Đến nội dung


Hình ảnh

Chuyên đề : Làm mạnh BĐT CôSy


  • Please log in to reply
Chủ đề này có 62 trả lời

#41 nguyenthutrang02

nguyenthutrang02

    Lính mới

  • Thành viên
  • 8 Bài viết
  • Giới tính:Nữ

Đã gửi 11-07-2016 - 23:00

Cho m, n là các số thỏa mãn điều kiện mn=$\frac{1}{2}$. Tìm GTNN của P=$\frac{m^{2}+n^{2}}{m^{2}n^{2}}+\frac{m^{2}n^{2}}{m^{2}+n^{2}}$


Bài viết đã được chỉnh sửa nội dung bởi nguyenthutrang02: 11-07-2016 - 23:01


#42 nguyenbaodan

nguyenbaodan

    Lính mới

  • Thành viên mới
  • 1 Bài viết

Đã gửi 18-07-2016 - 20:35

giúp em bài này với: cm $\frac{x}{\sqrt{x-1}}\geq 2$(mới học bdt cô si mong moi người giúp đỡ)


Bài viết đã được chỉnh sửa nội dung bởi tpdtthltvp: 19-07-2016 - 18:40


#43 mahado20166

mahado20166

    Lính mới

  • Thành viên
  • 2 Bài viết
  • Giới tính:Nam
  • Đến từ:CSP K50

Đã gửi 20-07-2016 - 14:49

giúp em bài này với: cm $\frac{x}{\sqrt{x-1}}\geq 2$(mới học bdt cô si mong moi người giúp đỡ)

$bđt \Leftrightarrow x\geq 2\sqrt{x-1} dễ thấy x=(x-1) +1\geq 2\sqrt{x-1} ( bđt cô si)$



#44 VyHuynh

VyHuynh

    Lính mới

  • Thành viên mới
  • 7 Bài viết
  • Giới tính:Nữ

Đã gửi 20-07-2016 - 17:05

Nhiều bài hay quá, nếu tổng hợp hết lại cũng được một tài liệu quý và rất bổ ích cho mọi người đó nha.



#45 dung1423

dung1423

    Lính mới

  • Thành viên mới
  • 2 Bài viết

Đã gửi 22-07-2016 - 10:24

câu 3a với câu 4

D7SRTM8.png



#46 Baoriven

Baoriven

    Thượng úy

  • Điều hành viên THPT
  • 1031 Bài viết
  • Giới tính:Nam
  • Đến từ:$\boxed{\textrm{CTG}}$ $\boxed{\textrm{~1518~}}$
  • Sở thích:$\mathfrak{MATHS}$

Đã gửi 22-07-2016 - 10:34

Lời giải cho bài của bạn vamath16

Đề sửa lại điều kiện là: $x^2+y^2+z^3=3$.

Sử dụng BĐT C-S ta có:

$\frac{x}{y}+\frac{y}{z}+\frac{z}{x}=\sum \frac{x^2}{xy}\geq \frac{(x+y+z)^2}{xy+yz+zx}$.

Ta chứng minh: $(x+y+z)^3\geq 9(xy+yz+zx)$.

Đặt: $t=a+b+c,(\sqrt{3}\leq t\leq 3)\Rightarrow xy+yz+zx=\frac{t^2-3}{2}$

BĐT trở thành: $t^3\geq \frac{9t^2-27}{2}\Leftrightarrow (t-3)^2(2t+3)\geq 0$.

Đẳng thức xảy ra khi: $x=y=z=1$.


"There is no problem that cannot be solved."

- Francois Viète -


#47 Nam Doc

Nam Doc

    Lính mới

  • Thành viên mới
  • 5 Bài viết
  • Giới tính:Nữ
  • Đến từ:Vùng đất linh hồn

Đã gửi 24-07-2016 - 09:03

Cho 3 số thực dương a,b,c đôi một phân biệt.

