X] such that f(x) =

gk(x). We won’t discuss here this general result (the reader will find a

proof in the chapter about arithmetic properties of polynomials).

Example 2. Let a 6= 0, b, c be integers such that for any natural

number n, the number an2 + bn+ c is a perfect square. Prove that there

exist x, y ∈ Z such that a = x2, b = 2xy, c = y2.

Solution. Let us begin by writing an2 + bn + c = x2
n for a certain

sequence of nonnegative integers (xn)n≥1. We could expect that xn−n
√

a

converges. And yes, it converges, but it’s not a sequence of integers, so

the convergence is useless. In fact, it’s not that useless, but we need

another sequence. The easiest way is to work with (xn+1−xn)n≥1, since

this sequence certainly converges to
√

a (the reader has already noticed

why it wasn’t useless to find that xn−n
√

a is convergent; we used this to

establish the convergence of (xn+1−xn)n≥1). This time, the sequence is

formed by integer numbers, so it is constant from a certain point. Thus,

we can find a number M such that if n ≥ M then xn+1 = xn+
√

a. Thus,

a must be a perfect square, let us say a = x2. A simple induction shows

that xn = xM + (n−M)x and so (xM −Mx + nx)2 = x2n2 + bn + c for
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all n ≥ M . A simple identification of coefficients finishes the solution,

since we can take y = xM −Mx.

The following problem is based on the same idea, but it really doesn’t

seem to be related with mathematical analysis. In fact, as we will see,

it is closely related to the concept of convergence.

Example 3. Let a, b, c > 1 be positive integers such that for any

positive integer n there exists a positive integer k such that ak+bk = 2cn.

Prove that a = b.

Laurentiu Panaitopol

Solution. What does the problem say in fact? That we can find a se-

quence of positive integers (xn)n≥1 such that axn+bxn = 2cn. What could

be the convergent sequence here? We see that (xn)n≥1 is appreciatively

kn for a certain constant k. Thus, we could expect that the sequence

(xn+1 − xn)n≥1 converges. Let us see if this is true or not. From where

could we find xn+1−xn? Certainly, by writing that axn+1 +bxn+1 = 2cn+1

and after that considering the value
axn+1 + bxn+1

axn + bxn
= c. Now, let us sup-

pose that a > b and let us write
axn+1 + bxn+1

axn + bxn
= c in the form

axn+1−xn

1 +
(

b

a

)xn+1

1 +
(

b

a

)xn
= c,

from where it is easy to see that axn+1−xn converges to c. Why is it so

easy? It would be easy if we could show that xn → ∞. Fortunately,

this is immediate, since 2axn > 2cn ⇒ xn > n loga c. So, we found

that axn+1−xn converges. Being a sequence of integer numbers, it must

become constant, so there exist M such that for all n ≥ M we have
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axn+1−xn = c. This means that for all n ≥ M we also have

1 +
(

b

a

)xn+1

1 +
(

b

a

)xn
= 1.

But this is impossible, since a > b. Thus, our assumption was wrong

and we must have a ≤ b. Due to symmetry in a and b, we conclude that

a = b.

Another easy example is the following problem, in which finding the

right convergent sequence of integers in not difficult at all. But, attention

must be paid to details!

Example 4. Let a1, a2, . . . , ak be positive real numbers such that

at least one of them is not an integer. Prove that there exits infinitely

many natural numbers n such that n and [a1n] + [a2n] + · · ·+ [akn] are

relatively prime.

Gabriel Dospinescu, Arhimede Magazine

Solution. Of course, the solution of such a problem is better to be

indirect. So, let us assume that there exists a number M such that for all

n ≥ M the numbers n and [a1n] + [a2n] + · · ·+ [akn] are not relatively

prime. Now, what are the most efficient numbers n to be used? Yes,

they are the prime numbers, since if n is prime and it is not relatively

prime with , [a1n] + [a2n] + · · · + [akn], then it must divide [a1n] +

[a2n] + · · · + [akn]. This suggests us to consider the sequence of prime

numbers (pn)n≥1. Since this sequence is infinite, there is a number N

such that if n ≥ N then pn ≥ M . According to our assumption, this

implies that for all n ≥ N there exist a natural number xn such that

[a1pn]+[a2pn]+ · · ·+[akpn] = xnpn. And now, you have already guessed

what is the convergent sequence! Yes, it is (xn)n≥N . This is obvious,

since
[a1pn] + [a2pn] + · · ·+ [akpn]

pn
tends to n ≥ Na1 + a2 + · · · + ak.
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Thus, we can find a number P such that for xn = a1 + a2 + · · ·+ ak for

all n ≥ P . But this is the same as {a1pn}+ {a2pn}+ · · ·+ {akpn} = 0.

