Đến nội dung


Chú ý

Nếu bạn gặp lỗi trong quá trinh đăng ký thành viên, hoặc đã đăng ký thành công nhưng không nhận được email kích hoạt, hãy thực hiện những bước sau:

  • Đăng nhập với tên và mật khẩu bạn đã dùng kể đăng ký. Dù bị lỗi nhưng hệ thống đã lưu thông tin của bạn vào cơ sở dữ liệu, nên có thể đăng nhập được.
  • Sau khi đăng nhập, phía góc trên bên phải màn hình sẽ có nút "Gửi lại mã kích hoạt", bạn nhấn vào nút đó để yêu cầu gửi mã kích hoạt mới qua email.
Nếu bạn đã quên mật khẩu thì lúc đăng nhập hãy nhấn vào nút "Tôi đã quên mật khẩu" để hệ thống gửi mật khẩu mới cho bạn, sau đó làm theo hai bước trên để kích hoạt tài khoản. Lưu ý sau khi đăng nhập được bạn nên thay mật khẩu mới.

Nếu vẫn không đăng nhập được, hoặc gặp lỗi "Không có yêu cầu xác nhận đang chờ giải quyết cho thành viên đó", bạn hãy gửi email đến [email protected] để được hỗ trợ.
---
Do sự cố ngoài ý muốn, tất cả bài viết và thành viên đăng kí sau ngày 08/08/2019 đều không thể được khôi phục. Những thành viên nào tham gia diễn đàn sau ngày này xin vui lòng đăng kí lại tài khoản. Ban Quản Trị rất mong các bạn thông cảm. Mọi câu hỏi hay thắc mắc các bạn có thể đăng vào mục Hướng dẫn - Trợ giúp để được hỗ trợ. Ngoài ra nếu các bạn thấy diễn đàn bị lỗi thì xin hãy thông báo cho BQT trong chủ đề Báo lỗi diễn đàn. Cảm ơn các bạn.

Ban Quản Trị.


Chuyên mục

 Photo

Học gì ở Toán phổ thông

11-04-2021

Gửi bởi Nxb trong Kinh nghiệm học toán
Trước đây ông thầy người Pháp hướng dẫn mình có chê toán olympic của Việt Nam không phải khoa học. Điều này có lẽ không phải bàn cãi, tức là toán phổ thông Việt Nam cũng nổi tiếng ở một nước tiên tiến về toán, theo nghĩa tiêu cực. Nhưng cần suy nghĩ điều này thấu đáo vì hiện giờ ở Việt Nam, toán olympic là loại toán hấp dẫn với học sinh phổ thông, nếu không dùng nó thì cái gì để thu hút các em làm toán học hoặc khoa học? Mặc dù nó không hiệu quả, ai học chuyên là rõ nhất. Để nhiều bằng chứng hơn, hãy so với Pháp: phong trào olympic nghèo nàn, đi thi imo thì lúc nào cũng xếp sau Việt Nam, nhưng số lượng sinh viên đăng ký học toán gấp nhiều lần so với Việt Nam, cả lý thuyết và ứng dụng. Ở đây mình không bàn về chất lượng, chỉ tập trung vào số lượng. Vì vậy, mình mở ra post này, để anh em trên diễn đàn có thể lạm bàn. Mình xin tóm tắt lại một số vấn đề, cũng như đưa ra một số câu hỏi (tất nhiên không giới hạn việc thảo luận trong những vấn đề này): 1) Toán olympic ngày càng chứng tỏ không giúp ích nhiều cho khoa học và toán học (ở đây không bàn chuyện toán olympic có giúp tìm ra nhân tài); 2) Tạm bỏ qua (không có nghĩa bỏ hẳn) các yếu tố liên quan đến văn hóa, kinh tế để bàn về toán ở phổ thông hay nghiên cứu, nếu không muốn việc thảo luận trở nên phức tạp hơn. Đặt câu hỏi: vậy nên học toán gì ở phổ thông nhằm thu hút các em làm khoa học và toán học? Một gợi ý là tham khảo chương trình toán phổ thông ở các nước khác. Nhưng khoan hãy nói toán phổ thông ở Pháp có ích cho kh...

