A SYNTHETIC PROOF OF DAO’S GENERALIZATION OF GOORMAGHTIGH’S THEOREM

TRAN HOANG SON

ABSTRACT. Using the concept of cross ratio, we give a synthetic proof of Dao’s generalization of Goormaghtigh’s theorem.

MSC 2010: 51M04, 51M25.

Keywords: cross ratio, signed distances.

1. INTRODUCTION

In 1930, René Goormaghtigh, French engineer and geometrician, expanded Droz-Farny theorem [1, 2, 3] with a nice theorem as follow.

Theorem 1.1 (Goormaghtigh [4]). Given triangle ABC and point P distinct from A, B, C. A line Δ passes through P. A1, B1, C1 belong to BC, CA, AB respectively such that PA1, PB1, PC1 are the images of PA, PB, PC respectively by reflection RΔ. Then, A1, B1, C1 are collinear.

Notation RΔ refers to reflection against Δ.

When P is the orthocenter of triangle ABC, theorem 1.1 actually becomes Droz-Farny theorem.

Proof of theorem 1.1 can be found in [5, 6].

In 2014, O.T.Dao expanded theorem 1.1 with two theorems [7].

In this article, we are first going to expand O.T.Dao’s second theorem with theorem 1.2 and more beautifully restate O.T.Dao’s first theorem with theorem 1.3. Then, we are going to prove theorems 1.2 and 1.3. Please note that, in terms of ideas, the way we prove theorems 1.2 and 1.3 is completely different from the way that theorem 1.1 is proved in [1] and [2].

Theorem 1.2. Given triangle ABC and point P distinct from A, B, C. A line Δ passes through P. α is any real number. Let A1, B1, C1 belong to BC, CA, AB respectively such that PA1, PB1, PC1 are the images of PA, PB, PC respectively by transformation RαP ◦ RΔ. Then, A1, B1, C1 are collinear.

Notation RαP refers rotation around P with angle of rotation α.

When α = 0, theorem 1.2 becomes theorem 1.1.

When α = π/2, theorem 1.2 becomes O.T.Dao’s second theorem.

Theorem 1.3 (Dao [7]). Given triangle ABC and point P distinct from A, B, C. Lines Δ and Δ’ cut at P. Points A1, B1, C1 belong to BC, CA, AB respectively such that (PA, PA1, Δ, Δ’) = (PB, PB1, Δ, Δ’) = (PC, PC1, Δ, Δ’) = −1. Then, A1, B1, C1 are collinear.
When $\Delta \perp \Delta'$, theorem 1.3 becomes theorem 1.1.

Theorem 1.3 is a different, more interesting reiteration of O.T.Dao's first theorem.

Before we prove theorems 1.2 and 1.3, note that notation \overline{AB} refers to the signed length from point A to point B.

2. PROOF OF THEOREM 1.2

There are two cases to consider.

Case 1. $\alpha \equiv 0 \pmod{2\pi}$. Then, $R_\alpha^p \circ R_\Delta = R_\Delta$.

Ignore platitudinous situations: Δ passes through a vertex of triangle ABC; Δ passes through two vertices of triangle of ABC.

Let A_2, B_2 be the intersections of PC_1 and BC, CA respectively (see f.1).

![Figure 1](image)

Since reflection preserves cross ratio,

$$\frac{\overline{AB}}{\overline{AC}} : \frac{\overline{AB}}{\overline{AC}} = \frac{\overline{B_1 A_2}}{\overline{B_1 C_1}} = P(B_1 A_2) = P(BCA_1) = P(BCA_1) = P(B_1 C_1 A)$$

From this, noting that A_2, B_2, C_1 are collinear, by Menelaus theorem, we have

$$\frac{A_1 B}{A_1 C} : \frac{B_1 C}{B_1 A} = \frac{C_1 A}{C_1 A} = 1.$$

Hence, by Menelaus theorem, A_1, B_1, C_1 are collinear.

Case 2. $\alpha \not\equiv 0 \pmod{2\pi}$.

