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2 Belarus

1.1 Belarus

Problem 1 We are given a partition of {1, 2, . . . , 20} into nonempty
sets. Of the sets in the partition, k have the following property: for
each of the k sets, the product of the elements in that set is a perfect
square. Determine the maximum possible value of k.

Solution:
Let A1, A2 . . . Ak be the k disjoint subsets of {1, 2, . . . , 20}, and let

A be their union. It is clear that 11, 13, 17, 19 /∈ A. Therefore
‖A‖ ≤ 16. Because 1, 4, 9, 16 are the only perfect squares, if a
set contains an element other than those 4 perfect squares, the size
of that site is at least 2. Therefore, k ≤ 4 + 16−4

2 = 10, equality
occurs when 1, 4, 9, 16 form their own set and the other 12 numbers
are partitioned into 6 sets of 2 elements. This, however cannot be
achieved because the only numbers that contain the prime 7 are 7
and 14, but 7 × 14 is not a perfect square. Therefore, k ≤ 9. This
is possible: {1}, {4}, {9}, {16}, {3, 12}, {5, 20}, {8, 18}, {2, 7, 14},
{6, 10, 15}.

Problem 2 The rational numbers α1, . . . , αn satisfy

n∑
i=1

{kαi} <
n

2

for any positive integer k. (Here, {x} denotes the fractional part of
x, the unique number in [0, 1) such that x− {x} is an integer.)

(a) Prove that at least one of α1, . . . , αn is an integer.

(b) Do there exist α1, . . . , αn that satisfy
∑n

i=1{kαi} ≤ n
2 , such that

no αi is an integer?

Solution:
(a) Assume the contrary. The problem would not change if we

replace αi with {αi}. So we may assume 0 < αi < 1 for all 1 ≤ i ≤ n.
Because αi is rational, let αi = pi

qi
, and D =

∏n
i=1 qi. Because

(D − 1)αi + αi = Dαi is an integer, and αi is not an integer,
{(D − 1)αi}+ {αi} = 1αi. Then
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1 >
n∑

i=1

{(D − 1)αi}+
n∑

i=1

{αi} =
n∑

i=1

{(D − 1)αi + αi} =
n∑

i=1

1 = n

contradiction. Therefore, one of the αi has to be an integer.
(b) Yes. Let αi = 1

2 for all i. Then
∑n

i=1{kαi} = 0 when k is even
and

∑n
i=1{kαi} = n

2 when k is odd.

Problem 3 There are 20 cities in Wonderland. The company
Wonderland Airways establishes 18 air routes between them. Each of
the routes is a closed loop that passes through exactly five different
cities. Each city belongs to at least three different routes. Also, for
any two cities, there is at most one route in which the two cities
are neighboring stops. Prove that using the airplanes of Wonderland
Airways, one can fly from any city of Wonderland to any other city.

Solution:
We donate the 20 cities with 20 points, and connect two points

with with a line if there is a direct flight between. We want to show
that the graph is connected.

If, for the sake of contradiction, the graph is not connected. Because
for each city, there are at least 3 loops passing through it, and
therefore at least 6 cities next to it, and they all have to be distinct.
Therefore, each connected graph consists of at least 7 points, but
3× 7 = 21 > 20, we can only have 2 connected parts.

We call the two parts A and B, and assume the points in A is less or
equal to that in B. Assume there are k points in A. If for all the points
in A, they belong to exactly 3 loops, then we have 3k = 5l, where l is
the number of loops in A. (Because A and B are not connected, each
loop lies entirely in one of them.) Because 7 ≤ k ≤ 10 and 5 divides
k, we have k = 10. If k = 10, then because there are 18 = 90 direct
connections established by the airlines, and at most 2 ∗

(
10
2

)
= 90

possible direct flights, and each was counted at most once by the
loops, we conclude that all the points are connected in A. Let Ai

be the points in A, then A1, A2 are neighbors in A1A2A3A4A5 and
A1A2A3A4A6, contradiction.

Otherwise, assume there is a city in A that is in 4 loops, then that
city has 8 neighboring cities, and they are all distinct. Then there
are 9 or 10 cities in A. We’ve done the case when it’s 10, and now
we assume it’s 9. Because there are at most

(
9
2

)
= 36 direct flights in
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A, A has at most 7 loops. Therefore, B has at least 11 loops. But
11 × 5 = 55 =

(
11
2

)
, we conclude that B is a complete graph, and a

contradiction follows similar to the previous case.

Problem 4 Determine whether there exists a three-dimensional
solid with the following property: for any natural n ≥ 3, there is a
plane such that the orthogonal projection of the solid onto the plane
is a convex n-gon.

Problem 5 Prove that there exist infinitely many positive integers
that cannot be written in the form

x3
1 + x5

2 + x7
3 + x9

4 + x11
5

for some positive integers x1, x2, x3, x4, x5.

Solution:
For each integer N , we consider the number of integers in [1, N ]

that can be written in the above form. Because x1 ≤ N
1
3 , there

are at most N
1
3 ways to choose x1. Similar argument applies to the

other xis. Therefore, there are at most N
1
3 N

1
5 N

1
7 N

1
9 N

1
11 = N

3043
3465

combinations. So there are at least N−N
3043
3465 integers not covered. It

is easy to see that this value can be arbitrarily large as N approaches
infinity. Therefore, there exist infinitely many positive integers that
cannot be written in the form x3

1 + x5
2 + x7

3 + x9
4 + x11

5 .

Problem 6 The altitude CH of the right triangle ABC (∠C =
π/2) intersects the angle bisectors AM and BN at points P and Q,
respectively. Prove that the line passing through the midpoints of
segments QN and PM is parallel to line AB.
Solution:

This problem can be solved by direct computation, but we shall
provide a geometric solution.

Because ∠CMQ = ∠MBA + ∠BAM = ∠ACQ + ∠QAC =
∠MQC, triangle CQM is isosceles. Similarly, CPN is isosceles as
well. Let R, T be the midpoints of QM and NP respectively, then
CR ⊥ AM and CT ⊥ BN . Therefore, C, R, Q, N is cyclic. Let
CR and CT intersect AB at D and E respectively and let AM and
BN intersect at I, the I is the incenter of 4ABC and therefore CI

is the angle bisector of ∠C. Therefore, ∠CDA = ∠CBA + ∠DCB =
∠CBA + ∠DCB = 45 deg +∠CBN = ∠PCB + ∠CBP = ∠CPB =
∠CRN . Therefore, NR is parallel to AB.
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Problem 7 On a table lies a point X and several face clocks, not
necessarily identical. Each face clock consists of a fixed center, and
two hands (a minute hand and an hour hand) of equal length. (The
hands rotate around the center at a fixed rate; each hour, a minute
hand completes a full revolution while an hour hand completes 1/12
of a revolution.) It is known that at some moment, the following two
quantities are distinct:

• the sum of the distances between X and the end of each minute
hand; and

• the sum of the distances between X and the end of each hour
hand.

Prove that at some moment, the former sum is greater than the latter
sum.

Problem 8 A set S of three-digit numbers formed from the digits
1, 2, 3, 4, 5, 6 (possibly repeating one of these six digits) is called nice
if it satisfies the following condition: for any two distinct digits from
1, 2, 3, 4, 5, 6, there exists a number in S which contains both of the
chosen digits. For each nice set S, we calculate the sum of all the
elements in S; determine, over all nice sets, the minimum value of
this sum.
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1.2 Bulgaria

Problem 1 Let a1, a2, . . . be a sequence of real numbers such that

an+1 =
√

a2
n + an − 1

for n ≥ 1. Prove that a1 6∈ (−2, 1).

Solution: Note that an ≥ 0 for n ≥ 2. Moreover, since a2
n +

an − 1 = a2
n+1 ≥ 0, an ≥ r for n ≥ 2, where r =

√
5−1
2 . Also,

the function f(x) =
√

x2 + x− 1 is continuous on [r,∞). Now,
suppose (for contradiction) that a1 ∈ (−2, 1). Then a2

2 = a2
1 +

a1 − 1 = (a1 + 1
2 )2 − 5

4 < ( 3
2 )2 − 5

4 = 1, so a2 ∈ [r, 1). Now,
if an ∈ [r, 1), we have a2

n+1 = a2
n + an − 1 < a2

n, so an+1 <

an. Thus (by induction) a2, a3, . . . is a decreasing sequence of real
numbers in [r, 1), and therefore limn→∞ an exists and is in [r, 1). Now,
limn→∞ an = limn→∞ an+1 = limn→∞ f(an) = f(limn→∞ an) (since
f is continuous). But f has no fixed points in [r, 1), so this is a
contradiction, and therefore a1 6∈ (−2, 1).

Problem 2 Consider the feet of the orthogonal projections of
A,B, C of triangle ABC onto the external angle bisectors of angles
BCA, CAB, and ABC, respectively. Let d be the length of the
diameter of the circle passing through these three points. Also, let
r and s be the inradius and semiperimeter, respectively, of triangle
ABC. Prove that r2 + s2 = d2.

Solution: Let a = BC, b = CA, and c = AB, and A,B, C be
the measures of angles CAB, ABC, and BCA, respectively. Also let
A1, B1, C1 be (respectively) the feet of the orthogonal projections
of A, B, C onto the external angle bisectors of angles BCA, CAB,
and ABC. Similarly, let A2, B2, C2 be (respectively) the feet of the
orthogonal projections of A, B, C onto the external angle bisectors
of angles ABC, BCA, and CAB. We claim that A1, B1, C1, A2, B2,
and C2 all lie on a single circle. To show this, we calculate the square
of the circumradius R of triangle A1C2B1.

Since B1 and C2 both lie on the external angle bisector of angle
CAB, B1C2 = B1A + AC2 = (b + c) sin A

2 . Also, the triangle A1C2C

has circumcircle with diameter AC, and ∠A1CC2 = (π
2−

C
2 )−A

2 = B
2 ,

so by the extended Law of Sines, C2A1 = b sin B
2 . Since quadrilateral
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ACA1C2 is cyclic, ∠B1C2A1 = ∠AC2A1 = π − ∠ACA1 = π − (π
2 −

C
2 ) = π

2 + C
2 . Now, R = B1A1

2 sin( π
2 + C

2 )
, so R2 = (B1A1)

2

4 cos2 C
2

. By the Law of
Cosines and our previous calculations, this gives

R2 =
(b + c)2 sin2 A

2 + b2 sin2 B
2 + 2b(b + c) sin A

2 sin B
2 sin C

2

4 cos2 C
2

.

Using the half angle formulas and the identity sin A
2 sin B

2 sin C
2 =

1
4 (cos A + cos B + cos C − 1), we can simplify this expression to

R2 =
b2 + bc + c2 − c(b + c) cos A + bc cos B + b(b + c) cos C

4(1 + cos C)
,

and removing the cosines with the Law of Cosines simplifies this
further to

R2 =
a2b + a2c + ab2 + ac2 + b2c + bc2 + abc

4(a + b + c)
.

Since this expression for the square of the circumradius is symmetric
in a, b, and c, this shows by symmetry that the circumradius is the
same for each of the triangles A1C2B1, C2B1A2, B1A2C1, A2C1B2,
C1B2A1, and B2A1C2. It is easily verified that this implies that A1,
B1, C1, A2, B2, C2 form a cyclic hexagon. Thus triangle A1B1C1

also has circumradius R, and so d2 = 4R2. Also, s2 = (a+b+c)3

4(a+b+c) , and

r2 = (−a+b+c)(a−b+c)(a+b−c)
4(a+b+c) by Heron’s formula for the area of the

triangle and area = rs, so d2 = s2 + r2, as desired.

Problem 3 Given are n2 points in the plane, no three of them
collinear, where n = 4k + 1 for some positive integer k. Find the
minimum number of segments that must be drawn connecting pairs
of points, in order to ensure that among any n of the n2 points, some
4 of the n chosen points are connected to each other pairwise.

Problem 4 Let I be the incenter of non-equilateral triangle ABC,
and let T1, T2, T3 be the tangency points of the incircle with sides BC,
CA, AB, respectively. Prove that the orthocenter of triangle T1T2T3

lies on line OI, where O is the circumcenter of triangle ABC.

Solution: Let H ′ and G′ be the orthocenter and centroid, respec-
tively, of triangle T1T2T3. Since I is the circumcenter of this triangle,
H ′, G′, and I are on the Euler line of triangle T1T2T3 and thus are
collinear. We want to show that O is also on this line, so it is sufficient
to show that O, G′, and I are collinear.
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We will approach this problem using vectors, treating the plane
as a vector space with O at the origin. Let a = BC, b = CA, and
c = AB. For any point P , let ~P be the vector corresponding to P .
First, note that ~I = x ~A + y ~B + z ~C for unique real numbers x, y, z

with x + y + z = 1. We must have x ~A+y ~B
x+y = ~PC , where PC is the

intersection point of the angle bisector through C with side AB. By
the angle bisector theorem, this gives x

y = a
b . Similarly, y

z = b
c , and

thus x = a
a+b+c , y = b

a+b+c , and z = c
a+b+c , so

~I =
a ~A + b ~B + c ~C

a + b + c
.

Also, ~T1 = T1C· ~B+T1B·~C
a = (a+b−c) ~B+(a+c−b)~C

2a , and similar for-
mulas hold cyclically for ~T2, ~T3, so ~G′ = 1

3 ( ~T1 + ~T2 + ~T3) =∑
cyc

(a+b−c) ~B+(a+c−b)~C
2a . Rearranging the terms gives

~G′ =
1
6

∑
cyc

ab + ac + 2bc− b2 − c2

bc
~A.

We now need the following lemma:

Lemma. If O is the circumcenter of triangle ABC and ~O = ~0, then∑
cyc

a2(b2 + c2 − a2) ~A = ~0.

