Đến nội dung


Chú ý

Diễn đàn vừa được bảo trì và nâng cấp nên có thể sẽ hoạt động không ổn định. Các bạn vui lòng thông báo lỗi cho BQT tại chủ đề này.


Chuyên mục

 Photo

Tuần 3 tháng 2/2017: Chứng minh tứ giác $AKNL$ ngoại tiếp

Hôm qua, 18:50

Như vậy lời giải cho bài Tuần 2 tháng 2/2017 đã được thầy Hùng đưa ra tại đây kèm theo đó là bài toán mới. Xin trích dẫn lại bài toán mới:

 

Cho tam giác $ABC$ nội tiếp trong đường tròn $(O)$. Đường tròn bàng tiếp góc $A$ là $(J)$ tiếp xúc $BC,CA,AB$ lần lượt tại $D,E,F$. $M$ là trung điểm $EF$. $DM$ cắt $(J)$ tại $N$ khác $D$. Trên đoạn $AE,AF$ lần lượt lấy các điểm $K,L$ sao cho $NK,NL$ tiếp xúc $(O)$. Chứng minh rằng tứ giác $AKNL$ ngoại tiếp.

 

Screen Shot 2017-02-19 at 9.49.52 PM.png

  95 Lượt xem · 2 Trả lời ( Trả lời cuối cùng bởi ecchi123 )

 Photo

Vinh danh Thành viên Nổi bật $2016$

18-02-2017

1 . Kết quả

 

Đợt bình chọn Thành viên Nổi bật $2016$ của Diễn đàn toán học đã kết thúc. Đã có $137$ lượt bình chọn. Thay mặt BQT xin trân trọng cảm ơn sự nhiệt tình, trách nhiệm của các bạn thành viên đã giúp cho Đợt bình chọn thành công. Dưới đây là kết quả :

 

KẾT QUẢ BÌNH CHỌN THÀNH VIÊN NỔI BẬT NĂM 2016 CỦA DIỄN ĐÀN TOÁN HỌC

 

CodeCogsEqn.gif

 

Danh sách được xếp theo thứ tự từ cao xuống thấp theo số phiếu bình chọn

2 . Vinh danh

 

BQT hân hạnh vinh danh $5$ bạn có số phiếu cao nhất bằng cách thay đổi Danh hiệu và nhóm của họ thành Thành viên nổi bật 2016

 

Ba thành viên có số phiếu cao nhất hãy nhắn tin cho E.Galois để chọn phần thưởng ( là sách hoặc chuyển khoản, không quá 100K )

 

Thành viên về đầu sẽ nhận được Giấy chứng nhận của Diễn đàn .

 

3 . Lời cuối

 

BQT rất mong các thành viên không lọt được vào top 5 , cũng như các thành viên chưa có tên trong Danh sách ứng viên tiếp tục cố gắng để được các thành viên khác ghi nhận và được BQT Diễn đàn vinh danh vào dịp này sang năm .

 

a

  357 Lượt xem · 1 Trả lời ( Trả lời cuối cùng bởi Dinh Xuan Hung )

 Photo

Andrew Wiles: Cảm giác làm toán như thế nào?

16-02-2017

Andrew Wiles là một nhà toán học huyền thoại . Ông đặc biệt nổi tiếng vì đã chứng minh định lý lớn Fermat , một vấn đề gây khó cho các nhà toán học trong nhiều thế kỷ . Trong cuộc phỏng vấn này , Wiles sẽ nói cho chúng ta về một kết quả quan trọng và việc làm toán nói chung

Ông cảm thấy như thế nào sau khi tìm kiếm một chứng minh cho định lý lớn Fermat trong thời gian quá lâu như vậy ?

Nó thật tuyệt vời . Đây là điều đáng để chúng ta sống , nó tạo nên những tia sáng và sự hứng thú . Nó thật sự khó để nghiên cứu hoặc cố gắng làm gì đó - bạn sống trên chín tầng mây trong một hoặc hai ngày . Một chút khó khăn để trở lại với cuộc sống , công việc bình thường . Và tôi nghĩ thật khó để tôi có thể trở lại làm việc với một vấn đề bình thường .

Ông có nghĩ chứng minh định lý lớn Fermat của mình không phải là sự kết thúc của một cái gì đó mà có khi lại mở ra một điều gì mới không ?

Tôi nghĩ là cả hai . Việc chứng minh định lý lớn Fermat là sự kết thúc của một vấn đề cổ điển trong toán học nói riêng , đặc biệt tôi đến với toán học là vì nó từ khi tôi còn rất trẻ . Nó như một sự kết thúc thời thơ ấu lãng mạn trong toán học đối với tôi .

Nhưng cũng từ đó nó hé lộ một chút về chương trình Langlands , một chút gì đó để có thể tiến vào chương trình Langlands . Khi mở cánh cửa đó , [ cho phép ] rất nhiều người đi vào và phát triển nó , đó cũng là những gì tôi đã cố gắng làm .

Tại sao ông lại cố gắng chứng minh định lý lớn Fermat một cách thầm lặng , bí mật ?

Tôi không thật sự làm việc trong bí mật . Tôi đã nói chuyện này với một hai người và sau đó nhận ra tôi không thể nói nó thêm với ai nữa , như vậy không thoải mái . Mọi người muốn biết tôi đã làm những gì trong thời gian đó và những kết quả mà tôi đạt được . Tôi khá chắc rằng nó nhiều người đang làm việc với giả thuyết Riemann ( một vấn đề mở khác cũng rất nổi tiếng ) cũng không nói với ai rằng họ đang làm gì . Bởi vì khi bạn có ý tưởng , bạn chỉ muốn làm việc với nó . Nhưng chắc chắn rằng khi làm việc với các vấn đề như vậy , bạn hầu như không có ý tưởng ...

Ông cảm thấy như thế nào trong lần đầu tiên công bố chứng minh của mình trong một loạt các bài giảng ở đại học Cambridge . Và về việc phát hiện ra lỗi trong chứng minh ?

Khám phá là điều thú vị nhất. Có một điều gì đó nho nhỏ khi bạn chia sẻ nó ( chứng minh ) . Đây là một cuộc chiến của bản thân tôi . Người bạn tôi đã phát hiện ra lỗi và tôi đã có một chút cảm xúc hỗn loạn khi đó , thỉnh thoảng người ta còn nói xấu tôi . Nhưng nó chỉ là một lỗi nhỏ và tôi đã khắc phục được .

Ông thường nói chuyện với những người có chuyên môn còn nếu ông phát biểu trước công chúng thì ông sẽ nhấn mạnh điều gì ? 

Tôi nghĩ rằng nhiều người không quan tâm đến toán học , ví dụ như giới trẻ . Nhưng thật sự điều bạn thấy ở trẻ em là họ thật sự thích nó trước khi họ có vài trải nghiệm xấu về nó . Hầu như là ai cũng sẽ có trải nghiệm xấu , và nó được sinh ra khi bạn sống trong một môi trường mà mọi người đều sợ nó hoặc bạn được giảng dạy không đúng cách . Nhưng một cách tự nhiên tôi thấy trẻ em rất thú vị . Trẻ em tò mò , và có quyền khám phá thế giới bên ngoài . Tôi cố gắng giải thích cho họ rằng những người làm toán , việc làm toán là một trải nghiệm rất thú vị .

