Chứng minh Bất đẳng thức bằng phương pháp đổi biến số

I. Ví dụ:

1. Dự đoán được điều kiện đẳng thức xảy ra

Ví dụ 1: Cho \(a + b = 2\). Chứng minh rằng: \(B = a^5 + b^5 \geq 2\).

- **Nhận xét:** Dự đoán đẳng thức xảy ra khi \(a = b = 1\).

Do vậy ta đặt: \(a = 1 + x\). Từ giả thiết suy ra: \(b = 1 - x\), \((x \in \mathbb{R})\).

Ta có: \(B = a^5 + b^5 = (1 + x)^5 + (1 - x)^5 = 10x^4 + 20x^2 + 2 \geq 2\)

Đẳng thức xảy ra \(\iff x = 0\), hay \(a = b = 1\). Vậy \(B \geq 2\).

Ví dụ 2: Cho \(a + b = 3, a \leq 1\). Chứng minh rằng: \(C = b^3 - a^3 - 6b^2 + a^2 + 9b \geq 0\).

- **Nhận xét:** Dự đoán rằng đẳng thức xảy ra khi \(a = 0; b = 3\).

Do vậy ta đặt: \(a = 1 - x\), với \(x \geq 0\). Từ giả thiết suy ra: \(b = 2 + x\).

Ta có: \(C = b^3 - a^3 - 6b^2 + a^2 + 9b = (2 + x)^3 - (1 - x)^3 - 6(2 + x)^2 - (1 - x)^2 + 9(2 + x)\

\[= x^3 - 2x^2 + x = x(x - 1)^2 \geq 0 \quad \text{(vì } x \geq 0)\].

Đẳng thức xảy ra \(\iff x = 0\) hoặc \(x = 1\) tức \(a = 1, b = 2\) hoặc \(a = 0, b = 3\). Vậy \(C \geq 0\).

Ví dụ 3: Cho \(a + b + c = 3\). Chứng minh rằng: \(A = a^2 + b^2 + c^2 + ab + bc + ca \geq 6\).

- **Nhận xét:** Dự đoán rằng đẳng thức xảy ra khi \(a = b = c = 1\).

Do vậy ta đặt: \(a = 1 + x, b = 1 + y\), \((x, y \in \mathbb{R})\). Từ giả thiết suy ra: \(c = 1 - x - y\).

Ta có: \(A = a^2 + b^2 + c^2 + ab + bc + ca\

\[= (1 + x)^2 + (1 + y)^2 + (1 - x - y)^2 + (1 + x)(1 + y) + (1 + y)(1 - x - y) + (1 - x - y)(1 + x)\

\[= x^2 + xy + y^2 + 6 = \left(x + \frac{1}{2}y\right)^2 + \frac{3}{4}y^2 + 6 \geq 6\].

Đẳng thức xảy ra \(\iff x = 0\) và \(x + \frac{1}{2}y = 0 \iff x = y = 0\) hay \(a = b = c = 1\). Vậy \(A \geq 6\).

Ví dụ 4: Cho \(a + b = c + d\). Chứng minh rằng: \(D = a^2 + b^2 + ab \geq 3cd\).

- **Nhận xét:** Dự đoán rằng đẳng thức xảy ra khi \(a = b = c = d\).

Do vậy đặt: \(a = c + x\), với \(x \in \mathbb{R}\). Từ giả thiết suy ra: \(b = d - x\).

Ta có: \(D = (c + x)^2 + (d - x)^2 + (c + x)(d - x) = c^2 + d^2 + x^2 + cd + cx - dx\

\[= \left(c^2 + d^2 + \frac{1}{4}x^2 - 2cd + cx - dx\right) + 3cd + \frac{3}{4}x^2 = \left(c - d + \frac{1}{2}x\right)^2 + \frac{3}{4}x^2 + 3cd \geq 3cd\].

Đẳng thức xảy ra \(\iff x = 0\) và \(c - d + \frac{1}{2}x = 0 \iff x = 0\) và \(c = d\) hay \(a = b = c = d\).

Vậy \(D \geq 3cd\).

Ví dụ 5: Cho \(a + b \geq 2\). Chứng minh rằng: \(a^3 + b^3 \leq a^4 + b^4\).

- **Nhận xét:** Dự đoán rằng đẳng thức xảy ra khi \(a = b = 1\).

