Đến nội dung


Hình ảnh
* - - - - 1 Bình chọn

Tính giá trị của : $$P=\dfrac{yz}{x^2+myz}+\dfrac{zx}{y^2+mzx}+\dfrac{xy}{z^2+mxy}$$


  • Please log in to reply
Chủ đề này có 2 trả lời

#1 Tham Lang

Tham Lang

    Thượng úy

  • Thành viên
  • 1149 Bài viết
  • Giới tính:Nam
  • Sở thích:Tự kỉ ^^

Đã gửi 24-07-2012 - 17:57

Bài toán [Tham Lang]
Cho các số thực $x,y,z \ne 0$ và 2 tham số $m, n$ sao cho $$\left\{\begin{array}{1}\left (x^2+myz\right )\left (y^2+mzx\right )\left (z^2+mxy\right ) \ne 0 \\xy+yz+zx =0 \\(x+y+z)^3 =nxyz \end{array}\right.$$
Tính giá trị của :
$$P=\dfrac{yz}{x^2+myz}+\dfrac{zx}{y^2+mzx}+\dfrac{xy}{z^2+mxy}$$

Off vĩnh viễn ! Không ngày trở lại.......


#2 hoanglong2k

hoanglong2k

    Trung úy

  • Điều hành viên THCS
  • 965 Bài viết
  • Giới tính:Nam
  • Đến từ:Quảng Bình

Đã gửi 26-12-2015 - 23:35

Bài toán [Tham Lang]
Cho các số thực $x,y,z \ne 0$ và 2 tham số $m, n$ sao cho $$\left\{\begin{array}{1}\left (x^2+myz\right )\left (y^2+mzx\right )\left (z^2+mxy\right ) \ne 0 \\xy+yz+zx =0 \\(x+y+z)^3 =nxyz \end{array}\right.$$
Tính giá trị của :
$$P=\dfrac{yz}{x^2+myz}+\dfrac{zx}{y^2+mzx}+\dfrac{xy}{z^2+mxy}$$

 Từ giả thiết ta có :

$$nxyz=(x+y+z)^3=x^3+y^3+z^3+3(xy+yz+zx)(x+y+z)-3xyz=x^3+y^3+z^3-3xyz$$

$$\Rightarrow x^3+y^3+z^3=(n+3)xyz\Rightarrow \dfrac{x^2}{yz}+\dfrac{y^2}{xz}+\dfrac{z^2}{xy}=n+3$$

 Lại có : $xy+yz+zx=0\Rightarrow \dfrac{xy}{z^2}=-\dfrac{x+y}{z}\Rightarrow \dfrac{x+y+z}{z}=1-\dfrac{xy}{z^2}$

             $\Rightarrow \dfrac{\dfrac{z^2}{xy}}{\dfrac{z^2}{xy}-1}=\dfrac{z}{x+y+z}\Rightarrow \sum \dfrac{\dfrac{z^2}{xy}}{\dfrac{z^2}{xy}-1}=1$            $(*)$

 Đặt $a=\dfrac{x^2}{yz};b=\dfrac{y^2}{zx};c=\dfrac{z^2}{xy}\Rightarrow a+b+c=n+3$ và $abc=1$. 

 Từ $(*)$ lại có : $\sum \dfrac{a}{a-1}=1\Leftrightarrow \sum a(b-1)(c-1)=(a-1)(b-1)(c-1)\Leftrightarrow ab+bc+ca=3$

 Từ đây ta có :

$$P=\dfrac{1}{a+m}+\dfrac{1}{b+m}+\dfrac{1}{c+m}=\dfrac{(ab+bc+ca)+2m(a+b+c)+3m^2}{abc+m(ab+bc+ca)+m^2(a+b+c)+m^3}=\dfrac{3(m+1)^2+2mn}{(m+1)^3+m^2n}$$


Bài viết đã được chỉnh sửa nội dung bởi hoanglong2k: 27-12-2015 - 11:00


#3 hoilamchi

hoilamchi

    Trung sĩ

  • Thành viên
  • 164 Bài viết
  • Giới tính:Nam
  • Đến từ:Can Lộc
  • Sở thích:Doraemon và những thứ liên quan đến Mon ú

Đã gửi 27-12-2015 - 08:33

 Từ giả thiết ta có :

$$nxyz=(x+y+z)^3=x^3+y^3+z^3+3(xy+yz+zx)(x+y+z)-3xyz=x^3+y^3+z^3-3xyz$$

$$\Rightarrow x^3+y^3+z^3=(n+3)xyz\Rightarrow \dfrac{x^2}{yz}+\dfrac{y^2}{xz}+\dfrac{z^2}{xy}=n+3$$

 Lại có : $xy+yz+zx=1$$\Rightarrow \dfrac{xy}{z^2}=-\dfrac{x+y}{z}\Rightarrow \dfrac{x+y+z}{z}=1-\dfrac{xy}{z^2}$

             $\Rightarrow \dfrac{\dfrac{z^2}{xy}}{\dfrac{z^2}{xy}-1}=\dfrac{z}{x+y+z}\Rightarrow \sum \dfrac{\dfrac{z^2}{xy}}{\dfrac{z^2}{xy}-1}=1$            $(*)$

 Đặt $a=\dfrac{x^2}{yz};b=\dfrac{y^2}{zx};c=\dfrac{z^2}{xy}\Rightarrow a+b+c=n+3$ và $abc=1$. 

 Từ $(*)$ lại có : $\sum \dfrac{a}{a-1}=1\Leftrightarrow \sum a(b-1)(c-1)=(a-1)(b-1)(c-1)\Leftrightarrow ab+bc+ca=3$

 Từ đây ta có :

$$P=\dfrac{1}{a+m}+\dfrac{1}{b+m}+\dfrac{1}{c+m}=\dfrac{(ab+bc+ca)+2m(a+b+c)+3m^2}{abc+m(ab+bc+ca)+m^2(a+b+c)+m^3}=\dfrac{3(m+1)^2+2mn}{(m+1)^3+m^2n}$$

Đoạn này là như thế nào đây $xy+yz+zx=1$

 

 hoanglong2k : Gõ nhầm, đã sửa :)


Bài viết đã được chỉnh sửa nội dung bởi hoanglong2k: 27-12-2015 - 18:51





0 người đang xem chủ đề

0 thành viên, 0 khách, 0 thành viên ẩn danh