Proof. First, note that dividing by 2abc and then applying the Law
of Cosines shows that it is equivalent to prove that

∑
cyc (a cos A) ~A =

~0. Let (x, y, z) be the unique triplet of real numbers such that
x + y + z = 1 and x ~A + y ~B + z ~C = ~0. Then x ~A+y ~B

x+y = ~QC , where
QC is the intersection point of CO with AB. The Law of Sines gives
AQC = b sin( π

2−B)

sin( π
2 +B−A) = b cos B

cos(A−B) , and similarly QCB = a cos A
cos(A−B) .

Therefore x
y = QCB

AQC
= a cos A

b cos B , and similarly y
z = b cos B

c cos C . Thus
(a cos A, b cos B, c cos C) is a multiple of (x, y, z), which proves the
desired result.

We are ready to show that a non-zero linear combination of ~I and ~G′

equals ~0, which then implies that I, G′, and O are collinear, as desired.
Let ~X = (−a3−b3−c3+a2b+a2c+b2a+c2a+b2c+bc2+4abc)(a+b+
c)~I − 6abc(a + b + c) ~G′. We claim that ~X =

∑
cyc a2(b2 + c2 − a2) ~A.

To see this, it is sufficient to note that the coefficient of ~A on each
side is the same; the rest follows from cyclic symmetry. Inspection
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easily shows that

(−a3 − b3 − c3 + a2b + a2c + b2a + c2a + b2c + bc2 + 4abc)a

−a(a + b + c)(ab + ac + 2bc− b2 − c2) = a2(b2 + c2 − a2),

so the desired result has been proven.

Problem 5 Let b, c be positive integers, and define the sequence
a1, a2, . . . by a1 = b, a2 = c, and

an+2 = |3an+1 − 2an|

for n ≥ 1. Find all such (b, c) for which the sequence a1, a2, . . . has
only a finite number of composite terms.

Solution: The only solutions are (p, p) for p not composite, (2p, p)
for p not composite, and (7, 4).

The sequence a1, a2, . . . cannot be strictly decreasing because each
an is a positive integer, so there exists a smallest k ≥ 1 such that
ak+1 ≥ ak. Define a new sequence b1, b2, . . . by bn = an+k−1, so
b2 ≥ b1, bn+2 = |3bn+1 − 2bn| for n ≥ 1, and b1, b2, . . . has only
a finite number of composite terms. Now, if bn+1 ≥ bn, bn+2 =
|3bn+1 − 2bn| = 3bn+1 − 2bn = bn+1 + 2(bn+1 − bn) ≥ bn+1, so by
induction bn+2 = 3bn+1 − 2bn for n ≥ 1.

Using the general theory of linear recurrence relations (a simple
induction proof also suffices), we have

bn = A · 2n−1 + B

for n ≥ 1, where A = b2−b1, B = 2b1−b2. Suppose (for contradiction)
that A 6= 0. Then bn is an increasing sequence, and, since it contains
only finitely many composite terms, bn = p for some prime p > 2
and some n ≥ 1. However, then bn+l(p−1) is divisible by p and thus
composite for l ≥ 1, because bn+l(p−1) = A · 2n−1 · 2l·(p−1) + B ≡
A · 2n−1 + B ≡ 0 mod p by Fermat’s Little Theorem. This is a
contradiction, so A = 0 and bn = b1 for n ≥ 1. Therefore b1 is not
composite; let b1 = p, where p = 1 or p is prime.

We now return to the sequence a1, a2, . . . , and consider different
possible values of k. If k = 1, we have a1 = b1 = b2 = a2 = p, so
b = c = p for p not composite are the only solutions. If k > 1, consider
that ak−1 > ak by the choice of k, but ak+1 = |3ak − 2ak−1|, and
ak+1 = b2 = b1 = ak, so ak+1 = 2ak−1−3ak, and thus ak−1 = 2p. For
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k = 2, this means that b = 2p, c = p for p not composite are the only
solutions. If k > 2, the same approach yields ak−2 = 3ak−1+ak

2 = 7
2p,

so p = 2. For k = 3, this gives the solution b = 7, c = 4, and because
3·7+4

2 is not an integer, there are no solutions for k > 3.

Problem 6 In a triangle ABC, let a = BC and b = CA, and let `a

and `b be the lengths of the internal angle bisectors from A and B,
respectively. Find the smallest number k such that

`a + `b

a + b
≤ k

for all such triangles ABC.

Solution: The answer is k = 4
3 .

Let c = AB. We will derive an algebraic expression for `a in
terms of a, b, and c by calculating the area of triangle ABC in two
different ways: this area equals 1

2bc sinA, but it also equals the sum
of the two triangles into which it is divided by the angle bisector
from A, so it equals 1

2 (b + c)`a sin A
2 . Thus `a = 2bc

b+c cos A
2 . Since

cos A
2 =

√
1+cosA

2 =
√

(b+c)2−a2

4bc (by the Law of Cosines), this gives

`a =

√
bc(b + c− a)(b + c + a)

b + c

and of course a similar expression exists for `b.
To see that there does not exist a smaller k with the desired

property, let f(ε) equal the value of the expression `a+`b

a+b for the
triangle with a = b = 1 + ε, c = 2. Using the above formula for

`a and `b yields f(ε) = 4
√

(1+ε)(4+2ε)

(3+ε)(2+2ε) . Thus limε→0 f(ε) = 4
√

4
3·2 = 4

3 ,
so for any k′ < 4

3 , there exists ε > 0 such that f(ε) > k′. It remains
only to show that the inequality holds with k = 4

3 .
Because a, b, and c are lengths of sides of a triangle, we can let

a = y + z, b = x + z, and c = x + y, where x, y, and z are positive
real numbers. This gives

`a =
2
√

x(x + z)(x + y)(x + y + z)
2x + y + z

≤
2(x + z

2 )(x + y + z
2 )

2x + y + z

by the AM-GM inequality on the numerator. It thus suffices to show
that

(x + z
2 )(x + y + z

2 )
2x + y + z

+
(y + z

2 )(x + y + z
2 )

2y + x + z

x + y + 2z
≤ 2

3
.
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Cross-multiplying to eliminate all of the fractions transforms this into
the equivalent form

12x3+60x2y+60xy2+12y3+36x2z+84xyz+36y2z+27xz2+27yz2+6z3 ≤

16x3+56x2y+56xy2+16y3+56x2z+128xyz+56y2z+56xz2+56yz2+16z3.

This simplifies to

4x2y + 4xy2 ≤ 4x3 + 4y3 + terms involving z,

where the terms involving z have positive coefficients. This is true
because 4x3 + 4y3 = 4(( 2

3x3 + 1
3y3) + ( 1

3x3 + 2
3y3) ≥ 4(x2y + xy2) by

the weighted AM-GM inequality. Thus the original inequality is true
with k = 4

3 .
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1.3 Canada

Problem 1 Let a, b, c be positive real numbers. Prove that

a3

bc
+

b3

ca
+

c3

ab
≥ a + b + c,

and determine when equality holds.

Solution: We can rewrite a + b + c as follows:

a + b + c,

4
√

a4 + 4
√

b4 + 4
√

c4,

4

√
a3

bc

a3

bc

b3

ca

c3

ab
+ 4

√
a3

bc

b3

ca

b3

ca

c3

ab
+ 4

√
a3

bc

b3

ca

c3

ab

c3

ab
.

By the arithmetic-geometric mean inequality and some algebra,

a + b + c = 4

√
a3

bc

a3

bc

b3

ca

c3

ab
+ 4

√
a3

bc

b3

ca

b3

ca

c3

ab
+ 4

√
a3

bc

b3

ca

c3

ab

c3

ab

≤ 1
4

(
a3

bc
+

a3

bc
+

b3

ca
+

c3

ab

)
+

1
4

(
a3

bc
+

b3

ca
+

b3

ca
+

c3

ab

)
+

1
4

(
a3

bc
+

b3

ca
+

c3

ab
+

c3

ab

)
=

a3

bc
+

b3

ca
+

c3

ab
,

a + b + c ≤ a3

bc
+

b3

ca
+

c3

ab
,

as desired.

Problem 2 Let Γ be a circle with radius r. Let A and B be distinct
points on Γ such that AB <

√
3r. Let the circle with center B and

radius AB meet Γ again at C. Let P be the point inside Γ such that
triangle ABP is equilateral. Finally, let line CP meet Γ again at Q.
Prove that PQ = r.

Solution: Let O be the center of Γ.
By the law of cosines,

AB2 = OA2 + OB2 + 2OA ·OBcos∠AOB,

AB2 = 2r2(1− cos∠AOB).
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Because AB <
√

3r,

2r2(1− cos∠AOB) < 3r2,

1− cos∠AOB <
3
2
,

cos∠AOB > −1
2
,

which in turn implies that ∠AOB < 120◦, because 0◦ < ∠AOB ≤
180◦, and cosx is monotonically decreasing on this interval.

Thus AB subtends an arc that is less than one third the perimeter
of Γ, and we can conclude that P lies within Γ.

Define ∠OBA = ∠OAB = θ. Because BC = BA, 4OBA ∼=
4OBC and ∠OBC = θ, thus ∠ABC = 2θ and ∠PBC = ∠ABC −
∠ABP = 2θ − 60◦. Because BP = BC, ∠BPC = ∠BCP =
1
2 (180− ∠PBC) = 120◦ − θ.

Because C,P,Q are collinear, ∠QPA = 180−∠BPC−∠APB = θ.
Furthermore, because A,B, C, Q are cyclic, ∠AQP = ∠AQC =
180−∠CBA = 180−2θ, which in turn implies that ∠QAP = θ. Thus
we can conclude that 4QPA ∼= 4OBA, therefore PQ = OB = r.

Problem 3 Determine all functions f : Z+ → Z+ such that

xf(y) + yf(x) = (x + y)f(x2 + y2)

for all positive integers x, y.

Solution: The constant function f(x) = k, where k is any positive
integer, is the only possible solution.

It is easy to see that the constant function satisfies the given
condition. Suppose that a non-constant function satisfies the given
condition. There must exist some two positive integers a and b such
that f(a) < f(b).

This implies that (a + b)f(a) < af(b) + bf(a) < (a + b)f(b), which
by the given condition is equivalent to (a+b)f(a) < (a+b)f(a2+b2) <

(a + b)f(b), which in turn is equivalent to f(a) < f(a2 + b2) < f(b)
because a + b must be positive.

Thus, given any two different values f(a) and f(b), we can find
another value of the function strictly between those two. We can
repeat this process an arbitrary number of times, each time finding
another different value of f strictly between f(a) and f(b). However,
the function gives only positive integer values, so there is a finite
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number of positive integers between any two values of the function,
which is a contradiction. Thus the function must be constant.
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1.4 China

Problem 1 Let ABC be a triangle with AC < BC, and let D be
a point on side BC such that segment AD bisects ∠BAC.

(a) Determine the necessary and sufficient conditions, in terms of
angles of triangle ABC, for the existence of points E and F on
sides AB and AC (E 6= A,B and F 6= A,C), respectively, such
that BE = CF and ∠BDE = ∠CDF .

(b) Suppose that points E and F in part (a) exist. Express BE in
terms of the side lengths of triangle ABC.

Problem 2 Let {Pn(x) }∞n=1 be a sequence of polynomials such that
P1(x) = x2 − 1, P2(x) = 2x(x2 − 1), and

Pn+1(x)Pn−1(x) = (Pn(x))2 − (x2 − 1)2

for n ≥ 2. Let Sn denote the sum of the absolute values of the
coefficients of Pn(x). For each positive integer n, find the largest
nonnegative integer kn such that 2kn divides Sn.

Problem 3 In the soccer championship of Fatland, each of 18 teams
plays exactly once with each other team. The championship consists
of 17 rounds of games. In each round, nine games take place and each
team plays one game. All games take place on Sundays, and games
in the same round take place on the same day. (The championship
lasts for 17 Sundays.) Let n be a positive integer such that for any
possible schedule, there are 4 teams with exactly one game played
among them after n rounds. Determine the maximum value of n.

Solution: The maximum value of n is 7.
We first show that if n ≤ 7, there must exist some 4 teams with

exactly one game played among them. We will consider the graph
G whose vertices represent the teams and where vertices a and b are
connected by an edge iff teams a and b have played each other in the
first n rounds. Each vertex of G has degree n because each team has
played exactly n other teams up to that point. What we wish to show
is that there exist 4 vertices such that the subgraph induced by G on
those vertices has exactly 1 edge.

We proceed by contradiction. Suppose that for no 4 vertices of
G does the induced subgraph on those four vertices have exactly 1
edge. Let a, b be a pair of adjacent vertices such that the number
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of vertices adjacent to both a and b is maximal. Suppose there are
exactly k vertices adjacent to both a and b. Then because the degree
of a is n, there are n−k vertices (including b) adjacent to a but not b,
and similarly n−k vertices adjacent to b but not a. So the number of
vertices of G adjacent to neither a nor b is 18−k−2(n−k) = 18−2n+k.
Because n ≤ 7, there are at least k + 4 vertices that are adjacent to
neither of a and b.

We now claim that for any pair of vertices c, d such that neither of
c, d is adjacent to either of a or b, c and d must be adjacent to each
other. For suppose not. Then among the four vertices a, b, c, d, a

and b would be connected by an edge, but no other pair of those four
would have an edge connecting them. Thus there would be only one
edge of G among those four vertices, contradicting our assumption.

We proved above that we can find k +4 distinct vertices, call them
e1, e2, . . . , ek+4 such that none of them is adjacent to either a or b.
Then our claim shows that for any distinct i, j, 1 ≤ i, j ≤ k + 4, ei is
adjacent to ej . Namely, e1 and e2 are adjacent, and any of the k + 2
vertices e2, e3, . . . , ek+4 is adjacent to both e1 and e2. So e1 and e2

form a pair of adjacent vertices with k+2 > k other vertices adjacent
to both of them. This contradicts the maximality of the pair a, b.