Chứng minh: $\frac{a^{2}}{\left ( b-c \right )^{2}}+\frac{b^{2}}{\left ( c-a \right )^{2}}+\frac{c^{2}}{(a-b)^{2}}\geq 2$



#48 tranphamminhnhut2403

tranphamminhnhut2403

    Binh nhất

  • Thành viên
  • 22 Bài viết
  • Giới tính:Nam
  • Đến từ:Quảng Ninh

Đã gửi 10-08-2016 - 11:01

Cho m, n là các số thỏa mãn điều kiện mn=$\frac{1}{2}$. Tìm GTNN của P=$\frac{m^{2}+n^{2}}{m^{2}n^{2}}+\frac{m^{2}n^{2}}{m^{2}+n^{2}}$



#49 Nam Doc

Nam Doc

    Lính mới

  • Thành viên mới
  • 5 Bài viết
  • Giới tính:Nữ
  • Đến từ:Vùng đất linh hồn

Đã gửi 11-08-2016 - 22:27

 

Cho m, n là các số thỏa mãn điều kiện mn=$\frac{1}{2}$. Tìm GTNN của P=$\frac{m^{2}+n^{2}}{m^{2}n^{2}}+\frac{m^{2}n^{2}}{m^{2}+n^{2}}$

 

$\frac{m^2+n^2}{m2n2}\geq \frac{2\left \| mn \right \|}{m^2n^2}\geq \frac{2mn}{m^2n^2}=\frac{2}{mn}=4$

Đặt $\frac{m^2+n^2}{m^2n^2}=a\Rightarrow \frac{m^2n^2}{m^2+n^2}=\frac{1}{a}$

$P=a+\frac{1}{a}=(\frac{a}{16}+\frac{1}{a})+\frac{15a}{16}\geq \frac{1}{2}+\frac{15}{4}=\frac{17}{4}$

Dấu "=" xảy ra khi$m=n=\frac{\sqrt{2}}{2}$



#50 Dark Repulsor

Dark Repulsor

    Trung sĩ

  • Thành viên
  • 162 Bài viết
  • Giới tính:Nam
  • Đến từ:THPT Chuyên Lê Quý Đôn, Vũng Tàu
  • Sở thích:Geometry, Inequality, Light Novel, nhạc Nonstop và EDM

Đã gửi 11-08-2016 - 22:59

Cho 3 số thực dương a,b,c đôi một phân biệt.

Chứng minh: $\frac{a^{2}}{\left ( b-c \right )^{2}}+\frac{b^{2}}{\left ( c-a \right )^{2}}+\frac{c^{2}}{(a-b)^{2}}\geq 2$

Ta xuất phát từ đẳng thức:

$(\sum \frac{a}{b-c})^2=\sum \frac{a^2}{(b-c)^2}+2\sum \frac{ab}{(b-c)(c-a)}=\sum \frac{a^2}{(b-c)^2}+\frac{2\sum ab(a-b)}{\prod (a-b)}=\sum \frac{a^2}{(b-c)^2}-\frac{2\prod (a-b)}{\prod (a-b)}=\sum \frac{a^2}{(b-c)^2}-2$

$\Rightarrow$ đpcm



#51 Dark Repulsor

Dark Repulsor

    Trung sĩ

  • Thành viên
  • 162 Bài viết
  • Giới tính:Nam
  • Đến từ:THPT Chuyên Lê Quý Đôn, Vũng Tàu
  • Sở thích:Geometry, Inequality, Light Novel, nhạc Nonstop và EDM

Đã gửi 11-08-2016 - 23:38

Bài 16: Chứng minh rằng với mọi x,y,z không âm ta có: 

$\sum xy\sqrt[3]{\frac{x^3+y^3}{2}}\leq \frac{1}{8}\sum (x+y)^3$

Ta c/m: $xy\sqrt[3]{\frac{x^3+y^3}{2}}\leq \frac{(x+y)^3}{8}\forall x,y\geq 0$

 $\Leftrightarrow xy\sqrt[3]{\frac{x^2-xy+y^2}{2}}\leq \frac{\sqrt[3]{(x+y)^8}}{8}$

