Đến nội dung

Hình ảnh

Trận 10 - Bất đẳng thức

mhs 2014

  • Please log in to reply
Chủ đề này có 25 trả lời

#21
motdaica

motdaica

    Hạ sĩ

  • Thành viên
  • 50 Bài viết

Ta có:

$\frac{1}{x^3(yz+zt+ty)}+\frac{1}{9y}+\frac{1}{9z}+\frac{1}{9t}$

$= \frac{xyzt}{x^3(yz+zt+ty)}+\frac{yz+zt+ty}{9yzt}$     (với xyzt=1)

$= \frac{yzt}{x^2(yz+zt+ty)}+\frac{yz+zt+ty}{9yzt}\geq 2\sqrt{\frac{1}{9x^2}}$    =$\frac{2}{3x}$         (theo BĐTCô-si)

$\Leftrightarrow \frac{1}{x^3(yz+zt+ty)}\geq \frac{2}{3x}-(\frac{1}{9y}+\frac{1}{9z}+\frac{1}{9t})$

Tương tự ta có:

$\Leftrightarrow \frac{1}{y^3(xz+zt+tx)}\geq \frac{2}{3y}-(\frac{1}{9x}+\frac{1}{9z}+\frac{1}{9t})$

$\Leftrightarrow \frac{1}{z^3(yx+zt+tx)}\geq \frac{2}{3z}-(\frac{1}{9y}+\frac{1}{9x}+\frac{1}{9t})$

$\Leftrightarrow \frac{1}{t^3(yz+zx+xy)}\geq \frac{2}{3t}-(\frac{1}{9y}+\frac{1}{9z}+\frac{1}{9x})$

Khi đó:

$ \frac{1}{x^3(yz+zt+ty)}+\frac{1}{y^3(xz+zt+tx)}+\frac{1}{z^3(xt+ty+yx)}+\frac{1}{t^3(xy+yz+zx)}\geq (\frac{2}{3x}+\frac{2}{3y}+\frac{2}{3z} +\frac{2}{3t})-(\frac{1}{3x}+\frac{1}{3y}+\frac{1}{3z}+\frac{1}{3t})$$= \frac{1}{3}(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{t})\geq \frac{4}{3}\sqrt[4]{\frac{1}{xyzt}}=\frac{4}{3}$

vậy $\frac{1}{x^3(yz+zt+ty)}+\frac{1}{y^3(xz+zt+tx)}+\frac{1}{z^3(xt+ty+yx)}+\frac{1}{t^3(xy+yz+zx)}\geq \frac{4}{3}$

trường hợp dấu bằng xảy ra đâu bạn :icon6: thiếu này



#22
hoangson2598

hoangson2598

    Sĩ quan

  • Thành viên
  • 325 Bài viết

 

 

Bài làm của thí sinh $MHS09$

Giải.

Đặt $S=\frac{1}{x^3(yz+zt+ty)}+\frac{1}{y^3(xz+zt+tx)}+\frac{1}{z^3(xt+ty+yx)}+\frac{1}{t^3(xy+yz+zx)}$, ta có:

$\frac{1}{x^3(yz+zt+ty)}=\frac{1}{x^3yzt(\frac{1}{y}+\frac{1}{z}+\frac{1}{t})}=\frac{1}{x^2(\frac{1}{y}+\frac{1}{z}+\frac{1}{t})}$ (Do $xyzt=1$)

Tương tự:

$$\left\{\begin{matrix} \frac{1}{y^3(xz+zt+tx)}=\frac{1}{y^2(\frac{1}{x}+\frac{1}{z}+\frac{1}{t})}\\ \frac{1}{z^3(yx+xt+ty)}=\frac{1}{z^2(\frac{1}{y}+\frac{1}{x}+\frac{1}{t})}\\ \frac{1}{t^3(yz+zx+xy)}=\frac{1}{t^2(\frac{1}{y}+\frac{1}{z}+\frac{1}{x})} \end{matrix}\right.$$

Mặt khác, ta có: $\frac{1}{x^2(\frac{1}{y}+\frac{1}{z}+\frac{1}{t})}+\frac{\frac{1}{y}+\frac{1}{z}+\frac{1}{t}}{9}\geq 2\sqrt{\frac{1}{x^2(\frac{1}{y}+\frac{1}{z}+\frac{1}{t})}.\frac{\frac{1}{y}+\frac{1}{z}+\frac{1}{t}}{9}}=\frac{2}{3x}$ (bất đẳng thức $Cauchy$)