We now show that for n ≥ 8, it is possible to have a situation
in which, after n rounds, no subset of 4 teams has had exactly
one game played among them. For convenience, partition the set
of teams into two ”leagues” of size 9, call them A = a1, a2, . . . , a9

and B = b1, b2, . . . , b9. Call a pair of teams ”friendly” if either they
both belong to the same league, or one of them is team ak and the
other team bk for the same value of k. If not, the pair is ”unfriendly”.
Each team is friendly with exactly 9 other teams and unfriendly with
exactly 8 other teams.

We claim that (a) it is possible for 8 rounds to take place in which
all unfriendly pairs, and no friendly pairs, play each other, and (b) it
is also possible for 9 rounds to take place in which exactly the friendly
pairs play each other. Combining the two, in any order, will give a
complete 17-round tournament.

We first show (a). For each i with 1 ≤ i ≤ 8, in round i let team
ak play team bk+i for k = 1, 2, . . . , 9. (Indices are here taken mod
9.) Thus if ak and bj , k 6= j are two unfriendly teams, they will get
to play each other exactly in round k− j (mod 9), and friendly pairs
will never be matched with each other.
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Part (b) is slightly more complicated. In round i, where 1 ≤ i ≤ 9,
let team ai play team bi, and for k 6= i, let team ak play team a2i−k

and team bk play team b2i−k (indices again mod 9). This determines
the team matchings for each round. No pair of unfriendly teams can
play each other and each pair of the form ak, bk is matched up in
round k. Finally, because 2 is relatively prime to 9, each pair of the
form aj , ak or bj , bk is matched up in round (j + k) · 2−1 (mod 9).

We now apply this to the problem at hand. First we give a
counterexample for n = 8. Let the tournament proceed so that in
the first 8 rounds, the pairs that are matched up are exactly the
unfriendly pairs (we showed above that we can finish the tournament
by letting the friendly pairs play). We need to show that among
any four teams, either no pair is unfriendly or at least two pairs are
unfriendly. Note that if two teams belong to the same league, they
cannot be unfriendly, and that any team in one league is unfriendly
with all but one of the teams in the other league. If all four teams
belong to the same league, all pairs are friendly. If three belong to
one league, and one to the other, without loss of generality say that
ai, aj , ak ∈ A and bl ∈ B then at most one of the pairs (ai, bl), (aj , bl)
and (ak, bl) must be friendly, so at least two must be unfriendly.
Finally, if our four teams are split with two in each league, say
ai, aj ∈ A and bk, bl ∈ B, then ai is unfriendly with at least one
of bk, bl, as must be aj , again giving us two unfriendly pairs. This
settles the n = 8 case.

To deal with n ≥ 9, we claim that among any four teams, at least
two pairs are friendly. Any two teams that belong to the same league
must be friendly with each other, so if i of the 4 teams belong to A,
and 4− i of them belong to B, by Jensen’s inequality on the convex
function

(
x
2

)
= x(x−1)

2 there must be at least
(

i
2

)
+
(

j
2

)
≥ 2 friendly

pairs among them. So let the tournament proceed with the friendly
teams playing each other in the first 9 rounds, and the unfriendly
pairs in the last 8. After the first 9 rounds, by the above, every set
of four teams must have had at least two games played among them,
and this will remain true after n rounds, so it is impossible to have
four teams with only one game played among them after n rounds.
This completes the proof that no value of n ≥ 8 works.
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Problem 4 Let P1, P2, P3, P4 be four distinct points on the plane.
Determine the minimum value of∑

1≤i<j≤4 PiPj

min{PiPj , 1 ≤ i < j ≤ 4 }
.

University)

Problem 5 On the coordinate plane, a point is called rational if
both of its coordinates are rational numbers. Prove that all the
rational points can be partitioned into three sets A1, A2, A3 such that

(i) inside any circle centered at a rational point there are points
Pi ∈ Ai, i = 1, 2, 3;

(ii) on any line in the plane there is some i, 1 ≤ i ≤ 3, such that
there is no rational point in Ai lying on the line.

Solution: Any rational point can be written uniquely in the form(
a
c , b

c

)
where a, b, c are integers, c > 0 and gcd(a, b, c) = 1. Let

A1 =
{(

a

c
,
b

c

)
| a ≡ 1 (mod 2)

}
,

A2 =
{(

a

c
,
b

c

)
| a ≡ 0 (mod 2), b ≡ 1 (mod 2)

}
,

A3 =
{(

a

c
,
b

c

)
| a ≡ 0 (mod 2), b ≡ 0 (mod 2), c ≡ 1 (mod 2)

}
.

Since a, b, and c cannot all be 0 (mod 2), this partitions the set of
rational points.

We first show (i). Let ω be a circle centered at a rational point
P =

(
a
c , b

c

)
with arbitrary radius δ. Choose N ∈ N large enough so

that 1
2N < δ and 1

2N

√
a2+b2

c2 < δ. Let

P1 =
(

2Na + 1
2Nc

,
b

c

)
P2 =

(
a

c
,
2Nb + 1

2Nc

)
P3 =

(
2Na

2Nc + 1
,

2Nb

2Nc + 1

)
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Then P1 ∈ A1, P2 ∈ A2 and P3 ∈ A3. Also, the distance from
P to P1 is 1

2nc < 1
c ≤ δ, so P1 is contained inside ω. Similarly,

P2 is also contained in ω. As for P3, by the Pythagorean theorem
d(P, P3)2 = (2Na)2+(2Nb)2

(2Nc(2Nc+1))2 < a2+b2

4N2c4 . Taking square roots, d(P, P3) <
1

2N

√
a2+b2

c2 < δ, so P3 is also inside the circle ω.
Now for part (ii). Any line passing through at most one rational

point satisfies the condition trivially, so we may assume that our line
l passes through at least two rational points. Then the equation of
l will be of the form px + qy + r = 0 where p, q, and r are rational:
multipying by a constant, we can assume they are integers with gcd
1. The rational point

(
a
c , b

c

)
lies on l iff

pa + qb + rc = 0 (1)

Suppose that this line l contains members of all three of the Ai.
Because it contains a point in A3, there are integers a3, b3, c3 satisfying
(1) and with a3, b3 ≡ 0 (mod 2), c3 ≡ 1 (mod 2). Taking both sides
of (1) mod 2 shows that r ≡ 0 (mod 2). Now, l also contains a point
in A2, so we have integers a2, b2, c2 also satisfying (1) and having
a2equiv1 (mod 2), b2 ≡ 0 (mod 2). Again we take (1) mod 3 for this
solution, and get 0 ≡ pa2 + qb2 + rc2 ≡ q (mod 2) using that r is
even. We do this one last time with integers a1, b1, c1 satisfying (1)
having a1 ≡ 1 (mod 2), now we get 0 ≡ pa1 + qb1 + rc1 ≡ p (mod 2).
So all of p, q, and r are divisible by 2, contradicting the fact that
gcd(p, q, r) = 1.

So it is impossible for any line in the plane to contain representative
of all three of our subsets, and we are done.

Problem 6 Let c be a given real number with 1
2 < c < 1. Determine

the smallest constant M such that for any positive integer n ≥ 2 and
real numbers 0 < a1 ≤ a2 ≤ · · · ≤ an, if

1
n

n∑
k=1

kak = c
n∑

k=1

ak,

then
n∑

k=1

ak ≤ M

bcnc∑
k=1

ak.

denotes the largest integer less than or equal to x.
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Problem 7 Determine all integers n > 1 such that there exist real
numbers a1, a2, . . . , an satisfying the property:

{|ai − aj | | 1 ≤ i < j ≤ n} =
{

1, 2, . . . ,
n(n− 1)

2

}
.

China/s/1b.

Problem 8 Let A = {1, 2, 3, 4, 5, 6} and B = {7, 8, . . . , n}. For i =
1, 2, . . . , 20, let Si = {ai,1, ai,2, ai,3, bi,1, bi,2} such that ai,1, ai,2, ai,3 ∈
A, bi,1, bi,2 ∈ B, and

|Si ∩ Sj | ≤ 2

for 1 ≤ i < j ≤ 20. X Determine the minimum value of n.

Problem 9 Let ABCD be a convex quadrilateral. Diagonals AC

and BD intersect at point P . Lines AB and CD intersect at point
E while lines AD and BC intersect at point F . Let O be a point on
line EF such that PO ⊥ EF . Prove that

∠AOD = ∠BOC.

Problem 10 Let k be an integer and let f be a function from the
set of negative integers to the set of integers such that

f(n)f(n + 1) = (f(n) + n− k)2

for all integers n < −1. Determine an explicit expression for f(n).
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1.5 Czech and Slovak Republics

Problem 1 Find all integers x, y such that

〈4x〉5 + 7y = 14,

〈2y〉5 − 〈3x〉7 = 74,

where 〈n〉k denotes the multiple of k closest to the number n.

Solution: Looking at the first equation, we have 7y ≡ 14 (mod 5),
which yields y ≡ 2. Thus, 〈2y〉5 = 2y + 1, and the second equation
becomes 〈3x〉7 = 2y−73. Rewrite the first equation as 〈4x〉5 = 14−7y.
It is apparent that 3x−3 ≤ 2y−73 and 4x−2 ≤ 14−7y, from which
we obtain 16−4x

7 ≥ y ≥ 3x+70
2 . Solving the inequality 16−4x

7 ≥ 3x+70
2

gives x ≤ − 458
29 . Now, we use the inequalities 2y − 73 ≤ 3x + 3 and

14− 7y ≤ 4x + 2 to obtain 3z+76
2 ≥ y ≥ 12−4x

7 . Using 3x+76
2 ≥ 12−4x

7

to solve for x, we get x ≥ −508
29 . Combining this with our upper

bound for x, we see that the only possible values for x are -16 and
-17. However, only -17 yields an integral value of y, and we get the
unique solution (x, y) = (−17, 12).

Problem 2 Let ABCD be a square. Let KLM be an equilateral
triangle such that K, L, M lie on sides AB, BC, CD, respectively.
Find the locus of the midpoint of segment KL for all such triangles
KLM .

Solution: Let P be the midpoint of KM . Note that ∠KPL +
∠KBL = π. Thus, quadrilateral KBLP is cyclic and ∠PBA =
∠PBK = ∠PQK = π

6 , where Q is the midpoint of BC. Similarly,
∠PCD = π

6 . This shows that P is a fixed point as triangle KLM

varies.
Let R be the midpoint of KL. Note that ∠PRL + ∠PCL =

∠PRL + π
3 = ∠PRL + ∠PRK = π. Hence, PRLC is a cyclic

quadrilateral, and so ∠PCR = ∠PLR = π
6 . Therefore, ∠BCR = π

6 ,
which implies that the locus of R is a line segment.

We wish to find the endpoints of this line segment. One endpoint
occurs when K = A. Let X be the midpoint of KL for this particular
triangle KLM . The other endpoint occurs when L = C. Let Y be
the midpoint of KL for this particular triangle KLM . Then, the
locus of KL is simply the segment XY .
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Problem 3 Show that a given positive integer m is a perfect square
if and only if for each positive integer n, at least one of the differences

(m + 1)2 −m, (m + 2)2 −m, . . . , (m + n)2 −m

is divisible by n.

Solution: First, assume that m is a perfect square. If m = a2, then
(m+ c)2−m = (m+ c)2−a2 = (m+ c+a)(m+ c−a). Clearly, there
exists some c, with 1 ≤ c ≤ n, for which m + c + a is divisible by n.
Thus, one of the given differences is divisible by n if m is a perfect
square.

Now, we assume that m is not a perfect square and show that
there exists n for which none of the given differences are divisible by
n. Clearly, there exist a prime p and positive integer k such that p2k−1

is the highest power of p which divides m. We may let m = bp2k−1,
with b and p being relatively prime. Furthermore, pick n = p2k. For
the sake of contradiction, assume there exists a positive integer c for
which (m+ c)2−m is divisible by n. By expanding (m+ c)2−m, we
note that

p2k | (2bcp2k−1 + c2 − bp2k−1)

If p2k divides the quantity, then so does p2k−1. Thus, p2k−1 | c2 and
so pk | c. Let c = rpk. Then, we have

p2k | (2brp3k−1 + r2p2k − bp2k−1)

However, this implies that p | b, which contradicts the original
assumption that b and p are relatively prime. Therefore, if m is not a
perfect square, n may be chosen so that none of the given differences
are divisible by n. This completes the proof.

Problem 4 Find all pairs of real numbers a, b such that the equation

ax2 − 24x + b

x2 − 1
= x

has exactly two real solutions, and such that the sum of these two
real solutions is 12.

Solution: Call the given equation (∗). We start by multiplying
(∗) by x2 − 1 and rearranging terms to get p(x) = 0, where p(x) =
x3−ax2 +23x− b. Note that p(x) has at least two roots because any
root of (∗) is also a root of p(x). Moreover, because p(x) has degree
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3, it must have three real roots (possibly repeated) which we will call
r1, r2, and r3. By Vieta’s relations, we have the following equations:

a = r1 + r2 + r3 (1)

23 = r1r2 + r2r3 + r3r1 (2)

b = r1r2r3 (3)

Also note that any root of p(x) corresponds to a root of (∗) as long as
it is not equal to -1 or 1. Therefore, in order for the given equation
to have exactly two roots, we must have one of the following cases:

Case 1: One of the roots of p(x) is -1 and the other two roots
are different and not equal to -1 or 1. WLOG, let r1 = -1. Using
the fact that p(−1) = 0, we obtain a + b = −24. From the problem
statement, we find that r2 + r3 = 12. From (1), we get a = 11. Thus,
b = −24− a = −35. We note that (a, b) = (11,−35) is valid because
(*) only has two roots, namely, 5 and 7.