  2911 Lượt xem · 57 Trả lời ( Trả lời cuối cùng bởi nmlinh16 )

 Photo

[TOPIC] BẤT ĐẲNG THỨC

07-04-2021

Xin chào các bạn, mình là KietLW9, thực sự là mình mới tham gia diễn đàn được khoảng hơn 1 tháng và mình thấy rằng bất đẳng thức rất ít được quan tâm trong thời gian gần đây. Hôm nay, mình quyết định tạo một Topic về bất đẳng thức để các bạn cùng tham gia trả lời, thảo luận và có thêm nhiều kiến thức. Mình sẽ tổng hợp một số bài mà mình từng làm và mình cảm thấy hay nhất để đăng lên. Nếu có gì sai sót mong các bạn chỉ bảo. Cảm ơn các bạn đã ủng hộ TOPIC.Bài 1: Cho a, b, c là các số thực dương thỏa mãn $abc=\frac{2}{3}$. Chứng minh rằng: $\frac{ab}{a+b}+\frac{bc}{b+c}+\frac{ca}{c+a}\geqslant \frac{a+b+c}{a^3+b^3+c^3}$Bài 2: Cho a, b, c là các số thực thỏa mãn $ab+bc+ca\geqslant 0 $ và $(a^2+ab)(b^2+bc)(c^2+ca)>0$. Chứng minh rằng: $(a+b+c)(\frac{3a-b}{a^2+ab}+\frac{3b-c}{b^2+bc}+\frac{3c-a}{c^2+ca})\leqslant 9$Bài 3: Cho a, b, c là các số thực dương thỏa mãn $\sqrt{a}+\sqrt{b}+\sqrt{c}=2$. Chứng ming rằng: $\sum \frac{a+b}{\sqrt{a}+\sqrt{b}}\leqslant 4(\sum \frac{(\sqrt{a}-1)^2}{\sqrt{b}})$Bài 4: Với các số thực dương a, b thay đổi. Chứng minh rằng: $(a+b)(\frac{1}{\sqrt{a^2-ab+2b^2}}+\frac{1}{\sqrt{b^2-ab+2a^2}})\leqslant 2\sqrt{2}$ (Chú ý: Bài 4 không được dùng tất cả các bất đẳng thức đã có như Cô-si, Cauchy-Schwarz, Cauchy-Schwarz dạng phân thức,...)Bài 5: Với a, b, c không âm. CMR: $25(a^2+b^2+c^2)+54abc+36\geqslant 6(a+b+c)+49(ab+bc+ca)$ Bài 6: Cho a, b, c là các số thực dương thỏa mãn ab + bc + ca...

  1360 Lượt xem · 47 Trả lời ( Trả lời cuối cùng bởi KietLW9 )

 Photo

[MARATHON] Chuyên đề Bất đẳng thức

05-04-2021

Xin chào, mình là pcoVienam02. Như các bạn có thể thấy thì hiện tại trên Diễn đàn đang có nhiều TOPIC, nhưng mà nó có thể làm các bạn học hơi khô khan. Nên mình sẽ cải biến TOPIC thành một loại mới, chính là Marathon.Vậy Marathon là gì?Marathon (mình sẽ lấy format từ diễn đàn mình đang làm việc - AoPS), gồm 2 thể loại chính:+ Marathon loại 1 tức là người đăng chủ đề sẽ gửi bài toán đầu tiên (bài toán gốc). Người nào giải được bài toán gốc sẽ tiếp tục đưa ra câu hỏi thứ hai để những người giải được sau đó sẽ đưa ra câu hỏi tiếp theo, và cứ liên tục như thế.+ Marathon loại 2 là người đăng chủ đề sẽ là người chấm điểm, và có nhiệm vụ gửi các bài toán theo thứ tự (mỗi lần 1 bài), ai giải được sẽ được 1 điểm (người giải sớm nhất). Nếu ai giải sai mà có người chỉ được điểm sai sót trước khi người đăng đáp án bài đó nhận ra sẽ được 0,5đ. Sau một số hữu hạn bài (thường là 100-200 bài) thì ai có số điểm cao hơn thì sẽ chiến thắng. Thì loại 1 chỉ mang tính chất học hỏi và cũng có khá nhiều rủi ro vì nếu có người gửi bài quá khó thì Marathon coi như chấm dứt. Vì vậy dựa trên tình hình diễn đàn thì mình sẽ tổ chức Marathon loại 2 cho các bạn vì mục đích vừa học hỏi vừa có sự thi đua giữa các bạn của 3 miền Tổ Quốc. *Lưu ý: Thời hạn giải mỗi bài là 2 ngày. Để khai mạc kì Marathon phiên bản mới mình sẽ 'khui' bài tập đầu tiên (khá dễ):$\boxed{1}$ Cho $a,b,c$ là các số dương thỏa$\frac{a}{1+a}+\frac{b}{1+b}+\frac{c}{1+c}=1$Chứng minh rằng:  $...

