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ABSTRACT 

In  this  research  paper,  structured  bi-matrix  variate, matrix  quadratic  equations  
are  considered.  Some  lemmas  related  to  determining  the  eigenvalues  of  
unknown  matrices  are  proved. Also,  a method  of determining  the  diagonalizabe  
unknown  matrices  is  provided. The  results  are  generalized  to  multi-matrix  
variate,  matrix  polynomial  equations. Briefly  generalization  to  tensor  variate  
polynomial  equations  is discussed. It  is  hoped  that  the  results  lead  to  important  
contributions  in  “non-commutative  algebra”. 

 
1. Introduction: 

                     Based  on  the  efforts  of  many  mathematicians,  algebra  as  a 
branch  of  mathematics  with  rich  collection  of   results  is  established  for  
ever.  It  found  many  applications  in  science,  engineering,  economics  and  
other  fields. Particularly  linear  algebra  established  with  many  formal  results, 
procedures / algorithms  etc  finds  many  applications  in  engineering  and  
science.  As  a  natural  generalization  of  a  system   of  linear  equations,  
researchers  formulated  the  problem  of   existence / uniqueness / cardinality  of  
solutions  of  matrix  quadratic  equations  of  the  form 

���� �  � �� � ��  � 0 
  , ���� 
X  is   an  unknown  matrix  and  � �� , �� , �� }   are  known  coefficient  matrices. 
Gantmacher  and  other  mathematicians  studied  the  solution  technique  of  
such  equations  using  the  associated  “polynomial  matrix”  [Gan] 

���� �  � �� � ��  � 0�,       ���� 
�  is  a  real /  complex  valued  scalar  quantity.  Mathematicians  also  
generalized  the  results  to  arbitrary  matrix  polynomial  equations  of  the  
following  form 

 

���� � �������� ������� �  � �� � ��   � 0� . 
 

The  author  considered  arbitrary  matrix  power  series  equations  and  arrived  
at  some  interesting  results  in  [Rama1].  Infact  the  unique  solution  of  a  
structured  matrix  power  series  equation  ( arising  in  structured  Markov  
chains  of  G/M/1-type )  was  computed  in  closed  form  ( i.e. the  spectral 
representation / Jordan  Canonical  form   was  computed  ) in [Rama2]. 
                           Mathematicians  contributed  large  body  of  literature  in  the 
research  area  of “commutative  algebra”.  Our  efforts,  in  this  research  paper 
is  to  contribute  to  the  area  of  “non-commutative  algebra”. As  a  natural  
curiosity,  the  author  conceived  the  problem  of  computing  the  solution  of  
bi-matrix  variate,  matrix  quadratic  equations. In  that  effort,  he  realized  that  
the  results  applicable  to  arbitrary uni-matrix  variate, matrix  quadratic  
equations  donot  generalize  to  the bi-matrix  variate  case  directly.  Thus,  the  
solution  of  “structured”  class  of bi-matrix  variate, matrix  quadratic  equations  



are  considered  and  some  interesting  results  are derived.  The  logic  behind  
the  results  in  the  structured  bi-matrix  variate,  matrix  quadratic  equation  
case  naturally  generalize  to  the  structured  multi-matrix  variate, matrix  
polynomial  equations. 
                  We  note  that  the  problem  of  existence/uniqueness/cardinality  of 
solutions  of  multi-scalar  variate  polynomial  equations  is  the  central  goal  of 
algebraic  geometry.  Elegant  results  such  as  the  Bezout’s  theorem  are  
already  proved  and  established.  It  is  easy  to  see  that  multi-matrix  variate, 
matrix  polynomial  equations  constitute  “structured”  multi-scalar  variate 
polynomial  equations.  Thus,  the  results  derived  in  this  research  paper 
could  have  important  implications  to  algebraic  geometry  ( non-commutative 
algebra ).   
                This  research  paper  is  organized  as  follows. In Section  2, well  
know  results  for  uni-matrix  variate,  matrix  quadratic  equations  are  briefly  
summarized.  Also, some  interesting  results  related  to  structured  class  of  bi-
matrix  variate,  matrix  quadratic  equations  are  derived. In  Section 3,  it  is  
shown  that  the results  naturally  generalize  to  the  case  of  structured  multi-
matrix  variate,  matrix  polynomial  equations.  In  Section  4,  some  ideas  on  
solving  structured  mutli-tensor  variate,  tensor  polynomial  equations  are  
briefly  discussed.  In  Section  5,  conclusions  are  provided. 
 