 $ \Leftrightarrow 256x^3y^3(x^2-xy+y^2)\leq (x+y)^8$ (đúng nếu áp dụng bđt Cauchy cho $4$ số $xy,xy,xy,x^2-xy+y^2$)

$\Rightarrow$ đpcm



#52 lanhlinh9a3

lanhlinh9a3

    Lính mới

  • Thành viên mới
  • 6 Bài viết
  • Giới tính:Nữ
  • Đến từ:Kiến Xương,tỉnh Thái Bình
  • Sở thích:xem phim anime, đọc truyện tranh và đi du lịch khắp mọi nơi

Đã gửi 22-08-2016 - 11:22

Cho m, n là các số thỏa mãn điều kiện mn=$\frac{1}{2}$. Tìm GTNN của P=$\frac{m^{2}+n^{2}}{m^{2}n^{2}}+\frac{m^{2}n^{2}}{m^{2}+n^{2}}$



#53 Moonriver

Moonriver

    Lính mới

  • Thành viên mới
  • 1 Bài viết

Đã gửi 23-08-2016 - 22:46

Cho các số thực dương a,b,c thỏa mãn a^{4}+ b^{4}+ c^{4}=1. Tìm GTLN của M = ab^{3}+ bc^{3}+ ca^{3}



#54 lanhlinh9a3

lanhlinh9a3

    Lính mới

  • Thành viên mới
  • 6 Bài viết
  • Giới tính:Nữ
  • Đến từ:Kiến Xương,tỉnh Thái Bình
  • Sở thích:xem phim anime, đọc truyện tranh và đi du lịch khắp mọi nơi

Đã gửi 25-08-2016 - 12:46

Cho $a,b,c>0$.Chứng minh: $\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\geq \frac{a+b+c}{2\sqrt{3(ab+bc+ca)}}$

                                    :D  ^_^  :))  :icon4:   :biggrin:


Bài viết đã được chỉnh sửa nội dung bởi tpdtthltvp: 25-08-2016 - 17:39


#55 canletgo

canletgo

    Hạ sĩ

  • Thành viên
  • 81 Bài viết
  • Giới tính:Nam
  • Đến từ:Hưng Yên
  • Sở thích:Đọc sách

Đã gửi 26-08-2016 - 11:27

Mọi người giúp mình bài này với !!!!!!!!!!!!!!!!!

Cho a, b, x, y > 0 thỏa mãn:

$a + b = 1$

$ax + by = 2$

$ax^{2} + by^{2} = 3$

CMR: $4 < ax^{3} + by^{3} < 4.5$


The big can fly ! :icon6:  :icon6:  :icon6: 

Tạm dịch: không gì là không thể !


#56 lephuonganh244

lephuonganh244

    Binh nhất

  • Thành viên mới
  • 42 Bài viết
  • Giới tính:Nữ
  • Đến từ:hà nội

Đã gửi 02-09-2016 - 10:11

câu 3a với câu 4

D7SRTM8.png

bài 4:

Đặt b+c-a=x; a+c-b=y; b+a-c=z (x;y;z$>$0)

=> c=$\frac{x+y}{2}$; a=$\frac{y+z}{2}$; b=$\frac{x+z}{2}$

=>Q= $\frac{y+z}{2x}$+$\frac{x+z}{2y}$+$\frac{x+y}{2z}$

=>Q=$\frac{1}{2}$($\frac{y}{x}$+$\frac{z}{x}$+$\frac{x}{y}$+$\frac{z}{y}$+$\frac{x}{z}$+$\frac{y}{z}$)