Do vậy đặt \(a = 1 + x, b = 1 + y\). Từ giả thiết suy ra: \(x + y \geq 0\).
Ta có: $a^3 + b^3 \leq a^4 + b^4 \Leftrightarrow (1 + x)^3 + (1 + y)^3 \leq (1 + x)^4 + (1 + y)^4$
$\Leftrightarrow (1 + x)^4 + (1 + y)^4 - (1 + x)^3 - (1 + y)^3 \geq 0 \Leftrightarrow x(1 + x)^3 + y(1 + y)^3 \geq 0$
$\Leftrightarrow x + y + 3(x + y)(x^2 - xy + y^2) + 3(x^2 + y^2) + x^4 + y^4 \geq 0$ (Đúng vì $x + y \geq 0$)

Đẳng thức xảy ra $\Leftrightarrow x = y = 0$ hay $a = b = 1$. Vậy bất đẳng thức được chứng minh.

Ví dụ 6: Cho $a \leq 4$. Chứng minh rằng: $E = a^2(2 - a) + 32 \geq 0$.

*Nhận xét: Dự đoán đẳng thức xảy ra khi $a = 4$.

Do vậy đặt $a = 4 - x$. Từ giả thiết suy ra $x \geq 0$.

Ta có: $E = (4 - x)^2(2 - 4 + x) = x^3 - 10x^2 + 32x = x[(x - 5)^2 + 7] \geq 0$.

Đẳng thức xảy ra $x = 0$ hay $a = 4$. Vậy $E \geq 0$.

Ví dụ 7: Cho $ab \geq 1$. Chứng minh rằng: $a^2 + b^2 \geq a + b$.

*Nhận xét: Dự đoán đẳng thức xảy ra khi $a = b = 1$.

Do vậy đặt $a = 1 + x$; $b = 1 + y$.

Ta có: $ab \geq 1 \Leftrightarrow (1 + x)(1 + y) \geq 1 \Leftrightarrow x + y + xy \geq 0$

Mặt khác: $a^2 + b^2 \geq a + b \Leftrightarrow (1 + x)^2 + (1 + y)^2 \geq (1 + x) + (1 + y) \Leftrightarrow x^2 + y^2 + x + y \geq 0$

Lại có: $x^2 + y^2 \geq 2xy$, với mọi x, y nên ta có:

$x^2 + y^2 + x + y \geq \frac{1}{2}(x^2 + y^2) + xy + x + y \geq 0$ (Đúng vì $xy + x + y \geq 0$)

Đẳng thức xảy ra $\Leftrightarrow x = y = 0$ hay $a = b = 1$. Vậy BĐT được chứng minh.

2. Đằng cho biết điều kiện của tổng các biến nhưng không (hoặc khó) dự đoán điều kiện của biến để đằng thực xảy ra.

Đối với loại này ta cũng có thể đổi biến như trên.

Ví dụ 8: Cho $a \leq 1$; $a + b \geq 3$. Chứng minh rằng: $F = 3a^2 + b^2 + 3ab - \frac{27}{4} \geq 0$

*Đặt $a = 1 - x$ và $a + b = 3 + y$. Từ giả thiết suy ra $x, y \geq 0$ nên ta có: $b = 2 + x + y$.

Từ đó: $F = 3(1 - x)^2 + (2 + x + y)^2 + 3(1 - x)(2 + x + y) - \frac{27}{4}$
$= x^2 + y^2 - 5x + 7y - xy + \frac{25}{4}$
$= \left(x - \frac{1}{2}y - \frac{5}{2} \right)^2 + \frac{3}{4}y^2 + \frac{9}{2}y \geq 0$

Đẳng thức xảy ra $\Leftrightarrow x = \frac{5}{2}$ và $y = 0$ hay $a = -\frac{3}{2}$ và $b = \frac{9}{2}$.

Vậy bất đẳng thức $F \geq 0$ được chứng minh.