2. Bi-Matrix  Variate,  Matrix  Quadratic  Equations :  Solution  Techniques: 
 
                           In  this  section,  we  first  discuss  the  well  known  results 
associated  with  uni-matrix  variate,  matrix  quadratic  equations. 
                  Consider  an  arbitrary  uni-variate  matrix  quadratic  equation  of  the  
following  form:  

���� �  � �� � ��  � 0 
  , ����  …………………………(2.1) 
X  is   an  unknown  matrix  and  � �� , �� , �� }   are  known  coefficient  matrices. 
 
Eigenvalues  of  all  Solutions:  

                                                                It  is  easy  to  see  that  the  following   
            factorization  of  the  associated  polynomial  matrix  holds  true: 

                     ���� �  � �� � ��  � � � � � � �� � �� �  � �� � �� �.  ….(2.2) 
            Thus,  it  is  clear  that  the  eigenvalues  of  all  possible  solutions  of  (2.1) are  
           the  zeroes  of  the  determinental  polynomial   

                  ��� � ���� �  � �� � ��  �……………………………………(2.3) 

            Thus, it  is  evident  that  there  are  �2   !  equivalence  classes  ( equivalent  in   

            the  sense  of  sharing  a  common  set  of  eigenvalues ) of  solutions.   
 
            Matrix  Solution  in  Each  Equivalence  Class: 
                                                                                          Let  a   solution  in  an   
            equivalence  class  be  represented  as ( Jordan  Form ) 

� " # � #��. 
            Substituting  in  (2.1),  we  have  that 

# �� #�� �� �  # � #�� �� � ��  � 0�………………………(2.4) 
            Equivalently, we  have  that 

                          # $  �� #�� �� �  � #�� �� � #����  % � 0�…(2.5) 
            Since,  the matrix  ‘T’   is  non-singular,  we  have  that 

                 $  �� #�� �� �  � #�� �� � #����  % � 0�…..(2.6) 



            Thus,  the  solutions  in  each class  are  determined  as  the  solution  of  a  set   
             linear  equations  of   the  above   form.   
                                                                             Keeping  the  above  results  in  mind,  
            we  now  consider  bi-matrix  variate,  matrix  quadratic  equations.  We  quickly 
            realize  that  we  need  to  restrict  consideration  to  a  “structured”  class  of 
            bi-matrix  variate,  matrix  quadratic  equations  so  that  some  reasonable   
            results  ( in  the  spirit  of  the  above  discussion )  can  be  derived. 
                                             Since,  matrix  multiplication  is  generally  not  commutative,  
            the  relative  placement  of  unknown  matrix  variables  with  respect  to  the  
            known  coefficient  matrices  leads  to  the  following   interesting  cases ( i.e. 
            each  bi-matrix  variate  monomial  belongs  to  the  following  cases ): 
 

(i) Both  the  unknown  matrix  variables  ( X, Y )  occur  on  the  left  hand  
side  of  the  known  coefficient  matrices.  Also,  they  have  common 
left  eigenvectors  corresponding  to  possibly  different  eigenvalues 

 
(ii)    Both  the  unknown  matrix  variables  ( X, Y )  occur  on  the  right  hand  

side  of  the  known  coefficient  matrices.  Also,  they  have  common 
right  eigenvectors  corresponding  to  possibly  different  eigenvalues 

 
(iii) The  unknown  matrices  occur  on  both  the  sides  of  the  known 

coefficient  matrices.  Also,  they  have  common  left  and  right  vectors  
corresponding  to  possibly  different  eigenvalues. 
 

Note:  All  the  other  cases  can  in  principle  occur.  But  deriving  any  
interesting  results  on  the  matrix  solutions  of   such  matrix  quadratic  
equations  donot  seem  to  be  possible.  Thus,  in  this  research  paper 
we  only  consider  the  following  bi-matrix  variate,  matrix  quadratic  equations: 
 

(i)     �� � � &�' � � & ( � � � � & ) � * � 0�……….(2.7) 
(ii)    � �� �  ' &� �  ( � & � � � � ) & � * � 0�………(2.8) 
(iii)    � � � � & ' & � � ( & � � � � & ) � * � 0�………(2.9) 
 
                Now,  we  take  a  closer  look  on  the  assumption  about  
eigenvectors  in  cases (i)  and  (ii).   
 