Bạn có thể làm toán như một đứa trẻ hoặc một người trưởng thành . Người dân không cần sử dụng đến nó . Một số người thấy việc làm toán rất căng thẳng . Ngay cả những người rất giỏi toán đôi khi cũng cảm thấy khó khăn và họ cảm giác mình đang thất bại . Nhưng đó là một phần của quá trình , bạn phải chấp nhận để hiểu và tận hưởng quá trình đó . Vâng , khi bạn không hiểu một cái gì đó [ hiện tại ] nhưng bạn hãy có niềm tin rằng trong tương lai bạn sẽ vượt qua được nó .

Giống như trong thể thao , muốn chạy nhanh , muốn giỏi ở bất cứ điều gì , bạn phải tập luyện . Để đạt được những thành tựu mới mẻ , bạn phải cố gắng vượt qua những khó khăn hiện tại . Đó không phải là điều gì đó quá sợ hãi , nó là điều mà ai cũng phải cố gắng vượt qua .

Tôi cố gắng chống lại một số điều , một thông điệp , ví dụ như trong bộ phim Good Will Hunting , rằng khi bạn sinh ra bạn có hoặc không có một điều gì đó trong bản thân mình . Đó không phải là quan điểm của các nhà toán học . Chúng ta đều cảm thấy khó khăn , chúng tôi không khác biệt với những đứa trẻ đang cố gắng giải một bài toán lớp ba . Quá trình làm việc là tương tự , chúng tôi chỉ khác là chuẩn bị để xử lý và giải quyết những điều lớn hơn và sẵn sàng đối mặt với thất bại .

Có một số người có khả năng bẩm sinh về toán học nhưng tôi tin rằng ai cũng có thể học tốt toán nếu họ đã chuẩn bị để đối phó với những vấn đề tâm lý mà họ hay mắc phải .

Ông sẽ làm gì khi gặp phải khó khăn ?

Quá trình nghiên cứu toán học đối với tôi như là cố gắng tìm hiểu mọi vấn đề liên quan , nghĩ về nó mọi lúc mọi nơi , sử dụng tất cả các kĩ thuật mà mình có . Nhưng thông thường vẫn có điều gì đó khiến ta mắc kẹt - đó là khó khăn .

Sau đó bạn nên dừng lại , bỏ nó ở đó , thư giãn một chút rồi lại trở lại với nó . Bằng một cách nào đó , tiềm thức của bạn đã liên kết lại và bạn có thể trở lại với nó , có thể vào chiều hôm sau , ngày hôm sau , các hôm sau đó , các tuần tiếp theo hoặc đôi khi là vài phút và lại làm việc với nó . Đôi khi tôi bỏ một vấn đề trong vài tháng và khi trở lại thì lúc này nó lại trở thành hiển nhiên . Tôi không thể giải thích tại sao như vậy , nhưng bạn nên làm như vậy [ trở lại ] .

Một số người thường làm theo cách này , họ làm việc với rất nhiều vấn đề , họ bỏ một vấn đề một chỗ rồi chuyển sang làm việc với vấn đề khác khi họ gặp khó khăn . Nhưng tôi không làm như vậy được . Tôi mắc kẹt với một vấn đề và tôi không thể nghĩ về điều gì khác . Vì vậy tôi chỉ thư giãn một thời gian và lại quay lại làm việc với nó .

Tôi thật sự nghĩ rằng nó rất tệ để có một trí nhớ , kí ức tốt nếu bạn muốn trở thành một nhà toán học . Bạn cần một trí nhớ hơi tệ bởi vì bạn cần phải quên đi cách tiếp cận vấn đề thời gian trước đó mà bạn đã làm việc để chuyển sang một hướng khác , giống như là tiến hóa. Bạn cần phải gặp vài lỗi nhỏ trong cách mà bạn đã làm trước đó để có một hướng đi khác đối với vấn đề của bạn .

Vì vậy , nếu bạn nhớ tất cả những lần thất bại trước , bạn sẽ không thử chúng lần nữa . Nhưng ví tôi nhớ hơi kém nên tôi thử lại chúng lần nữa và tôi nhận ra tôi chỉ gặp vài lỗi nhỏ , chỉ thiếu một chút nữa để đạt đến những gì tôi muốn .

Ngày nghỉ của ông như thế nào ?

Tôi thích đi nghỉ ở những nơi có phong cảnh đẹp gần Oxford . Ý tôi Oxford là một nơi khá đẹp , có rất nhiều nơi để đi .

Có những nơi rất đẹp , để đi bộ và ngắm cảnh , những nơi được tạo ra bởi những con người của thế kỉ trước - những người đã từng sống ở đó . Khi đó , tôi cảm thấy rất thư giãn .

Sáng tạo trong toán học quan trọng như thế nào ?

 

Filesharing.jpg

 

Sáng tạo là tất cả những gì có thể và cần thiết . Tôi nghĩ người ta có nhiều phản ứng với toán học , kiểu như là " các vấn đề đã được biết hết , giải quyết hết chưa? " hoặc như kiểu một cái máy [ toán học ]

Nhưng không , điều đó là cực kì sáng tạo  . Chúng tôi đang tiến đến những điều hoàn toàn mới mẻ và bất ngờ . Để giảng giải cho người khác , chúng tôi phải làm cho nó rất quan trọng và hợp lý . Nhưng chúng tôi không tạo ra nó theo cách đó, chúng tôi không nghĩa vậy . Chúng tôi nghĩ mình rất sáng tạo , đôi khi người ta bực về các nhà toán học khi cứ nghĩ mình là sáng tạo bởi vì chúng tôi đang suy nghĩ về vẻ đẹp và sự sáng tạo và dĩ nhiên thế giới bên ngoài nghĩ chúng tôi không khác gì một cái máy . Đó không phải cách chúng tôi nghĩ về bản thân

Nó có thể hơi giống âm nhạc . Theo một cách nào đó , âm nhạc , bạn có thể viết nó ra . Ý tôi là , họ chỉ ghi nhận . Nó lên , xuống , lên xuống , đặt một nhịp điệu . Nó cũng có thể viết hoàn toàn bằng kĩ thuật số . Nhưng khi nghe Bach hay Beethoven , đó không phải là một loạt các nốt nhạc , có cái gì đó rất khác trong đó . Cũng giống như chúng tôi , có gì đó rất sáng tạo trong cái đam mê của chúng tôi .

Ông nghĩa rằng toán học được phát hiện hay phát minh ra ?

 

Để nói về điều này , tôi nghĩ không một nhà toán học nào không nghĩ rằng nó được phát hiện ra . Trong một nghĩa nào đó nó có thể là được tạo ra vì có những sai lầm và lựa chọn , nhưng chắc chắn những điều ta thấy trong thực tế chúng ta đều nghĩ rằng chúng ta phát hiện ra nó .

Đó có phải là một sự ảo tưởng cần thiết khi mà là một nhà toán học , để làm công việc này  , ông cần phải tin rằng mình phát hiện ra nó chứ không phải phát minh ra nó ?