Ví dụ 9: Cho $a, b, c \in [1; 3]$ và $a + b + c = 6$. Chứng minh rằng:

a) $a^2 + b^2 + c^2 \leq 14$
b) $a^3 + b^3 + c^3 \leq 36$

*Đặt $a = x + 1$; $b = y + 1$; $c = z + 1$. Khí đối $x, y, z \in [0; 2]$ và $x + y + z = 3$

Giả sử $x = \max\{x; y; z\}$ suy ra: $x + y + z = 3 \Rightarrow 1 \leq x \leq 2 \Rightarrow (x - 1)(x - 2) \leq 0$

nên: $x^2 + y^2 + z^2 \leq x^2 + (y + z)^2 = x^2 + (3 - x)^2 = 5 + 2(x - 1)(x - 2) \leq 5$

Tức là: $x^2 + y^2 + z^2 \leq 5$ (*). Trường tự ta chứng minh được $x^3 + y^3 + z^3 \leq 9$ (**)
Phương pháp đổi biến số

a) Ta có: \[a^2 + b^2 + c^2 = (x+1)^2 + (y+1)^2 + (z+1)^2 = x^2 + y^2 + z^2 + 2(x+y+z) + 3 \] (1)

Thay (*) vào (1) ta có: \[a^2 + b^2 + c^2 \leq 14 \] là điều phải chứng minh.

b) Ta có:

\[a^3 + b^3 + c^3 = (x+1)^3 + (y+1)^3 + (z+1)^3 = x^3 + y^3 + z^3 + 3(x^2 + y^2 + z^2) + 3(x+y+z) + 9 \] (2)

Thay (*) và (**) vào (2) ta có: \[a^3 + b^3 + c^3 \leq 14 \] là điều phải chứng minh.

Ví dụ 10: Cho các số thực a, b với \(a + b \neq 0 \). Chứng minh: \[a^2 + b^2 + \left(\frac{1+ab}{a+b} \right)^2 \geq 2. \]

- Đặt \(c = -\frac{1+ab}{a+b} \). Ta có: \(ab + bc + ca = -1 \) và lúc này BĐT cần chứng minh trở thành:

\[a^2 + b^2 + c^2 \geq 2 \iff a^2 + b^2 + c^2 \geq -2(ab + bc + ca) \iff (a+b+c)^2 \geq 0 \] (luôn đúng).

Vậy bất đẳng thức được chứng minh.

3. Dạng bất đẳng thức với điều kiện cho ba số có tích bằng 1

Cách 1: Đặt \(a = \frac{x}{y} ; \ b = \frac{y}{z} ; \ c = \frac{z}{x} \), với \(x, y, z \neq 0 \).

Sau đây là một số ví dụ làm sáng tỏ điều này.

Ví dụ 11: Cho a, b, c là các số thực dương thỏa mãn \(abc = 1 \). Chứng minh rằng:

\[\frac{1}{a(b+1)} + \frac{1}{b(c+1)} + \frac{1}{c(a+1)} \geq \frac{3}{2} \]

- Nhận xét: a, b, c là các số thực dương và \(abc = 1 \), nên ta đặt:

\[a = \frac{x}{y} ; \ b = \frac{y}{z} ; \ c = \frac{z}{x} \]

Ta có:

\[\frac{1}{a(b+1)} + \frac{1}{b(c+1)} + \frac{1}{c(a+1)} \geq \frac{3}{2} \iff \frac{1}{yx+1} + \frac{1}{yz+1} + \frac{1}{zx+1} \geq \frac{3}{2} \]

\[\iff \frac{yz}{xy+yz} + \frac{xz}{xz+yz} + \frac{xy}{xz+xy} \geq \frac{3}{2} \]

Đây chính là BĐT Nêb–sít cho ba số dương \(xy, yz, zx \), suy ra điều phải chứng minh.

Ví dụ 12: (Ôlimpí thức quốc tế 2000) Cho a, b, c là các số thực dương thỏa mãn \(abc = 1 \).