Lemma 1:  In  the  cases (i), (ii)  considered  above,  when X, Y  are  
diagonalizable,  they  share  common  eigenvectors  and  the  matrices  commute 
 
Proof:   Consider  the  case  where  the  unknown  matrices { X, Y }  are  both  
diagonalizable.  Thus,  in  this  case,  the  matrix  of  right/left  eigenvectors  
effectively  determines  the  matrix  of  left/right   eigenvectors.  Hence  we  have  
that 

                     � " # �� #��    + ,   & " # �� #��, ����   
          the  matrices �� , ��  contain  the  eigenvalues  of  matrices  X, Y  respectively. 
          Also  we  have  that 
                                           � & "   # �� #�� # �� #��  "   # �� ��#�� 
                                                 " # �� �� #��  "   # �� #�� # ��#�� " & � ….(2.10) 
 
         Thus,  in  this  case  the  diagonalizable  matrices X, Y  commute.        Q.E.D. 



 
         Lemma  2:  Consider  the  bi-matrix  variate,  matrix  quadratic  equation  of  the  
         form  in  (i)  above  i.e. 

�� � � &�' � � & ( � � � � & ) � * � 0 
         Suppose  the  matrices  { X, Y }  have  common  left  eigenvectors  corresponding 
        to  all  the  eigenvalues {-, � .  ( not necessarily same ). Then, we  necessarily 
        have  that  all  the eigenvalues  of  unknown  matrices { X, Y }  are  zeroes  
        ( solutions )  of  the   determinental  polynomial ( bi-scalar  variate  ) 
 
                                         Det ( -� � � ��' � - � ( � - � � � ) � * �…………..(2.11) 
 
         Proof:  From  the  hypothesis,  we  have  that   
 
                      /0 � "   - /0    and    / 
  & "  � /0   for  every  eigenvalue  -  of unknown  
 
         matrix  X  and  corresponding  eigenvalue �   of  unknown  matrix  Y.   
          
         Hence, we  have  that 

/0 �  �� � � &�' � � & ( � � � � & ) � *  �  �  0� ……..(2.12) 
         Thus, 
                               /0 �-� � � ��' � - � ( � - � � � ) � * �  �   0�……(2.13) 
 
          Hence, we  have  that 
                                           Det ( -� � � ��' � - � ( � - � � � ) � * � " 0 ….(2.14) 
 
        Thus,  the  eigenvalues  of  the  unknown  matrices  X, Y  are  necessarily  the  
zeroes  of  bi-scalar  variate   determinental  polynomial: 
 

Det ( -� � � ��' � - � ( � - � � � ) � * �       Q.E.D. 
 

Now   we  consider  the  bi-matrix  variate,  matrix  quadratic  equation  specified  in 
case (ii)  above.  It  is  the  “dual”  of  the  equation  considered  in  case (i).   The 
following  Lemma  is  an  interesting  result. 
 
Lemma  3:  Consider  the  bi-matrix  variate,  matrix  quadratic  equation  of  the  
         form  in case  (ii)  above  i.e. 

� �� �  ' &� �  ( � & � � � � ) & � * � 0� 
         Suppose  the  matrices  { X, Y }  have  common  right  eigenvectors  corresponding 
        to  all  the  eigenvalues {-, � .  ( not necessarily same ). Then, we  necessarily  
        have that  all  the eigenvalues  of  unknown  matrices { X, Y }  are  zeroes  
        ( solutions )  of  the   determinental  polynomial ( bi-scalar  variate  ) 
 
                                         Det ( -� � � ��' � - � ( � - � � � ) � * �. 
 
Proof:  Using  an  argument  similar  to  the  one  employed  in   Lemma  2 ( by using 
the  right  eigenvectors  of  X, Y ),  the  above  result  follows.  Details  are  avoided for 
brevity.                                                                                                        Q.E.D. 
             Suppose,  we  consider  the  case  where  X, Y  are  diagonalizable  ( one  
sufficient  condition  is  that  all  the  eigenvalues  are  distinct ).  If  all  the  right  
eigenvectors  of  X, Y   are  same,  by  the  argument  used  in  proof  of  Lemma 1, 



all  the  left  eigenvectors  are  same. 
 