Case 2: One of the roots of p(x) is 1 and the other two roots are
different and not equal to -1 or 1. WLOG, let r1 = 1. Because p(1) =
0, we find that a+b = 24. As in the previous case, r2+r3 = 12. From
(1), a = 13. Thus, b = 11. However, then p(x) = (x− 1)3(x − 11),
which would contradict our original assumption that r2, r3 6= 1.
Hence, there is no valid pair (a, b) in this case.

Case 3: r1 = r2 and none of the roots of p(x) are equal to -1 or
1 By the problem statement, r1 + r3 = 12. By rewriting (2) only
in terms of r1, we obtain (r1 − 1)(r1 − 23) = 0, which implies that
r1 = 23. Thus, r2 = 23 and r3 = −11. Now, we may use (1) and (3)
to obtain (a, b) = (35,−5819). It is easy to verify that this solution
works.

Therefore, the only valid pairs (a, b) are (11, -35) and (35, -5819).

Problem 5 In the plane is given a triangle KLM . Point A lies
on line KL, on the opposite side of K as L. Construct a rectangle
ABCD whose vertices B, C, and D lie on lines KM , KL, and LM ,
respectively.

Problem 6 Find all functions f : R+ → R+ satisfying

f(xf(y)) = f(xy) + x

for all positive reals x, y.
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Solution: The only possible function is f(x) = x + 1. Suppose a

is in the range of f and f(t) = a. Then, letting x = 1 and y = t in
the given equation shows that f(a) = a + 1. Now, any number c > a

is also in the range of f , which is seen by substituting x = c− a and
y = t

c−a into the equation. Hence, f(c) = c + 1 for all c ≥ a.
Now, suppose the equation

f(c) = c + 1 (∗)

is true for all c ≥ a. Define a sequence {an}n≥0 given by a0 = a

and ak = a2
k−1

ak−1+1 , where k ≥ 1. We now show that if (∗) holds for
all c ≥ ak, then it also holds for all c ≥ ak+1. Assume it holds for
c ≥ ak. If ak+1 ≤ c ≤ ak, we may substitute x = c

ak
and y = ak to

obtain

f(c) = f

(
c

ak
f(ak)

)
− c

ak

= f

(
c

ak
(ak + 1)

)
− c

ak

=
c

ak
(ak + 1) + 1− c

ak

= c + 1

using the fact that c
ak

(ak +1) ≥ ak. Thus, (∗) holds for any c ≥ ak+1.

Because ak ≤ a
(

a
a+1

)k

, ak can assume an arbitrarily small positive
number for suitably large k. Thus, we may conclude that (∗) holds
for all c > 0.
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1.6 Germany

Problem 1 Determine all ordered pairs (a, b) of real numbers that
satisfy

2a2 − 2ab + b2 = a

4a2 − 5ab + 2b2 = b.

Solution:
Clearly, a = 0, b = 0 is a solution. Also, from the two equations

we can easily get that if one of a and b is 0, the other is also. So we
suppose that neither a nor b is 0.

2a2 − 2ab + b2 = a

⇒ 4a2 − 4ab + 2b2 = 2a

We are also given 4a2−5ab+2b2 = b, so we subtract to get ab = 2a−b.
Solving for b, this gives b = 2a

a+1 Combining this with the first
equation, we get:

2a2 − 2a 2a
a+1 + ( 2a

a+1 )2 = a

Since a is not 0, we can cancel a.
2a− 2 2a

a+1 + 4a
(a+1)2 = 1

Multiply by (a + 1)2 on both sides and simplify. This will yield:
2a3 − a2 − 1 = 0, which factors into (a − 1)(2a2 + a + 1) = 0.

2a2 + a + 1 = 0 has no reals roots, so the only solution is a = 1.
b = 2a

a+1 , so b = 1. This satisfies the equation. So the only two
solutions are (a,b)=(0,0) or (1,1).

Problem 2

(a) Prove that there exist eight points on the surface of a sphere
with radius R, such that all the pairwise distances between these
points are greater than 1.15R.

(b) Do there exist nine points with this property?

Problem 3 Let p be a prime. Prove that

p−1∑
k=1

⌊
k3

p

⌋
=

(p− 2)(p− 1)(p + 1)
4

.
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Proof. When p = 2, clearly it is true because both sides are 0.
So now assume p ≥ 3. p is odd.

13 + 23 + · · ·+ (p− 1)3 =
p2(p− 1)2

4
.

So
13

p
+

23

p
+ · · ·+ (p− 1)3

p
=

p(p− 1)2

4
.

So I want to prove{
13

p

}
+
{

23

p

}
+· · ·+

{
(p− 1)3

p

}
=

p(p− 1)2

4
− (p− 1)(p + 1)(p− 2)

4
=

p− 1
2

,

where {x} is the fraction part of x := x − [x]. Obviously, for
1 ≤ i ≤ p − 1, 1 >

{
i3

p

}
> 0. This is because p is not a factor

of i, so p is not a factor of i3. Also notice that

i3 + (p− 1)3 = p3 − 3p2i + 3pi2 − i3 + i3 =

= p3 − 3p2i + 3pi2 − i3 = p(p2 − 3pi + 3i2)

is a multiple of p. So (p−i)3

p + i3

p is an integer. Hence{
i3

p

}
+
{

(p− i)3

p

}
∈ Z.

But
0 <

{
i3

p

}
+
{

(p− i)3

p

}
< 2.

So it is 1.
Since p is odd, p−1

2 , p+1
2 ∈ Z.{
13

p

}
+
{

(p− 1)3

p

}
= 1{

23

p

}
+
{

(p− 2)3

p

}
= 1

...{(
p−1
2

)3
p

}
+

{(
p+1
2

)3
p

}
= 1.

So {
13

p

}
+
{

23

p

}
+ · · ·+

{
(p− 1)3

p

}
=

p− 1
2
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as desired.

Problem 4 Let a1 be a positive real number, and define a2, a3, . . .

recursively by setting an+1 = 1 + a1a2 · · · an for n ≥ 1. In addition,
define bn = 1

a1
+ 1

a2
+ · · ·+ 1

an
for all n ≥ 1. Prove that bn < x holds

for all n if and only if x ≥ 2
a1

.

Proof. First, we prove, for all n ∈ N,

1
a1

+
1
a2

+ · · ·+ 1
an

≤ 2
a1

which is equivalent to

1
a1

− 1
a2

− 1
a3

− · · · − 1
an

≥ 0.

Lemma. For all n ∈ N,

1
a1

− 1
a2

− 1
a3

− · · · − 1
an

=
1

a1a2 · · · an
.

We will prove this Lemma by induction.
First,

1
a1

− 1
a2

=
a2 − a1

a1a2
=

(a1 + 1)− a1

a1a2
=

1
a1a2

.

If
1
a1

− 1
a2

− 1
a3

− · · · − 1
ak

=
1

a1a2 · · · ak
,

then
1
a1

− 1
a2

− 1
a3

− · · · − 1
ak

− 1
ak+1

=
1

a1a2 · · · an
− 1

ak+1

=
ak+1 − a1a2 · · · ak

a1a2 · · · akak+1
=

a1a2 · · · ak + 1− a1a2 · · · ak

a1a2 · · · akak+1

=
1

a1a2 · · · akak+1
.

Thus completes the induction and the proof of the Lemma.
One can easily see by strong induction that ak > 0 for any k ∈ N.

So
1
a1

− 1
a2

− 1
a3

− · · · − 1
an

=
1

a1a2 · · · an
≥ 0 .

Thus we finished this part.
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Now we prove that if x < 2
a1

, then there exists an n ∈ N such that

1
a1

+
1
a2

+ · · ·+ 1
an

> x

which is equivalent to: there exists an n ∈ N such that

x− 2
a1

+
1
a1

− 1
a2

− 1
a3

− · · · − 1
an

< 0

which is equivalent to: there exists an n ∈ N such that
1
a1

− 1
a2

− 1
a3

− · · · − 1
an

<
2
a1

− x.

But 2
a1
− x > 0, so we need only to prove that for any ε > 0, there

exists an n ∈ N such that
1
a1

− 1
a2

− 1
a3

− · · · − 1
an

< ε .

Since
1
a1

− 1
a2

− 1
a3

− · · · − 1
an

> 0 ,

we only need to prove that there exists an N ∈ N such that for any
n ≥ N ,

| 1
a1

− 1
a2

− 1
a3

− · · · − 1
an
| < ε .

This is equivalent to prove that the sequence

cn =
1
a1

− 1
a2

− 1
a3

− · · · − 1
an

has limit 0. By the above proved Lemma,

Cn =
1

a1a2 · · · an
.

So the sequence {cn} has limit 0 if and only if the sequence dn = a1a2 · · · an

has limit ∞ which is equivalent to

lim
n→∞

a1a2 · · · an = ∞

⇐⇒ lim
n→∞

(an+1 − 1) = ∞

⇐⇒ lim
n→∞

an+1 = ∞

⇐⇒ lim
n→∞

an = ∞ .

So it suffices to prove lim
n→∞

an = ∞ . This is true if we can prove that,
for any n ∈ N, an+1 − an > a2

1. (Notice that a1 > 0.)
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For any n ∈ N,

an+1 − an = 1 + a1a2 · · · an−1(1 + a1a2 · · · an−1)− (1 + a1a2 · · · an−1)

= a1a2 · · · an−1(a1a2 · · · an−1 + 1− 1) = (a1a2 · · · an−1)2.

But if k ≥ 2, ak ≥ 1. This is because ak−1 ≥ 0, ak−2 ≥ 0, · · · , a1 ≥
0 and

ak = 1 + ak−1ak−2 · · · a1.

So
(a2a3 · · · an−1)2 ≥ 1.

Ergo,
(a1a2a3 · · · an−1)2 ≥ a2

1.

Therefore,
an+1 − an = (a1a2a3 · · · an−1)2 > a2

1

and the sequence {an} approaches ∞.

Problem 5 Prove that a triangle is a right triangle if and only if
its angles α, β, γ satisfy

sin2 α + sin2 β + sin2 γ

cos2 α + cos2 β + cos2 γ
= 2.

Proof. If the triangle is a right triangle, WLOG, assume α = π
2 , β +

γ = π
2 . Then cos β = sin γ, sin2 α = 1, and cos2 α = 0. Hence

sin2 α + sin2 β + sin2 γ

cos2 α + cos2 β + cos2 γ
=

1 + sin2 β + cos2 β

0 + sin2 γ + cos2 γ
=

1 + 1
0 + 1

= 2.

If the triangle is obtuse, WLOG, assume α > π
2 , β + γ < π

2 , 0 <

β < π
2 − γ.

sinx increases in the interval [0, π
2 ] which implies

0 ≤ sinβ < sin
(π

2
− γ
)

= cos γ;

Similarly, that cos x decreases in the interval [0, π
2 ] implies

cos β > cos
(π

2
− γ
)

= sin γ ≥ 0.
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Also, since sin2 α ≤ 1 and cos2 α ≥ 0, we have

sin2 α + sin2 β + sin2 γ

cos2 α + cos2 β + cos2 γ
<

sin2 α + cos2 γ + sin2 γ

cos2 α + sin2 γ + cos2 γ

=
sin2 α + 1
cos2 α + 1

<
1 + 1
0 + 1

= 2.

If the triangle is acute, that is, all three angles α, β, γ are between
0 and π

2 . We will prove that

sin2 α + sin2 β + sin2 γ

cos2 α + cos2 β + cos2 γ
> 2.

⇐⇒ sin2 α + cos2 α + sin2 β + cos2 β sin2 γ + cos2 γ

cos2 α + cos2 β + cos2 γ
> 2 + 1 = 3

⇐⇒ 3
cos2 α + cos2 β + cos2 γ

> 3

⇐⇒ cos2 α + cos2 β + cos2 γ < 1.

⇐⇒ sin2 α + sin2 β + sin2 γ > 2.

So we need to prove that, for 0 < α, β, γ < π
2 , α + β + γ = π,

sin2 α + sin2 β + sin2 γ > 2.

Observe that
d sinα

dα
= 2 sin α cos α = sin 2α and

d sin 2α

dα
= 2 cos 2α.

So sin2 x is concave up in [0, π
4 ] and concave down in [π

4 , π
2 ]. Clearly,

since α + β + γ = π, there are either two or three of α, β, γ in (π
4 , π

2 ).
Assume, WLOG, α ≤ β ≤ γ. If two of α, β, γ are in (π

4 , π
2 ), then

α ≤ π
4 , and β, γ > π

4 and β + γ ≥ 3π
4 . If we move γ towards π

2 , fixing
β +γ = π−α, then β moves towards π

4 . But β +γ ≥ 3π
4 . So γ would

reach π
2 first. Observe that as α, β, γ are moved, sin2 α+sin2 β+sin2 γ

is always decreasing, since β, γ ∈ (π
4 , π

2 ), where sin2 x is concave down
and we are moving β and γ farther apart. Hence sin2 α+sin2 β+sin2 γ

will decrease until γ reaches π
2 in which case sin2 α + sin2 β + sin2 γ

will be 2. Therefore for the original α, β, γ, sin2 α+sin2 β+sin2 γ > 2.
For the case α, β, γ > π

4 we will do the same thing: first fix β and
move α and γ apart until α reaches π

4 or γ reaches π
2 . If γ reaches

π
2 first, we are done. Otherwise, we continue, like in the previous
case, moving β and γ apart with α fixed. During these movements,
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sin2 α+sin2 β+sin2 γ is always decreasing. Continuing this procedure,
at some point γ will reach π

2 and sin2 α + sin2 β + sin2 γ will be 2.
Therefore sin2 α + sin2 β + sin2 γ is originally larger than 2.