Chứng minh rằng:

\[\left(a-1+\frac{1}{b} \right) \left(b-1+\frac{1}{c} \right) \left(c-1+\frac{1}{a} \right) \leq 1. \]

- Nhận xét: a, b, c là các số thực dương thỏa mãn \(abc = 1 \), nên ta đặt:

\[a = \frac{x}{y} ; \ b = \frac{y}{z} ; \ c = \frac{z}{x} \]

Ta có:

\[\left(a-1+\frac{1}{b} \right) \left(b-1+\frac{1}{c} \right) \left(c-1+\frac{1}{a} \right) \leq 1 \iff \frac{(x-y+z)(y-z+x)(z-x+y)}{xyz} \leq 1 \]

\[\iff (x-y+z)(y-z+x)(z-x+y) \leq xyz \] (*)

Đặt \(x = m+n ; \ y = n+p ; \ z = p+m \). Khi đó (*) \(\iff (m+n)(n+p)(p+m) \geq 8 mpi \) (**)

Áp dụng BĐT Cô–si cho hai số dương ta có: \(m+n \geq 2\sqrt{mn} ; \ n+p \geq 2\sqrt{np} ; \ p+m \geq 2\sqrt{pm} \)
Ba bất đẳng thức trên có hai vế đều dương nên nhân vế theo vế ta có bất đẳng thức cần chứng minh.

Chú ý: Ta có thể chứng minh (*) theo cách sau đây:

Do vai trò x, y, z có vai trò như nhau, không mất tính tổng quát nên giả sử:

$$x \geq y \geq z > 0.$$

Nhàn vế theo vế các bất đẳng thức trên, suy ra (*)

Vậy (*) đúng cho mọi x, y, z là các số thực dương, suy ra bài toán được chứng minh.

Phát hiện: Việc đổi biến và vận dụng (**) một cách khéo léo giúp ta giải được bài toán ở Ví dụ 13 sau đây:

Ví dụ 13: (Ôlimpic quốc tế 2001) Cho a, b, c là ba số dương. Chứng minh rằng:

$$\frac{a}{\sqrt{a^2 + 8bc}} + \frac{b}{\sqrt{b^2 + 8ca}} + \frac{c}{\sqrt{c^2 + 8ab}} \geq 1.$$

- Đặt $x = \frac{a}{\sqrt{a^2 + 8bc}}$; $y = \frac{b}{\sqrt{b^2 + 8ca}}$; $z = \frac{c}{\sqrt{c^2 + 8ab}}$.

Ta thấy x, y, z đều dương và BĐT cần chứng minh trở thành $S = x + y + z \geq 1$.

Do $x = \frac{a}{\sqrt{a^2 + 8bc}} \Rightarrow x^2 = \left(\frac{a}{\sqrt{a^2 + 8bc}}\right)^2 = \frac{a^2}{a^2 + 8bc} \Rightarrow 1 = \frac{8bc}{a^2}$.

Tương tự ta có: $\frac{1}{y^2} = \frac{8ca}{b^2}$; $\frac{1}{z^2} = \frac{8ab}{c^2}$.

Suy ra:

$$\left(\frac{1}{x^2} - 1\right)\left(\frac{1}{y^2} - 1\right)\left(\frac{1}{z^2} - 1\right) = 8^3 \quad (1)$$

Mặt khác nếu $S = x + y + z < 1$ thì:

$$T = \left(\frac{1}{x^2} - 1\right)\left(\frac{1}{y^2} - 1\right)\left(\frac{1}{z^2} - 1\right) > \left(\frac{S^2}{x^2} - 1\right)\left(\frac{S^2}{y^2} - 1\right)\left(\frac{S^2}{z^2} - 1\right)$$

- Ta thấy $(S - x)(S - y)(S - z) = (x + y)(y + z)(z + x) \geq 8xyz$ (theo (**) ở ví dụ 12) \((2) \)
- Với ba số dương $x + y$, $y + z$, $z + x$, ta lại có $(S + x)(S + y)(S + z) \geq 64xyz \quad (3)$
- Nhân (2) và (3) vế với vế, ta được: $(S^2 - x^2)(S^2 - y^2)(S^2 - z^2) \geq 8^3 x^2 y^2 z^2$

hay: $\left(\frac{S^2}{x^2} - 1\right)\left(\frac{S^2}{y^2} - 1\right)\left(\frac{S^2}{z^2} - 1\right) \geq 8^3$

Từ đây suy ra: $T > 8^3$ mâu thuẫn với (1).

Vậy $S = x + y + z \geq 1$, tức bài toán được chứng minh.