  2089 Lượt xem · 54 Trả lời ( Trả lời cuối cùng bởi pcoVietnam02 )

 Photo

Đề thi olympic 30/4 môn Toán khối 10 năm 2021

03-04-2021

Đề thi Olympic 30/4 môn Toán khối 10 năm 2021Bài 1: Cho $a,b,c$ là ba cạnh của một tam giác có chu vi là $2$. Chứng minh rằng:\[2\sqrt 2  + \frac{{{a^3} + {b^3} + {c^3} - 3abc}}{6} \le \sqrt {{a^2} + {b^2}}  + \sqrt {{b^2} + {c^2}}  + \sqrt {{c^2} + {a^2}}  < 2\sqrt 3 \]Bài 2: Cho các số thực $x,y,z$ thỏa mãn:\ Chứng minh rằng $x+y+z$ là số nguyên.Bài 3: Với mỗi số nguyên $n \ge 2$, xét một bảng gồm $(2n - 1) \times (2n-1)$ ô vuông. Người ta viết các số $-1, 0, 1$ vào mỗi ô vuông sao cho với mọi bảng con $2 \times 2$, ta luôn tìm được 3 ô sao cho tổng các số viết trên mỗi ô vuông này bằng $0$. Đặt $S_n$ là giá trị lớn nhất của tổng các số được viết trên bảng.(a) Chứng minh rằng $S_2=5$.(b) Chứng minh rằng $S_n = n^2+n-1$.Bài 4: (a) Chứng minh rằng tồn tại hai cặp số $(a,b)$ sao cho $a,b$ là những số nguyên dương thỏa mãn:$$a^2 + 3b^2 = 7^9$$(b) Tìm tất cả các số nguyên dương $n$ sao cho phương trình$$x^2 + y^2 + xy= 7^n$$có nghiệm trong tập các số nguyên không chia hết cho $7$.Bài 5: Cho tam giác $ABC$ nhọn nội tiếp đường tròn $(O)$. Tia $AO$ cắt $BC$ tại $L$. Gọi $A'$ là điểm đối xứng của $A$ qua $BC$. Tiếp tuyến tại $A'$ của đường tròn ngoại tiếp $A'BC$ cắt $AB,AC$ lần lượt tại $D,E$.(a) Chứng minh đường tròn ngoại tiếp của các tam giác $A'BD, A'CE, A'AL$ đồng quy tại một điểm khác $A'$.(b) Gọi $J$ là tâm đường tròn ngoại tiếp tam giác $ADE$. Chứng minh rằng đường tròn ngoại tiếp của hai tam giác $ABC, JDE$ tiếp xúc nhau.