Problem 6 Ralf Reisegern explains to his friend Markus, a mathe-
matician, that he has visited eight EURO-counties this year. In order
to motivate his five children to use the new Cent- and Euro-coins,
he brought home five coins (not necessarily with distinct values) from
each country. Because his children can use the new coins in Germany,
Ralf made sure that among the 40 coins, each of the eight values (1,
2, 5, 10, 20, and 50 Cents; 1 and 2 Euros) appeared on exactly five
coins. Now Ralf wonders whether he will be able to present each child
eight coins, one from each country, such that the total value of the
coins that each child receives is 3,88 Euro. (1 Euro equals 100 Cents,
and 3,88 Euro equals 3 Euro and 88 Cents.) “That must be possible!”
says Markus, without looking more carefully at the coins. Prove or
disprove Markus’ statement.
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1.7 Iran

Problem 1 Find all functions f from the nonzero reals to the reals
such that

xf

(
x +

1
y

)
+ yf(y) +

y

x
= yf

(
y +

1
x

)
+ xf(x) +

x

y

for all nonzero reals x, y.

Problem 2 Let segment AB be a diameter of a circle ω. Let `a, `b

be the lines tangent to ω at A and B, respectively. Let C be a point
on ω such that line BC meets `a at a point K. The angle bisector
of angle CAK meets line CK at H. Let M be the midpoint of arc
CAB, and let S be the second intersection of line HM and ω. Let T

be the intersection of `b and the line tangent to ω at M . Show that
S, T, K are collinear.

Problem 3 Let k ≥ 0 and n ≥ 1 be integers, and let a1, a2, . . . , an

be distinct integers such that there are at least 2k different inte-
gers modulo n + k among them. Prove that there is a subset of
{a1, a2, . . . , an} whose sum of elements is divisible by n + k.

Problem 4 The sequence x1, x2, . . . is defined by x1 = 1 and

xn+1 =

⌊
xn!

∞∑
k=1

1
k!

⌋
.

Prove that gcd(xm, xn) = xgcd(m,n) for all positive integers m,n.

Problem 5 Distinct points B,M,N,C lie on a line in that order
such that BM = CN . A is a point not on the same line, and P,Q

are points on segments AN, AM , respectively, such that ∠PMC =
∠MAB and ∠QNB = ∠NAC. Prove that ∠QBC = ∠PCB.

Problem 6 A strip of width w is the closed region between two
parallel lines a distance w apart. Suppose that the unit disk {(x, y) ∈
R2, x2+y2 ≤ 1} is covered by strips. Show that the sum of the widths
of these strips is at least 2.

Problem 7 Given a permutation (a1, a2, . . . , an) of 1, 2, . . . , n, we
call the permutation quadratic if there is at least one perfect square
among the numbers a1, a1+a2, . . . , a1+a2+· · ·+an. Find all positive
integers n such that every permutation of 1, 2, . . . , n is quadratic.
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Problem 8 A 10×10×10 cube is divided into 1000 1×1×1 blocks.
500 of the blocks are black and the others are white. Show that there
exists at least 100 unit squares which are a shared face of a black
block and a white block.

Problem 9 Let ABC be a triangle. The incircle of triangle ABC

touches side BC at A′. Let segment AA′ meet the incircle again at
P . Segments BP,CP meet the incircle at M,N , respectively. Show
that lines AA′, BN , CM are concurrent.

Problem 10 Let x1, x2, . . . , xn be positive real numbers such that∑n
i=1 x2

i = n. Write S =
∑n

i=1 xi. Show that for any real λ with
0 ≤ λ ≤ 1, at least ⌈

S2(1− λ)2

n

⌉
of the xi are greater than λS

n .

Problem 11 Around a circular table sit n people labelled 1, 2, . . . , n.
Some pairs of them are friends, where if A is a friend of B, then B is a
friend of A. Each minute, one pair of neighbor friends exchanges seats.
What is the necessary and sufficient condition about the friendship
relations among the people, such that it is possible to form any
permutation of the initial seating arrangement?

Problem 12 Circle ω1 is internally tangent to the circumcircle of
triangle ABC at point M . Assume that ω1 is tangent to sides AB

and AC as well. Let H be the point where the incircle of triangle
ABC touches side BC, and let A′ be a point on the circumcircle for
which we have AA′ ‖ BC. Show that points M,H,A′ are collinear.
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1.8 Japan

Problem 1 On a circle ω0 are given three distinct points A,M,B

with AM = MB. Let P be a variable point on the arc AB not
containing M . Denote by ω1 the circle inscribed in ω0 that is tangent
to ω0 at P and also tangent to chord AB. Let Q be the point where ω0

intersects chord AB. Prove that MP ·MQ is constant, independent
of the choice of P .

Solution: We first claim that points P,Q,M are collinear.
Let C0, C1 be the centers of ω0 and ω1 respectively. Let r0, r1 be

their radii.
AB is tangent to ω1, so C1Q⊥AB. Also, C0M⊥AB because M is

the midpoint of ÂB. We thus have C1Q ‖ C0M.

Now the two circles ω0 and ω1 are tangent to each other at P , so
P, C0, and C1 must be collinear. Then parallel lines C1Q and C0M

intersect the same line, C0P . Thus, ∠PC1Q = ∠PC0M. But because

PC1

PC0
=

r1

r0
=

C1Q

C0M

,
we now have 4PC1Q ∼ 4PC0M. Then ∠C1PQ = ∠C0PM =

∠C1PM , implying that P,Q,M are collinear.
Notice that ∠MAQ = ∠MAB = ∠MBA = ∠MPA. Also,

∠AMQ = ∠PMA, so 4MAQ ∼ 4MPA.

From these similar triangles, we obtain MA
MP = MQ

MA , which implies
MA2 = MP ·MQ. The length of MA is constant, so it follows that
MP ·MQ is constant.

Problem 2 There are n ≥ 3 coins are placed along a circle, with
one showing heads and the others showing tails. An operation consists
of simultaneously turning over each coin that satisfies the following
condition: among the coin and its two neighbors, there is an odd
number of heads among the three.

(a) Prove that if n is odd, then the coins will never become all tails.

(b) For what values of n will the coins eventually show all tails? For
those n, how many operations are required to make all the coins
show tails?
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Solution:

(a) We define H to be a coin on the circle showing heads and T to be
a coin showing tails. Let α be the flip that turns the middle coin
of the triple HTT , β the flip that turns the middle coin of THT ,
γ the flip that turns the middle coin of TTH, and δ the flip that
turns the middle coin of HHH. It is easy to see that these four
flips are the only possible flips in an operation.

Suppose that a finite sequence of operations on the odd number
of coins can turn all the coins to T ’s.

We consider the configuration of coins, C, one operation before
all coins are tails. The last operation must have consisted only
of β flips and γ flips, since other flips introduce coins showing
heads. So we have three cases.

Case 1: Suppose that all flips in the final operation were β flips.
Then the configuration C must have been a series of alternating
T ’s and H’s. But that requires the number of T ’s to equal the
number of H’s, and hence n to be even. Because we assumed
that n were odd, this is a contradiction.

Case 2: Suppose that all flips in the final operation were γ

flips. Then the configuration C must have been a series of H’s.
Now consider the configuration C ′ that is one operation before
C. Every flip in the operation that takes C ′ to C must have been
either an α flip or a γ flip, since other flips introduce coins showing
tails. So one of the two triples HTT and TTH exists in the circle.
In both cases, the double TT exists. Let ω = TT exist somewhere
in the circle. The coin to the right of ω cannot be T , because then
we have TTT , a triple in which the middle T will not be flipped
into an H after an operation. So the coin ω0 immediately after ω

is H. The coin after ω0 cannot be T , since then we have THT ,
in which the middle coin is turned into a T after an operation.
Thus, the coin after ω0 is H. Continuing the reasoning shows
that HHTT must follow every instance of TT . Thus, C ′ must be
composed of alternating HH’s and TT ’s. But that implies that
there are an even number of coins, a contradiction since there are
n, an odd number of coins.

Case 3: Both β flips and γ flips were in the final operation.
Label any coin in the circle as the starting point and going
clockwise, find the first triple THT after which HHH occurs.
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Then there exists the triple THH, which is a contradiction since
after an operation, the middle coin H is not turned into a T .

Thus, our assumption was false and it follows that if n is odd,
the coins will never become all tails. Notice that the fact that the
n coins started out with only one showing heads was not used.

(b)

Problem 3 Let n ≥ 3 be an integer. Let a1, a2, . . . , an, b1, b2, . . . , bn

be positive real numbers with

a1 + a2 + · · ·+ an = 1 and b2
1 + b2

2 + · · ·+ b2
n = 1.

Prove that

a1(b1 + a2) + a2(b2 + a3) + · · ·+ an(bn + a1) < 1.

Solution: The left-hand side is equivalent to

n∑
i=1

aibi +
n∑

i=1

aiai+1,

where an+1 is defined as a1.
By the Cauchy-Schwarz inequality,

(
n∑

i=1

aibi)2 ≤
n∑

i=1

a2
i

n∑
i=1

b2
i =

n∑
i=1

a2
i ,

where we have used the fact that
∑n

i=1 b2
i = 1.

The above implies

n∑
i=1

aibi ≤

√√√√ n∑
i=1

a2
i .

Thus, it suffices to prove the following equation:√√√√ n∑
i=1

a2
i +

n∑
i=1

aiai+1 < 1.

∑n
i=1 ai = 1, so squaring, we obtain the identity

n∑
i=1

a2
i = 1− 2

∑
1≤i,j≤n,i 6=j

aiaj ,

which reduces our inequality to proving the following (α):
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√
1− 2

∑
1≤i,j≤n,i 6=j

aiaj < 1−
n∑

i=1

aiai+1.

Now observe that

1 =
∑

1≤i≤n

a2
i + 2

∑
1≤i,j≤n,i6=j

aiaj ≥
∑

1≤i,j≤n,i 6=j

aiaj .

Also, notice the following (β):∑
1≤i,j≤n,i 6=j

aiaj ≥
n∑

i=1

aiai+1,

which is true because the terms on the left-hand side contains the
terms of the right-hand side.

From the above two observations, we have

1 ≥
n∑

i=1

aiai+1,

or equivalently,

1−
n∑

i=1

aiai+1 ≥ 0.

Then, both sides of α are nonnegative, so it is true if and only if
the squared expression is true. After squaring and rearranging, we
have

2(
n∑

i=1

aiai+1 −
∑

1≤i,j≤n,i 6=j

aiaj) < (
n∑

i=1

aiai+1)2

But all the ai are positive, so the right-hand side is positive. From
β, the left-hand side is not positive, so the conclusion easily follows.

Problem 4 A set S of 2002 distinct points in the xy-plane is chosen.
We call a rectangle proper if its sides are parallel to the coordinate
axes and if the endpoints of at least one diagonal lie in S. Find the
largest N such that, no matter how the points of S are chosen, at least
one proper rectangle contains N +2 points on or within its boundary.
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1.9 Korea

Problem 1 Let p be a prime of the form 12k + 1 for some positive
integer k, and write Zp{0, 1, 2, . . . , p− 1}. Let Ep consist of all (a, b)
such that a, b ∈ Zp and p 6 | (4a3 + 27b2). For (a, b), (a′, b′) ∈ Ep, we
say that (a, b) and (a′, b′) are equivalent if there is a nonzero element
c ∈ Zp such that

p | (a′ − ac4) and p | (b′ − bc6).

Find the maximal number of elements in Ep such that no two of the
chosen elements are equivalent.

Solution: Answer: 32
By Fermat’s Little Theorem, we know a12 ≡ 1 (mod p = 12k + 1)
Since a12k ≡ 1 (mod p) has 12k solutions, (c4)3k ≡ 1 (mod p) has

3k solutions, and (c6)2k ≡ 1 (mod p) has 2k solutions. Let the 3k

possible values for c4 be c1, c2, . . . , c3k. Then, for some fixed a, we
have

a1 ≡ ac1, a2 ≡ ac2, . . . , a3k ≡ ac3k.
Lemma 1: If ai ≡ aci, then there exists some cj such that a ≡ aicj .
Proof: First, let us show that cicj ≡ cm for some 1 <=

i, j, m <= 3k. This is true since (ci)3k ≡ 1 (mod p), (cj)3k ≡ 1
(mod p), so (cicj)(3k) ≡ 1 (mod p). Therefore cicj must be some
possible value of c4, for example, cm. From this we see that
cicjtakesonthevaluesc1, c2, . . . , c(3k) as j ranges from 1 to 3k. Notice
that since 13k ≡ 1 (mod p), one of the cj ’s is 1. Therefore, for any ci,
there exists some cj so that cicj ≡ 1 (mod p). Now let us return to
ai ≡ aci. Take the cj such that cicj ≡ 1 (mod p) and multiply it by
both sides of the equation. Then we have aicj ≡ acicj (mod p) ≡ a

(mod p). Hence our lemma is proved.
From this lemma, we can conclude that there exist four sets:

(a1, a2, . . . , a3k), (a3k+1, a3k+2, . . . , a6k), (a6k+1, a6k+2, . . . , a9k), (a9k+1, a9k+2, . . . , a12k),
where for any ai, aj in the same set, there exists some ci such that
aici ≡ aj (mod p). Using the same logic, there exist six such sets for
the bi’s That means that for ai, aj in the same set, p | ai − ajcj for
some cj and for bi, bj in the same set, p | bi − bjcj for some cj . Take
some pair (a, b). If (a, b) is in Ep, then for all ai in the same set as a,
and for all bi in the same set as b, p | a − aic

4 and p | b − bic
6 will

be satisfied for some c. Therefore, we can take at most one member
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from each of the four a sets and pair them with one member from
each of the six b sets. That gives us 24 pairs (a, b) in Ep.

However, this value fails to consider 0 being a part of Ep. (a, 0) for
some a in each of the four a sets, and (0, b) for some b in each of the
six b sets can also be added to Ep. That gives us a total of 34 sets.