 

snowflake2.jpg

 

Tôi không muốn nói đó là sự khiêm tốn , nhưng bằng cách nào đó bạn tìm thấy nó và đột nhiên nhìn thấy vẻ đẹp và bạn cảm giác nó đã ở đó . Nó giống như là khi bạn nhắm và mở mắt ra để nhìn thế giới vậy .

Ai tạo ra hững điều này ?

Vâng , chắc chắn là các nhà toán học chứ không phải các nhà triết học . [ cười ] Chúng tôi là những nghệ sĩ , tận hưởng nó và rời khỏi nó . Có những nhà triết học và những người học nhiều về toán học, nhiều người lo lắng về điều này , nhưng chúng tôi không phải Bertrand Russells , thật sự không phải . [ cười ] Chúng tôi thực sự muốn làm toán  , chúng tôi là những nhà toán học .

 

Dịch từ : plus.math.org 

Người dịch : bangbang1412

  159 Lượt xem · 0 Trả lời

 Photo

Epsilon số 13

14-02-2017

Đây là số cuối cùng của tạp chí, bạn nào quan tâm có thể tải về ở đây.

  263 Lượt xem · 1 Trả lời ( Trả lời cuối cùng bởi Su-tu )

 Photo

Bài toán chuyến xe bus

13-02-2017

BÀI TOÁN CHUYẾN XE BUS
1. Mở đầu
 
Xe buýt là một trong những phương tiện giao thông huyết mạch của thành phố, xấp xỉ lên đến 33 nghìn chuyến mỗi ngày. Vì vậy, lập tuyến xe buýt mới và tối ưu tuyến xe buýt cũ là một trong những ưu tiên hàng đầu của thành phố. Mỗi tuyến xe buýt thường được biểu diễn bởi một đoạn thẳng có độ dài cố định và một số trạm xe buýt nằm giữa hai đầu mút. Người dân muốn các trạm nằm sao đó để tối ưu thời gian di chuyển của họ. Vì vậy, đối tượng cần được tối ưu là thời gian di chuyển trung bình của tất cả người dân.
 
2. Mô hình
 
Chúng ta xét mô hình sau:
 
Giả sử có một con đường dài $L \text{ km}$. Dân số được phân bố đều nhau trên suốt con đường này. Chúng ta cần tìm số trạm xe buýt và vị trí tối ưu của chúng để giảm thiểu thời gian di chuyển trung bình mà một hành khách phải bỏ ra, để đi từ một điểm bất kỳ trên đường đến một điểm bất kỳ khác. Để đi từ $P$ đến $Q$, một hành khách phải đi bộ đến trạm xe buýt gần $P$ nhất, sau đó lên xe và dừng lại ở trạm xe buýt gần $Q$ nhất, rồi đi bộ đến $Q$. Nếu có hai trạm xe buýt cách $P$ một khoảng như nhau, hành khách sẽ chọn trạm để giảm thiểu số trạm phải đi (tương tự nếu có hai trạm cách $Q$ một khoảng như nhau). Tốc độ đi bộ là $W \text{ km/h}$, tốc độ của xe buýt là $B \text{ km/h}$, và một chiếc xe buýt phải dành khoảng $S$ giờ để nhận thêm hoặc bỏ ra các hành khách ở mỗi trạm. Chúng ta ký hiệu $T(P, Q)$ là thời gian mà hành khách phải bỏ ra để đi từ $P$ đến $Q$.
 
Chẳng hạn ta xét bản đồ sau với độ dài quãng đường $L = 20 km$:
Capture.PNG
Có 5 trạm xe buýt và 3 vị trí ngẫu nhiên trên bản đồ, ta tính thời gian di chuyển giữa các vị trí này:
1. Để đi từ $P$ đến $R$, hành khách cần đi $1 \text{ km}$ đến trạm 2, sau đó qua 2 trạm với độ dài $14 \text{ km}$ xuống trạm 4, rồi đi bộ $1 \text{ km}$ đến $R$. Tổng thời gian là:
$$T(P,R)=\frac{1}{W}+\frac{14}{B}+2S+\frac{1}{W}=\frac{2}{W}+\frac{14}{B}+2S$$
2. Tương tự, để đi từ $Q$ đến $R$, ta cần thời gian:
$$T(Q,R)=T(P,R)+\frac{1}{W}=\frac{3}{W}+\frac{14}{B}+2S$$
3. Để đi từ $P$ đến $Q$, hành khách sẽ đi bộ $1 \text{ km}$ đến trạm 2, đi xe buýt $0 \text{ km}$ đến trạm 2 (nghĩa là không làm gì cả), rồi đi bộ $2 \text{ km}$ đến $Q$. Tổng thời gian là:
$$T(P,Q)=\frac{1}{W}+\frac{0}{B}+0S+\frac{2}{W}=\frac{3}{W}$$
(Trường hợp này chỉ dùng để minh họa thuật Toán đi, không có ý nghĩa thực tế.)
Chúng ta thống nhất một vài điều kiện và ký hiệu:
• Luôn có một trạm xe buýt ở 2 đầu mút của đoạn đường.
• Giả sử vị trí của các trạm là $0 = x_{1} < \cdots < x_{n-1} < x_{n} = L$, khi đó ta biểu diễn tuyến xe buýt $A$ qua bộ sắp xếp trạm là $A = (x_{1}, x_{2}, \cdots, x_{n-1}, x_{n})$..
• Tuyến xe buýt $A$ cũng có thể được biểu diễn thông qua bộ $A = (d_{1}, d_{2}, \cdots , d_{n-1}, d_{n})$, với $d_{i} = x_{i} - x_{i-1}$ và $i = 1, 2, . . . , n$.
• Ký hiệu $E (A)$ là thời gian trung bình để đi từ một điểm bất kỳ này đến một điểm bất kỳ khác trên tuyến xe buýt $A$, khi bộ sắp xếp trạm của tuyến này được cố định.
 
3. Câu hỏi
 
Bài toán 1. 
1) Cố định $n$ và bỏ qua thời gian đón và thả hành khách ở mỗi trạm. Chứng minh rằng bộ sắp xếp tối ưu xảy ra khi các trạm xe buýt cách đều nhau. Nghĩa là $E(A)$ đạt giá trị tối thiểu khi $d_{1} = d_{2} = . . . = d_{n-1} = d_{n}$.
 
2) Xét trường hợp $L = 20, W = 5, B = 20, S = 0.05$. Tìm giá trị của $n$ để tối ưu hóa $E(A)$, biết $A$ có $n + 1$ trạm xe buýt cách đều nhau. (Do $S \neq 0$ nên không đảm bảo đây là cách sắp xếp tối ưu nhất với một giá trị n bất kỳ.)
 
Bài toán 2. Mô hình của chúng ta còn nhiều khuyết điểm:
1) Hành khách hoàn toàn có thể đi bộ trực tiếp nếu 2 điểm đi và đến gần nhau.
2) Hành khách thường xuyên đến một số nơi như siêu thị, cơ quan, nhà riêng, .v.v. hơn một số điểm trung gian khác.
3) Dân số phân bố chưa hẳn đã đồng đều trên toàn tuyến.
 