  1499 Lượt xem · 16 Trả lời ( Trả lời cuối cùng bởi hanishuri )

 Photo

Vietnam TST 2021

02-04-2021

Ngày thi thứ nhất Thời gian: 270 phútBài 1 (7 điểm): Cho dãy số $\left ( a_n \right )$ được xác định bởi $a_1 =1$ và $\left\{\begin{matrix} a_{2n}=a_n \\ a_{2n+1} = a_n +1  \end{matrix}\right.$ với $n \geq 1$.a) Tìm tất cả $n$ sao cho $a_{kn}=a_n$ với mọi số nguyên dương $k \leq n$.b) Chứng minh rằng tồn tại vô số $m$ nguyên dương mà $a_{km} \geq a_m$ với mọi số $k$ nguyên dương. Bài 2 (7 điểm): Cho bảng ô vuông $2021 \times 2021$. Tìm giá trị lớn nhất của $k$ sao cho có thể đánh dấu được $k$ ô của bảng mà mỗi ô trong $k$ ô đó thì có chung đỉnh với tối đa 1 ô được đánh dấu. Bài 3 (7 điểm): Cho tam giác $ABC$ và điểm $N$ không trùng với các điểm $A,B,C$. Gọi $A_b$ là điểm đối xứng với $A$ qua đường thẳng $NB$, còn $B_a$ là điểm đối xứng với $B$ qua đường thẳng $NA$. Xác định tương tự với 2 cặp điểm còn lại là $B_c,C_b$ và $C_a,A_c$. Đường thẳng $m_a$ qua $N$ và vuông góc với $B_c C_b$. Xác định tương tự với $m_b, m_c$.a) Giả sử $N$ là trực tâm tam giác $ABC$, chứng minh rằng ba đường thẳng đối xứng với các đường $m_a, m_b, m_c$ lần lượt qua phân giác các góc $\widehat{BNC}, \widehat{CNA}, \widehat{ANB}$ thì trùng nhau.b) Giả sử $N$ là tâm đường tròn Euler của tam giác $ABC$, chứng minh rằng ba đường thẳng đối xứng với các đường $m_a, m_b, m_c$ lần lượt qua $BC,CA,AB$ thì đồng quy tại một điểm. Ngày thi thứ hai Thời gian: 270 phútBài 4 (7 điểm): Cho các số thực không âm $a,b,c$ thoả mãn$2 \left ( a^2 +b^2 + c^2 \right ) +3(ab+bc+ca)=5(a+b+...

  945 Lượt xem · 4 Trả lời ( Trả lời cuối cùng bởi toanhoc2017 )

 Photo

[TOPIC] Phương trình hàm $\mathbb{R} \rightarrow \mathbb{R}$

01-04-2021

Xin chào, mình là pcoVIetnam02 . Có một số bạn đã biết, mình từng làm một chuyên đề phương trình hàm trên tập rời rạc nhưng sau đó vì diễn đàn bảo trì nên topic cũng không cánh mà bay. Và vì các bạn cũng bắt đầu thi Olympic 30/4 rồi nên mình sẽ làm luôn một chuyên đề về phương trình hàm trên tập số thực với khá là nhiều cách giải khác nhau để các bạn có thể trang bị cho kì thì VMO sắp tới. Yêu cầu rất đơn giản:$1)$ Tích cực tham gia, bàn luận và giải các bài toán mình đưa ra (tất nhiên sẽ có bài dễ nhưng mà lâu lâu thôi, vì sắp thì VMO rồi nên mình sẽ coi như các bạn đã biết được cơ bản của phương trình hàm).$2)$ Ủng hộ các bạn đưa ra cách làm của bài đó, phương pháp, trình bày rõ ràng mạch lạc.$3)$ Nếu muốn gửi bài tập cho các bạn khác cùng làm nhớ ghi số thứ tự (sau số của bài cuối cùng được đăng), đăng khoảng từ 1-5 bài và nếu không ai giải được (mình sẽ cố gắng giải cho các bạn) thì người đăng phải gửi lời giải của bài đó. Mong các bạn sẽ hưởng ứng vì chuyên đề này không mấy ai quan tâm, thêm cả việc không quá nhiều người học THPT ở group này nên cũng khó khăn cho mình. Nhưng vì đam mê thì làm thôi chứ biết sao  Sau đây là những bài tập đầu tiên (lấy lại từ những bài trước mình đã làm): $\boxed{1}$ Tìm tất cả các hàm $f: \mathbb{R} \rightarrow \mathbb{R}$ thỏa $g(x+y)+g(x)g(y)=g(xy)+g(x)+g(y)$ , $\forall x,y\in \mathbb{R}$ $\boxed{2}$ Tìm tất cả các hàm $f: \mathbb{R} \rightarrow \mathbb{R}$ thỏa$f(xf(x)+f(y)) = f(x)^2 +y$, $\forall x,y\...