Of course, this says that aipn ∈ Z for all i = 1, k and n ≥ P . Well,

the conclusion is immediate: ai ∈ Z for all i = 1, k, which contradicts

the hypothesis. Consequently, we were wrong again and the problem

statement is right!

Step by step, we start to have some experience in ”guessing” the

sequences. Thus, it’s time to solve some more difficult problems. The

next problem we are going to discuss may seem obvious after reading

the solution. In fact, it’s just that type of problem whose solution is very

short, but very hard to find.

Example 5. Let a, b ∈ Z such that for all natural numbers n the

number a · 2n + b is a perfect square. Prove that a = 0.

Poland TST

Solution. Again, we argue by contradiction. Suppose that a 6= 0.

Then, of course, a > 0, otherwise for large values of n the number

a ·2n+b is negative. According to the hypothesis, there exists a sequence

of positive integers (xn)n≥1 such that for all natural numbers n, xn =
√

a · 2n + b. Then, a direct computation shows that lim
n→∞

(2xn−xn+2) =

0. This implies the existence of a natural number N such that for all

n ≥ P we have 2xn = xn+2. But 2xn = xn+2 is equivalent with b = 0.

Then, a and 2a are both perfect squares, which is impossible for a 6= 0.

This shows, as usually, that our assumption was wrong and indeed a = 0.

A classical result of Schur states that for any non-constant polyno-

mial f with integer coefficients, the set of prime numbers dividing at

least one of the numbers f(1), f(2), f(3), . . . is infinite. The following

problem is a generalization of this result.

Example 6. Suppose that f is a polynomial with integer coefficients

and (an) is a strictly increasing sequence of natural numbers such that
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an ≤ f(n) for all n. Then the set of prime numbers dividing at least one

term of the sequence is infinite.

Solution. The idea is very nice: for any finite set of prime numbers

p1, p2, . . . , pr and any k > 0, we have∑
α1,α2,...,αN∈Z+

1

pkα1
1 . . . pkαN

N

< ∞.

Indeed, it suffices to remark that we have actually

∑
α1,α2,...,αN∈Z+

1

pkα1
1 . . . pkαN

N

N∏
j=1

∑
i≥0

1
pki

j

=
n∏

j=1

pk
j

pk
j − 1

.

On the other hand, by taking k =
1

2 deg(f)
we clearly have

∑
n≥1

1
(f(n))k

= ∞.

Thus, if the conclusion of the problem is not true, we can find

p1, p2, . . . , pr such that any term of the sequence is of the form

pkα1
1 . . . pkαN

N and thus∑
n≥1

1
ak

n

≤
∑

α1,α2,...,αN∈Z+

1

pkα1
1 . . . pkαN

N

< ∞.

On the other hand, we also have∑
n≥1

1
ak

n

≥
∑
n≥1

1
(f(n))k

= ∞,

which is clearly impossible.

The same idea is employed in the following problem.

Example 7. Let a, b ≥ 2 be natural numbers. Prove that there is

a multiple of a which contains all digits 0, 1, . . . , b − 1 when written in

base b.

Adapted after a Putnam problem
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Solution. Let’s suppose the contrary. Then any multiple of a misses

at least a digit when written in base b. Since the sum of inverses of all

multiples of a diverges (because 1+
1
2

+
1
3

+ · · · = ∞), it suffices to show

that the sum of inverses of all natural numbers missing at least one digit

in base b is convergent and we will reach a contradiction. But of course,

it suffices to prove it for a fixed (but arbitrary) digit j. For any n ≥ 1,

there are at most (b − 1)n numbers which have n digits in base b, all

different from j. Thus, since each one of them is at least equal to bn−1,

the sum of inverses of numbers that miss the digit j when written in base

b is at most equal to
∑

n

b

(
b− 1

b

)n

, which converges. The conclusion

follows.

We return to classical problems to discuss a beautiful problem, that

appeared in the Tournament of the Towns in 1982, in a Russian Team

Selection Test in 1997 and also in the Bulgarian Olympiad in 2003. It’s

beauty explains probably the preference for this problem.

Example 8. Let f ∈ Z[X] be a polynomial with leading coefficient

1 such that for any natural number n the equation f(x) = 2n has at

least one natural solution. Prove that deg f = 1.