Dựa trên câu 1.1) và 1.2), hãy đưa ra một mô hình có thể giải quyết ba vấn đề trên. Để đơn giản, bạn vẫn có thể giả sử tuyến xe buýt là một đường thẳng.

 

Nguồn: Lê Tạ Đăng Khoa, Bài toán chuyến xe bus, tạp chí Epsilon, số 1, 2015, https://www.facebook...412604425701926

  99 Lượt xem · 0 Trả lời

 Photo

Tuần 2 tháng 2/2017: Chứng minh tam giác $NUV$ cân.

13-02-2017

Như vậy là lời giải cho bài Tuần 1 tháng 2 năm 2017 đã được thầy Hùng cho lời giải tại đây kèm theo đó là bài toán mới. Xin trích dẫn lại bài toán mới:

 

Cho tam giác $ABC$ nội tiếp đường tròn $(O)$ và phân giác $AD$. $K,L$ là tâm ngoại tiếp tam giác $ADB,ADC$. Tiếp tuyến qua $A$ của $(O)$ cắt $BC$ tại $T$. $AK,AL$ cắt $OT$ tại $P,Q$. $E,F$ là hình chiếu của $Q,P$ lên $CA,AB$. $M,N$ là trung điểm của $BC,AM$. $NE,NF$ cắt $BC$ tại $U,V$. Chứng minh rằng tam giác $NUV$ cân.

 

Screen Shot 2017-02-13 at 5.26.55 AM.png

  502 Lượt xem · 2 Trả lời ( Trả lời cuối cùng bởi quynhlqd2016 )

 Photo

Tội phạm và động đất

07-02-2017

TỘI PHẠM VÀ ĐỘNG ĐẤT

 
Nếu bạn đang sống ở Los Angeles có hai điều có thể làm cho bạn đặc biệt lo lắng: động đất và tội phạm. May mắn thay, các nhà toán học đã có thể đưa ra cách để giúp cho bạn an toàn ở cả hai điều trên. Một hệ thống phần mềm có tên là là Predpol đã được nhà toán học George Mohler, nhà nhân chủng học Jeff Brantingham và những người khác phát triển, hiện được sở cảnh sát Los Angeles và ơcác thành phố khác sử dụng làm công cụ pháp lý. Nhân viên cảnh sát trong khu vực sử dụng phần mềm này mỗi ngày. 
 
la.jpg
Los Angeles
 
Predpol là kí hiệu viết tắt của “predictive policing – Chính sách Dự đoán ”. Predpol hoạt động dựa trên tính toán xác suất khả năng tội phạm sẽ thực hiện trong một khu vực cụ thể trong một ngày cụ thể dựa trên các dữ liệu theo thời gian thực từ những ngày trước. Nhân viên cảnh sát đã được cung cấp bản đồ dự báo trước cho biết những nơi có xác suất xuất hiện tội phạm cao, do đó họ có thể đưa ra thêm các cuộc tuần tra và hi vọng có thể ngăn chặn tội ác xảy ra.
 
Vậy làm thế nào để hiểu về tội phạm theo nghĩa toán học? Có một cách đó là đi theo hướng từ dưới lên, sử dụng các quy tắc toán học để mô tả những hành vi của bọn tội phạm riêng biệt và quan sát dạng mẫu mô hình xuất hiện. Nhưng bạn cũng có thể sử dụng cách đi từ tren xuống, quên đi tính riêng biệt và nhìn vào tội phạm ứng với số lần xuất hiện trong thống kê, giống như động đất có xuất hiện một số quy luật. Predpol sử dụng cách tiếp cận thứ 2.
 
I. CÁC BĂNG NHÓM VÀ BẠO LỰC
 
Để dễ hiểu, chúng ta hãy tập trung vào những thứ đang phổ biến rộng rãi ở Los Angeles và cũng như các thành phố lớn khác: đó là băng nhóm tội phạm, các băng nhóm này thường gây ra những trận đánh ác liệt nhằm “tranh giành” lãnh thổ, và nếu ai dám gây hấn với băng nhóm này thì chắc chắn sẽ có trả thù. Sau cùng, hệ quả mà các băng nhóm bạo lực đã tạo ra tương tự như động đất: bạo lực sẽ leo thang, cũng như động đất thì đi kèm với dư chấn.
 
grafitti.jpg
Graffiti tại Los Angeles
 
Có thể mô tả động đất theo nghĩa toán học là một quá trình tự kích thích, là những sự kiện xảy ra theo thời gian dựa trên kết quả của nhiều yếu tố phức tạp nên ta xem động đất là một quá trình ngẫu nhiên. Khi có một trận động đất xảy ra thì trong tương lai gần, khả năng xảy ra những dư chấn sẽ tăng lên. Đó là một phần của quá trình tự kích thích. 
 
Trong toán học có một kỹ thuật có thể giải quyết dãy các sự kiện tự kích thích ấy, gọi là Quy trình Hewkes, quy trình này có thể áp dụng vào các cuộc đối đầu giữa hai băng nhóm. Ý tưởng của quy trình này đó là xem hành vi bạo lực giữa các băng nhóm là một dãy các sự kiện theo thời gian. Ta cần hàm số tốc độ $r\left( t \right)$ biểu diễn khả năng xảy ra hành vi phạm tội tại thời điểm $t$, khả năng này còn tùy thuộc vào những gì đã xảy ra trước đó (vì quá trình này là quá trình tự kích thích). Ta thường xem tốc độ này là số lượng các sự kiện xảy ra trong một khoảng thời gian nhất định, ví dụ như số lượng tội phạm mà ta dự đoán xảy ra trong mỗi ngày. Tuy nhiên, trong trường hợp này, ta xác định độ dài khoảng thời gian là cực kì nhỏ. Vì vậy bạn có thể xem hàm số tốc độ $r\left( t \right)$ là tốc độ tức thời mà ta kì vọng hành vi phạm tội xảy ra tại thời gian $t$.
 
Bây giờ ta biểu diễn hàm số tốc độ thành các tổng. Biểu thức đầu tiên của tổng đó là tốc độ nền của tội phạm, tức là tốc độ các cuộc tấn công vô cớ giữa hai băng nhóm đã xảy ra, bỏ qua lý do trả thù. Các biểu thức còn lại của tổng tương ứng với số lượng các cuộc “hỗn chiến” giữa 2 băng nhóm tăng lên theo tốc độ nền, điều này phản ánh phần tự kích thích (sự trả thù). Các cuộc tấn công riêng biệt xảy ra càng lâu về quá khứ thì càng ít tác động vào hàm số tốc độ theo thời gian $t$.
 