  1030 Lượt xem · 22 Trả lời ( Trả lời cuối cùng bởi pcoVietnam02 )

 Photo

[TOPIC] ÔN TẬP HÌNH HỌC THI VÀO THPT CHUYÊN 2020-2021

27-03-2021

Gửi bởi 12DecMath trong Hình học
Chào các bạn, mình là 12DecMath. Để tiếp nối series ôn tập hình học của anh spirit1234, mình xin phép được lập lại topic rất hay giúp các bạn lớp 9 có thể ôn tập hình học thi vào THPT chuyên.P/s: Dưới đây là một số bài tập mà mình muốn gửi!$\boxed{1}$ Cho tam giác ABC ngoại tiếp đường tròn (I). (I) tiếp xúc với AB,AC lần lượt tại D và E. P là một điểm bất kì trên cung lớn DE của đường tròn (I). Lấy điểm F là điểm đối xứng với A qua PD và M là trung điểm DE. Chứng minh rằng $\hat{FMP}$ = 90o$\boxed{2}$ Cho tam giác ABC (AB<AC) nội tiếp đường tròn (O). Phân giác $\hat{BAC}$ cắt (O) tại E khác A. Gọi M,N lần lượt là trung điểm AB,AC. Trung trực AB,AC cắt AE lần lượt tại P,Q. Chứng minh rằng $PM.PE=QN.QE$$\boxed{3}$ Cho tam giác ABC (AB<AC) ngoại tiếp đường tròn (I), nội tiếp (O), có trực tâm H. (I) tiếp xúc với BC tại D. Khi IO//BC thì chứng minh rằng HD//AO$\boxed{4}$ Cho tam giác ABC nhọn, không cân, nội tiếp đường tròn (O) có trực tâm H. AH cắt BC tại D. Đường tròn (w) tâm A đi qua D cắt (O) tại P,Q. Gọi G là giao điểm của PQ và AD. AO cắt BC tại E và K,M lần lượt là trung điểm của AD,BC. Chứng minh rằng HM,GE,OD đồng quy.$\boxed{5}$ Cho tam giác ABC có I là tâm đường tròn nội tiếp và Ia là tâm đường tròn bàng tiếp ứng với góc A. Đường thẳng qua Ia vuông góc với AIa cắt AC tại E. Gọi H,K lần lượt là hình chiếu của Ia lên AB,AC. L thuộc HK sao cho CL//AB. Chứng minh rằng B,L,E thẳng hàng.$\boxed{6}$(Bài toán khó) Cho tứ giác ABCD ngoại tiếp (I). Đường chéo AC và BD...

  2171 Lượt xem · 59 Trả lời ( Trả lời cuối cùng bởi Hoang72 )

 Photo

Tại sao tìm nghiệm hữu tỉ lại khó?

25-03-2021

Bài 1. Giới thiệu Ở bài viết này mình sẽ giới thiệu theo kiểu layman về một vấn đề của lý thuyết số hiện đại. 1. Dẫn nhập Một câu hỏi cơ bản và lâu đời nhất của số học là làm thế nào để biết một (hệ) phương trình đa thức với hệ số nguyên (phương trình Diophantus) cho trước có nghiệm nguyên (hay hữu tỉ) hay không, và tìm nghiệm nguyên (hay hữu tỉ) như thế nào? A priori, đây là một câu hỏi rất khó và hoàn toàn có thể là không có câu trả lời. David Hilbert đã phát biểu nó thành bài toán thứ 10 trong danh sách 23 bài toán thế kỷ: Liệu có một thuật toán mà, cho trước một phương trình Diophantus, trả lời rằng phương trình đó có nghiệm hay không?Định lý Matiyasevich đã đưa ra câu trả lời phủ định: Không tồn tại một thuật toán phổ quát như vậy. Chú ý, nếu ta không nói đến nghiệm nguyên (hay hữu tỉ), mà quan tâm đến nghiệm phức (hoặc nghiệm trong một trường đóng đại số), thì vấn đề rất đơn giản: Trong logic toán và lý thuyết mô hình, đây là tính chất khử lượng từ (QE/quatifier /elimination) của lý thuyết ACF (algebraically closed field). Tương tự đối với nghiệm thực (hoặc nghiệm trong một trường đóng thực), lý thuyết RCF (real closed field) cũng có QE. Ngoài ra ta còn có các công cụ của giải tích: thuật toán Sturm, đạo hàm... Ở bài này, chúng ta tìm hiểu lí do tại sao việc tìm nghiệm hữu tỉ lại khó. Tổng quát hơn, ta quan tâm đến việc tìm nghiệm trong một trường số (number field). Đây là bước chuyển từ lý thuyết số sơ cấp sang lý thuyết số đại số....