Let line Δ' pass through P such that $\angle(\Delta, \Delta') \equiv \frac{\pi}{2} \pmod{\pi}$.

Apparently, $R_\alpha^p \circ R_\Delta = (R_\Delta \circ R_\alpha) \circ R_\Delta = R_\Delta \circ (R_\alpha \circ R_\Delta) = R_\Delta \circ id = R_\Delta$

From this, noting that P belongs to Δ', according to case 1, we can deduce that A_1, B_1, C_1 are collinear.

3. PROOF OF THEOREM 1.3

We need two lemmas.

Lemma 3.1. If BC, CA, AB are parallel to $B_1 C_1, C_1 A_1, A_1 B_1$ respectively, then two triangles ABC and $A_1 B_1 C_1$ are similar in the same direction.
Proof. We have $BC / / B_1C_1$; $CA / / C_1A_1$; $AB / / A_1B_1$. Therefore, $\angle (BA, BC) \equiv \angle (B_1A_1, B_1C_1) \pmod {\pi}$ and $\angle (CA, CB) \equiv \angle (C_1A_1, C_1B_1) \pmod {\pi}$.

Hence, triangles ABC and $A'B'C'$ are similar in the same direction.

Lemma 3.2. Given two triangles ABC and $A_1B_1C_1$ which are similar in the same direction. A_2, B_2, C_2 are the midpoints of AA_1, BB_1, CC_1 respectively. Then, triangle $A_2B_2C_2$ are similar to triangles ABC and $A_1B_1C_1$ in the same direction.

Proof. Let M, N be the midpoints of AB_1, AC_1 respectively (see f.2).

Because M, N, A_2 are the midpoints of AB_1, AC_1, AA_1 respectively, MN, NA_2, A_2M are parallel to B_1C_1, C_1A_1, A_1B_1 respectively. Therefore, by lemma 3.1, triangles A_2MN and $A_1B_1C_1$ are similar in the same direction (1).

As A_2, B_2, C_2, M, N are the midpoints of $AA_1, BB_1, CC_1, AB_1, AC_1$ respectively, $\overrightarrow{MA_2} = \frac{1}{2} \overrightarrow{B_1A_1}; \overrightarrow{MB_2} = \frac{1}{2} \overrightarrow{AB}; \overrightarrow{NA_2} = \frac{1}{2} \overrightarrow{C_1A_1}; \overrightarrow{NC_2} = \overrightarrow{AC}$.

![Figure 2](image)

From this, noting that triangles ABC and $A_1B_1C_1$ are similar in the same direction,

$$\angle (\overrightarrow{MA_2}, \overrightarrow{MB_2}) \equiv \angle (\overrightarrow{B_1A_1}, \overrightarrow{AB}) \equiv \pi + \angle (\overrightarrow{B_1A_1}, \overrightarrow{BA}) \pmod {2\pi}$$

$$\equiv \pi + \angle (\overrightarrow{C_1A_1}, \overrightarrow{CA}) \equiv \angle (\overrightarrow{C_1A_1}, \overrightarrow{AC}) \equiv \angle (\overrightarrow{NA_2}, \overrightarrow{NC_2}) \pmod {2\pi}.$$

Thus, triangles A_2MB_2 and A_2NC_2 are similar in the same direction. Therefore, triangles A_2MN and $A_2B_2C_2$ are similar in the same direction (2).

From (1) and (2), deduce that $A_1B_1C_1$ and $A_2B_2C_2$ are similar in the same direction. In other words, triangle $A_2B_2C_2$ are similar to triangles ABC and $A_1B_1C_1$ in the same direction.

Return to the proof of theorem 1.3.

