Đến nội dung


Chú ý

Nếu các bạn đăng kí thành viên mà không nhận được email kích hoạt thì hãy kiểm tra thùng thư rác (spam). Nếu không biết cách truy cập vào thùng thư rác thì các bạn chịu khó Google hoặc đăng câu hỏi vào mục Hướng dẫn - Trợ giúp để thành viên khác có thể hỗ trợ.


Chuyên mục

 Photo

Với lý thuyết phạm trù: Toán học thoát khỏi các đẳng thức

29-10-2019

Với lý thuyết phạm trù: Toán học thoát khỏi các đẳng thức Bài dịch rất tâm huyết của bạn Nguyễn Hoàng Khang - lớp K19 tài năng Toán học - Đại học Khoa học Tự nhiên, ĐHQG TP.HCM. Nguồn: Tạp chí Quantamagazine. Dấu bằng là nền tảng của toán học. Nó dường như phát biểu một điều hết sức cơ bản và được chấp nhận một cách không phải bàn cãi: những đối tượng này đều giống nhau, đều là một cả mà thôi. Nhưng càng ngày, càng có một cộng đồng lớn hơn của những nhà toán học coi dấu bằng là một sai lầm cơ bản của toán học. Họ coi nó chỉ là một lớp vỏ bọc dùng để che đậy những thứ phức tạp hơn trong quan hệ định lượng giữa các đối tượng – những thứ phức tạp mang sức mạnh để có thể giải quyết được một số lượng khổng lồ các bài toán. Họ muốn tái xây dựng toán học theo một ngôn ngữ lỏng hơn của sự tương đương. “Chúng ta đã sáng tạo nên khái niệm về sự bằng nhau”, Jonathan Campbell của đại học Duke nói, “đáng lẽ nó đã phải là sự tương đương từ đầu thì tốt hơn” Nhân vật nổi bật nhất trong cộng  đồng này là Jacob Lurie. Trong tháng $7$ vừa rồi, Lurie, $41$, rời khỏi biên chế giáo sư ở đại học Harvard để tới với một vị trí tại viện nghiên cứu cấp cao (Institute for Advanced Study) ở Princeton, New Jersey, nhà của nhiều trong số những nhà toán học được kính nể nhất thế giới. Ý tưởng của Lurie mang tính cách mạng ở một mức độ hiếm thấy trong bất kì ngành nào. Thông qua những cuốn sách mà anh đã phát hành, gồm hàng ngàn trang đặc và đầy tính kĩ thuật, anh đã xâ...

  1641 Lượt xem · 3 Trả lời ( Trả lời cuối cùng bởi bibonxyz )

 Photo

Phương pháp d'Hondt trong bầu cử

19-10-2019

Nghị viện Châu Âu tổ chức cuộc bầu cử vào tháng 5/2019 để bầu đại diện của các quốc gia trong châu Âu cũng như của các đảng phái, dựa vào tỉ lệ của kết quả trúng cử. Ý tưởng để xác định số ghế đại diện của 1 đảng đó là nếu đảng có $x\text{%}$ tổng số phiếu bầu thì đảng sẽ lấy $x\text{%}$ ghế. Tuy nhiên, cách lấy tỉ lệ $\text{%}$ này đôi khi dẫn đến kết quả không phải là số nguyên dương, ví dụ nếu như ta có $600000$ cử tri bầu chọn ra $100$ nghị sĩ đến từ $3$ đảng, kết quả mỗi đảng có $200000$ phiếu bầu, thì mỗi đảng sẽ lấy $1/3$ trong tổng số ghế, tức $100/3 \approx 33.33$ ghế, điều này là phi thực tế.  Để giải quyết vần để này, ta cần một phương pháp để chuyển đổi tỉ lệ phần trăm sang số ghế. Trong cuộc bầu cử Nghị viện châu Âu 2019, Nghị viện dùng phương pháp d'Hondt, ý tưởng của phương pháp này đó là một ghế trong Nghị viện có giá trị tương ứng với một số lượng phiếu bầu, mỗi đảng có thể "mua" nhiều ghế dựa vào giá trị số phiếu bầu họ có, nếu bầu theo cách chia tỉ lệ rồi làm tròn sẽ xảy ra hiện tượng một đảng nhận ít (hoặc nhiều) ghế hơn giá trị phiếu họ có, điều này hiển nhiên thiếu công bằng, nếu một đảng "mua" hết ghế, tức trong Nghị viện không được thừa ghế trống nào cả. Xác định giá trị thích hợp cho 1 ghế trong Nghị viện có vẻ như khá phức tạp, nhưng ta có một quy trình lặp có thể giúp ta có được giá trị mong muốn. Ta sẽ bắt đầu bằng cách cho mỗi đảng số lượng phiếu bầu lớn nhất có thể để có được 1 ghế, sau đó, với mỗi đảng, ta tính giá trị sau$$N=\fra...

