Đến nội dung


quantv2006

Đăng ký: 07-06-2016
Offline Đăng nhập: Hôm nay, 11:28
-----

Bài viết của tôi gửi

Trong chủ đề: Cmr: PS//OK

Hôm qua, 19:29

NE cắt (BDE) tại F. Dễ thấy BF là đường kính của (BDE) nên M, D, F thẳng hàng.

 

BO cắt (O) tại G. BG là đường kính của (O), BF là đường kính của (BDE) nên F, G, S thẳng hàng.

 

GA// NE (cùng vuông góc với AB). AC= MN. Từ đó chứng minh tam giác AGC = tam giác NFM. Vậy GA//=NF hay AGNF là hình bình hành.

 

P là trung điểm của AN nên P là trung điểm của GF. Vậy 4 điểm F, G, P, S thằng hàng.

 

OK // GP nên OK //PS.


Trong chủ đề: Topic ôn thi hình học vào cấp 3 chuyên

Hôm qua, 11:31

Bài toán 10 (TTT2 số 165). Cho tam giác $ABC$ nội tiếp $(O)$ với $AB<AC$. Tiếp tuyến tại $A$ của $(O)$ cắt $BC$ tại $T$. $AD$ là đường kính của $(O)$. $DB$ cắt $OT,AT$ tại $E,F$. $EO$ cắt $(AEF)$ tại $G$. Chứng minh rằng tâm nội tiếp tam giác $AGB$ nằm trên $(O)$.

 

(Bài này đã hết hạn trên TTT2 nhưng mình thấy đáp án trên báo hơi dài, hôm qua có một bạn giải ngắn gọn hơn) 

 

Bài 10:

 

2017_01_20_112634.png

Gọi I là giao điểm của GO và (O).

 

Tứ giác AFEG là tứ giác nội tiếp nên góc $\angle AGO=\angle AFE$

 

Lại có góc $\angle AFE=\angle AFD=\angle OAB=\angle OBA $ nên $\angle AGO=\angle ABO$ hay AGBO là tứ giác nội tiếp. Do đó $\angle BGO=\angle AGO=\angle ABO$ hay GO là phân giác góc AGB.

 

Xét tam giác GAB có đường tròn ngoại tiếp (GAB) và O là trung điểm của cung AB không chứa G. OI = OA = OB nên I là tâm đường tròn nội tiếp tam giác GAB.


Trong chủ đề: Topic ôn thi hình học vào cấp 3 chuyên

Hôm qua, 11:12

Bài 7, câu 3: M là trung điểm của BC nên $\frac{AB}{AC}=\frac{DC}{DB}$

 

Tam giác ABC và AEF đồng dạng nên $\frac{AB}{AC}=\frac{AE}{AF}$

 

Ta có $\frac{CE}{BF}=\frac{DC}{DB}=\frac{AB}{AC}=\frac{AE}{AF}=\frac{NE}{NF}$

 

Từ đó có  $\frac{NF}{BF}=\frac{NE}{CE}$

 

Vậy $\frac{NQ}{BQ}=\frac{NP}{BP}$ hay PQ // BC

 

Mình nghĩ cách này gọn hơn.


Trong chủ đề: BÀI TOÁN TIẾP XÚC VỚI ĐƯỜNG TRÒN CỐ ĐỊNH

18-01-2017 - 11:29

Bài này điểm $M$ khá đặc biệt , ở đây mình có thể tổng quát bài toán như sau : , cho tam giác $ABC$ nội tiếp $(O)$ , $B,C$ cố định , $A$ thay đổi trên cung lớn $BC$ , phân giác $AD$ , $M$ là 1 điểm cố định trên trung trực $BC$ , đường thẳng qua $D$ vuông góc $BC$ cắt $AM$ tại $I$ thì $(I,ID)$ luốn tiếp xúc với 1 đường tròn cố định khi $A$ thay đổi

Bài mở rộng, Gọi giao của OM với (O) tại E, với BC là P, với đường tròn (J) ((J) là đường tròn tiếp xúc với (I;ID)) là F. Khi đó ta có: PF.ME = PE. R

 

Do PE, R, ME cố định nên PF cố định. Vậy (BCF) cố định.


Trong chủ đề: Topic ôn thi hình học vào cấp 3 chuyên

17-01-2017 - 22:19

Bài toán 2 (Thi thử chuyên KHTN 2013, vòng 2, đợt 3). Cho tam giác $ABC$ nội tiếp đường tròn $(O)$. $P$ là một điểm nằm trong tam giác $ABC$. Trung trực $CA, AB$ lần lượt cắt $PA$ tại $E, F$. Đường thẳng qua $E$ song song $AC$ cắt tiếp tuyến tại $C$ của $(O)$ tại $M$. Đường thẳng qua $F$ song song $AB$ cắt tiếp tuyến tại $B$ của $(O)$ tại $N$.

 

1) Chứng minh rằng $MN$ tiếp xúc $(O)$.

 

2) Gọi $MN$ cắt dường tròn ngoại tiếp các tam giác $ACM, ABN$ lần lượt tại $Q,R$ khác $M, N$. Chứng minh rằng $BQ$ và $CR$ cắt nhau trên $(O)$.

 

 

 

2017_01_17_220647.jpg

Bài toán 2:

 

Câu 1. AP cắt (O) tại điểm thứ 2 là D.

 

Do NF // AB nên NF vuông góc với OF tại D. Vậy BFON là tứ giác nội tiếp.

 

Do NF // AB nên góc $\angle NFB = \angle FBA =\angle FAB = \angle NFD$. Vậy góc $\angle DFB = 2.\angle DAB = \angle DOB$. Hay tứ giác BFOD là tứ giác nội tiếp.

 

Vậy B, E, O, D, N cùng nằm trên một đường tròn, do đó góc $\angle ODN = 90^0$ hay ND là tiếp tuyến của (O) tại tiếp điểm D.

 

Tương tự có MD là tiếp tuyến (O) tại tiếp điểm D. Do đó M, N, D thẳng hàng hay MN tiếp xúc với (O) tại D.

 

Câu 2. Góc $\angle ARQ = \angle ARN = 180^0 - \angle ABN = \angle ACB$.

 

Tương tự có góc $\angle AQR = \angle ABC$.

 

Vậy tam giác AQR và tam giác ABC đồng dạng. Từ đó có tam giác AQB và ARC đồng dạng.

 

Do đó $\angle ABQ = \angle ACR$. Nếu gọi K là giao điểm của QB và RC thì tứ giác ABKC là tứ giác nội tiếp. Vậy K nằm trên (O).