Ngược lại, đối với một số bài toán chứng minh bất đẳng thức mà các biểu thức (hoặc biến đổi của nó) có chứa các biểu thức có dạng: x, y, z, với x, y, $z \neq 0$. Lúc này việc đặt $a = \frac{x}{y}$; $b = \frac{y}{z}$; $c = \frac{z}{x}$, với $abc = 1$ là một phương pháp hữu hiệu, sau đây là các ví dụ minh chứng điều này:
Ví dụ 14: Cho các số thực dương a, b, c. Chung mình rằng:

$$1) \quad \frac{b}{a+2b} + \frac{c}{b+2c} + \frac{a}{c+2a} \leq 1$$

$$2) \quad \frac{a}{a+2b} + \frac{b}{b+2c} + \frac{c}{c+2a} \geq 1.$$

1) BĐT $\iff \frac{b}{a+2b} + \frac{c}{b+2c} + \frac{a}{c+2a} \leq 1$.

Dặt $x = \frac{a}{b}; \quad y = \frac{b}{c}; \quad z = \frac{c}{a}$. Ta có x, y, z là các số thực dương có tích $xyz = 1$.

Suy ra: $\frac{1}{a+2b} + \frac{1}{b+2c} + \frac{1}{c+2a} \leq 1 \iff \frac{x+1}{y+2} + \frac{y+1}{z+2} \leq 1$.

$\iff (x+2)(y+2) + (y+2)(z+2) + (z+2)(x+2) \leq (x+2)(y+2)(z+2)$

$\iff (xy + yz + zx) + 4(x + y + z) + 12 \leq xyz + 2(xy + yz + zx) + 4(x + y + z) + 8$.

$\iff 4 \leq xyz + xy + yz + zx \iff 3 \leq xy + yz + zx$.

Đây là bất đẳng thức đúng vì áp dụng bất đẳng thức Cô–si cho ba số dương ta có:

$$xy + yz + zx \geq 3\sqrt[3]{(xyz)^2} = 3.$$

Suy ra điều phải chứng minh.

2) Cách 1: Chung minh tương tự câu 1).

Cách 2: Ta có:

$$\frac{b}{a+2b} + \frac{c}{b+2c} + \frac{a}{c+2a} = 3$$

Áp dụng kết quả bài toán 1), ta suy ra bất đẳng thức cần chứng minh.

Cách 2: Ngoài cách đặt $x = \frac{a}{b}; \quad y = \frac{b}{c}; \quad z = \frac{c}{a}$ như trên ta còn có cách đổi biến khác. Cụ thể ta xét ví dụ sau:

Ví dụ 15: Cho ba số dương a, b, c thỏa mãn $abc = 1$. Chung minh:

$$\frac{a}{(a+1)^2} + \frac{b}{(b+1)^2} + \frac{c}{(c+1)^2} - \frac{4}{(a+1)(b+1)(c+1)} \leq \frac{1}{4} \quad (*)$$

Đặt: $x = 1 - a; \quad y = 1 - b; \quad z = 1 - c \Rightarrow -1 < x, y, z < 1$ và $a = \frac{1-x}{1+y}; \quad b = \frac{1-y}{1+z}; \quad c = \frac{1-z}{1+x}$.

Từ $abc = 1 \Rightarrow (1-x)(1-y)(1-z) = (1+x)(1+y)(1+z) \Rightarrow x + y + z + xyz = 0$.

Mặt khác: $\frac{4a}{(a+1)^2} = 1 - x^2; \quad \frac{2}{a+1} = 1 + x$

Tương tự: $\frac{4b}{(b+1)^2} = 1 - y^2; \quad \frac{2}{b+1} = 1 + y$ và $\frac{4c}{(c+1)^2} = 1 - z^2; \quad \frac{2}{c+1} = 1 + z$

nên: $(*) \iff \frac{4a}{(a+1)^2} + \frac{4b}{(b+1)^2} + \frac{4c}{(c+1)^2} \leq 1 + 2, \quad \frac{2}{(a+1)(b+1)} \cdot \frac{2}{(c+1)} \cdot \frac{2}{(a+1)(b+1)(c+1)}$

$\iff 1 - x^2 + 1 - y^2 + 1 - z^2 \leq 1 + 2(1+x)(1+y)(1+z)$

$\iff x^2 + y^2 + z^2 + 2(xy + yz + zx) + 2(x + y + z + xyz) \geq 0 \iff (x + y + z)^2 \geq 0$.