  801 Lượt xem · 0 Trả lời

 Photo

Tìm cá voi bằng định lý Pythagoras

18-10-2019

Hiện nay cá voi đang chịu nhiều sự đe dọa, ví dụ như nạn săn cá voi, môi trường sống bị suy giảm, nước biển bị ô nhiễm, ảnh hưởng từ thiết bị phát hiện tàu ngầm, hay biến đổi khí hậu. Ngoài ra, cá voi có thể bị mắc kẹt vào tàu cá. Do đó, để tránh cá voi, thủy thủ trên tàu phải biết vị trí của cá voi để tránh. Để giải quyết bài toán này ta cần sử dụng đến một định lý đã có từ thời xa xưa và rất quen thuộc với các bạn học sinh: Định lý Pythagoras. Cá voi beluga I. ĐỊNH LÝ PYTHAGORAS Cho một tam giác vuông như hình dưới, định lý Pythagoras nói rằng diện tích hình vuông ở cạnh huyền $c^{2}$ bằng với tổng 2 diện tích của 2 hình vuông ở 2 cạnh góc vuông, tức $a^{2}+b^{2}$ Định lý PythagorasHay nói cách khác$$a^{2}+b^{2}=c^{2}$$Định lý này được đặt tên theo nhà Toán học tên là Pythagoras đến từ vùng Samos vào thời Hi Lạp cổ đại. II. TÌM CÁ VOI Một cách để xác định vị trí của cá voi đó là dùng máy thủy âm định vị để phát ra âm thanh và thu lại tiếng vang. Tuy nhiên, cá voi rất ghét âm thanh này vì nó làm cho cá voi bị nhầm tín hiệu với cá voi khác, làm đảo lộn hành vi của cá voi, thậm chí có cá voi phải bơi lên cạn để tránh âm thanh này. Do đó, thay vì sự dụng máy thủy âm định vị phát ra âm thanh trực tiếp đến cá voi, ta hãy lắng nghe chính âm thanh phát ra từ cá voi, hay nói cách khác là nghe cá voi "hát" giống như clip dưới đâyNếu cá voi bơi gần bề mặt mặt biển và cách tàu một khoảng $L$, thì thời gian $T$ để âm thanh từ cá voi phát ra đi đến tàu là:$$T=\frac...

