Đến nội dung


Hình ảnh

$\left | ax^2+bx+c \right |\geq \left | x^2-1 \right |$


  • Please log in to reply
Chủ đề này có 1 trả lời

#1 luuxuan9x

luuxuan9x

    Sát thủ có khuôn mặt trẻ thơ

  • Thành viên
  • 78 Bài viết
  • Giới tính:Nam
  • Đến từ:Cà Mau
  • Sở thích:Hoạt hình,phim hành động,đọc truyện

Đã gửi 16-02-2013 - 18:49

Giả sử $\left | ax^2+bx+c \right |\geq \left | x^2-1 \right |$ với mọi số thực $x$ . Chứng minh rằng $\left | b^2-4ac \right |\geq 4$.

#2 QDV

QDV

    Trung sĩ

  • Thành viên
  • 131 Bài viết

Đã gửi 16-11-2015 - 10:13

Giả sử $\left | ax^2+bx+c \right |\geq \left | x^2-1 \right |$ với mọi số thực $x$ . Chứng minh rằng $\left | b^2-4ac \right |\geq 4$.

Gọi A là BĐT điều kiện, B là BĐT kết quả

 Nếu VT của A có nghiệm. Dễ dàng CM a=-c ,b=0 và $\left | a \right |=\left | c \right |\geq 1$

 Vậy B đúng và Đẳng thức tại kết quả B xảy ra khi và chỉ khi a=1,b=0,c=-1 hoặc a=-1,b=0,c=1

 Nếu VT của A vô nghiệm

   $\Rightarrow (ax^{2}+bx+c)^{2}\geq (x^{2}-1)^{2}$

   $\Rightarrow [(a+1)x^{2}+bx+(c-1)][(a+1)x^{2}+bx+(c+1)]\geq 0,\forall x$

   $\Rightarrow \left\{\begin{matrix} b^{2}-4(a+1)(c-1)\leq 0 (1)\\ b^{2}-4(a-1)(c+1)\leq 0 (2) \end{matrix}\right.$

   (1)+(2)  

   $\Rightarrow 2(b^{2}-4ac)+8\leq 0\Rightarrow b^{2}-4ac\leq -4\Rightarrow \left | b^{2}-4ac \right |\geq 4$ (Đpcm)

 Đẳng thức xảy ra khi và chỉ khi a=c=m,b=$2\sqrt{m^{2}-1}\cup -2\sqrt{m^{2}-1},\left | m \right |\geq 1$

 Đẳng thức tại kết quả B xảy ra khi và chỉ khi a=1,b=0,c=-1 hoặc a=-1,b=0,c=1

hoặc a=c=m,b=$2\sqrt{m^{2}-1}\cup -2\sqrt{m^{2}-1},\left | m \right |\geq 1$


Bài viết đã được chỉnh sửa nội dung bởi QDV: 16-11-2015 - 10:29





0 người đang xem chủ đề

0 thành viên, 0 khách, 0 thành viên ẩn danh