Đây là bất đẳng thức luôn đúng nên bài toán được chứng minh.
Phương pháp đổi biến số

Phát hiện: Việc đổi biến bằng cách đặt $a = \frac{x}{y}; b = \frac{y}{z}; c = \frac{z}{x}$ hay ở bài toán chứng minh đẳng thức, ví dụ 16; 17 sau đây cho thấy điều này. (Việc đưa ra hai ví dụ sau nhằm nhấn mạnh thêm tính đa dạng và hữu hiệu của phương pháp đổi biến trong giải toán nói chung).

Ví dụ 16: Cho a, b, c là ba số thực thỏa mãn $abc = 1$. Chứng minh rằng:

$$\frac{1}{1 + a + ab} + \frac{1}{1 + b + bc} + \frac{1}{1 + c + ca} = 1$$

• Nhận xét: Vì abc = 1 nên ta có thể đặt $a = \frac{x}{y}; b = \frac{y}{z}; c = \frac{z}{x}$, với $x, y, z \neq 0$.

Khi đó vế trái của đẳng thức trên được biến đổi thành:

$$\frac{1}{x + y + z} + \frac{1}{x + y + z} + \frac{1}{x + y + z} = \frac{yz}{xy + yz + zx} + \frac{zx}{xy + yz + zx} + \frac{xy}{xy + yz + zx} = 1 \text{ (dpcm).}$$

Ví dụ 17: Cho a, b, c là ba số thực thỏa mãn $abc = 1$. Chứng minh rằng:

$$\left(a - 1 + \frac{1}{b} \right) \left(b - 1 + \frac{1}{c} \right) \left(c - 1 + \frac{1}{a} \right) = \left(a + 1 - \frac{1}{b} \right) \left(b + 1 - \frac{1}{c} \right) \left(c + 1 - \frac{1}{a} \right) \quad (*)$$

• Nhận xét: Tương tự trên ta đặt $a = \frac{x}{y}; b = \frac{y}{z}; c = \frac{z}{x}$, với $x, y, z \neq 0$.

Khi đó vế trái của đẳng thức (*) được biến đổi thành:

$$\left(x - 1 + \frac{z}{y} \right) \left(y - 1 + \frac{x}{z} \right) \left(z - 1 + \frac{y}{x} \right) = \frac{x - y + z}{y} \cdot \frac{y - z + x}{z} \cdot \frac{z - x + y}{x} = \frac{(x - y + z)(y - z + x)(z - x + y)}{xyz} \quad (1)$$

Tương tự ta cũng biến đổi được vế phải của (*) về biểu thức (1), suy ra dpcm.

4. Đối với một số bài toán chứng minh bất đẳng thức chứa ba biến a, b, c không âm có vai trò như nhau ta có thể sử dụng phương pháp đổi biến như sau:

Đặt $x = a + b + c; \quad y = ab + bc + ca; \quad z = abc$.

Ta có các đẳng thức sau:

$$xy - z = (a + b)(b + c)(c + a) \quad (1)$$

$$x^2 + y = (a + b)(b + c) + (b + c)(c + a) + (c + a)(a + b) \quad (2)$$

$$x^2 - 2y = a^2 + b^2 + c^2 \quad (3)$$

$$x^3 - 3xy + 3z = a^3 + b^3 + c^3 \quad (4)$$

Cùng với việc áp dụng các bất đẳng thức sau:

$$x^2 \geq 3y \quad (5)$$

$$x^3 \geq 27z \quad (6)$$

$$y^2 \geq 3xz \quad (7)$$

$$xy \geq 9z \quad (8)$$

$$x^3 - 4xy + 9z \geq 0 \quad (9)$$

(Bạn đọc tự chứng minh các bất đẳng thức trên).
Sau đây là một số ví dụ để làm sáng tỏ vấn đề này:

Ví dụ 18: Cho ba số dương a, b, c thỏa mãn điều kiện $abc = 1$. Chung minh:

$$(a+b)(b+c)(c+a) \geq (1+a+b+c)$$

- Đặt $x = a+b+c$; $y = ab+bc+ca$; $z = abc$.

Theo (1) thì bất đẳng thức cần chứng minh tương đương với:

$$xy - z \geq 2(1+x) \iff xy - 1 \geq 2(1+x) \iff x(y-2) \geq 3.$$

Do $z = abc = 1$ nên theo (6) và (7) suy ra: $x \geq 3$; $y \geq 3$ suy ra: $x(y-2) \geq 3$ là BĐT đúng.