Solution. So, the problem states that there exists a sequence of

positive integers (xn)n≥1 such that f(xn) = 2n. Let us suppose that

deg f = k > 1. Then, for large values of x, f(x) behaves like xk. So,

trying to find the right convergent sequence, we could try first to ”think

big”: we have xk
n
∼= 2n, that is for large n, xn behaves like 2

n
k . Then,

a good possibly convergent sequence could be xn+k − 2xn. Now, the

hard part: proving that this sequence is indeed convergent. First, we

will show that
xn+k

xn
converges to 2. This is easy, since the relation
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f(xn+k) = 2kf(xn) implies

f(xn+k)
xk

n+k

(
xn+k

xn

)k

= 2k · f(xn)
xk

n

and since

lim
x→∞

f(x)
xk

= 1 and lim
n→∞

xn = ∞

(do you see why?), we find that indeed

lim
n→∞

xn+k

xn
= 2.

We will see that this will help us a lot. Indeed, let us write

f(x) = xk +
k−1∑
i=0

aix
i.

Then f(xn+k) = 2kf(xn) can be also written

xn+k − 2xn =

k−1∑
i=0

ai(2kxi
n − xi

n+k)

k−1∑
i=0

(2xn)ixk−i−1
n+k

But from the fact that lim
n→∞

xn+k

xn
= 2. it follows that the right-hand

side in the above relation is also convergent. So, (xn+k−2xn)n≥1 is con-

vergent and it follows that there exist M,N such that for all n ≥ M we

have xn+k = 2xn+N . But now the problem is almost done, since the last

result combined with f(xn+k) = 2kf(xn) yields f(2xn + N) = 2kf(xn)

for n ≥ M , that is f(2x + N) = 2kf(x). So, an arithmetical property

of the polynomial turned into an algebraic one using analysis. This al-

gebraic property helps us to immediately solve the problem. Indeed, we

see that if z is a complex root of f , then 2z + N, 4z + 3N, 8z + 7N, . . .

are all roots of f . Since f is non-zero, this sequence must be finite and

this can happen only for z = −N . Since −N is the only root of f , we

deduce that f(x) = (x + N)k. But since the equation f(x) = 22k+1 has
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natural roots, we find that 2
1
k ∈ N , which implies, contradiction. Thus,

our assumption was wrong and deg f = 1.

The idea of the following problem is so beautiful, that after reading

the solution the reader will have the impression that the problem is

trivial. Wrong! The problem is really difficult and to make again an

experiment, we will ask the reader to struggle a lot before reading the

solution. He will see the difficulty.

Example 9. Let π(n) be the number of prime numbers smaller than

or equal to n. Prove that there exist infinitely many numbers n such that

π(n)|n.

AMM

Solution. First, let us prove the following result, which is the key

of the problem.

Lemma. For any increasing sequence of positive integers (an)n≥1

such that lim
n→∞

an

n
= 0, the sequence

(
n

an

)
n≥1

contains all natural num-

bers. In particular, for infinitely many n we have that n divides an.

Proof. Even if it seems unbelievable, this is true and moreover the

proof is extremely short. Let m ≥ 1 be a natural number. Consider the

set A =
{

n ≥ 1| amn

mn
≥ 1

m

}
. This set contains and it is bounded, since

lim
n→∞

amn

mn
= 0. Thus it has a maximal element k. If

amk

mk
=

1
m

, then

m is in the sequence
(

n

an

)
n≥1

. Otherwise, we have am(k+1) ≥ amk ≥

k + 1, which shows that k + 1 is also in the set, contradiction with the

maximality of k. The lemma is proved.

Thus, all we need to show is that lim
n→∞

π(n)
n

= 0. Fortunately, this is

well-known and not difficult to prove. There are easier proofs than the

following one, but we prefer to deduce it from a famous and beautiful

result of Erdos.
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Erdos’s theorem. We have
∏
p≤n

p prime

p ≤ 4n.

The proof of this result is magnificient. The proof is by induction.

For small values of n it is clear. Now, assume the inequality true for all

values smaller than n and let us prove that
∏
p≤n

p prime

p ≤ 4n. If nis even,

we have nothing to prove, since∏
p≤n

p prime

=
∏

p≤n−1
p prime

p ≤ 4n−1 < 4n.

Now, assume that n = 2k + 1 and consider the binomial coefficient(
2k + 1

k

)
=

(k + 2) . . . (2k + 1)
k!

.

A simple application of the fact that

22k+1 =
∑
i≥0

(
2k + 1

i

)
shows that (

2k + 1
k

)
≤ 4k.

Thus, using the inductive hypothesis, we find that∏
p≤n

p prime

p ≤
∏

p≤k+1
p prime

p
∏

k+2≤p≤2k+1
p prime

p ≤ 4k+1 · 4k = 4n.

