Đến nội dung


Dinh Xuan Hung

Đăng ký: 05-02-2014
Offline Đăng nhập: Hôm nay, 12:56
****-

Bài viết của tôi gửi

Trong chủ đề: chủ đề bị khóa

06-01-2017 - 16:42

Thưa BQT cho em hỏi lý do vì sao topic này lại bị khóa ạ:http://diendantoanho...-tìm-xy-nguyên/. Em đâu có thấy nó có vấn đề gì ạ?

Tiêu đề của bài viết bạn nên viết Latex để tránh bị khóa !


Trong chủ đề: Đề Thi VMO năm 2017

06-01-2017 - 11:49

   BỘ GIÁO DỤC VÀ ĐÀO TẠO                                KỲ THI CHỌN HỌC SINH GIỎI QUỐC GIA THPT NĂM 2017

                                                                                                         

       ĐỀ THI CHÍNH THỨC

            Môn Toán 

                         Thời gian : 180 phút

                                      Ngày thi thứ hai 06/01/2017

 

Bài 5 . (6,0 điểm).

 

Tìm tất cả các hàm số : $f:\mathbb{R}\rightarrow \mathbb{R}$ thỏa mãn hệ thức:

 

$$f\left ( xf\left ( y \right )-f\left ( x \right ) \right )=2f\left ( x \right )+xy$$

 

với mọi số thực $x,y$

 

Bài 6 . (7,0 điểm) 

 

Chứng minh rằng:

 

a)$\sum_{k=1}^{1008}kC_{2017}^{k}\equiv 0$ (mod $2017^2$ )

 

b)$\sum_{k=1}^{504}\left ( -1 \right )^kC_{2017}^{k}\equiv 3\left ( 2^{2016}-1 \right )$ (mod $2017^2$ )

 

Bài 7 . (7,0 điểm)

 

Cho tam giác nhọn $ABC$ nội tiếp đường tròn $(O)$  và $G$ là một điểm thuộc cung $BC$ không chứa $O$  của đường tròn $(I)$ ngoại tiếp tam giác $OBC$ . Đường tròn ngoại tiếp tam giác $ABG$ cắt $AC$ tại $E$ , đường tròn ngoại tiếp tam giác $ACG$ cắt $AB$ tại $F$ ( $E$ và $F$ khác $A$ )

 

a)Gọi $K$ là giao điểm của $BE$ và $CF$ . Chứng minh $AK,BC$ và $OG$ đồng quy

 

b)Cho $D$ là một điểm thuộc cung $\overbrace{BOC}$ chứa $O$ của đường tròn $(I)$ ; $GB$ cắt $CD$ tại $M$ . $GC$ cắt $BD$ tại $N$ . Giả sử $MN$ cắt $(O)$ tại hai điểm $P,Q$ .Chứng minh rằng: khi $G$ thay đổi trên cung BC không chứa $O$ của đường tròn $(I)$ , đường tròn ngoại tiếp $GPQ$ luôn đi qua hai điểm cố định

 

HẾT


Trong chủ đề: Đề Thi VMO năm 2017

05-01-2017 - 11:44

ĐỀ THI NGÀY 1


Trong chủ đề: Mong mọi người chia sẻ

21-12-2016 - 21:00

Sao BĐT lại dùng casio làm gì vậy


Trong chủ đề: ĐỀ THI CHỌN HSG CẤP TỈNH NINH BÌNH NĂM 2016-2017

14-10-2016 - 20:25

Câu hàm điều kiện (3) và câu a  kì vậy, có phải sai đề ko nhỉ 

Đề đúng rồi nhé