Đến nội dung


Ego

Đăng ký: 26-10-2015
Offline Đăng nhập: Riêng tư
****-

Bài viết của tôi gửi

Trong chủ đề: Kỳ thi chọn đội tuyển dự thi VMO tỉnh Đồng Nai

13-11-2016 - 22:48

Bài 1 cũng đâu đến phức tạp nhờ
Gọi $n$ nghiệm đã cho là $x_{1}, x_{2}, \cdots x_{n}$. Với $\sum_{k = 1}^{n}x_{k} = -a_{1}$ và $\sum_{i \neq j}x_{i}x_{j} = a_{2}$.
Ta cần chứng minh $-a_{1}\le x_{k} \le a_{1} + 2 \quad \forall k$
Ta có $x_{i}^{2} \le \sum_{k = 1}^{n}x_{k}^{2} = a_{1}^{2} - 2a_{2} \le a_{1}^{2}$ nên $-a_{1} \le x_{i} \le a_{1}$


Trong chủ đề: Tính $lim\frac{S_n}{n}$

16-10-2016 - 21:51

Đề bài hầu như không dùng tới dữ kiện $u_{2k}$ nên ta không cần định nghĩa chúng. Định nghĩa lại như sau $v_{1} = 1, e^{v_{n + 1}} = e^{v_{n}} - v_{n}$ và $S_{n} = \sum_{k = 1}^{n - 1}(n - k)v_{k}$

  • Ta sẽ chứng minh $e^{v_{n}}$ hội tụ
    Thật vậy, xét hàm $f(x) = x - \ln(x)$ trên $(0; +\infty)$; chứng minh được $f(x) \ge 1$. Ta có $e^{v_{n + 1}} = e^{v_{n}} - \ln(e^{v_{n}})$ nên ta có $e^{v_{n + 1}} \ge 1$
    Giả sử $x > y$, xét $f(x) - f(y) = x - y - (\ln(x) - \ln(y)) = x - y - \frac{x - y}{t} = (x - y)\left(1 - \frac{1}{t}\right)$ với $t\in (x; y)$. Có $\frac{1}{2} < 1 \le x < t$ nên $\left|1 - \frac{1}{t}\right| < 1$. Theo nguyên lí ánh xạ co thì $e^{v_{n}}$ hội tụ và nó hội tụ về $1$.

Ta có $S_{n + 1} - S_{n} = \sum_{k = 1}^{n}(n + 1 - k)v_{k} - \sum_{k = 1}^{n - 1}(n - k)v_{k} = \sum_{k = 1}^{n}v_{k}$
Mặt khác, $v_{n} = e^{v_{n + 1}} - e^{v_{n}}$ nên $\sum_{k = 1}^{n}v_{k} = e^{v_{n + 1}} - e_{v_{1}} = e^{v_{n + 1}} - e \to 1 - e$ khi $n \to +\infty$
 


Trong chủ đề: Tính $\lim_{n\rightarrow +\infty}\sum_...

16-10-2016 - 19:00

Ý tưởng bài này rất rõ ràng. Từ dãy truy hồi ta thu được $\frac{1}{x_{n}} - \frac{1}{x_{n + 1}} = \frac{x_{n}^{2016}}{x_{n + 1}}$
Lấy tổng ta thu được $\lim_{n\to +\infty}\sum_{i = 1}^{n}\frac{x_{i}^{2016}}{x_{i + 1}} = \frac{1}{x_{1}} - \frac{1}{x_{n + 1}} = 1 - \frac{1}{x_{n + 1}}$
Lại dễ dàng chứng minh được dãy $x_{n}$ là dãy vô cùng lớn nên ta kết luận $\lim_{n\to +\infty}\sum_{i = 1}^{n}\frac{x_{i}^{2016}}{x_{i + 1}} = 1$


Trong chủ đề: Đề chọn đội tuyển học sinh giỏi quốc gia tỉnh Bắc Ninh 2016-2017

12-10-2016 - 22:36

Câu 3. Từ CTTH, có $a_{n + 1} - 27 = (a_{n} - 27)(2a_{n} + 1)^{2}$. Do đó $a_{n} - 27 = (a_{1} - 7)\left(\prod_{k = 1}^{n - 1}2a_{k} + 1\right)^{2} = 7\left(\prod_{k = 1}^{n - 1}2a_{k} + 1\right)^{2}$. Do đó $a_{n} + 1 = 7\left[\left(\prod_{k = 1}^{n - 1}2a_{k} + 1\right)^{2} + 4\right]$.
Xét $p\in \mathbb{P}\mid \left(\prod_{k = 1}^{n - 1}2a_{k} + 1\right)^{2} + 4$ (dĩ nhiên ta thấy chỉ có $p$ lẻ). Ta có $\left(\frac{-4}{p}\right) = 1 \iff \left(\frac{-1}{p}\right) = 1$ hay $p \equiv 1\pmod{4}$
Do đó số cần tìm là $7$.

P.S: Lâu quá không lên :3


Trong chủ đề: Chứng minh rằng: b-g=B-G.

08-08-2016 - 22:11

Bài này là một bổ đề đẹp, được dùng trong kì VMO 2014 (nếu mình không nhầm). Sau đó là nằm trong đề HSG lớp 9 của Titan Education năm 2014.
Lời giải của mình năm ấy thế này, bạn tham khảo thử.
Dĩ nhiên số học sinh là $1$ thì không có gì để nói. Ta sẽ xét số học sinh từ $2$ trở lên
i) Với số học sinh là hai, ta xét là TRAI - TRAI, GÁI - GÁI, GÁI - TRAI thì thấy khẳng định bài toán đúng.
ii) Bây giờ giả sử bài toán đúng với số học sinh $n$. Bây giờ ta thêm một em học sinh vô. Vai trò mấy em này như nhau, nên giả sử ta thêm bạn nữ (:3) vào
Khi đó $B' = B$ và $G' = G + 1$.
a) TH1. Ta nhét em ấy vào giữa GÁI - GÁI thì $b' = b$ và $g' = g + 1$. Khi đó $B' - G' = B - G - 1 = b - g - 1 = b' - g'$.
b) TH2. Ta nhét em ấy vào giữa TRAI - GÁI thì $b' = b$ và $g' = g + 1$. Tương tự trên ta cũng có đpcm.
c) TH3. Ta nhét em ấy vào giữa TRAI - TRAI thì $b' = b - 1$ và $g' = g$. Lúc đó $B' - G' = B - G - 1 = b - 1 - g = b' - g'$. Xong.