  961 Lượt xem · 1 Trả lời ( Trả lời cuối cùng bởi VanAnhDz )

 Photo

Shiing-Shen Chern: cha đẻ của hình học vi phân hiện đại

04-10-2019

Viết về Shiing-Shen Chern Ảnh: Shiing-Shen Chern (trái) và Eugenio Calabi (phải). Lần đầu tiên mình tìm tới wiki giáo sư Chern và khá ngạc nhiên vì một cái wiki đồ sộ như thế, không hề thua kém bất cứ một nhà Toán học được giải Fields nào. Mình với bạn mình khá ngạc nhiên vì một người như thế không được phổ biến rộng rãi lắm (ít nhất mình thấy vậy ở Việt Nam) nên mình mới viết cái này. Để nói về Chern thì ta có thể nói về học trò của ông. Mình kể ba người nổi tiếng là Shing-Tung Yau (giải Fields năm $1982$), Chen Ning Yang (giải Nobel Vật lý năm $1957$) và tỷ phú James Harris Simons ($21,5$ tỷ $). Riêng James Simons đã từng nhắc tới Chern xong bài TED talk của mình và cùng Chern xây dựng lý thuyết Chern-Simons có tiền thân là dạng Chern-Simons và ứng dụng trong lý thuyết Gauge, lý thuyết nút, lý thuyết dây và lý thuyết trường lượng tử topo. (Cái này mình chịu, hỏi mấy ông Vật lý) Trong khi đó Chen Ning Yang đặt thầy mình ngang hàng với Euclide, Gauss, Riemann và Cartan. Chern là học trò của Blaschke và thường xuyên ăn tối với Kahler (nổi tiếng với đa tạp Kahler), dĩ nhiên ông còn có quan hệ với nhiều nhà Toán học lớn khác. Chern bản thân là một nhà Toán học người Mỹ gốc Hoa đã từng làm việc ở nhiều viện nghiên cứu cao cấp trong đó có đại học Chicago (ông từng hợp tác với Andre Weil ở đây) và UC Berkeley. Ông là phó chủ tịch hội Toán học Mỹ, giám đốc và sáng lập viện nghiên cứu Toán Berkeley, sau đó ông sáng lập và làm giám đốc viện nghiên cứu Nam Khai ở...

  1050 Lượt xem · 1 Trả lời ( Trả lời cuối cùng bởi Isidia )

 Photo

NGƯỜI THÔNG MINH NHẤT HÀNH TINH

30-07-2019

NGƯỜI THÔNG MINH NHẤT HÀNH TINH(dành cho người quan tâm đến Toán, Vật lý và Triết học)...Grigori Perelman, sinh năm 1966 - đứng thứ 9 trong danh sách 100 thiên tài đang sống giữa chúng ta (kết quả bầu năm 2007 khi ông còn chưa được giải Clay vì lời giải bài toán “thiên niên kỷ” của Poincare, trong khi đó đứng đầu danh sách là Hoffman, cha đẻ của “thuốc gây ảo giác LSD”). Tuy vậy theo tôi biết thì cộng đồng khoa học đã từ lâu công nhận ông là nhà khoa học thông thái nhất hành tinh, tôi tuy ngoại đạo nhưng cũng rất tò mò muốn biết con người này thực ra là ai, ngoài những thông tin “lá cải” về việc ông từ chối nhận giải thưởng 1 triệu đôla và ở ẩn đối với tất cả xã hội do đó sống nghèo đói. Đơn giản khi một con người đã tuyệt đỉnh thông minh, thì ngoài việc “lập dị” ra thì mỗi hành động của ông ta phải có cả một câu chuyện dài phía sau, chứ không phải kiểu “nổ” bất thình lình... Và qua cuộc đời ông, tôi thấy được một câu chuyện rất hay về các nhà toán học thời hiện đại, cũng như toán học cần thiết để làm gì, từ những cuộc tranh cãi “32 con gà” ngày nay cho đến thành tựu của Ngô Bảo Châu đều có ý nghĩa cao siêu hơn ta hằng nghĩ!Đầu tiên phải nói thật, gây tò mò nhất đối với tôi là việc ngài Perelman là “chuyên gia từ chối các giải thưởng danh giá”. Hãy xem ông đã từ chối gì:-1996 từ chối giải của Hiệp hội toán học châu Âu (EMC) dành cho các nhà toán học trẻ - giải thưởng này như một bảo đảm cho người lĩnh giải sẽ được nhận vào làm việc tại các trường đại học danh giá nhất của...

