Đến nội dung

tritanngo99

tritanngo99

Đăng ký: 06-04-2015
Offline Đăng nhập: Hôm nay, 15:54
****-

Trong chủ đề: Chứng minh rằng: $AH; BM; CN$ đồng quy.

04-05-2024 - 15:23

Cho điểm $A$ nằm ngoài đường tròn $(O)$; từ $A$ kẻ các tiếp tuyến $AM, AN$ và các cát tuyến $AEB, ADC$; $H$ là giao điểm của $BD$ và $CE$ ($B$ và $M$ cùng nằm trên một mặt phẳng bờ $AH$). Chứng minh rằng: $AH; BM; CN$ đồng quy.

Trước tiên để giải quyết bài toán này, mình xin trình bày các bổ đề liên quan (có kèm chứng minh) như sau:

a) Bổ đề 1: Định lý Menelaus

b) Bổ đề 2: Định lý Pascal

Cụ thể như sau:

a) Định lý Menelaus: Cho tam giác $ABC$ và 3 điểm $A',B',C'$ trên các đường thẳng chứa các cạnh BC,CA,AB sao cho: hoặc cả ba điểm $A',B',C'$ đều nằm trên phần kéo dài của ba cạnh, hoặc 1 trong 3 điểm đó nằm trên phần kéo dài của một cạnh còn hai điểm kia nằm trên hai cạnh của tam giác. Điều kiện cần và đủ để $A',B',C'$ thẳng hàng là ta có hệ thức: $\frac{AB'}{B'C}.\frac{CA'}{A'B}.\frac{BC'}{C'A}=1$

Chứng minh: Bạn tham khảo tại https://www.molympia...y-menelaus.html

Ghi chú: Ở cách chứng minh trên, sử dụng định lý Talet nên sẽ dễ tiếp cận với THCS.

b) Định lý Pascal: Cho lục giác $ABCDEF$ nội tiếp đường tròn, $H,K,I$ lần lượt là giao điểm của $AB$ và $ED$, $BC$ và $EF$, $AF$ và $CD$. Chứng minh rằng: $I,H,K$ thẳng hàng

Chứng minh: Bạn tham khảo tại https://julielltv.wo...dinh-li-pascal/

Ghi chú: Ở cách chứng minh trên, có sử dụng định lý Menelaus, nên cũng sẽ dễ tiếp cận với THCS

 

Sau khi chứng minh được định lý Pascal, ta sử dụng một chú ý quan trọng nữa như sau:

 

Chú ý: Đó chính là giả sử Ta có một đường tròn $(O)$ và một đường thẳng $d$ cắt $(O)$ tại 2 điểm $D,E$. Khi $D$ trùng $E$ thì khi đó đường thẳng $d$ chính là tiếp tuyến của $(O)$ tại $D$.

 

File gửi kèm  r4.png   110.1K   0 Số lần tải

 

Bây giờ, quay trở lại bài toán ban đầu đã cho, mình sẽ áp dụng định lý Pascal 3 lần để giải quyết bài toán này, cụ thể như sau:

Gọi $R$ là giao điểm của $EM,DN$ ; $S$ là giao điểm của $MC,BC$ và $T$ là giao điểm của $EN,DM$

 

- Áp dụng định lý Pascal cho 6 điểm $M,M,N,N,E,D$ ta có: $MM\cap NN = A ; MD\cap NE = T; ME\cap DN=R$ thẳng hàng (1)

- Áp dụng định lý Pascal cho 6 điểm $M,M,N,N,B,C$ ta có: $MM\cap NN=A ; MC\cap BN=S ; MB\cap NC = O$ thằng hàng

(2)

- Áp dụng định lý Pascal cho 6 điểm $E,M,B,C,D,N$ ta có: $EN\cap DM=T ; EC\cap DB=H; MC\cap BN=S$ thẳng hàng (3)

 

Từ (1),(2) và (3) ta suy ra được các điểm: $A,R,T,H,S,O$ thẳng hàng hay $AH,BM,CN$ đồng quy tại $O$ và ta có điều phải chứng minh

 

Ps: Ngoài ta để có thể tham khảo các dạng toán liên quan đến định lý Pascal, bạn có thể tham khảo thêm tại đây: https://nguyenvanlin...cal-theorem.pdf và theo mình đối với THCS, mà học trước những cái này tuy hơi khó nhưng sẽ có ích sau này nếu bạn đi tiếp lên cấp 3.


Trong chủ đề: Chứng minh rằng:$S_{m+n}+S_{m-n}=S_{m}...

11-03-2024 - 08:39

Mình xin trình bày lời giải bài này như sau:

Ta có: $(\sqrt{2}+1)(\sqrt{2}-1)=1\implies \sqrt{2}-1=\frac{1}{\sqrt{2}+1}$

Do đó: $S_{k}=(\sqrt{2}+1)^{k}+\frac{1}{(\sqrt{2}+1)^{k}}$

Từ đây, bắt đầu tính toán $S_{m+n}+S_{m-n}$ và $S_m.S_n$, thu được kết quả như sau:

+ $S_{m+n}.S_{m-n} =(\sqrt{2}+1)^{m+n}+\frac{1}{(\sqrt{2}+1)^{m+n}}+\frac{(\sqrt{2}+1)^{m}}{(\sqrt{2}+1)^{n}}+\frac{(\sqrt{2}+1)^{n}}{(\sqrt{2}+1)^{m}} (I)$

 

+ $S_m.S_n =(\sqrt{2}+1)^{m+n}+\frac{1}{(\sqrt{2}+1)^{m+n}}+\frac{(\sqrt{2}+1)^{m}}{(\sqrt{2}+1)^{n}}+\frac{(\sqrt{2}+1)^{n}}{(\sqrt{2}+1)^{m}} (II)$

 

Từ (I) và (II) ta thu được điều phải chứng minh


Trong chủ đề: $M$ thỏa mãn: $\overrightarrow{AM}+x\o...

23-12-2021 - 12:04

Cho hình chữ nhật $ABCD$ cạnh $a$. Gọi $M$ là điểm thỏa mãn: $\overrightarrow{AM}+x\overrightarrow{AC}=0$.

Điểm $G$ là trọng tâm tam giác $ABM$. Biết: $\overrightarrow{MG}.\overrightarrow{AB}=\frac{-a^2}{9}$.

Giá trị của $x$ là bao nhiêu? 

Hình chữ nhật hay và hình vuông vậy bạn ? 


Trong chủ đề: [TOPIC] Mỗi ngày một bài toán IMO

01-11-2021 - 06:19

Bài 15: [IMO 1986] Cho $d$ là một số nguyên dương khác $2,5$ và $13$. Chứng minh rằng có thể tìm được hai số nguyên dương $a$ và $b$ từ tập hợp $\left\{,2,5,13,d\right\}$ sao cho $ab-1$ không phải là số chính phương.


Trong chủ đề: [TOPIC] Mỗi ngày một bài toán IMO

30-10-2021 - 06:04

Bài 14: [IMO 1985] Cho tứ giác $ABCD$ nội tiếp đường tròn. Một đường tròn có tâm nằm trên cạnh $AB$ của tứ giác sao cho ba cạnh còn lại tiếp xúc với đường tròn đó. Chứng minh rằng: $AD+BC=AB$