Từ năm 2010, trong một bài báo, một nhóm sinh viên năm cuối của trường đại học Angeles, California, đã từng sử dụng Quy trình Hewkes để mô hình sự cạnh tranh giữa các cặp băng nhóm trong tại huyện Hollenbeck, LA. Trong đó, mặc dù khu vực này chỉ có 15 dặm vuông, nhưng đây là một trong những khu vực hung tợn nhất LA. Hàm số tốc độ họ sử dụng là:
$$r\left( t \right)=b+k\left( w{{e}^{-w\left( t-{{t}_{1}} \right)}}+w{{e}^{-w\left( t-{{t}_{2}} \right)}}+w{{e}^{-w\left( t-{{t}_{3}} \right)}}+\ldots +w{{e}^{-w\left( t-{{t}_{n}} \right)}} \right)$$
Trong đó $b$ là một số dương không đổi dùng để đo tốc độ phạm tội nền giữa hai băng nhóm. Từ ${{t}_{1}}$, ${{t}_{2}}$ đến ${{t}_{n}}$ là những xung đột giữa 2 băng nhóm đã xảy ra trong quá khứ trước thời điểm $t$. Biểu thức $w{{e}^{-w\left( t-{{t}_{i}} \right)}}$ cho thấy mong muốn trả thù ngược lại của những tội phạm. Bạn có thể thấy rằng một cuộc “hỗn chiến” đã xảy ra cách đây càng lâu ($t-{{t}_{i}}$ càng lớn) thì biểu thức $w{{e}^{-w\left( t-{{t}_{i}} \right)}}$ càng nhỏ. Trong biểu thức trên $w$ là số dương không đổi, biểu diễn tốc độ ảnh hưởng của tội ác đang giảm dần, $w$ càng lớn, biểu thức $w{{e}^{-w\left( t-{{t}_{i}} \right)}}$ càng nhỏ. Số $k$ là một nhân tử dương chung phản ánh độ lớn của sự trả thù giữa các cặp băng nhóm. Nếu hai băng nhóm không quá “phiền muộn” về nhau, thì giá trị $k$ sẽ nhỏ, góp phần làm cho toàn bộ khả năng xảy ra thanh toán nhau trong quá khứ cũng nhỏ lại. Tuy nhiên, nếu 2 băng nhóm quyết định thanh toán nhau thì thực sự đó sẽ là một trận quyết liệt, giá trị $k$ sẽ lớn.
 
II. MÔ HÌNH VÀ THỰC TẾ
 
Để sử dụng mô hình này, ta cần phải xác định các giá trị cụ thể cho từng tham số, chẳng hạn như tốc độ nền. Để làm được điều này, các sinh viên phải xem xét dữ liệu thực của tội phạm trên nhiều khu vực do sở cảnh sát Los Angeles cung cấp. Có một phương pháp thống kê được gọi là ước lượng hợp lý cực đại cho phép bạn tìm các giá trị tham số sao cho phù hợp với thực tế nhất. 
 
Một khi bạn có các giá trị tham số, bạn có thể sử dụng hàm số tốc độ để mô phỏng tội phạm giữa hai băng nhóm như một dãy sự kiện theo thời gian. Cơ hội xảy ra tội ác là ngẫu nhiên, nhưng cơ hội đó là không giống nhau với mọi thời gian $t$, dĩ nhiên là cơ hội này được tạo ra bởi hàm số tốc độ. Bằng cách xem xét các dạng mô phỏng của tội phạm rồi so sánh với dữ liệu thực tế, bạn có thể đánh giá rằng xem mô hình có phải đã mô tả đúng hiện thực hay chưa (đã có những phương pháp thống kê chuẩn cho việc so sánh đó). Và một khi bạn hài lòng với mô hình này, bạn có thể sử dụng nó để dự đoán những gì sẽ xảy ra trong thế giới thực, từ đó có thể ngăn ngừa tội ác sẽ xảy ra.
 
handcuffs.jpg
Sử dụng toán học để chống lại tội phạm
 
Đây chỉ là một ví dụ đơn giản về ứng dụng toán học vào phần mềm như Predpol, điều này mang lại cho bạn một cái nhìn sơ nét của ý tưởng tổng quát hơn. Predpol không chỉ được sử dụng để tìm hiểu về xung đột băng đảng mà còn để tìm hiểu thêm về các loại tội phạm khác. Cho đến nay kết quả đạt được rất đáng khích lệ. Năm 2011 sau khi sở cảnh sát Santa Cruz bắt đầu sử dụng Predpol thì những vụ trộn cướp đã giảm 27% so với năm trước và năm 2011-2012, trong một buổi giới thiệu tại Hạt Foothill ở Los Angeles, người ta cho biết tội phạm đã giảm 17% so với 0,4% mức tăng trung bình trên những nơi còn lại ở thành phố. Do đó một số công dân của LA cảm thấy rằng tội phạm phải trả giá, có thể bằng cách sử dụng toán học để đấu tranh chống lại chúng.
 
Bài viết do thành viên Chuyên san EXP dịch

  456 Lượt xem · 2 Trả lời ( Trả lời cuối cùng bởi zipienie )

 Photo

Diễn đàn đã hoạt động trở lại

05-02-2017

Gửi bởi Nesbit trong Thông báo tổng quan

Chào các bạn,

 

Mấy này vừa qua diễn đàn phải đóng cửa để bảo trì, BQT xin lỗi tất cả các thành viên vì đã không thể thông báo trước.

 

Hiện tại diễn đàn đã hoạt động trở lại, tuy nhiên có thể vẫn chưa ổn định. Nếu trong quá trình sử dụng diễn đàn các bạn thấy có lỗi, xin vui lòng thông báo cho BQT tại chủ đề này. 

 

Xin cảm ơn và chúc các bạn một năm mới dồi dào sức khỏe, gặt hái được nhiều thành công !

  1202 Lượt xem · 32 Trả lời ( Trả lời cuối cùng bởi Nesbit )

 Photo

Tuần 1 tháng 2/2017: $QR$ đi qua điểm cố định khi $P$ di chuyển

05-02-2017

Như vậy lời giải bài toán Tuần 5 tháng 1/2017 đã được thầy Hùng đưa tại đây kèm theo đó là bài toán mới. Xin trích dẫn lại bài toán mới:

 

Cho tam giác $ABC$ nội tiếp trong đường tròn $(O)$. $P$ là điểm di chuyển trên cung $BC$ không chứa $A$. Các điểm $E,F$ lần lượt thuộc $CA,AB$ sao cho $PB \perp BE$ và $PC \perp CF$. $EF$ cắt $BC$ tại $Q$. $R$ thuộc đoạn $AP$ sao cho $\angle RBP =\angle  RCP$. Chứng minh rằng đường thẳng $QR$ luôn đi qua một điểm cố định khi $P$ di chuyển.

  435 Lượt xem · 3 Trả lời ( Trả lời cuối cùng bởi manhtuan00 )

 Photo

Bộ ba và bộ bốn: Từ Pythagoras đến Fermat

30-01-2017

BỘ BA VÀ BỘ BỐN: TỪ PYTHAGORAS ĐẾN FERMAT

 

Nếu có một chút về Toán mà bạn nhớ từ chương trình học ở trường thì đó có lẽ là định lý Pythagoras. Với tam giác vuông có các cạnh $a,~b,~c$, trong đó $c$ là cạnh đối diện góc vuông, ta có

                                                                         $${{a}^{2}}+{{b}^{2}}={{c}^{2}}$$

Nếu ba số dương $a,~b$ và $c$ thỏa phương trình này, tạo thành các cạnh của một tam giác vuông thì ba số dương trên gọi là bộ ba số Pythagoras.

theorem.png

Định lý Pythagoras

 

Một câu hỏi khiến Pythagoras cũng như các nhà Toán học Hy Lạp cổ xưa khác phải suy nghĩ đó là làm thế nào để tạo ra các bộ ba Pythagoras. Nếu tôi cho bạn một số dương $a$, bạn có thể tìm được hai số $b$ và $c$ sao cho $a,~b$ và $c$ tạo thành bộ ba Pythagoras không? Trong bài này, chúng ta sẽ khám phá câu hỏi này và đồng thời ta sẽ có ý tưởng mở rộng sang các tập bốn số, được gọi là bộ bốn Pythagoras.