Đẳng thức xảy ra khi và chỉ khi: $a = b = c = 1$.

Ví dụ 19: Cho ba số dương a, b, c thỏa mãn: $a + b + c = 3$. Chung minh:

$$abc \geq \frac{12}{ab+bc+ca} \geq 5$$

- Đặt $x = a+b+c$; $y = ab+bc+ca$; $z = abc$.

Khi đó bất đẳng thức cần chứng minh tương đương với bất đẳng thức sau:

$$z + \frac{12}{y} \geq 5$$

Theo (9) kết hợp với $x = a+b+c = 3$ ta có: $27 - 12y + 9z \geq 0$.

Suy ra: $z \geq \frac{4y-9}{3} \iff z + \frac{12}{y} \geq \frac{4y-9}{3} + \frac{12}{y}$ (**)

Mặt khác: $\frac{4y-9}{3} + \frac{12}{y} \geq 5 \iff 4y^2 - 9y + 36 \geq 15y \iff (y-3)^2 \geq 0$ (đúng với mọi y).

Từ (*) và (**) suy ra bài toán được chứng minh.

Đẳng thức xảy ra khi và chỉ khi: $a = b = c = 1$.

Ví dụ 20: Cho ba số không âm a, b, c, thỏa mãn: $ab+bc+ca+abc = 4$. Chung minh:

$$3(a^2+b^2+c^2) + abc \geq 10$$

- Đặt $x = a+b+c$; $y = ab+bc+ca$; $z = abc$.

Do $y + z = ab+bc+ca+abc = 4$, nên theo (3) bất đẳng thức (*) trở thành:

$$3(x^2 - 2y) + z \geq 10 \iff 3x^2 - 6 \geq 7y.$$

Mặt khác, theo (9) suy ra:

$$x^3 - 4xy + 9(y+z) \geq 9y \Rightarrow x^3 + 36 \geq 9y + 4xy \Rightarrow y \leq \frac{x^3 + 36}{4x + 9}$$

Vậy để hoàn thành bài toán ta cần chứng minh: $3x^2 - 6 \leq 7 \cdot \frac{x^3 + 36}{4x + 9}$.

Thật vậy, từ (5) và (6) suy ra:

$$4 = y + z \leq \frac{x^2}{3} + \frac{x^3}{27} \Rightarrow x^3 + 9x^2 - 108 \geq 0 \Rightarrow (x-3)(x^2 + 12x + 36) \geq 0 \Rightarrow x \geq 3.$$

Từ đó ta có:

$$3x^2 - 6 \leq 7 \cdot \frac{x^3 + 36}{4x + 9} \iff 12x^3 - 24x + 27x^2 - 54 \geq 7x^3 + 252 \iff (x-3)(5x^2 + 42x + 102) \geq 0$$

Đây là bất đẳng thức đúng. Đẳng thức xảy ra khi và chỉ khi: $a = b = c = 1$.

trang 7
Ví dụ 21: Cho ba số dương a, b, c thỏa mãn điều kiện $ab + bc + ca = 3$. Chứng minh:

\[
\frac{1}{a+b} + \frac{1}{b+c} + \frac{1}{c+a} \geq \frac{3}{a+b+c}
\]

- Đặt $x = a+b+c$; $y = ab+bc+ca=3$; $z = abc$.

Ta có:

\[
\frac{1}{a+b} + \frac{1}{b+c} + \frac{1}{c+a} \geq \frac{3}{a+b+c}
\]

\[
\iff (a+b)(b+c)(c+a) \geq (a+b+c)(a+b+c)
\]

(*)

Theo (1) và (2) thì (*) trở thành:

\[
x^2 + y \geq \frac{x^2 + 3}{x} \iff (x^2 + 3)6x - (x^2 + 18)(3x - z) \geq 0
\]

\[
6x^3 + 18x - 3x^3 - 54x + x^2 z + 18z \geq 0 \iff 3x^3 - 36x + x^2 z + 18z \geq 0
\]

\[
3(x^3 - 12x + 9z) + x^2 z - 9z \geq 0 \iff 3(x^3 - 4xy + 9z) + z(x^2 - 9) \geq 0
\]

Do $y = 3$ nên từ (5) suy ra $x^2 \geq 9$, kết hợp (9) ta có bất đẳng thức trên đúng, suy ra bài toán được chứng minh.

