Two Pairs of Archimedean Circles in the Arbelos

Dao Thanh Oai

Abstract

We construct four circles congruent to the Archimedean twin circles in the arbelos.

Consider an arbelos formed by semicircles $\left(O_{1}\right),\left(O_{2}\right)$, and (O) of radii a, b, and $a+b$. The famous Archimedean twin circles associated in the arbelos have equal radii $\frac{a b}{a+b}$ (see $[2,3]$).

Let $C D$ be the dividing line of the smaller semicircles, and extend their common tangent $P Q$ to intersect (O) at T_{a} and T_{b}.

Theorem 1. Let A^{\prime} and B^{\prime} be the orthogonal projections of D on the tangents to (O) at T_{a} and T_{b} respectively. The circles with diameters $D A^{\prime}$ and $D B^{\prime}$ are congruent to the Archimedean twin circles.

Figure 1

Proof. Let the tangents at T_{a} and T_{b} intersect at T. Since $O T$ is the perpendicular bisector of $T_{a} T_{b}$, it intersects the semicircle (O) at the midpoint D of the $\operatorname{arc} T_{a} T_{b}$ (see $[3, \S 5.2 .1]$). Since $O_{1} P, O M$ and $O_{2} Q$ are parallel, and $O_{1} P=O O_{2}=a$, $O_{2} Q=O_{1} O=b$,
$O M=\frac{a}{a+b} \cdot O_{1} P+\frac{b}{a+b} \cdot O_{2} Q=\frac{a^{2}+b^{2}}{a+b} \Longrightarrow D M=O D-O M=\frac{2 a b}{a+b}$.

[^0]Now, $\angle D T_{a} T=\angle D T_{b} T_{a}=\angle D T_{a} T_{b}$. Therefore, $T_{a} D$ bisects angle $T T_{a} T_{b}$. Similarly, $T_{b} D$ bisects angle $T T_{b} T_{a}$, and D is the incenter of triangle $T T_{a} T_{b}$. It follows that $D A^{\prime}=D B^{\prime}=D M$, and the circles with $D A^{\prime}$ and $D B^{\prime}$ are congruent to the Archimedean twin circles.

Remark. The circle with $D M$ as diameter is the Archimedean circle $\left(A_{3}\right)$ in [2] (or $\left(W_{4}\right)$ in [1]).

Theorem 2. Let $A_{1} A_{2}$ and $B_{1} B_{2}$ be tangents to the smaller semicircles with A_{1}, B_{1} on the line $A B$ and $A_{1} A_{2}=a, B_{1} B_{2}=b$. If H and K are the midpoints of the semicircles $\left(O_{1}\right)$ and $\left(O_{2}\right)$ respectively, and $A^{\prime \prime}=C H \cap A_{1} B_{2}, B^{\prime \prime}=$ $C K \cap B_{1} A_{2}$, then the circles through C with centers $A^{\prime \prime}$ and $B^{\prime \prime}$ are congruent to the Archimedean twin circles.

Figure 2

Proof. Clearly, $\angle A^{\prime \prime} C A_{1}=\angle H C O_{1}=45^{\circ}$. Since $B_{1} B_{2}=O_{2} B_{2}=b$, $\angle B_{2} B_{1} O_{2}=45^{\circ}$, the lines $C A^{\prime \prime}$ and $B_{1} B_{2}$ are parallel. Also, $B_{1} O_{2}=\sqrt{2} b$. Similarly, $A_{1} O_{1}=\sqrt{2} a$, and $A_{1} B_{1}=(\sqrt{2}+1)(a+b)$. Therefore,

$$
C A^{\prime \prime}=B_{1} B_{2} \cdot \frac{A_{1} C}{A_{1} B_{1}}=b \cdot \frac{(\sqrt{2}+1) a}{(\sqrt{2}+1)(a+b)}=\frac{a b}{a+b} .
$$

Similarly, $C B^{\prime \prime}=\frac{a b}{a+b}$. Therefore, the circles through C with centers $A^{\prime \prime}$ and $B^{\prime \prime}$ are congruent to the Archimedean twin circles.

References

[1] C. W. Dodge, T. Schoch, P. Y. Woo and P. Yiu, Those ubiquitous Archimedean circles, Math. Mag., 72 (1999) 202-213.
[2] F. M. van Lamoen, Online catalogue of Archimedean circles, http://home.kpn.nl/lamoen/wiskunde/Arbelos/Catalogue.htm
[3] P. Yiu, Euclidean Geometry, Florida Atlantic University Lecture Notes, 1998, available at http://math.fau.edu/Yiu/Geometry.html

Dao Thanh Oai: Cao Mai Doai, Quang Trung, Kien Xuong, Thai Binh, Viet Nam
E-mail address: daothanhoai@hotmail.com

[^0]: Publication Date: September 2, 2014. Communicating Editor: Floor van Lamoen.