 

I. BỘ BA PYTHAGORAS

 

Dưới đây là ví dụ về bộ ba Pythagoras

triples.png

 

Các bộ ba được viết màu đỏ là bội số lẫn nhau và cũng như vậy với các bộ ba được viết màu xanh: bạn có $\left( 6,~8,~10 \right)$, $\left( 9,~12,~15 \right)$ và $\left( 12,~16,~20 \right)$ bằng cách nhân mỗi thành phần của $\left( 3,~4,~5 \right)$ tương ứng với 2, 3 và 4 , và có $\left( 10,~24,~26 \right)$ bằng cách nhân mỗi thành phần của $\left( 5,~12,~13 \right)$ với 2.

 

Tổng quát, nếu $k$ là số dương và $\left( a,~b,~c \right)$ là một bộ ba Pythagoras thì $\left( ka,~kb,~kc \right)$ cũng vậy, vì

$${{\left( ka \right)}^{2}}+{{\left( kb \right)}^{2}}={{k}^{2}}{{a}^{2}}+{{k}^{2}}{{b}^{2}}={{k}^{2}}\left( {{a}^{2}}+{{b}^{2}} \right)={{k}^{2}}{{c}^{2}}={{\left( kc \right)}^{2}}$$

Trong hình học, nếu một bộ ba Pythagoras là một bội số của một bộ ba khác thì các tam giác tương ứng đồng dạng.

 

pythagoras_painting.jpg

Bức hoạ của Raffaello Sanzio về Pythagoras có tên “Ngôi trường Athens”

 

Nếu một bộ ba Pythagoras không phải là bội số của một bộ ba khác thì ta nói đó là bộ ba nguyên thủy. Có thể nhận biết một bộ ba Pythagoras nguyên thủy khi các số $a$ và $b$ không có ước chung. Trong ví dụ trên, $\left( 3,~4,~5 \right)$ là một bộ ba Pythagoras nguyên thủy trong khi $\left( 6,~8,~10 \right)$, $\left( 9,~12,~15 \right)$ và $\left( 12,~16,~20 \right)$ thì không. Tương tự (5, 12, 13) cũng là một bộ ba Pythagorean nguyên thủy trong khi $\left( 10,~24,~26 \right)$ thì không.

 

Nếu có một bộ ba Pythagoras thì thật dễ để tạo ra các bộ ba không nguyên thủy mới cách đơn giản bằng cách lấy các bội số tương ứng. Nhưng nếu chỉ cho một số, bạn có thể tìm được một bộ ba Pythagoras sao cho số đó là một trong các thành phần của bộ ba không? Pythagoras đã nghĩ ra một phương pháp giải quyết vấn đề này. Lưu ý đầu tiên là nếu

                                                                         $${{a}^{2}}+{{b}^{2}}={{c}^{2}}$$

thì

                                                                          $${{c}^{2}}-{{b}^{2}}={{a}^{2}}$$

Bây giờ hãy xét hai biểu thức

                                               $${{\left( {{a}^{2}}+1 \right)}^{2}}={{a}^{4}}+2{{a}^{2}}+1$$


$${{\left( {{a}^{2}}-1 \right)}^{2}}={{a}^{4}}-2{{a}^{2}}+1$$

Hai biểu thức này sai khác nhau đúng $4{{a}^{2}}$, nên hai biểu thức

                                                             $$\frac{{{\left( {{a}^{2}}+1 \right)}^{2}}}{4}$$

                                                             $$\frac{{{\left( {{a}^{2}}-1 \right)}^{2}}}{4}$$

sai khác nhau ${{a}^{2}}$.

 

Vì vậy, nếu chọn

          $$b=\sqrt{\frac{{{\left( {{a}^{2}}-1 \right)}^{2}}}{4}}=\frac{{{\left( {{a}^{2}}-1 \right)}}}{2}$$

          $$c=\sqrt{\frac{{{\left( {{a}^{2}}+1 \right)}^{2}}}{4}}=\frac{{{\left( {{a}^{2}}+1 \right)}}}{2}$$

Ta được

$${{a}^{2}}+{{b}^{2}}={{a}^{2}}+\frac{{{\left( {{a}^{2}}-1 \right)}^{2}}}{4}=\frac{{{\left( {{a}^{2}}+1 \right)}^{2}}}{4}={{c}^{2}}$$

Để các số $a,~b$ và $c$ đại diện cho một bộ ba Pythagoras, ta cần

                                                                               $$b=\frac{{{a}^{2}}-1}{2}$$

                                                                               $$c=\frac{{{a}^{2}}+1}{2}$$

là số nguyên dương, tức cả ${{a}^{2}}-1$ và ${{a}^{2}}+1$ đều chẵn, khi đó ${{a}^{2}}$ phải là số lẻ. Nhưng bình phương của một số là lẻ chỉ nếu số đó lẻ, nên phương pháp này chỉ áp dụng cho số lẻ $a$.

 

plato.jpg

Bức hoạ Plato (trái) và Aristotle (phải) do hoạ sĩ Raffaello Sanzio vẽ trong bức “Ngôi trường Athens”

 

Tuy nhiên có một cách đơn giản để tạo ra một công thức thoả giá trị chẵn từ trên. Nếu $a,~b$ và $c$ tạo thành một bộ ba Pythagoras về dạng được mô tả ở trên, thì

                                                                                         $${{a}_{1}}=2a$$

                                   $${{b}_{1}}=2b={{a}^{2}}-1={{\left( \frac{{{a}_{1}}}{2} \right)}^{2}}-1$$

                                                $${{c}_{1}}=2c={{\left( \frac{{{a}_{1}}}{2} \right)}^{2}}+1$$

Phương pháp này tạo ra các bộ ba từ các số chẵn ${{a}_{1}}$ do Plato đề xuất. Dưới đây là danh sách các bộ ba Pythagoras được tạo ra từ các số chẵn và lẻ bằng cách sử dụng hai phương pháp này:

list.png

 