Lemma  4:  Consider  the  bi-matrix  variate,  matrix  quadratic  equation  of  the  
         form  in case  (iii)  above  i.e. 

� � � � & ' & � � ( & � � � � & ) � * � 0 
         Suppose  the  matrices  { X, Y }  have  common  right  eigenvectors  corresponding 
        to  all  the  eigenvalues {-, � .  ( not necessarily same ). Then, we  necessarily  
        have that  all  the eigenvalues  of  unknown  matrices { X, Y }  are  zeroes  
        ( solutions )  of  the   determinental  polynomial ( bi-scalar  variate  ) 
 
                                         Det ( -� � � ��' � - � ( � - � � � ) � * �. 
Proof:    Using  an  argument  similar  to  the  one  employed  in   Lemma 1,  
Lemma  2,  the  above  result  follows.  Details  are  avoided for brevity.     Q.E.D. 
 
Remark  1:  Using  Lemmas  2  to  4,  we  realize  that  the  eigenvalues  of  X, Y are 
               a  subset  of  the  zeroes  of  the  determinental  polynomial 

Det ( -� � � ��' � - � ( � - � � � ) � * �. 
               But,  unlike  in  the  case  of  uni-matrix  variate,  matrix  quadratic  equation, 
the  bi-matrix  variate,  polynomial  matrix  need  not  factor  into  the  following  form: 
 
         ( -� � � ��' � - � ( � - � � � ) � * �    � �- � � � � 1 � -, � ��� � � & �    
 
 
               Thus,  there  could  be  zeroes  of  the  determinental  polynomial  which are 
               not  necessarily  the  eigenvalues  of   X, Y.  Hence,  in  the  case  of  Bi-Matrix   
               variate,  matrix  quadratic  equation,  we  are  unable to  derive  results  that   
               are  possible  in  the uni-matrix  variate  case.  The  crucial  factorization  of 
               polynomial  matrix  could  hold  true  in  some cases. 
 
Method   for   Determining  the  Structured  Solutions  X, Y: 
                                                                                                    As  in  the  uni-matrix 
       
variate  case,  we   try  to  find  the  solutions  of structured  bi-matrix  variate,  matrix  
quadratic  equation  given  that  we  know  the  eigenvalues  of  X, Y.  Also  X, Y  are 
assumed  to  be  diagonalizable.As  discussed  earlier,  in  all  the  three  cases  of  
interest,  the  left  as  well  as  right  eigenvectors  of  solutions  are  identical.    
Thus, we  have  that 

� " # *� #��    + ,  & " # *� #��………..(2.15) 
 

Now  let  us  consider   the  equation  as  in  case (ii)  i.e. 

                              � �� �  ' &� �  ( � & � � � � ) & � 1 � 0�. 
Substituting  for  X, Y,  we  necessarily  have  that 
 

� # *�� #�� �  ' # *�  � #�� �  ( # *� *�#��  � �  # *� #��  � ) # *� #�� � 1 � 0� … . �2.16� 
 
Now  extracting  common  #��  on  the  right  hand  side,  we  have  that 
                         

$ � # *��  �  ' # *�  � �  ( # *� *� � �  # *�   � ) # *�  � 1 # %  #��  � 0�  … �2.17� 
 
Since,  T  is  non-singular, we  necessarily  have  that   



 
 
$ � # *��  �  ' # *�  � �  ( # *� *� � �  # *�   � ) # *�  � 1 # %    � 0�…………(2.18) 
 
Hence,  it  is  clear  that  the  two  commuting,  diagonalizable  matrices  can  be   
determined  by  solving  the  above  homogeneous  system  of  linear  equations. 
It  should  be  clear  that  similar  procedure  can  be  utilized  in  the  other 
cases  of structured  bi-matrix  variate,  matrix  quadratic  equations.  