  2257 Lượt xem · 6 Trả lời ( Trả lời cuối cùng bởi Open24 )

 Photo

Hư Trúc Truyền Kì

28-05-2019

https://tongthanhvan...-truyen-ki.html  [Hư Trúc Truyền Kì] Saint Etienne, Hạ tuần tháng 5/2019 Những ngày đầu hè nghe tiếng ve kêu râm ran làm người ta cảm thấy nao nao, nhớ lại tháng ngày vui buồn đi học, những mùa hoa phượng đỏ chia tay bạn bè, thầy cô tìm miền đất mới… Thời gian thấm thoắt thoi đưa gần cả năm từ ngày kết thúc bảo vệ luận án PhD và rời khỏi « thế giới toán học » đi tìm tương lai mới, dường như vẫn đâu đây đọng lại kí ức của những ngày tuổi trẻ phơi phới sống/ăn/ngủ với đam mê riêng mà chả có chút nào nuối tiếc… Thỉnh thoảng nhàn rỗi trà dư tửu hậu đàm đạo với các huynh đệ chuyện trong « giới toán lâm » mà thấy có cảm hứng để quay lại viết cái gì đó, thỏa thích, không câu nệ, có chút thi vị… Ai xem/đọc Thiên Long Bát Bộ của Kim Dung thì chắc hẳn đều biết tới nhân vật Hư Trúc (虛竹), anh sư « ngô nghê«, mắt to mũi lớn, tướng mạo cục súc nhưng tâm tính hiền lành, tốt bụng của Thiếu Lâm tự, huynh đệ với Kiều Phong, Đoàn Dự, kiêm chưởng môn phái Tiêu Dao, thuộc hàng võ lâm cao thủ thượng thừa thời đó, mà chắc số người trong giang hồ có thể tỉ thí đếm trên đầu ngón tay… Điểm Hư Trúc làm ai cũng nhớ tới là thực ra anh ta không có biết gì về võ công, chỉ là một tiểu tăng quét chùa trói gà không chặt. Kim Dung lão nhân gia ưu ái đặc biệt cho nhân vật này, số mạng đổi đời sau khi gặp được quý nhân trong động. Số là Hư Trúc « vô tình » đặt nhầm quân cờ lên bàn mà giải được "Trân Long kỳ trận", 10 năm...

  2337 Lượt xem · 5 Trả lời ( Trả lời cuối cùng bởi nguoiday )

 Photo

PGS. TS Phạm Hoàng Hiệp: Từ cậu bé mê giải toán đến nhà toán học

29-01-2019

PGS. TS Phạm Hoàng Hiệp: Từ cậu bé mê giải toán đến nhà toán học25/05/2015 12:26 -Nhà toán học Việt Nam đầu tiên ở trong nước có bài đăng trên tạp chí Acta Mathematica danh tiếng mới đây đã trở thành chủ nhân đầu tiên của Giải thưởng Tạ Quang Bửu dành cho Nhà khoa học trẻ.Khác với năm ngoái, Giải thưởng Tạ Quang Bửu năm nay đã tìm được chủ nhân cho hạng mục Nhà khoa học trẻ, đó là PGS.TSKH. Phạm Hoàng Hiệp, người mới chuyển về Viện Toán học từ tháng Tư vừa qua, sau 10 năm giảng dạy ở Khoa Toán-Tin, ĐHSP Hà Nội. Với công trình viết chung cùng Viện sĩ viện Hàn lâm khoa học Pháp, Giáo sư Jean-Pierre Demailly mang tên “A sharp lower bound for the log canonical threshold” (Một đánh giá tốt nhất có thể của ngưỡng chính tắc) đăng trên tạp chí Acta Mathematica số 212, tập 1, năm 2014, nhà toán học 34 tuổi đã giành được số phiếu tuyệt đối của Hội đồng Giải thưởng.  “Đây là lần đầu tiên một nhà toán học Việt Nam ở trong nước có bài đăng trên tạp chí Acta Mathematica - tạp chí được xếp hạng cao nhất theo chỉ số ảnh hưởng và chỉ số trích dẫn năm năm trong danh mục 302 tạp chí ngành toán lý thuyết của cơ sở dữ liệu ISI. Công trình này được viết chung với nhà toán học hàng đầu của thế giới. Theo thư ủng hộ của ông ta thì PGS Phạm Hoàng Hiệp là người đề xuất vấn đề nghiên cứu và đưa ra ý tưởng chính để giải quyết vấn đề, đồng thời là người đóng vai trò chủ chốt trong việc viết bài. Công trình này đưa ra một ước lượng tốt nhất cho một chỉ số quan trọng tron...