However, we haven’t considered the condition p 6 | (4a3 + 27b2)

Problem 2 Find all functions f : R → R satisfying

f(x− f(y)) = f(x) + xf(y) + f(f(y))

for all x, y ∈ R.

Solution: Answers: f(x) = −x2/2. f(x) = 0.
Let

f(y) = x.

From here, we see that

f(0) = 2f(x) + x2 → f(x) = −x2/2 + f(0)/2

for x in the range of f .
Now, let

x = f(z).

Then we have

f(f(z)− f(y)) = f(f(z)) + f(z)f(y) + f(f(y))

Since f(z) and f(y) are both in the range of f , we can replace them
with

−z2/2 + f(0)/2

and
−y2/2 + f(0)/2

respectively.
From here, we see that

f(f(z)− f(y)) = −(z2 + y2)/2 + f(0) + f(z)f(y)

which becomes

f(f(z)− f(y)) = −(f(z)− f(y))2/2 + f(0)
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Now, let

f(y) = a

where a is a constant.
Then we have

f(x− a) = f(x) + xa + f(a) → f(x− a)− f(x) = xa + f(a)

Since x can be any real number,

xa + f(a) ∈ R → f(x− a)− f(x) ∈ R

That means the difference of two outputs of f can be any real number.
Since we already know

f(f(z)− f(y)) = −(f(z)− f(y))2/2 + f(0)

That means

f(x) = −x2/2 + f(0)

for any real x. Plugging this into the original function yields f(0) = 0.
However, notice that in our proof we assumed that f has at last two
values in its range. Assume f has only one value in its range. Then,
f(x) = k for some constant k. Plugging this into the original function
yields k = 0.

Problem 3 Find the minimum value of n such that in any math-
ematics contest satisfying the following conditions, there exists a
contestant who solved all the problems:

(i) The contest contains n ≥ 4 problems, each of which is solved by
exactly four contestants.

(ii) For each pair of problems, there is exactly one contest who solved
both problems.

(iii) There are at least 4n contestants.
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Solution: Answer: 13
First, let us present an arrangement for 13 problems.

Problem Solvers

1 ABCD

2 AEFG

3 AHIJ

4 AKLM

5 BEHK

6 BFIL

7 BGJM

8 CEJL

9 CFHM

10 CGIK

11 DEIM

12 DFJK

13 DGHL

Lemma: If no person solves all the problems, then no person can
solve more than four problems.

Proof: Assume some person A solves 5 problems. Then the solvers
of those 5 problems would be:

Problem Solvers

1 ABCD

2 AEFG

3 AHIJ

4 AKLM

5 ANOP

Assume A does not solve problem 6. However, only 4 people solved
problem 6, and the solvers of problem 6 must pair up with the solvers
of problems 1 through 5. Clearly A must have solved problem 6.
Similarly, A must have solved every remaining problem. However, no
person can solve all the problems. Hence our lemma is proved.

Let the solvers of problem 1 be persons A, B, C, and D. From
our lemma we know that A, B, C, and D can each solve at most 3
more problems. That means there can be at most 3 ∗ 4 = 12 more
pairs made between problem 1 and problems 2, 3, . . . making 13 total.
Hence our proof is complete.
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Problem 4 Let n ≥ 3 be an integer. Let a1, a2, . . . , an, b1, b2, . . . , bn

be positive real numbers, where the bi are pairwisedistinct.

(a) Find the number of distinct real zeroes of the polynomial

f(x) = (x− b1)(x− b2) · · · (x− bn)
n∑

j=1

aj

x− bj
.

(b) Writing S = a1 + a2 + · · ·+ an and T = b1b2 · · · bn, prove that

1
n− 1

n∑
j=1

(
1− aj

S

)
bj >

T

S

n∑
j=1

aj

bj

1/(n−1)

.

Solution: a) Answer: n− 1
Since addition and multiplication are commutative, let us rearrange

f(x) = (x− b1)(x− b2) · · · (x− bn)
n∑

j=1

aj

x− bj
.

so that b1 < b2 < · · · < bn. By expanding f(x), we get
(x− b2)(x− b3) . . . (x− bn)a1 +(x− b1)(x− b3) . . . (x− bn)a2 + · · ·+

(x− b1)(x− b2) . . . (x− b(n− 1))
Plug in x = b1. Everything cancels out except for (x − b2)(x −

b3) . . . (x − bn)a1. Since b1 < b2, b3, . . . , bn, if n is odd, then (x −
b2)(x−b3) . . . (x−bn)a1 is positive, and if n is even, then it’s negative.
Plug in x = b2. Everything cancels out except for (x − b1)(x −
b3) . . . (x − bn)a2. Since b2 > b1, b2 < b3, b4, . . . , bn, if n is odd, then
(x − b1)(x − b3) . . . (x − bn)a2 is negative, and if n is even, then it’s
positive. Repeat this for x = b3, b4, . . . , bn. Each time f alternates
sign, for a total of n−1 sign changes. That means f has at least n−1
zeroes, but since f is a polynomial of degree n−1, it has at most n−1
zeroes, so it must have exactly n− 1 zeroes.

b) This inequality is equivalent to the AM of the roots of f being
greater than the GM of the roots of f. The inequality is strict since
the equality case of the AM-GM inequality requires all terms to be
equal, whereas f has all distinct zeroes.

Problem 5 Let ABC be an acute triangle and let ω be itscircum-
circle. Let the perpendicular from A to line BC meetω at D. Let P

be a point on ω, and let Q bethe foot of the perpendicular from P to
line AB. Suppose thatQ lies outside ω and that 2∠QPB = ∠PBC.
Provethat D,P,Q are collinear.
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Solution: Let ∠BPQ be x. Since PQ is perpendicular to AB,
∠PQB is 90◦, and ∠PBQ is 90◦ − x. Since the measure ∠PBQ

is given to be 2x, the measure of ∠ABC is 90◦ − x. Since AD is
perpendicular to BC, the measure of ∠DAB is x. Since ABPD is a
cyclic quadrilateral, ∠BPD = 180◦ −∠DAB = 180◦ − x, so we have
∠BPD = 180◦ − x and ∠BPQ = x. Adding these together, we get
∠DPQ = 180◦, so D,P,Q are collinear.

Problem 6 Let p1 = 2, p2 = 3, p3 = 5, . . . be the sequence of primes
in increasing order.

(a) Let n ≥ 10 be a fixed integer. Let r be the smallest integer
satisfying

2 ≤ r ≤ n− 2 and n− r + 1 < pr.

For s = 1, 2, . . . , pr, define Ns = sp1p2 · · · pr−1 − 1. Prove that
there exists j, with 1 ≤ j ≤ pr, such thatnone of p1, p2, . . . , pn

divides Nj .

(b) Using the result from (a), find all positive integers m for which

p2
m+1 < p1p2 · · · pm.

Solution: a) Clearly p1, p2, . . . , pr−1 6 | jp1p2 . . . pr−1 − 1 for all
j. The primes of concern are pr, pr+1, . . . , pn, which is a total of
n− r + 1 primes.

Lemma: pk | jp1p2 . . . pr−1 − 1 for at most one j where
1 <= j <= pr. Proof: Assume there exist j1, j2 where
1 <= j1 < j2 <= pr such that pk | j1p1p2 . . . pr−1 − 1
and pk | j2p1p2 . . . pr−1 − 1. From this we know that pk |
(j2 − j1)(p1p2 . . . pr−1). But (j2 − j1), p1, p2, . . . , pr−1 < pk,
and pk is prime, so we have a contradiction. Therefore, each
pk | jp1p2 . . . pr−1 − 1 for at most one j.

Additionally, we are concerned with pr, pr+1, . . . , pn, a total of
n− r + 1 < pr numbers. Since j can take on pr values (from 1 to
pr), there will be some j for which p1, p2, . . . pn 6 | jp1p2 . . . pr−1−
1.
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1.10 Poland

Problem 1 Determine all triples of positive integers a, b, c such that
a2 + 1, b2 + 1 are prime and (a2 + 1)(b2 + 1) = c2 + 1.

Solution: The only answers are (a, b, c) = (1, 2, 3) or (2, 1, 3).
Let us assume without loss of generality that a ≤ b, as a and b are
symmetric. Transforming the given, we have

a2(b2 + 1) = c2 − b2

which implies that

b2 + 1 =
c2 − b2

a2
=

(c + b)(c− b)
a2

. (1)

This means that we can find integers n and k such that nk = a2,
n|(c + b), and k|(c − b). Because b2 + 1 is prime, either c+b

n = 1 or
c−b
k = 1.

Case 1: c+b
n = 1.

From (1), we have

b2 + 1 =
c− b

k
.

Substituting c = n− b into the equation and rearranging, we have

k =
n− 2b

b2 + 1
.

Because k is an integer, n− 2b ≥ b2 + 1. However, we assumed that
a ≤ b, so

n < a2 + 1 ≤ b2 + 1.

Therefore, n− 2b < n < b2 + 1, so we have a contradiction, and there
are no solutions for this case.
Case 2: c−b

k = 1.
From (1), we have

b2 + 1 =
c + b

n
.

Substituting c = b + k into the equation and rearranging, we have

n =
2b + k

b2 + 1
. (2)

Because n is an integer, 2b + k ≡ 0 (mod b2 + 1). We have

2b ≤ b2 + 1 and k < a2 + 1 ≤ b2 + 1
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where the first inequality is by the AM-GM inequality. Adding the
two inequalities, we have

2b + k < 2(b2 + 1).

Therefore, if n is an integer, 2b + k = b2 + 1, implying that n = 1.
Because n = 1, we have k = a2. Substituting this into (2) and
rearranging, we have

b2 − 2b + 1 = a2

(b− 1)2 = a2

b = a + 1.

Hence, both a2 + 1 and (a + 1)2 + 1 = b2 + 1 are prime. They have
different parities, so one of them must be 2, the only even prime.
Because 2 is the smallest prime, we have a2 + 1 = 2, as it is smaller
than (a + 1)2 + 1. Thus, we have a = 1, so b = 2 and c = 3, which is
the only solution for this case.
We assumed that a ≤ b, so (a, b, c) = (2, 1, 3) is also a solution, as we
can use analogous reasoning while assuming b ≤ a. Thus, the only
solutions are (a, b, c) = (2, 1, 3) or (1, 2, 3).

Problem 2 On sides AC, BC of acute triangle ABC are con-
structed rectangles ACPQ and BKLC. The rectangles lie outside
triangle ABC and have equal areas. Prove that a single line passes
through C, the midpoint of segment PL, and the circumcenter of
triangle ABC.

Solution: Let O be the circumcenter. Let X and Y be the
projections of O onto BC and AC, respectively. Let M be the
midpoint of CP and let W and Z be the projections of M onto
LC and PC, respectively. Then, we need to prove O, C, and M are
colinnear.
Because rectangles BCLK and CPQA have equal areas, setting the
areas equal and rearranging, we have BC

AC = PC
LC . Because XC = BC

2

and CY = AC
2 , from the previous equation we have XC

CY = PC
LC . Now,

because M is the midpoint of PL, triangles LMC and PMC have
equal areas. Therefore, we have PC ·MZ = LC ·MW , which implies

MW

MZ
=

LC

PC
=

XC

Y C
. (∗)
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Because ∠MWC = ∠MZC = 90◦, MWCZ is cyclic, so

∠WMZ = 180◦ − ∠WCZ = ∠XCY. (†)

By (∗) and (†), 4CXY ∼ 4MWZ. Hence, ∠CY X = ∠MZW =
∠MCW . Also, OXCY is cyclic because ∠OXC = ∠OY C = 90◦, so
∠XCO = ∠XY O = 90◦ − ∠CY X. Thus, we have

∠OCM = ∠OCX + ∠XCW + ∠WCM

= 90◦ − ∠CY X + 90◦ + ∠MCW = 180◦.

Therefore, because ∠OCM = 180◦, we have that O, C, and M are
colinnear, which is what we wanted.

Problem 3 On a board are written three nonnegative integers.
Each minute, one erases two of the numbers k, m, replacing them
with their sum k+m and their positive difference |k−m|. Determine
whether it is always possible to eventually obtain a triple of numbers
such that at least two of them are zeroes.

Solution: Let us represent a combination of integers on the board
as an ordered triple (a, b, c) where a ≥ b ≥ c. Then, let us first note
that one can attain two zeros with the triple (ka, kb, kc) (k ∈ Z) if
and only if one can attain two zeros with the triple (a, b, c) because,
after each minute, all of the numbers in the first triple will be k times
the numbers in the second triple.
Now, let us suppose that we start with the triple (2a, b, c). Then, we
can get to the triple (2a, b + c, b − c) by choosing b and c and then
to the triple (2a, 2b, 2c). Therefore, if one can reach two zeros with
(a, b, c), one can reach it with (2a, b, c). We now provide an algorithm
to make a triple with two zeros.
If we start with the triple (a, b, c), we can use the previous fact
repeatedly to transform the triple into (x, y, z), where x, y, and z

are the largest odd factors of a, b, and c, respectively. Now, without
loss of generality, let us assume that x ≥ y ≥ z. Then, replacing x

and y, we can reach the triple (x+y, x−y, z). Since x and y are odd,
one can reach the desired triple from this triple if and only if one can
reach it from (x+y

2 , x−y
2 , z).

Now, note that the sum of the numbers in this triple is x + z, which
is less than the sum of the numbers in (x, y, z). Therefore, the sum of
the numbers in the triple is always decreasing if we use the algorithm
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unless the second smallest number is 0. Hence, we apply the algorithm
repeatedly until the second smallest number is 0. Because the sum of
the numbers is decreasing, the second smallest number will always
eventually reach 0. Therefore, we can always reach a triple that
contains at least two zeros, which is what we wanted.