 
3. Multi-Matrix  Variate,  Matrix  Polynomial  Equations : Solution  Techniques: 

                          The  results  in  the  previous  section  naturally  motivate  us  to 
consider  the  multi-matrix  variate,  matrix  polynomial  equations.  But,  once  
again  it  is  clear  that  no  reasonable  results  are  possible  if  we  donot  
restrict  consideration  to  “structured”  multi-matrix  variate, matrix  polynomial 
Equations.  Thus,  we  are  naturally  led  to  considering  the  following  cases: 
 
(i)  All  the  unknown  matrix  variables � ��, ��, … , �5  . occur  on  the  left  

hand  side  of  the  known  coefficient  matrices.  Also,  all  of  them have  
common  left  eigenvectors  corresponding  to  possibly  different  
eigenvalues  
 

(ii) All  the  unknown  matrix  variables � ��, ��, … , �5  . occur  on  the  right  
hand  side  of  the  known  coefficient  matrices.  Also,  all of  them  have  
common  right  eigenvectors  corresponding  to  possibly  different  
eigenvalues  

 
(iii) Some  of  the  unknown  matrix  variables � ��, ��, … , �5  . occur  on  the  

left  hand  side  of  the  known  coefficient  matrices  and  the  others  
occur  on  the  right  hand  side  of the known  coefficient  matrices.  Also,  
all  of  them  have  common  left / right  eigenvectors  corresponding  to  
possibly  different  eigenvalues. 

                                                          Corresponding  to  the  above  three  cases,  we  
           have  the  following  multi-matrix  variate,  matrix  polynomial  equations.  In   
           these  equations,  the  coefficients  are  all  matrices  ( second  order  tensors ) 
           distinguished  by  the  indices 
 
(i)  

∑ ∑ …∑ ��7897:;� ��7< … .�� 
7:  ��78,7<….7:� = .97<;�

978;�
� >� � >� ��…… .�>� " ? �

∑ ∑ …∑ ��@89@:;� ��@< … .�� 
@:  ��@8,@<….@:� = .9@<;�

9@8;�
� A� �  A � �…… .�A� " ? � 1 �  

 
+ …….+ ∑ �B�B;� *B  � 1  �   0�                                                      …………(3.1) 
 
(ii)

∑ ∑ …∑ ��78,7<….7:�  ��7897:;� ��7< … .�� 
7:  � .97<;�

978;�
� >� � >� ��…… .�>� " ? �

∑ ∑ …∑ ��@8,@<….@:�  ��@89@:;� ��@< … .�� 
@:  .9@<;�

9@8;�
� A� �  A � �…… .�A� " ? � 1 �  

 
+ …….+ ∑ *B�B;�  �B � 1  �   0�                                                ……………..(3.2) 
 



(iii)    In  this  case,  some  matrix  unknowns  occur  on  the  left  hand  side  of 
coefficient  matrices  whereas  the  others  occur  on  the  right  hand  side.  Exact  
equation  leads to  cumbersome  notation.    
 
 
Lemma  5:  Consider  the  multi-matrix  variate,  matrix  polynomial  equation  of  the  
         form  in  (i)  above  i.e. 

 

C C … C ��78
9

7:;�
��7< … .�� 

7:  ��78,7<….7:� = .
9

7<;�

9

78;�
� >� � >� ��…… .�>� " ? �

C C … C ��@8
9

@:;�
��@< … .�� 

@:  ��@8,@<….@:� = .
9

@<;�

9

@8;�
� A� �  A � �…… .�A� " ? � 1 �

 

 
+ …….+ ∑ �B�B;� *B  � 1  �   0� 
 

 
         Suppose  all  the  matrices �  �� ,��, … , �� . have  common  set  of  left  
eigenvectors   corresponding    to  all  the  eigenvalues �  �� ,��, … , �� .  ( not necessarily  
same ). Then, we  necessarily  have   that  all  the eigenvalues  of  unknown  matrices 
�  �� ,��, … , �� .  are  zeroes ( solutions )  of   the   determinental  polynomial  
( multi-scalar  variate  ) 
 
                     

���  �    ∑ ∑ …∑ ��7897:;� ��7< … . �� 
7:  ��78,7<….7:� = .97<;�

978;�
� >� � >� ��…… .�>� " ? �

∑ ∑ …∑ ��@89@:;� ��@< … . �� 
@:  ��@8,@<….@:� = .9@<;�

9@8;�
� A� �  A � �…… .�A� " ? � 1 �  

 
+ …….+ ∑ �B�B;� *B  � 1   ) .                                                         ………….(3.3) 
 
Proof:  Follows  from  a  similar  argument  as  in  the  case  of   Lemma 2  for  the  bi-
matrix  variate  case.                                                                                       Q.E.D.          
 