  3314 Lượt xem · 5 Trả lời ( Trả lời cuối cùng bởi vanchuyenachau1 )

 Photo

Sự hiệu quả đến khó hiểu của toán học trong khoa học tự nhiên

22-01-2019

Sự hiệu quả đến khó hiểu của toán học trong khoa học tự nhiên08/07/2017 08:19 - Eugene WignerCó một câu chuyện giữa hai người bạn từng học cùng lớp thời phổ thông, nói về công việc hiện tại của họ. Một người trở thành nhà thống kê nghiên cứu về các xu hướng phát triển dân số. Anh ta đưa ra một dữ liệu được biểu diễn bằng phân bố Gaussian, và giải thích cho bạn về ý nghĩa của các ký hiệu phản ánh tình trạng dân số, dân số trung bình, v.v. Người bạn ngạc nhiên hỏi: “Làm sao cậu biết được điều đó, và ký hiệu này có ý nghĩa gì?” Nhà thống kê nói đó là số Pi, chính là tỉ số giữa chu vi đường tròn với đường kính của nó. “Thôi đi, cậu đùa quá mức rồi đấy”, người bạn phản đối. “Chắc chắn rằng dân số không liên quan gì đến cái chu vi của đường tròn”. Eugene Wigner (1902 -1995) là nhà vật lý, toán học người Mỹ gốc Hungary. Ông được trao giải Nobel vật lý năm 1963 “cho những đóng góp về lý thuyết hạt nhân nguyên tử và các hạt cơ bản, đặc biệt thông qua khám phá và ứng dụng các nguyên lý đối xứng cơ bản”.  Một cách tự nhiên, chúng ta chỉ mỉm cười về cái nhìn đơn giản của người bạn nọ. Tuy nhiên, khi nghe câu chuyện này, tôi phải thừa nhận một cảm giác huyền hoặc bởi phản ứng của người bạn kia là điều rất bình thường. Tôi thậm chí bị rối khi một vài ngày sau đó, một người khác tình cờ nói với tôi sự khó hiểu của anh ta về thực tế là các nhà nghiên cứu thường chỉ chọn một số ít dữ liệu để kiểm chứng lý thuyết của mình đưa ra. “Khi chúng ta tạo ra một lý thuyết tập trung...

  2787 Lượt xem · 7 Trả lời ( Trả lời cuối cùng bởi DucPhuong1 )

 Photo

Alexandre Grothendieck: Thiên tài kỳ lạ nhất của Thế kỷ 20

21-01-2019

Alexandre Grothendieck: Thiên tài kỳ lạ nhất của Thế kỷ 2024/01/2018 08:00 - Lê Quang Ánhtiasang.com.vnNgày 12 tháng 11 năm 2014, người ta đưa một cụ già yếu đến kiệt sức vào bệnh viện của thị trấn Saint-Girons, một thị trấn nhỏ nằm sâu trong khu vực núi Pyrénées thuộc tỉnh Ariège (Pháp). Ngày hôm sau, tức 13 tháng 11 năm 2014, ông cụ qua đời. Sau đó người ta mới được biết rằng đó là nhà Toán học vĩ đại Alexandre Grothendieck. Ông thọ 86 tuổi. Grothendieck trong chuyến sang Việt Nam, cùng với các học trò của mình trong rừng. GS. Hoàng Xuân Sính áo trắng, tóc ngắn. Ảnh: Wikimedia. Báo Libération ngày 14 tháng 11 năm 2014 chạy tít: Alexandre Grothendieck, hay là cái chết của một nhà Toán học thiên tài muốn được lãng quên. Kèm theo là bài của ký giả-nhà văn Philippe Doutroux, trong đó có đoạn: Alexandre Grothendieck qua đời hôm thứ năm tại bệnh viện Saint-Girons (Ariège), thọ 86 tuổi. Một cái tên quá phức tạp để nhớ, một con người nhiều lần quyết định tự xóa tên mình và bảo mọi người hãy xóa tên mình cùng tất cả những gì mình đã làm để khi chết không còn dấu vết trên thế gian. Nhưng con người này quá lớn, nhà Toán học này quá quan trọng làm sao có thể tự xóa tên hay người khác xóa tên được. Để phần nào hiểu được vì sao ông, một nhà toán học đẳng cấp, được xếp ngang với Albert Enstein, lại được cho là một con người kỳ lạ, nếu không muốn nói là kỳ dị, Tia Sáng trích phần 5 và phần 7 trong bài viết của tác giả Lê Quang Ánh: Một thiên tài Toán học kỳ lạ nhất của Th...