Tương tự: $$\left\{\begin{matrix} \frac{1}{y^2(\frac{1}{x}+\frac{1}{z}+\frac{1}{t})}+\frac{\frac{1}{x}+\frac{1}{z}+\frac{1}{t}}{9}\geq \frac{2}{3y}\\ \frac{1}{z^2(\frac{1}{y}+\frac{1}{x}+\frac{1}{t})}+\frac{\frac{1}{y}+\frac{1}{x}+\frac{1}{t}}{9}\geq \frac{2}{3z}\\ \frac{1}{t^2(\frac{1}{y}+\frac{1}{z}+\frac{1}{x})}+\frac{\frac{1}{y}+\frac{1}{z}+\frac{1}{x}}{9}\geq \frac{2}{3t} \end{matrix}\right.$$

Cộng theo vế, ta được: $S+\frac{1}{3}\left ( \frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{t} \right )\geq \frac{2}{3}\left ( \frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{t} \right )\\ \Leftrightarrow S\geq \frac{1}{3}\left ( \frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{t} \right )$

Áp dụng bất đẳng thức $Cauchy$ cho bốn số dương, ta có: $\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{t}\geq \frac{4}{\sqrt[4]{xyzt}}=4$

Suy ra $S\geq \frac{4}{3}$

Vậy $\frac{1}{x^3(yz+zt+ty)}+\frac{1}{y^3(xz+zt+tx)}+\frac{1}{z^3(xt+ty+yx)}+\frac{1}{t^3(xy+yz+zx)}\geq \frac{4}{3},$ $\forall x,y,z,t> 0; xyzt=1$

P/s: Em may quá mấy bác ạ, trúng tủ  :icon6: 

 

Vừa may mà cũng vừa không may

Ban trúng đề nhưng lại trúng vào cái TH đơn giản của bài toán tổng quát. Mình tin nếu bạn không trúng đề thì bạn sẽ có cách làm ngắn gọn hơn.


                  :like  :like  :like  :like  :like  Thằng đần nào cũng có thể biết. Vấn đề là phải hiểu.    :like  :like  :like  :like  :like 

                                                                    

                                                                       Albert Einstein

 

                                        :icon6: My Facebookhttps://www.facebook...100009463246438  :icon6:


#23
phamquanglam

phamquanglam

    Sĩ quan

  • Thành viên
  • 377 Bài viết

Mình không phải toán thủ thi đấu!

Áp dụng AM-GM:

$\frac{1}{x^{3}(yz+zt+ty)}+\frac{x(yz+zt+ty)}{9}\geq \frac{2}{3x}$

$\Rightarrow \frac{1}{x^{3}(yz+zt+ty)}\geq \frac{2}{3x}-\frac{xyz+xzt+xty}{9}$

Làm tương tự cho y,z,t

Cộng các vế vào ta được:

$\sum \frac{1}{x^{3}(yz+zt+ty)}\geq \sum \frac{2}{3x}-\frac{xyz+xyt+xzt+yzt}{3}$$= \frac{1}{3}(xyz+xyt+xzt+yzt)\geq \frac{1}{3}.4.\sqrt[4]{(xyzt)^{3}}= \frac{4}{3}$

Dấu "=" xảy ra: x=y=z=1


:B) THPT PHÚC THÀNH K98  :B) 

 

Cuộc sống luôn không ngừng đổi thay, chỉ có tình yêu là luôn ở đó, vẹn tròn và bất diệt. Chính vì thế tôi thay đổi để giữ điều ấy, để tốt hơn từng ngày

Thay đổi cho những điều không bao giờ đổi thay

 

Học toán trên facebook:https://www.facebook...48726405234293/

My facebook:https://www.facebook...amHongQuangNgoc

:off:  :off:  :off:


#24
motdaica

motdaica

    Hạ sĩ

  • Thành viên
  • 50 Bài viết

Lâu chưa chấm với cả tổng kết quá :huh: :mellow:



#25
NMDuc98

NMDuc98

    Sĩ quan

  • Thành viên
  • 314 Bài viết

Bài làm của thí sinh $MHS09$

Giải.