  1119 Lượt xem · 2 Trả lời ( Trả lời cuối cùng bởi nmlinh16 )

 Photo

[TOPIC] ÔN THI SỐ HỌC VÀO THPT CHUYÊN NĂM 2020-2021

24-03-2021

Gửi bởi Mr handsome ugly trong Số học
Chào các bạn; mình là Mr handsome ugly sau một khoảng thời gian diễn đàn bị mất dữ liệu mình quyết định lập lại TOPIC này để giúp các bạn lớp 9 ôn luyện số học để thi chuyên; đồng thời tiếp nối TOPIC cũ đã bị xóa trước kia; không dài dòng nữa sau đây sẽ là nội quy của TOPIC: 1. KHÔNG SPAM LÀM LOÃNG TOPIC; BÀI BIẾT NÀO VI PHẠM SẼ BỊ XÓA 2. TRÌNH BÀY BÀI GIẢI KHOA HỌC NGẮN GỌN; KHÔNG LÀM NGƯỜI XEM KHÓ HIỂU 3. BẤT CỨ BÀI TOÁN NÀO SAU 2 NGÀY KHÔNG CÓ LỜI GIẢI THÌ YÊU CẦU BẠN ĐỀ XUẤT BÀI TOÁN PHẢI ĐƯA BÀI GIẢI 4.HẠN CHẾ SỬ DỤNG CÁC KIẾN THỨC CỦA CẤP 3; CÁC ANH CHỊ LỚP LỚN CŨNG NÊN HẠN CHẾ GIẢI BÀI MÀ THAY VÀO ĐÓ HÃY ĐỀ XUẤT BÀI TOÁN MỚI HOẶC ĐƯA RA LỜI GIẢI THỨ 2 CHO BÀI TOÁN 5. LUÔN ĐÁNH SỐ THỰ TỰ CỦA BÀI; BÀI NÀO ĐÃ ĐƯỢC GIẢI THÌ CẦN ĐƯỢC IN ĐỎ; BÀI VIẾT NÊN ĐƯỢC GÕ BẰNG PHÔNG CHỮ "TIMES NEW RONAM" 6. KHÔNG ĐĂNG CÁC BÀI TOÁN MỞ; GIẢ THUYẾT... *Mong các bạn tuân thủ nội quy TOPIC nhằm có 1 khoảng thời gian "tuyệt vời" trên TOPIC  . Vì mình không nhớ rõ lắm TOPIC trước đã đi đền bài mấy rồi mà chỉ nhớ đã hơn 80 bài nên mình sẽ khỏi động TOPIC bằng bài 80: Bài 80: Chứng minh với mọi n tự nhiên thì $3^{2^{4n+1}}+2^{3^{4n+1}}+5$ luôn chia hết cho 22 Bài 81:Tìm các cặp số nguyên x;y sao cho $x^{6}+x^{3}y=y^{3}+2y^{2}$ bài 82: Tìm x;y nguyên dương sao cho $x^{2}y+x+y$ chia hết cho $xy^{2}+y+1$ Bài 83: Cho m;n nguyên dương thỏa $m+n+1$ là 1 ước nguyên tố của $2(m^{2}+n^{2})-1$. Chứng minh mn là số...