=>Q$\geqslant$3

Dấu "=" xảy ra <=> x=y=z


Bài viết đã được chỉnh sửa nội dung bởi lephuonganh244: 02-09-2016 - 10:11


#57 Nguyenphuctang

Nguyenphuctang

    Thượng sĩ

  • Thành viên
  • 280 Bài viết
  • Giới tính:Nam
  • Đến từ:Nghệ An
  • Sở thích:Bất đẳng thức đại số

Đã gửi 22-09-2016 - 15:29

Tại sao học bất đẳng thức để nhớ lại khó như vậy ạ? Có cách nào để ghi nhớ lâu được không ạ  :luoi:  :luoi:

Làm nhiều tự động sẽ nhớ thôi bạn 


 

 

a9e5a6dabe4e4368a5a82eeed37825d2.1.gif

 


#58 Nguyenphuctang

Nguyenphuctang

    Thượng sĩ

  • Thành viên
  • 280 Bài viết
  • Giới tính:Nam
  • Đến từ:Nghệ An
  • Sở thích:Bất đẳng thức đại số

Đã gửi 22-09-2016 - 15:31

 

câu 3a với câu 4

D7SRTM8.png

bài 4:

Đặt b+c-a=x; a+c-b=y; b+a-c=z (x;y;z$>$0)

=> c=$\frac{x+y}{2}$; a=$\frac{y+z}{2}$; b=$\frac{x+z}{2}$

=>Q= $\frac{y+z}{2x}$+$\frac{x+z}{2y}$+$\frac{x+y}{2z}$

=>Q=$\frac{1}{2}$($\frac{y}{x}$+$\frac{z}{x}$+$\frac{x}{y}$+$\frac{z}{y}$+$\frac{x}{z}$+$\frac{y}{z}$)

=>Q$\geqslant$3

Dấu "=" xảy ra <=> x=y=z

 

Bổ sung: Dấu ''='' xảy ra khi tam giác đó đều tức là a=b=c


 

 

a9e5a6dabe4e4368a5a82eeed37825d2.1.gif

 


#59 tranphamminhnhut2403

tranphamminhnhut2403

    Binh nhất

  • Thành viên
  • 22 Bài viết
  • Giới tính:Nam
  • Đến từ:Quảng Ninh

Đã gửi 02-10-2016 - 18:24

Cho các số thực dương a,b,c thỏa mãn a^{4}+ b^{4}+ c^{4}=1. Tìm GTLN của M = ab^{3}+ bc^{3}+ ca^{3}

Ta có: $ab^{3}\leqslant \frac{(a^{4}+b^{4}+b^{4}+b^{4})}{4}$

$bc^{3}\leqslant \frac{(c^{4}+c^{4}+c^{4}+b^{4})}{4}$

$ca^{3}\leqslant \frac{(c^{4}+a^{4}+a^{4}+a^{4})}{4}$

$\Rightarrow ab^{3}+bc^{3}+ca^{3}\leqslant \frac{4(a^{4}+b^{4}+c^{4})}{4}=1$

Dấu bằng xảy ra khi và chỉ khi $a=b=c=\frac{1}{\sqrt{2}}$

Bài viết đã được chỉnh sửa nội dung bởi tranphamminhnhut2403: 02-10-2016 - 18:26


#60 xuanhoan23112002

xuanhoan23112002

    Binh nhì

  • Thành viên mới
  • 10 Bài viết
  • Giới tính:Nam
  • Đến từ:Nam Định
  • Sở thích:làm bất đẳng thức

Đã gửi 22-11-2016 - 20:51

Tìm giá trị nhỏ nhất của 

P=$\fn_jvn \frac{a}{bc}$+$\fn_jvn \frac{2b}{ca}$+$\fn_jvn \frac{5c}{ab}$

trong đó a2+b2+c2=6


Bài viết đã được chỉnh sửa nội dung bởi xuanhoan23112002: 22-11-2016 - 20:57





0 người đang xem chủ đề

0 thành viên, 0 khách, 0 thành viên ẩn danh