Đặt $S=\frac{1}{x^3(yz+zt+ty)}+\frac{1}{y^3(xz+zt+tx)}+\frac{1}{z^3(xt+ty+yx)}+\frac{1}{t^3(xy+yz+zx)}$, ta có:

$\frac{1}{x^3(yz+zt+ty)}=\frac{1}{x^3yzt(\frac{1}{y}+\frac{1}{z}+\frac{1}{t})}=\frac{1}{x^2(\frac{1}{y}+\frac{1}{z}+\frac{1}{t})}$ (Do $xyzt=1$)

Tương tự:

$$\left\{\begin{matrix} \frac{1}{y^3(xz+zt+tx)}=\frac{1}{y^2(\frac{1}{x}+\frac{1}{z}+\frac{1}{t})}\\ \frac{1}{z^3(yx+xt+ty)}=\frac{1}{z^2(\frac{1}{y}+\frac{1}{x}+\frac{1}{t})}\\ \frac{1}{t^3(yz+zx+xy)}=\frac{1}{t^2(\frac{1}{y}+\frac{1}{z}+\frac{1}{x})} \end{matrix}\right.$$

Mặt khác, ta có: $\frac{1}{x^2(\frac{1}{y}+\frac{1}{z}+\frac{1}{t})}+\frac{\frac{1}{y}+\frac{1}{z}+\frac{1}{t}}{9}\geq 2\sqrt{\frac{1}{x^2(\frac{1}{y}+\frac{1}{z}+\frac{1}{t})}.\frac{\frac{1}{y}+\frac{1}{z}+\frac{1}{t}}{9}}=\frac{2}{3x}$ (bất đẳng thức $Cauchy$)

Tương tự: $$\left\{\begin{matrix} \frac{1}{y^2(\frac{1}{x}+\frac{1}{z}+\frac{1}{t})}+\frac{\frac{1}{x}+\frac{1}{z}+\frac{1}{t}}{9}\geq \frac{2}{3y}\\ \frac{1}{z^2(\frac{1}{y}+\frac{1}{x}+\frac{1}{t})}+\frac{\frac{1}{y}+\frac{1}{x}+\frac{1}{t}}{9}\geq \frac{2}{3z}\\ \frac{1}{t^2(\frac{1}{y}+\frac{1}{z}+\frac{1}{x})}+\frac{\frac{1}{y}+\frac{1}{z}+\frac{1}{x}}{9}\geq \frac{2}{3t} \end{matrix}\right.$$

Cộng theo vế, ta được: $S+\frac{1}{3}\left ( \frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{t} \right )\geq \frac{2}{3}\left ( \frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{t} \right )\\ \Leftrightarrow S\geq \frac{1}{3}\left ( \frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{t} \right )$

Áp dụng bất đẳng thức $Cauchy$ cho bốn số dương, ta có: $\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{t}\geq \frac{4}{\sqrt[4]{xyzt}}=4$

Suy ra $S\geq \frac{4}{3}$

Vậy $\frac{1}{x^3(yz+zt+ty)}+\frac{1}{y^3(xz+zt+tx)}+\frac{1}{z^3(xt+ty+yx)}+\frac{1}{t^3(xy+yz+zx)}\geq \frac{4}{3},$ $\forall x,y,z,t> 0; xyzt=1$

P/s: Em may quá mấy bác ạ, trúng tủ  :icon6: 

Bài giải này khá dài!Cần đặt ẩn để ngắn gọn hơn! 


Nguyễn Minh Đức

Lặng Lẽ

THPT Lê Quảng Chí (Hà Tĩnh)


#26
NMDuc98

NMDuc98

    Sĩ quan

  • Thành viên
  • 314 Bài viết

Đa số thành viên tham gia đều giải đúng theo ý tưởng mình gửi lên!Chỉ phụ thuộc vào phần trình bày có hay và súc tích không mà thôi! :ukliam2:


Nguyễn Minh Đức

Lặng Lẽ

THPT Lê Quảng Chí (Hà Tĩnh)






Được gắn nhãn với một hoặc nhiều trong số những từ khóa sau: mhs 2014

0 người đang xem chủ đề

0 thành viên, 0 khách, 0 thành viên ẩn danh