  2190 Lượt xem · 56 Trả lời ( Trả lời cuối cùng bởi ChiMiwhh )

 Photo

NGƯỜI THÔNG MINH NHẤT HÀNH TINH

30-07-2019

NGƯỜI THÔNG MINH NHẤT HÀNH TINH(dành cho người quan tâm đến Toán, Vật lý và Triết học)...Grigori Perelman, sinh năm 1966 - đứng thứ 9 trong danh sách 100 thiên tài đang sống giữa chúng ta (kết quả bầu năm 2007 khi ông còn chưa được giải Clay vì lời giải bài toán “thiên niên kỷ” của Poincare, trong khi đó đứng đầu danh sách là Hoffman, cha đẻ của “thuốc gây ảo giác LSD”). Tuy vậy theo tôi biết thì cộng đồng khoa học đã từ lâu công nhận ông là nhà khoa học thông thái nhất hành tinh, tôi tuy ngoại đạo nhưng cũng rất tò mò muốn biết con người này thực ra là ai, ngoài những thông tin “lá cải” về việc ông từ chối nhận giải thưởng 1 triệu đôla và ở ẩn đối với tất cả xã hội do đó sống nghèo đói. Đơn giản khi một con người đã tuyệt đỉnh thông minh, thì ngoài việc “lập dị” ra thì mỗi hành động của ông ta phải có cả một câu chuyện dài phía sau, chứ không phải kiểu “nổ” bất thình lình... Và qua cuộc đời ông, tôi thấy được một câu chuyện rất hay về các nhà toán học thời hiện đại, cũng như toán học cần thiết để làm gì, từ những cuộc tranh cãi “32 con gà” ngày nay cho đến thành tựu của Ngô Bảo Châu đều có ý nghĩa cao siêu hơn ta hằng nghĩ!Đầu tiên phải nói thật, gây tò mò nhất đối với tôi là việc ngài Perelman là “chuyên gia từ chối các giải thưởng danh giá”. Hãy xem ông đã từ chối gì:-1996 từ chối giải của Hiệp hội toán học châu Âu (EMC) dành cho các nhà toán học trẻ - giải thưởng này như một bảo đảm cho người lĩnh giải sẽ được nhận vào làm việc tại các trường đại học danh giá nhất của...

  1421 Lượt xem · 0 Trả lời


Bài toán trong tuần - PSW

Tính tổng $\sum_{k=1}^{n-1}$ $a^{(n-1-k)}f(k).$
Cho dãy số thực $(U_{n})$ xác định bởi
$\left\{\begin{matrix} u_{1} =\frac{-2}{5}& \\ 25u_{n+1}u_{n}+15u_{n+1}+15u_{n}+10=\sqrt{25u_{n}^{2}+30u_{n}+10} & \end{matrix}\right.$, $n\geq 1$
Tìm số hạng tổng quát của dãy số $(u_{n})$

>>Tham gia giải bài toán này <<

Những bài toán đã qua


Mỗi tuần 1 bài toán hình học

Bài 1: Cho tam giác $ABC$ và $M,N$ nằm trên cạnh $BC$ sao cho $M$ nằm giữa $N,B$.Lấy $P,Q$ trên $AM,AN$ để $BP,CQ$ cùng vuông góc với $BC$. $K,J$ là tâm ngoại tiếp $(APQ),(AMN)$. $L$ là hình chiếu của $K$ lên $AJ$. Chứng minh $\frac{AJ}{AL}=\frac{MN}{BC}$
Bài 2: Cho tam giác $ABC$ và $l$ là 1 đường thẳng bất kì. $D,E,F$ lần lượt là hình chiếu của $A,B,C$ lên $l$.$X,Y,Z$ lần lượt chia $AD,BE,CF$ theo cùng $1$ tỉ số $k$. Các đường lần lượt qua $X,Y,Z$ và vuông góc $BC,CA,AB$ đồng quy tại $K$. Chứng minh $(KAX),(KBY),(KCZ)$ đồng trục và trục đẳng phương của chúng đi qua điểm cố định khi $k$ thay đổi. Hình vẽ


Tham gia giải bài toán này

Ấn phẩm của Diễn đàn Toán học

 

 

 

Bài viết mới


  • 615101 Bài viết
  • 102284 Thành viên
  • vietduy0804 Thành viên mới nhất
  • 17600 Online đông nhất

2118 người đang truy cập (trong 20 phút trước)

0 thành viên, 2118 khách, 0 thành viên ẩn danh   (Xem đầy đủ danh sách)


Portal v1.4.0 by DevFuse | Based on IP.Board Portal by IPS