Problem 4 Let n ≥ 3 be an integer. Let x1, x2, . . . , xn be positive
integers, where indices are taken modulo n. Prove that one of the
following inequalities holds:

n∑
i=1

xi

xi+1 + xi+2
≥ n

2
or

n∑
i=1

xi

xi−1 + xi−2
≥ n

2
.

Solution: We show that
n∑

i=1

xi

xi+1 + xi+2
+

n∑
i=1

xi

xi−1 + xi−2
=

n∑
i=1

xi + xi+3

xi+1 + xi+2
≥ n

which is equivalent to the problem statement because one of the sums
must be greater than n

2 for the total to be greater than n.
Now, by the rearrangement inequality, we have

n∑
i=1

xi + xi+1

xi+1 + xi+2
≥ n (∗)

and
n∑

i=1

xi+2 + xi+3

xi+1 + xi+2
≥ n. (†)

Adding (∗) and (†), we have
n∑

i=1

xi + xi+1 + xi+2 + xi+3

xi+1 + xi+2
= n +

n∑
i=1

xi + xi+3

xi+1 + xi+2
≥ 2n.

Therefore, subtracting n from both sides, we get
n∑

i=1

xi + xi+3

xi+1 + xi+2
≥ n

which is what we wanted.

Problem 5 In three-dimensional space are given a triangle ABC

and a sphere ω, such that ω does not intersect plane (ABC). Lines
AK, BL,CM are tangent to ω at K, L, M , respectively. There exists
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a point P on ω such that

AK

AP
=

BL

BP
=

CM

CP
.

Prove that the circumsphere of tetrahedron ABCP is tangent to ω.

Solution: Let O1 be the circumcenter of tetrahedron ABCP and
O2 be the center of ω. Let X, Y , and Z be the projections of O2

onto the extensions of
−→
AP ,

−−→
BP , and

−−→
CP , respectively. Let T , U ,

and V be the projections of O1 onto
−→
AP ,

−−→
BP , and

−−→
CP , respectively.

Let a, b, and c equal AP , BP , and CP , respectively. Finally, let
k = AK

AP = BL
BP = CM

CP .

Note that TP = a
2 , UP = b

2 , and V P = c
2 because the pro-

jections of the circumcenter bisect the segments of a tetrahedron.
Now, because AK is tangent to ω, we have AK⊥O2K. Hence,
by the Pythagorean Theorem, we have AO =

√
AK2 + OK2 =√

k2a2 + OK2. Again by the Pythagorean Theorem, we have

AX2 + OX2 = (a + PX)2 + OX2 = OA2 = k2a2 + OK2 (1)

and
PX2 + OX2 = OP 2. (2)

Therefore, substituting (2) into (1) and noting that OK = OP ,
we find that PX = k2−1

2 a. Likewise, we have PY = k2−1
2 b and

PZ = k2−1
2 c. Therefore, we have

AP

PX
=

BP

PY
=

CP

PZ
=

1
k2 − 1

. (3)

By (3), tetrahedrons ABCP and XY ZP are similar, since the the
ratios of three of their corresponding lengths are equal and they
have an equal vertex angle. Therefore, there exists a homothety
about P with ratio − 1

k2−1 that takes each point in ABCP to the
cooresponding point in XY ZP . Hence, the circumcenter of ABCP

is taken to the circumcenter of XY ZP , so they are colinnear with
P . The circumcenter of XY ZP and O2 are related by a homothety
with ratio 2 about P , and O1 is the circumcenter of ABCP , so O1,
P , and O2 are colinnear. Because O1 and O2 are colinnear with a
point on the intersection of ω and the circumsphere of ABCP , no
other intersection point can exist, and the two spheres are tangent,
as desired.
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Problem 6 Let k be a fixed positive integer. We define the sequence
a1, a2, . . . by a1 = k + 1 and the recursion an+1 = a2

n − kan + k for
n ≥ 1. Prove that am and an are relatively prime for distinct positive
integers m and n.

Solution: We claim that an =
∏n−1

i=0 ai + k(n > 0), assuming that
a0 = 1. We prove this by induction on n. For the base case, n = 1.
Because a1 = k +1 = a0 +k, the base case is true. Now, assume that
an =

∏n−1
i=0 ai + k(n > 0) is true for all integers less than j. Then, we

have
aj = a2

j−1 − kaj−1 + k = aj−1(aj−1 − k) + k. (∗)

By the inductive hypothesis, we have aj−1 =
∏j−2

i=1 ai + k. Substitut-
ing this into (∗), we have

aj = aj−1

j−2∏
i=0

ai + k =
j−1∏
i=0

ai + k

which is what we wanted.
Therefore, we have that an ≡ k (mod ai) for i < n. Hence, if there
exist integers d > 1, x, y ≥ 1 such that d | ax and d | ay, d divides k.
We now show that for i > 0, ai ≡ 1 (mod k) by induction on i. For the
base case, a1 = k + 1 ≡ 1 (mod k). Now assume that ai ≡ 1 (mod k).
Then, ai+1 ≡ a2

i − kai + k ≡ a2
i ≡ 1 (mod k).

Thus, because all common divisors d of ax and ay must be divisors
of k, we have ax ≡ 1 (mod d) and ay ≡ 1 (mod d). Therefore, no
such divisors exist and ai is relatively prime to aj for all i, j > 0, as
desired.
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1.11 Romania

Problem 1 Find all pairs of sets A,B, which satisfy the conditions:

(i) A ∪B = Z;

(ii) if x ∈ A, then x− 1 ∈ B;

(iii) if x ∈ B and y ∈ B, then x + y ∈ A.

Solution: We will show that either A = B = Z, or B must be the
odd integers and A must be the even integers.

Lemma. If 0 ∈ B, then A = B = Z.

Proof. If 0 ∈ B, then for all x ∈ B, x + 0 = x ∈ A. So B ⊆ A.
This implies 0 ∈ A, so 0 − 1 = −1 ∈ B. Say n /∈ B. Then
because A ∪ B = Z, n + 2 ∈ B or n + 2 ∈ A. If n + 2 ∈ B, then
n + 2 + (−1) = n + 1 ∈ A. If n + 2 ∈ A, then n + 1 ∈ B ⊆ A. So
n + 1 ∈ A, which implies n ∈ B, a contradiction. So B = Z. Because
Z = B ⊆ A ⊆ Z, A = Z.

Now, if 1 ∈ A, then 0 ∈ B. So assume 1 /∈ A and 0 /∈ B. We will
prove that in this case B must be the odd integers and A must be
the even integers. Since A ∪ B = Z, we must have 1 ∈ B and 0 ∈ A.
Notice that 0 ∈ A implies −1 ∈ B. If −2n ∈ A, then −2n − 1 ∈ B,
and −2 ∗ n − 1 + −1 = −2 ∗ n − 2 ∈ A, so by a trivial induction A

contains every negative even number and B contains every negative
odd number.

In fact, this same reasoning shows that if a ∈ A, then a − 2k ∈ A

and a− 2k − 1 ∈ B for all k ≥ 0. Say a is odd, that a > 1, and that
a ∈ A. Then a−1 ∈ B. Since −a+2 is negative and odd, −a+2 ∈ B,
so −a + 2 + a − 1 = 1 ∈ A, a contradiction. So A can contain no
positive odd numbers. If B contains a positive even number a, then
a − 1 is a positive odd number and a − 1 ∈ A, so B can contain no
positive even numbers. Since A∪B = Z, B contains all odd numbers
and A contains all even numbers. If B contains any even number
a, then −a + 1 is odd, so −a + 1 ∈ B and −a + 1 + a = 1 ∈ A, a
contradiction. And if A contains any even number a, then a − 1 is
odd and a − 1 ∈ B, a contradiction. So B must be the odd integers
and A must be the even integers.
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Problem 2 Let a0, a1, a2, . . . be the sequence defined as follows:
a0 = a1 = 1 and an+1 = 14an − an−1 for any n ≥ 1. Show that the
number 2an − 1 is a perfect square for all positive integers n.

Solution:
For n ∈ N, define cn by c0 = −1, c1 = 1, and cn = 4cn − 1− cn − 2

for n ≥ 2.

Lemma. We have

cn =

(
1 +

√
3

2

)(
2 +

√
3
)n

+

(
1−

√
3

2

)(
2−

√
3
)n

(∗)

for each n ∈ N.

Proof. Let dn be the right-hand side of equation (∗). Because 2+
√

3
and 2−

√
3 are the roots of the characteristic polynomial x2−4x+1 of

cn, we have that dn satisfies the given recurrence. It is easily checked
that d0 = −1 and d1 = 1, so we must have that dn = cn for each
n ∈ N.

After squaring both sides of (∗) and collecting terms, we have that

c2
n + 1

2
=

(
1−

√
3

2

)(
7 + 4

√
3
)n

+

(
1 +

√
3

2

)(
7− 4

√
3
)n

. (∗∗)

Let fn = c2
n+1
2 . We claim that fn = an for each n ∈ N. Because

7 + 4
√

3 and 7 − 4
√

3 are roots of the characteristic polynomial
x2 − 14x + 1 of an, we have that fn satisfies the recurrence fn =
14fn−1 − fn−2 for all n ≥ 2. It is easily checked that fn = an for
n = 0, 1, so fn = an as claimed. Now expanding an = c2

n+1
2 gives us

2an − 1 = c2
n for each n ∈ N as desired.

Problem 3 Let ABC be an acute triangle. Segment MN is the
midline of the triangle that is parallel to side BC, and P is the
orthogonal projection of point N onto side BC. Let A1 be the
midpoint of segment MP . Points B1 and C1 are constructed in a
similar way. Show that if lines AA1, BB1, and CC1 are concurrent,
then triangle ABC has two congruent sides.



52 Romania

Solution:
First, let P be the foot of the altitude from A, and let Q be the

midpoint of segment BC. Let A′
1 = AA1∩BC. Let M ′ = AA1∩MN .

Let D be the foot of the perpendicular from N to BC.

Lemma. We have BA′
1 : A′

1C = tan B+2 tan C
2tanB+tanC .

Proof. Without loss of generality, our triangle has circumradius R =
1
2 . Then we have BC = 2R sinA = sinA. Similarly, CA = sinB and
AB = sinC. Because MN ‖ BC, we have that 4A1M

′M 4A1A
′
1D

and that 4AMM ′ 4ABA′
1. This gives that BA′

1 : MM ′ = AB :
AM = 1

2 , and that A′
1D : MM ′ = MA1 : A1D. But MA1 : A1D = 1

because MNDP is a rectangle, so we have A′
1D : MM ′ = 1 and

BA′
1 : A′

1D = 2. By right triangle NDC we have DC = 1
2AC cos C =

1
2 sinBcosC. Therefore

BD = BC −DC = sinA− 1
2 sinBcosC

= (sinB cos C + cos B sinC)− 1
2 sinB cos C

= sinC cos B + 1
2 sinB cos C

and BA′
1 : BD = BA′

1 : (BA′
1 + A′

1D) = BA′
1

A′
1D : (BA′

1
A′

1D + 1) = 2
2+1 =

2
3 . By a brief computation,

BA′
1 =

2
3

sinC cos B +
1
3

sinB cos C

Thus

A′
1C = BD −BA′

1 =
1
3

sinC cos B +
2
3

sinB cos C.

Taking the ratio BA′
1 : A′

1C now gives the desired result.

By Ceva’s theorem, if AA1, BB1, CC1 concur, then we must have

BA′
1

A′
1C

CB′
1

B′
1A

AC ′
1

C ′
1B

= 1.

Applying the lemma three times gives us that∏
cyc

(tanB + 2 tan C) =
∏
cyc

(2 tan B + tanC).
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Upon expanding and factoring, this gives
∏
cyc

(tanB − tanC) = 0.

Thus we must have two of tanA, tanB, tanC equal. Without loss of
generality, we have tanA = tan B. By the itentity cot2 θ +1 = csc2 θ,
we have csc2 A = csc2 B. This implies sin2 A = sin2 B Since sinA > 0
for A an angle of a triangle, we must have sinA = sinB. By the law
of signs, we then have BC = CA and we are finished.

Problem 4 For any positive integer n, let f(n) be the number of
possible choices of signs + or − in the algebraic expression ±1± 2±
· · · ± n, such that the obtained sum is zero. Show that f(n) satisfies
the following conditions:

(i) f(n) = 0, if n ≡ 1 (mod 4) or n ≡ 2 (mod 4);

(ii) 2
n
2−1 ≤ f(n) < 2n − 2b

n
2 c+1, if n ≡ 0 (mod 4) or n ≡ 3 (mod 4).

Solution:

Lemma. Given p ∈ [k, 3k2+k
2 ], there exists S ⊂ {k . . . 2k} such that

sum(S) = p.

Proof. Let R = k + 1 . . . 2k. The following algorithm begins at step
(i) and produces a family T of subsets of R with the following prop-
erty: Given p ∈ [k, 3k2+k

2 ], there exists S ⊂ R such that sum(S) = p.
This proves the lemma.

(i) The algorithm maintains a set S ⊂ R. Initially, S = k + 1 . . . 2k.
It also maintains a set T of subsets of R Go to step (ii).

(ii) Let T = T ∪ {S}. If there exists x ∈ R such that x− 1 /∈ S and
x ∈ S, then go to step (iii). If no such x exists, then end the
algorithm and return T if |S| = 1, and go to step (iv) if |S| > 1.

(iii) let S = (S − {x}) ∪ {x− 1}, and then go to step (ii).

(iv) In this case, if |S| = j, then we claim S = {k, k + 1 . . . k + j − 1}.
Remove k, k + 1 from S and add element 2k to S. Then go back
to step (ii).