Do hai phương pháp này tạo ra bộ ba số Pythagoras từ tất cả các số nguyên dương nên ta có vô hạn bộ ba Pythagoras. Nhưng liệu hai phương pháp này có thể tạo ra tất cả các bộ ba đó không? Câu trả lời là không. Ví dụ, bộ ba $\left( 20,~21,~29 \right)$ không có trong danh sách trên. Một công thức chung do Euclide mô tả trong cuốn sách nổi tiếng The Elements của ông rằng: Lấy bất kỳ hai số nguyên dương $m$ và $n$ với $m>n$. Tương tự với lập luận trên, chú ý rằng

                     $${{\left( {{m}^{2}}-{{n}^{2}} \right)}^{2}}={{m}^{4}}-2{{m}^{2}}{{n}^{2}}+{{n}^{4}}$$

                    $${{\left( {{m}^{2}}+{{n}^{2}} \right)}^{2}}={{m}^{4}}+2{{m}^{2}}{{n}^{2}}+{{n}^{4}}$$

sai khác nhau $4{{m}^{2}}{{n}^{2}}$. Vậy nên ta đặt

                                                                                $$a={{m}^{2}}-{{n}^{2}}$$

                                                                  $$b=~\sqrt{4{{m}^{2}}{{n}^{2}}}=2mn$$

                                                                                $$c={{m}^{2}}+{{n}^{2}}$$

Thu được

                                                                         $${{a}^{2}}+{{b}^{2}}={{c}^{2}}$$

Vì $m$ và $n$ là các số nguyên dương và $m>n$, tất cả ba số $a,~b$ và $c$ cũng là số nguyên dương nên ta có một bộ ba Pythagoras. Mỗi bộ ba Pythagoras nguyên thủy đều có thể được tạo ra từ một cặp số $m$ và $n$ duy nhất mà một trong hai là số chẵn. Và một khi bạn có những bộ ba nguyên thủy, bạn có thể tạo ra tất cả các bộ ba Pythagorean bằng cách đơn giản là nhân lên. Vậy nên công thức của Euclid có thể tạo ra tất cả bộ ba Pythagoras.

 

euclid.jpg

Euclide (người cầm com-pa) trong bức hoạ “ngôi trường Athens” của Raffaello Sanzio

 

II. CÁC BỘ BỐN PYTHAGORAS

 

Bây giờ ta quan sát bộ bốn Pythagoras gồm bốn số nguyên dương thay vì ba số. Trong một bộ bốn Pythagoras, tổng bình phương của ba số đầu cho chúng ta bình phương của số thứ tư:

                                                               $${{a}^{2}}+{{b}^{2}}+{{c}^{2}}={{d}^{2}}$$

Về mặt hình học, bộ bốn Pythagoras ứng với một hình hộp chữ nhật với các cạnh $a,~b$ và $c$. Độ dài đường chéo của hộp này là

                                                                  $$\sqrt{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}$$

Do đó các cạnh cùng với cạnh chéo tạo thành một bộ bốn Pythagoras. Đây là lý do tại sao bộ bốn Pythagoras cũng được gọi là hộp Pythagoras.

box.jpg

Như ở trên, nếu $\left( a,~b,~c,~d \right)$ là một bộ bốn Pythagoras thì $\left( ka,~kb,~kc,~kd \right)$ cũng vậy với mọi số nguyên dương $k$. Nếu ước chung lớn nhất của $a,~b$ và $c$ là 1 thì bộ bốn được gọi là nguyên thủy. Dưới đây là một số ví dụ về các bộ bốn Pythagoras với mỗi bộ cùng màu là bội số của nhau (đỏ, xanh da trời hoặc xanh lá):

quadruples.png

 

Ta có thể tạo ra bộ bốn Pythagoras từ hai số $m$ và $n$ bất kỳ, đơn giản bằng cách chú ý rằng

                                                  $${{\left( m+n \right)}^{2}}={{m}^{2}}+2mn+{{n}^{2}}$$

Vì vậy, đặt $a={{m}^{2}}$, $b=2mn$, $c={{n}^{2}}$ và $d={{\left( m+n \right)}^{2}}$ cho ta một bộ bốn Pythagoras.

 

Việc đặt như vậy cũng cho ta một cách để tạo ra một bộ bốn Pythagoras từ một số chẵn $p$. Đầu tiên, chú ý rằng nếu $p$ chẵn thì ${{p}^{2}}$ chẵn. Bây giờ tìm hai số $m$ và $n$ sao cho $mn={{p}^{2}}/2$.

 

Đặt

                                                                                                 $$a=m$$

                                                                                     $$b=p=\sqrt{2mn}$$

                                                                                                  $$c=n$$

                                                                         $d={{\left( m+n \right)}^{2}}.$

thì

          $${{a}^{2}}+{{b}^{2}}+{{c}^{2}}={{m}^{2}}+2mn+{{n}^{2}}={{\left( m+n \right)}^{2}}={{d}^{2}}$$

cho ta bộ bốn Pythagoras. Ví dụ, nếu $p=2$ thì ${{p}^{2}}/2=2$ nên ta chọn $m=1$ và $n=2$. Ta được bộ bốn $\left( 1,~2,~2,~3 \right)$ với ${{1}^{2}}+{{2}^{2}}+{{2}^{2}}=1+4+4=0={{3}^{2}}.$

 

Với $p=4$ ta có ${{p}^{2}}/2=8$. Giờ ta có hai cách chọn là $8=2\times 4$ và $8=1\times 8$. Cách chọn thứ nhất cho bộ bốn $\left( 2,~4,~4,~6 \right)$ với

                                                  $${{2}^{2}}+{{4}^{2}}+{{4}^{2}}=4+16+16=36={{6}^{2}}$$

Cách chọn thứ hai cho bộ bốn $\left( 1,~4,~8,~9 \right)$ với

                                                  $${{1}^{2}}+{{4}^{2}}+{{8}^{2}}=1+16+64=81+{{9}^{2}}$$

Bạn có thể tiếp tục tạo ra các bộ bốn từ các số chẵn $p$ theo cách này.

 

III. CHÚNG TA CÓ THỂ TẠO RA TẤT CẢ CÁC BỘ BỐN PYTHAGORAS?

 

Không phải tất cả các bộ bốn Pythagoras đều có dạng

                                                  $${{\left( m+n \right)}^{2}}={{m}^{2}}+2mn+{{n}^{2}}$$

nên không phải lúc nào ta có thể tạo ra bộ bốn Pythagoras bằng phương pháp trên - chúng ta cần linh động hơn một chút. Giả sử rằng cho hai số $a$ và $b$, giờ ta hãy tìm một số $p$ sao cho ${{a}^{2}}+{{b}^{2}}$ chia hết cho $p$ nhưng ${{p}^{2}}<{{a}^{2}}+{{b}^{2}}$. Nếu $a$ và $b$ đều chẵn thì ta cũng cần $p$ phải chẵn.