 
Lemma  6:  Consider  the  multi-matrix  variate,  matrix  polynomial  equation  of  the  
         form  in case  (ii)  above  i.e. 

 

C C … C ��78,7<….7:�  ��78
9

7:;�
��7< … .�� 

7:  � .
9

7<;�

9

78;�
� >� � >� ��…… .�>� " ? �

C C … C ��@8,@<….@:�  ��@8
9

@:;�
��@< … .�� 

@:  .
9

@<;�

9

@8;�
� A� �  A � �…… .�A� " ? � 1 �

 

 
+ …….+ ∑ *B�B;�  �B � 1  �   0� 
 
       Suppose all  the  matrices �  �� ,��, … , �� . have  common set of  right  eigenvectors 
         corresponding  to  all  the  eigenvalues  �  �� ,��, … , �� .  ( not necessarily same ).    
         Then, we  necessarily   have that  all  the eigenvalues  of  unknown  matrices 
         �  �� ,��, … , �� .   are  zeroes  ( solutions )  of  the   determinental  polynomial  
         (  multi-scalar  variate  ) 
 



���  �    C C … C ��78
9

7:;�
��7< … . �� 

7:  ��78,7<….7:� = .
9

7<;�

9

78;�
� >� � >� ��…… .�>� " ? �

C C … C ��@8
9

@:;�
��@< … . �� 

@:  ��@8,@<….@:� = .
9

@<;�

9

@8;�
� A� �  A � �…… .�A� " ? � 1 �

 

 
+ …….+ ∑ �B�B;� *B  � 1   ) .                                                    …………….(3.4) 
 
 Proof:  Follows  the  same  argument  as  in  the  case  of  Lemma 3.  Details  are  
avoided  for  brevity                                                                                    Q.E.D. 
 
Similarly   Lemma  corresponding  to  case (iii)  can  be  stated  and  proved. 
 
Remark  2:  In  the  case  of  multi-matrix  variate,  matrix  polynomial  equations,  the  
eigenvalues  of  matrix  variables  constitute  the  zeroes  of  the  associated  
determinental  polynomial.  Since  factorization  of  the  corresponding  polynomial  
matrix  doesnot  necessarily  hold  true  ( as  in  the  uni-matrix  variate  case ),  there  
can  be  zeroes  of  the  determinental  polynomial  which  are  not  necessarily  the  
eigenvalues  of  unknown  matrices. 
 
Remark 3: Since  all diagonalizable  unknown  matrices  share  common  left  and  right  
eigenvectors,  a  method  can  easily  be  derived  ( as  in  the  case  of  bi-matrix  
variate, matrix  quadratic  equation )  for  determining  the  unknown  matrix  variables. 
 

4. Generalizations  to  Tensor  Linear  Operator based  Polynomial  Equations: 
 

                  It  is  well  known  that  matrices  are  second  order  tensors. 
Also,  the  concepts  such as  outer  product,  contraction, inner  product   of  
tensors  are  well  understood. Thus  using  these  concepts,  it  is  possible  to  
define and  study  muti-tensor  variate,  tensor  polynomial  equations.  Results  
from  tensor algebra    such  as  eigenvalues  of  linear  operators  are  well  
understood. It  is  easy  to  see  that   the  results  in  Section 2,  Section  3  can  
easily  be  generalized  to  tensor  linear  operator  based  equations  ( using  
standard  concepts  in  tensor  algebra ). 

 
5. Conclusions: 

                        In  this  research  paper, certain  results  on determining  the 
eigenvalues  of structured  bi-matrix  variate,  matrix  quadratic  equations  are  
proved.  Given  the  eigenvalues,  method  of  determining  the  unknown 
matrices  is  discussed.  The  results  are  generalized  to   structured multi-matrix  
variate,  matrix  polynomial  equations.  Briefly  extension of  results  to  tensor  
linear  operator  based  polynomial  equations  is  proposed. 
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