Ví dụ 22: Cho ba số a, b, c thuộc $(0; 1)$ thỏa mãn $abc = (1-a)(1-b)(1-c)$. Chứng minh:

\[
a^3 + b^3 + c^3 + 5abc \geq 1
\]

- Ta có: $abc = (1-a)(1-b)(1-c) = 1 - (a+b+c) + (ab+bc+ca) - abc$.

Do vậy, nếu đặt $x = a+b+c$; $y = ab+bc+ca=3$; $z = abc$ thì ta có: $2z = 1-x+y$.

Theo (9) thì ta có bất đẳng thức cần chứng minh trở thành:

\[
x^3 - 3xy + 3z + 5z \geq 1 \iff x^3 - 3xy + 8z \geq 1 \iff x^3 - 4x + 3 \geq y(3x - 4)
\]

Chú ý rằng: $1-x+y = 2z \geq 0$ và $x^2 \geq 3y$ suy ra: $1-x < y < \frac{x^2}{3}$.

Ta xét ba trường hợp sau:

Trường hợp 1: Nếu $x \leq 1$ thì $x^3 - 4x + 3 = (1-x)(3-x-x^2) \geq 0 > y(3x - 4)$.

Trường hợp 2: Nếu $1 < x < \frac{4}{3}$ thì: $3x - 4 < 0$ và $0 < x - 1 < y$, suy ra:

\[
(x^3 - 4x + 3) - y(3x - 4) > (x^3 - 4x + 3) - (x - 1)(3x - 4) = (x - 1)^3 > 0
\]

Trường hợp 3: Nếu $x \geq \frac{4}{3}$ thì:

\[
(x^3 - 4x + 3) - y(3x - 4) > (x^3 - 4x + 3) - \frac{x^2}{3}(3x - 4) = \frac{(2x - 3)^2}{2} \geq 0
\]

Như vậy trong mọi trường hợp ta đều có $x^3 - 4x + 3 \geq y(3x - 4)$ luôn đúng, suy ra bài toàn được chứng minh.

Đang thức xảy ra khi và chỉ khi: $a = b = c = \frac{1}{2}$.
II. Các bài tập áp dụng:

Bài 1: Chứng minh các bất đẳng thức sau:

a) Cho a, b > 0 thỏa mãn a + b = 1. Chứng minh: \(\frac{2}{ab} + \frac{3}{a^2 + b^2} \geq 14 \).

b) Cho a + b + c + d = 1. Chứng minh: \((a + c)(b + d) + 2(ac + bd) \leq \frac{1}{2} \).

c) Cho a + b + c \geq 3. Chứng minh: \(a^4 + b^4 + c^4 \geq a^3 + b^3 + c^3 \).

d) Cho a + b > 8 và b \geq 3. Chứng minh: \(27a^2 + 10b^3 > 945 \).

Bài 2: Cho a, b, c là các số dương và \(\frac{1}{a+1} + \frac{1}{b+1} + \frac{1}{c+1} = 2 \). Chứng minh: \(8abc \leq 1 \).

Bài 3: Cho ba số dương a, b, c thỏa mãn abc = 1. Chứng minh:

\((a + b)(b + c)(c + a) \geq 5(a + b + c) - 7 \)

Bài 4: Cho các số dương a, b, c sao cho abc = 1. Chứng minh:

\(\frac{a + 3}{(a + 1)^2} + \frac{b + 3}{(b + 1)^2} + \frac{c + 3}{(c + 1)^2} \geq 3 \)

Bài 5: Cho các số dương a, b, c sao cho abc = 1. Chứng minh:

\(\frac{a}{b} + \frac{b}{c} + \frac{c}{a} \geq \frac{3}{2}(a + b + c - 1) \).

Bài 6: Cho ba số a, b, c không âm thỏa mãn: a + b + c = 1. Chứng minh:

\(0 \leq 27(ab + bc + ca) - 54abc \leq 7 \)

Bài 7: Cho ba số dương a, b, c. Chứng minh:

\(\sqrt{2(1 + a^2)(1 + b^2)(1 + c^2)} \geq (1 + a)(1 + b)(1 + c) - 2(1 + abc) \)