Now, the fact that lim
n→∞

π(n)
n

= 0 is trivial. Indeed, fix k ≥ 1. We

have for all large n the inequality

n lg 4 ≥
∑

k≤p≤n
p prime

lg p ≥ lg k(π(n)− π(k)),

which shows that

π(n) ≤ π(k)
n

+
lg 4
lg k

.
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This shows of course that lim
n→∞

π(n)
n

= 0. The problem is solved.

It is time now for the last problem, which is, as usual, very hard. We

don’t exaggerate if we say that the following problem is exceptionally

difficult.

Example 10. Let a, b > 1 be natural numbers such that for any

natural number n, an − 1|bn − 1. Prove that b is a natural power of a.

Marius Cavachi, AMM

Solution. This time we will be able to find the right convergent

sequence only after some double recurrences. Let us see. So, initially

we are given that there exists a sequence of positive integers (x1
n)n≥1

such that x1
n =

bn − 1
an − 1

Then, x1
n
∼=
(

b

a

)n

for large values of n. So, we

could expect that the sequence (x2
n)n≥1, x2

n = bx1
n−ax2

n+1 is convergent.

Unfortunately,

x2
n =

bn+1(a− 1)− an+1(b− 1) + a− b

(an − 1)(an+1 − 1)
,

which is not necessarily convergent. But... if we look again at this

sequence, we see that for large values of n it grows like
(

b

a2

)n

, so

much slower. And this is the good idea: repeat this procedure until

the final sequence behaves like
(

b

ak+1

)n

, where k is chosen such that

ak ≤ b < ak+1. Thus, the final sequence will converge to 0. Again,

the hard part has just begun, since we have to prove that if we define

xi+1
n = bxi

n− aixi
n+1 then lim

n→∞
xk+1

n = 0. This isn’t easy at all. The idea

is to compute x3
n and after that to prove the following statement: for

any i ≥ 1 the sequence (xi
n)n≥1 has the form

cib
n + ci−1a

(i−1)n + · · ·+ c1a
n + c0

(an+i−1 − 1)(an+i−2 − 1) . . . (an − 1)

for some constants c0, c1, . . . , ci. Proving this is not so hard, the hard part

was to think about it. How can we prove the statement otherwise than by
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induction? And induction turns out to be quite easy. Supposing that the

statement is true for i, then the corresponding statement for i+1 follows

from xi+1
n = bxi

n − aixi
n+1 directly (note that to make the difference, we

just have to multiply the numerator cib
n+ci−1a

(i−1)n+· · ·+c1a
n+c0 with

b and an+i−1. Then, we proceed in the same way with the second fraction

and the term bn+1an+i will vanish). So, we have found a formula which

shows that as soon as ai > b we have lim
n→∞

xi
n = 0. So, we have deduced

that lim
n→∞

xk+1
n = 0. Another step of the solution is to take the minimal

index j such that lim
n→∞

xj
n = 0. Obviously, j > 1 and the recurrence

relation xi+1
n = bxi

n − aixi
n+1 shows that xi

n ∈ Z for all n, i. Thus, there

exists M such that whenever n ≥ M we have xj
n = 0. This is the same

as bxj−1
n = ajxj−1

n+1 for all n ≥ M , which implies xj−1
n =

(
b

aj

)n−M

xj−1
M

for all n ≥ M . Let us suppose that b is not a multiple of a. Since(
b

aj

)n−M

xj−1
M ∈ Z for all n ≥ M , we must have xj−1

M = 0 and so

xj−1
n = 0 for n ≥ M , which means lim

n→∞
xj

n = 0. But this contradicts

the minimality of j. Since we have reached a contradiction, we must

have a|b. Let us write b = ca. Then, the relation an − 1|bn − 1 implies

an − 1|cn − 1. And now are finally done. Why? We have just seen that

an − 1|cn − 1 for all n ≥ 1. But our previous argument applied for c

instead of b shows that a|c. Thus, c = ad and we deduce again that a|d.

Since this process cannot be infinite, b must be a power of a.

It worth saying that there exist an even stronger result: it is enough

to suppose that an − 1|bn − 1 for an infinite number n, but this is a

much more difficult problem. It follows from a result found by Bugeaud,

Corvaja and Zannier in 2003:

If a, b > 1 are multiplicatively independent in Q∗ (that is loga b 6∈ Q),

then for any ε > 0 there exists n0 = n0(a, b, ε) such that gcd(an−1, bn−
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1) < 2εn for all n ≥ n0. Unfortunately, the proof is too advanced to be

presented here.