 

Bây giờ cho

                                                            $$c=\frac{{{a}^{2}}+{{b}^{2}}-{{p}^{2}}}{2p}$$

Thì

$${{a}^{2}}+{{b}^{2}}+{{c}^{2}}={{a}^{2}}+{{b}^{2}}+\frac{{{\left( {{a}^{2}}+{{b}^{2}} \right)}^{2}}-2\left( {{a}^{2}}+{{b}^{2}} \right){{p}^{2}}+{{p}^{4}}}{4{{p}^{2}}}$$

$$={{a}^{2}}+{{b}^{2}}+\frac{{{\left( {{a}^{2}}+{{b}^{2}} \right)}^{2}}}{4{{p}^{2}}}-\frac{{{a}^{2}}+{{b}^{2}}}{2}+\frac{{{p}^{2}}}{4}$$

$$=\frac{{{\left( {{a}^{2}}+{{b}^{2}} \right)}^{2}}}{4{{p}^{2}}}+\frac{{{a}^{2}}+{{b}^{2}}}{2}+\frac{{{p}^{2}}}{4}$$

$$={{\left( \frac{{{a}^{2}}+{{b}^{2}}+{{p}^{2}}}{2p} \right)}^{2}}$$

Vậy ta đặt

                                                           $$d=\frac{{{a}^{2}}+{{b}^{2}}+{{p}^{2}}}{2p}$$

Ta được

                                                               $${{a}^{2}}+{{b}^{2}}+{{c}^{2}}={{d}^{2}}$$

Nhưng có phải $a,~b,~c$ và $d$ đều là số nguyên dương? Đây là lý do vì sao chúng ta có các điều kiện đặt ra cho $p$. Dễ chứng minh rằng miễn $a$ và $b$ là số chẵn hoặc một chẵn một lẻ thì điều kiện trên đảm bảo rằng $a,b,c$ và $d$ là số nguyên dương.

 

Nếu $a$ và $b$ đều lẻ thì không thể tạo ra bộ bốn Pythagorean bằng phương pháp này.

 

Nhưng điểm quan trọng là bạn có thể xẫy dựng các bộ bốn Pythagoras nguyên thủy từ hai số $a$ và $b$ theo cách trên. Và mặt khác, một khi bạn có những bộ bốn nguyên thủy, bạn có thể tạo ra tất cả các bộ bốn khác bằng cách nhân lên.

 

IV. TẠO RA MỘT DÃY BÌNH PHƯƠNG

 

Thêm một điều hay đáng chú ý là từ kĩ thuật tạo ra các bộ ba, chúng ta có thể tạo ra bộ bốn, bộ năm, .. tạo ra bộ các tổng các bình phương với bất kì độ dài nào. Ta bắt đầu với bộ ba $\left( 3,~4,~5 \right)$, ta có thể tạo ra bộ ba khác, bắt đầu với số 5: đó là $\left( 5,~12,~13 \right)$. Vì vậy nên ta có

                                                                         $${{3}^{2}}+{{4}^{2}}={{5}^{2}}$$

                                                                       $${{5}^{2}}+{{12}^{2}}={{13}^{2}}$$

Sắp xếp lại phương trình thứ hai ta có

                                                                       $${{5}^{2}}={{13}^{2}}-{{12}^{2}}$$

Thay vào phương trình thứ nhất và sắp xếp lại, ta có

                                                            $${{3}^{2}}+{{4}^{2}}+{{12}^{2}}={{13}^{2}}$$

nên ta có bộ bốn $\left( 3,~4,~12,~13 \right)$. Tương tự, luôn dùng số lớn nhất trong tập các số hiện tại để tạo ra một bộ ba mới, ta có thể tạo nên bộ năm $\left( 3,~4,~12,~84,~85 \right)$ và bộ sáu $\left( 3,~4,~12,~84,~3612,~3613 \right)$ và vân vân, vô hạn.

 

V. LŨY THỪA BA VÀ BẬC CAO HƠN

 

Các bộ bốn Pythagoras bao gồm tổng các bình phương, nhưng nếu ta “nâng cấp” lên mũ 3 có dạng

                                                              $${{a}^{3}}+{{b}^{3}}+{{c}^{3}}={{d}^{3}}.$$

thì bộ bốn này được gọi là bộ bốn lũy thừa ba. Dưới đây là một vài ví dụ (lần nữa, các bộ bốn có cùng màu màu đỏ, xanh da trời và xanh lá là bội số của nhau).

 

cubic.png

 

Ở đây chúng ta sẽ không khảo sát tỉ mỉ công thức tạo ra bộ bốn luỹ thừa ba, nhưng thay vào đó hỏi một câu hỏi xuất hiện thì thú vị hơn nhiều: Có tồn tại những bộ ba lũy thừa ba? Câu hỏi này bài toán của một trong những định lý nổi tiếng của Toán học: Định lý cuối cùng của Fermat. Định lý nói rằng không có ba số nguyên dương $a,~b$ và $c$ nào thỏa mãn

                                                                         $${{a}^{3}}+{{b}^{3}}={{c}^{3}}$$

Trên thực tế, định lý còn nói rằng với bất kì số nguyên $n$ nào lớn hơn 2 thì không thể tìm ra ba số nguyên dương $a,~b~$và $c$ sao cho

                                                                         $${{a}^{n}}+{{b}^{n}}={{c}^{n}}$$

Đây là giả thuyết do nhà Toán học nổi tiếng người Pháp Pierre de Fermat đưa ra vào năm 1637. Fermat đã viết trong lề cuốn sách rằng ông đã “có một cách chứng minh rất hay, nhưng lề sách này quá nhỏ để viết”. Trong hơn 300 năm, các nhà Toán học đã cố gắng tìm ra cách chứng minh, nhưng họ đã không thành công. Mãi cho đến năm 1995, nhà toán học Andrew Wiles mới chứng minh được định lý trên, sử dụng các công cụ toán phức tạp mà Fermat không thể nào biết được.

 

Người dịch: Nguyễn Thị Hồng Niên - Thành viên Chuyên san EXP

Bài viết này dịch theo https://plus.maths.o...and-quadruples 

  761 Lượt xem · 0 Trả lời


Những bài toán trong tuần

-Lấy $Q[\sqrt{5}]$ là tập các số biểu diễn được dưới dạng: $x+y\sqrt{5}$ ( Với $x,y$ là các số hữu tỉ )
-Định 2 số $u,v\in Q[\sqrt{5}]$ sao cho: $u^4+v^4=2+\sqrt{5}$

>>Tham gia giải bài toán này<<

Những bài toán đã qua


Mỗi tuần 1 bài toán hình học

Cho tam giác $ABC$ nội tiếp đường tròn $(O)$, tâm bàng tiếp góc $A$ là $J$. Đường tròn nội tiếp $(I)$ tiếp xúc $BC$, $CA$, $AB$ tại $D$, $E$, $F$. $K$ là hình chiếu của $D$ trên $EF$. $AK$ cắt $(O)$ tại $L$ khác $A$. Tiếp tuyến qua $A$ của $(O)$ cắt $BC$ tại $T$. Trên trung trực $AL$ lấy $P$ sao cho $TP\parallel AI$. Gọi $M$, $N$ lần lượt là trung điểm $JL$, $MP$. Chứng minh rằng $JL\perp ON$.


Tham gia giải bài toán này

Ấn phẩm của Diễn đàn Toán học

 

 

 

Bài viết mới


  • 566732 Bài viết
  • 91610 Thành viên
  • cauchuyentinhtoi Thành viên mới nhất
  • 17600 Online đông nhất

1332 người đang truy cập (trong 20 phút trước)

2 thành viên, 1329 khách, 1 thành viên ẩn danh   (Xem đầy đủ danh sách)


tn08517, bangbang1412


Portal v1.4.0 by DevFuse | Based on IP.Board Portal by IPS