  2616 Lượt xem · 0 Trả lời

 Photo

$VMO2019$

13-01-2019

Nguồn: Facebook thầy Lữ Mọi người vô chém ạ. Các mem xem thử đề mới. Ai làm được thì vô chém nhé Nguồn:the art of mathematics - trao đổi toán học Tr2512: Bài 1a: Theo định lý Rolle thì phương trình $f'=0$ tồn tại ít nhất 1 nghiệm thuộc $R$, đồng thời $f$ có tập xác định $(0;\infty)$ nên lim $\lim_{x\to - \infty}f' >0; \lim_{x\to -\infty}f' <0$ suy ra hàm số đạt GTLN trên R.

  16678 Lượt xem · 8 Trả lời ( Trả lời cuối cùng bởi Cuongpa )


Bài toán trong tuần - PSW

Cho $A_1,A_2,A_3,A_4,A_5,A_j$ là các điểm nằm trên mặt cầu bán kính $1$. Chứng minh rằng $$\max\left (\min_{1\leq i,j\leq 5}A_{i,j}\leq \sqrt{2} \right )$$ Tìm tất cả các vị trí của $A_i \quad (i=1,2,3,4,5)$ để dấu bằng xảy ra trong bất đẳng thức trên.

>>Tham gia giải bài toán này <<

Những bài toán đã qua


Mỗi tuần 1 bài toán hình học

Bài 1: Cho tam giác $ABC$ và $M,N$ nằm trên cạnh $BC$ sao cho $M$ nằm giữa $N,B$.Lấy $P,Q$ trên $AM,AN$ để $BP,CQ$ cùng vuông góc với $BC$. $K,J$ là tâm ngoại tiếp $(APQ),(AMN)$. $L$ là hình chiếu của $K$ lên $AJ$. Chứng minh $\frac{AJ}{AL}=\frac{MN}{BC}$
Bài 2: Cho tam giác $ABC$ và $l$ là 1 đường thẳng bất kì. $D,E,F$ lần lượt là hình chiếu của $A,B,C$ lên $l$.$X,Y,Z$ lần lượt chia $AD,BE,CF$ theo cùng $1$ tỉ số $k$. Các đường lần lượt qua $X,Y,Z$ và vuông góc $BC,CA,AB$ đồng quy tại $K$. Chứng minh $(KAX),(KBY),(KCZ)$ đồng trục và trục đẳng phương của chúng đi qua điểm cố định khi $k$ thay đổi. Hình vẽ


Tham gia giải bài toán này

Ấn phẩm của Diễn đàn Toán học

 

 

 

Bài viết mới


  • 616529 Bài viết
  • 103135 Thành viên
  • cachchoi Thành viên mới nhất
  • 17600 Online đông nhất

1209 người đang truy cập (trong 20 phút trước)

2 thành viên, 1207 khách, 0 thành viên ẩn danh   (Xem đầy đủ danh sách)


ttlinhtinh, DOTOANNANG


Portal v1.4.0 by DevFuse | Based on IP.Board Portal by IPS