Problems for training

1. Let f ∈ Z[X] be a polynomial of degree k such that for all n ∈ N
we have k

√
f(n) ∈ Z. Prove that there exists integer numbers a, b such

that f(x) = (ax + b)k.

2. Find all arithmetic progressions of positive integers (an)n≥1 such

that for all n ≥ 1 the number a1 + a2 + · · ·+ an is a perfect square.

Laurentiu Panaitopol, Romanian Olympiad 1991

3. Let p be a polynomial with integer coefficients such that there

exists a sequence of pair wise distinct positive integers (an)n≥1 such

that p(a1) = 0, p(a2) = a1, p(a3) = a2, . . . . Find the degree of this

polynomial.

Tournament of the Towns, 2003

4. Let f, g : N∗ → N∗ two functions such that |f(n)− n| ≤ 2004
√

n

and n2 + g2(n) = 2f2(n). Prove that if f or g is surjective, then these

functions have infinitely many fixed points.

Gabriel Dospinescu, Moldova TST 2004

5. Let a, b be natural numbers such that for any natural number n,

the decimal representation of a + bn contains a sequence of consecutive

digits which form the decimal representation of n (for example, if a =

600, b = 35, n = 16 we have 600 + 16 · 35 = 1160). Prove that b is a

power of 10.

Tournament of the Towns, 2002

6. Let a, b > 1 be positive integers. Prove that for any given k > 0

there are infinitely many numbers n such that ϕ(an + b) < kn, where ϕ

is the Euler totient function.
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Gabriel Dospinescu

7. Let b an integer at least equal to 5 and define the number

xn = 11 . . . 1︸ ︷︷ ︸
n−1

22 . . . 2︸ ︷︷ ︸
n

5 in base b. Prove that xn is a perfect square for

all sufficiently large n if and only if b = 10.

Laurentiu Panaitopol, IMO Shortlist 2004

8. Find all triplets of integer numbers a, b, c such that for any positive

integer n, a · 2n + b is a divisor of cn + 1.

Gabriel Dospinescu

11. Suppose that a is a real number such that all numbers

1a, 2a, 3a, . . . are integers. Then prove that a is also integer.

Putnam

12. Find all complex polynomials f having the property: there exists

a ≥ 2 a natural number such that for all sufficiently large n, the equation

f(x) = an2
has at least a positive rational solution.

Gabriel Dospinescu, Revue de Mathematiques Speciales

13. Let f be a complex polynomial having the property that for all

natural number n, the equation f(x) = n has at least a rational solution.

Then f has degree at most 1.

Mathlinks Contest

14. Let A be a set of natural numbers, which contains at least one

number among any 2006 consecutive natural numbers and let f a non-

constant polynomial with integer coefficients. Prove that there exists a

number N such that for any n ≥ N there are at least
√

ln lnn different

prime numbers dividing the number
∏

N≤k≤n
k∈A

f(k).

Gabriel Dospinescu

246



15. Prove that in any strictly increasing sequence of positive integers

(an)n≥1 which satisfies an < 100n for all n, one can find infinitely many

terms containing at least 1986 consecutive 1.

Kvant

16. Any infinite arithmetical progression contains infinitely many

terms that are not powers of integers.

17. Find all a, b, c such that for all sufficiently large n, the number

a · 4n + b · 6n + c · 9n is a perfect square.

18. Let f, g two real polynomials of degree 2 such that for any real

x, if f(x) is integer, so is g(x). Then there are integers m,n such that

g(x) = mf(x) + n for all x.

Bulgarian Olympiad

19. Try to generalize the preceding problem (this is for the die-

hards!!!).

20. Find all pairs of natural numbers a, b such that for every positive

integer n the number an + b is triangular if and only if n is triangular.

After a Putnam problem

21. Let (an)n≥1 be an infinite and strictly increasing sequence of

positive integers such that for all n ≥ 2002, an|a1 + a2 + · · · + an−1.

Prove that there exists n0 such that for all n ≥ n0 we have an = a1 +

a2 + · · ·+ an−1.

Tournament of the Towns, 2002

22. Find all real polynomials such that the image of any repunit is

also a repunit.

After a problem from Kvant
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23. Fie doua multimi finite de numere reale pozitive cu proprietatea

ca {∑
x∈A

xn| n ∈ R

}
⊂

{∑
x∈B

xn| n ∈ R

}
.

Sa se arate ca exista k ∈ R astfel incat A = {xk| x ∈ B}.

Gabriel Dospinescu
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