Let A_2, B_2 be the intersections of PC_1 and BC, CA respectively. Let A_3, B_3, C_3 be the intersections of PA_1, PB_1, PC_1 and the lines parallel to Δ, passing through A, B, C respectively. Let A_0, B_0, C_0 be the intersections of Δ and AA_3, BB_3, CC_3 respectively (see f.3).
Because \((PA, PA_1, \Delta, \Delta') = (PB, PB_1, \Delta, \Delta') = (PC, PC_1, \Delta, \Delta') = -1\),
\((PA, PA_3, PA_0, \Delta) = (PB, PB_3, PB_0, \Delta) = (PC, PC_3, PC_0, \Delta) = -1\).
Then, combined with the fact that \(AA_3, BB_3, CC_3\) are all parallel to \(\Delta\), we can deduce that \(A_0, B_0, C_0\) are the midpoints of \(AA_3, BB_3, CC_3\) respectively.
If \(BC, CA, AB\) are parallel to \(B_3C_3, C_3A_3, A_3B_3\) respectively, then by lemma 3.1, triangles \(ABC\) and \(A_3B_3C_3\) are similar in the same direction. From this, noting that \(A_0, B_0, C_0\) are the midpoints of \(AA_3, BB_3, CC_3\) respectively, by lemma 3.2, we can deduce that \(A_0, B_0, C_0\) are not collinear, contradiction. Thus, \(BC, CA, AB\) are not respectively parallel to \(B_3C_3, C_3A_3, A_3B_3\). Without the loss of generality, assume that \(BC\) and \(B_3C_3\) are not parallel.
Let \(S\) be the intersection of \(BC\) and \(B_3C_3\). Let \(A_2, A_4\) be the intersections of \(BC\) and \(C_1P, AA_3\) respectively. Let \(A_5, A_6, A_7\) be the intersections of \(B_3C_3\) and \(AP, CP, AA_3\) respectively.
Applying Ceva’s theorem to triangle \(SC_3C\), noting that \(SC_0, C_3A_2, CA_6\) are concurrent (at \(P\)), we have
\[
\frac{C_0C_3}{C_0C} \cdot \frac{A_2C}{A_2S} \cdot \frac{A_6S}{A_6C_3} = -1.
\]
Combined with the fact that \(C_0\) is the midpoint of \(C_3C\), we have \(\frac{A_6S}{A_6C} = \frac{A_7S}{A_7C_3}\).
Therefore, by Thales theorem, \(A_2A_6 // CC_3\) (3).
Applying Menelaus theorem to triangles A_0SA_4 and A_0SA_7, noting that A_1, A_3, P are collinear and A_5, A, P are collinear, we have
\[
\frac{A_1S}{A_1A_4} \cdot \frac{A_3A_4}{A_3A_0} \cdot \frac{PA_0}{PS} = 1 = \frac{A_5S}{A_5A_7} \cdot \frac{AA_7}{AA_0} \cdot \frac{PA_0}{PS}.
\]
From this, noting that A_0 is the midpoint of both AA_3 and A_4A_7, deduce that
\[
\frac{A_1S}{A_1A_4} = \frac{A_5S}{A_5A_7}.
\]
Therefore, by Thales theorem, $A_1A_5 // A_4A_7$ (4).
From (3) and (4), deduce that $BB_3 // CC_3 // A_1A_5 // A_2A_6$.
Hence,
\[
\frac{A_1B}{A_1C} : \frac{A_2B}{A_2C} = \frac{BCA_1A_2}{BCA_3A_5A_6} = \frac{B(B_1B_2AC)}{B(B_3C_3A_5A_6)} = P(B_1B_2AC) = P(ACB_1B_2) = \frac{B_1C}{B_2C} \cdot \frac{B_2A}{B_3A}.
\]
From this, noting that A_2, B_2, C_1 are collinear, by Menelaus theorem, deduce that
\[
\frac{A_1B}{A_1C} \cdot \frac{B_1C}{B_1A} \cdot \frac{C_1A}{C_1B} = \frac{A_2B}{A_2C} \cdot \frac{B_2C}{B_2A} \cdot \frac{C_1A}{C_1B} = 1.
\]
Thus, by Menelaus theorem, A_1, B_1, C_1 are collinear.

4. ACKNOWLEDGMENT
The author thanks Professor Nguyen Minh Ha for his invaluable ideas in helping me to complete this article.

REFERENCES

UNIVERSITY OF EDUCATION, HANOI, VIETNAM
E-mail address: transonsp97@gmail.com