We must first prove our claim from step (iv). Suppose the algorithm
enters step (iv). Clearly if m is the minimal element of S, then m = k;
if not, then we could take x = m, contradicting the algorithm’s choice
to enter step (iv). Also, if x /∈ S then x + 1 /∈ S. These properties
require that S = {k . . . k + j − 1} for some j, proving the claim.

Now we must show the algorithm returns a set T with the required
property. Note that after each repetition of step (ii) except for the
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last, sum(S) decreases by 1 - the procedures in steps (iii) and (iv)
decrease sum(S) by 1 and exactly one of (iii), (iv) is called after
every repetition of step (ii). Since the algorithm can never produce
sum(S) < k, the algorithm must eventually terminate. When the
algorithm begins, we have

sum(S) =
2k∑

j=k+1

j =
k∑

j=1

(j + k) =k2 +
k∑

j=1

j =
3k2 + k

2

and when the algorithm terminates, we have S = k. Thus a set S
with sum p is recorded in T for each p ∈ [k, 3k2+k

2 ] as desired.

Call an assignment of + and - signs good if it produces a sum of 0,
and call a subset P of {1 . . . n} good if assigning + signs to members
of P and - signs to the other numbers produces a good assignment.
Given a good assignment, let P be the set of numbers assigned a
+ sign and Q be the set of numbers assigned a - sign. Clearly, we
have sum(P ) = sum(Q), so P is a good set. Conversely, if P,Q is
a partition of {1 . . . n} such that sum(P ) = sum(Q), then assigning
the members of P + signs and the members of Q - signs gives a good
assignment. This gives a correspondence between good assignments
and good sets.

We first prove no good sets exist for n ≡ 1, 2 (mod 4). Suppose we
have a good set P; as before, let Q = 1...n − P . Because sum(P ) +
sum(Q) = 1+ · · ·+n = (n)(n+1)

2 , we must have sum(P ) = sum(Q) =
(n)(n+1)

4 . If n ≡ 1, 2 (mod 4), then (n)(n + 1) is not divisible by 4, so
no such assignments exist.

We next prove the lower bound in part (ii). For the n ≡ 0 (mod 4)
case, we produce 2n/2−1 good subsets. The correspondence between
good subsets and good assignments then proves the bound. Let S1 =
{1 . . . 2k−1} and S2 = {2k . . . 4k}. Let k = n

4 . We claim that for each
A ⊂ S1, there exists a good subset R such that R∩{1 . . . 2k−1} = A.
Since there are 2n/2−1 choices of P, all of which yield distinct sets
R, this will produce the required number of subsets. To prove this
claim, note that if A ⊂ S1, then 0 ≤ sum(A) ≤ 4k2+2k

2 . Thus
2k2 ≤ n2+n

4 − sum(A) ≤ 8k2+2k
2 , which gives us

2k ≤ n2 + n

4
− sum(A) ≤ 3(2k)2 + 2k

2
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By the lemma, we can choose a set B ⊂ S2 with sum(B) = n2+n
4 −

sum(A). Then R = A∪B has R ∩ {1 . . . 2k− 1} = A and sum(R) =
n2+n

4 . This proves the n ≡ 0 (mod 4) case.
For the n ≡ 3 (mod 4) case, we can choose n = 4k + 3. Then we

can prove the lower bound in part (ii) by applying a similar argument
with S1 = {1 . . . 2k} ∪ {4k + 3}, S2 = {2k + 1 . . . 4k + 2}.

For the upper bound in part (ii), we show the stronger upper bound
f(n) ≤ 2n−1. We represent assignments as n-tuples (x1 · · ·xn) of 1s
and -1s with xi = 1 representing a + and xi = −1 representing a
-, and call an n-tuple good if the corresponding assignment is good.
Now let g(x1 · · ·xn) = (−x1,−x2, x3...xn). We claim that g is an
injection from the set A of good n-tuples to the set B of non-good
n-tuples. To see this, let (x1, · · ·xn) be a good n-tuple. Then we have

−x11 +−x22 + x33 + · · ·+ xnn

= x11 + x22 + x33 + · · ·+ xnn− 2(x11 + x22)

≡ 0 + 21 ≡ 1 mod 2

which gives that g(x1 · · ·xn) is not a satisfying n-tuple. Thus we have
|A| ≤ |B|. Because |A|+|B| = 2n, we must have 2|A| ≤ |A|+|B| = 2n,
which gives us |A| ≤ 2n−1 as desired.

Problem 5 Let ABCD be a unit square. For any interior points
M,N such that line MN does not contain a vertex of the square,
we denote by s(M,N) the minimum area of all the triangles whose
vertices lie in the set of points {A,B,C, D, M, N}. Find the least
number k such that s(M,N) ≤ k for all such points M,N .

Solution: The answer is that k = 1/8. It is easy to generate
an example where the smallest triangle is of area 1/8: Setting the
coordinates of the squares corner’s A,B,C, and D to (0, 0), (1, 0),
(1, 1) and (0, 1) respectively, place M at (1/4, 1/2) and N at (3/4,
1/2). It is simple to check the areas in this case.

To show that it’s impossible to do better, let E,F, G,H, I, J,K,L,O,

P,Q, and R be the points at (1/4, 0), (3/4,0), (1,1/4), (1, 3/4),
(3/4,1), (1/4,1), (0,3/4), (0,1/4), (1/2,1/4), (3/4,1/2), (1/2,3/4), and
(1/4,1/2) respectively. Then any point in the interior of ABCD must
be within either of the hexagons BGJDKF or AEHCIL, or one the
triangles OEF, PGH,QIJ, or RKL.
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If M is inside BGJDKF , then the distance from M to BD is
bounded, because JG and FK are parallel to BD and are of distance

1
4
√

2
to BD. Because the length of BD is

√
2, the area of MBD is

not more than
1
2
· 1
4

√
2 ·
√

2 =
1
8
.

By similar reasoning, if M is inside AEHCIL, the area of MAC is
not more than 1

8 . If M is inside of OEF , then M ’s distance to AB

is not more than 1/4, and the area of MAB is not more than 1/8,
and the cases for M being inside PGH,QIJ, or RKL are trivially
the same with sides BC, CD, or DA. Therefore, no matter where M

is placed, one of the triangles with vertices in the set {M,A,B,C, D}
will have an area of 1/8 or less.

Problem 6 Let p(x) = amxm + am−1x
m−1 + · · · + a0 and q(x) =

bnxn + bn−1x
n−1 + · · · + b0, where each coefficient ai and bi equals

either 1 or 2002. Assuming that p(x) divides q(x), show that m + 1
is a divisor of n + 1.

Solution:

Lemma. In any field F , we have that gcdF [x](xp − 1, xq − 1) =
xgcd(p,q) − 1

Proof. : Let g = gcd(p, q), and let R(x) = gcdF [x](xp−1, xq−1). Then
it is known that a | b ⇒ xa−1 | xb−1. There exist a, b ∈ N such that
ap = bq + g without loss of generality. Thus r(x) | xp − 1 | xap − 1
and

r(x) | xq − 1 | xbq − 1 | xbq+g − xg = xaP − xg Therefore
r(x) | (xap−1)−(xaP−xg) = xg−1. Trivially, we also have xg−1 | r(x)
since xg − 1 | xp − 1, xg − 1 | xq − 1, so we must have r(x) = xg − 1
.

In the field F3, we have that each coeficcient of p(x) and q(x)
equals 1, since 2002 and 1 are both equivalent to 1 (mod 3). Thus in
F3(x), we have that p(x) = xm+1−1

x−1 and that q(x) = xn+1−1
x−1 . Since

p(x) | q(x) in R(x), we have that p(x) | q(x) in F3(x), giving that
xm+1 − 1 | xn+1 − 1. This means that

gcdF [x](xm+1 − 1, xn+1 − 1) = xm+1 − 1.

By the lemma, this implies that m + 1 | n + 1 as desired.
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Problem 7 Let a, b be positive real numbers. For any positive
integer n, denote by xn the sum of the digits of an + b (written in
its decimal representation). Show that x1, x2, · · · contains a constant
(infinite) subsequence.

Solution:
Given a positive real α > 1, define Fα = {bαnc}n∈N, with β = α

α−1 .

Lemma. Given α > 1, β = α
α−1 , with α irrational, we have that

Fα,Fβ partition N.

Proof. It suffices to show that for each n ∈ N, we have |[n] ∩ Fα| +
|[n] ∩ Fβ | = n. We have that |[n] ∩ Fα| = |{k ∈ N : bαkc ≤ n}|. But

bαkc ≤ n ⇐⇒ bαkc < n + 1 ⇐⇒ αk < n + 2 ⇐⇒ k <
n + 1

α
.

Thus {k ∈ N : bαkc ≤ n} = {k : 1 ≤ k < n+1
α }, and there are

bn+1
α c elements in [n] ∩ Fα. After a similar argument for β, we must

then show that bn+1
α c + bn+1

β c = n. But by definition of β, we have
1
α+ 1

β = 1. Since neither of α, β is rational, we must then have {n+1
β }+

{n+1
α } = 1. Thus bn+1

α c+ bn+1
β c = n + 1−

(
{n+1

β }+ {n+1
α }

)
= n as

desired.

Let d(n) denote the sum of n’s digits. Note that d(a + b) ≤
d(a) + d(b). It suffices to show that d(xn) has an infinite bounded
subsequence, because than we have that some digit sum occurs
infinitely often by the infinite pigeonhole principle. We first show
the result for β = 0.

We first prove the statement for y = 0. The general case follows
easily from d being bounded on [b] and the triangle inequality for d.
Case 1) If α ≤ 1, then {bαnc}n∈N = N and the result is trivial.

Case 2) If α > 1, and α = p/q, p, q ∈ N, then we have that
{p10k}k∈N is a subsequence with constant digit sum.

Case 3) If α > 1 and α is irrational, then:

Lemma. Given α, Fα as before, we have |Fα ∩ n · · ·n + r| < r + 1,
where r = d 1

α−1e.

Proof. We have bαkc = n ⇐⇒ n−1
p < k ≤ n

p .
Suppose the statement is false; then we have integers a...a + r ∈

(n−1
b , n+r

b ]. Then the length of (n−1
b , n+r

b ] must be at least r, so
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n+r
b = n+r

b − n−1
b ≥ r. But by definition of r, we have r > 1

b+1 ⇒
r > 1+r

b , a contradiction. Thus the statement holds.

Since Fb, Fy partition N by the first lemma, either Fb or Fy

contains infinitely many members of the set {10k}. If Fb does, then
we have our desired subsequence. Otherwise if Fy does, then by
lemma 2 Fy is missing infinitely many many members of the set
P = 10k + j : 0 ≤ j ≤ r - where r is defined as in the second lemma
- and thus Fb contains infinitely many members of P. Since d(x) is
bounded on [r], and d(a + b) ≤ d(a) + d(b), we must have that d(x)
is bounded on the set P , and we have the desired conclusion.

Problem 8 At an international conference there are four official
languages. Any two participants can talk to each other in one of
these languages. Show that some language is spoken by at least 60%
of the participants.

Solution: Let the languages spoken at the conference be A,B, C,

and D. Given X ⊆ {A,B, C, D}, let S(X) be the percent of partic-
ipants who can only speak the languages in set X. If S({A}) > 0,
then there exists someone who can speak only A, and everyone must
be able to communicate with him. So everyone must be able to speak
A.

Assume S({A}) = S({B}) = S({C}) = S({D}) = 0. Call a
participant billingual if he speaks only two languages. Say there is a
billingual participant. Without loss of generallity,say he speaks A and
B. Then S({A,B}) > 0, so everyone must be able to speak either A

or B. But there cannot be two billingual participants, one of whom
speaks A but not B and one of whom speaks A but not B, because
they would not be able to communicate with each other. So either
all billingual participants speak A or all billingual participants speak
B. Without loss of generallity, say they all speak A. Then

S({A,B}) +S({A,C}) + S({A,D}) + S({A,B,C}) +

S({A,B, D})+S({A,C,D}) + S({B,C,D}) + S({A,B, C, D}) = 100

Notice that the only people who do not speak A are those who
speak B, C, and D. So if S({B,C,D}) ≤ 40, then at least 60%
of the participants can speak A. Say S({B,C,D}) > 40. Define
b = S({A,B}) + S({A,B, C}) + S({A,B,D}), and let c and d be
defined likewise.



2002 National Contests: Problems 59

Let q = S({A,B})+S({A,C})+S({A,D}) and r = S({A,B, C})+
S({A,B, D}) + S({A,C, D}) + S({B,C,D}). Then b + c + d = q + r,
so either b, c, or d ≥ (1/3)(q + r). Without loss of generallity,
b ≥ (1/3)(q + r). So then, the percent of people who can speak
B is

S({A,B}) + S({A,B, C}) + S({A,B,D})

+ S({B,C,D}) + S({A,B, C, D})

= b + S(B,C,D) + S(A,B, C, D)

≥ 1/3(q + r) + S(B,C,D) + S(A,B, C, D)

≥ 1/3(100− S(B,C,D)) + S(B,C,D)

= 100/3 + (2/3)S(B,C,D)

> 100/3 + (2/3)(40)

= 60

If there are no bilingual people, then there is no difference in the
proof, except that q = 0.

Problem 9 Let ABCDE by a convex pentagon inscribed in a circle
of center O, such that ∠B = 120◦, ∠C = 120◦, ∠D = 130◦, and
∠E = 100◦. Show that diagonals BD and CE meet at a point on
diameter AO.

Solution: BCDE is cyclic, so ∠BCD = 180◦ − ∠BED = 50,
so ∠ABE = ∠ABC − ∠BED = 70◦. Similarly, ∠BCD = 180◦ −
∠BED = 60◦, so ∠AEB = ∠AED − ∠CED = 40◦. Also, ABCE

and ABDE are cyclic, so ∠AEC = 180−∠ABC = 60◦, and ∠ABD =
180 − ∠AED = 80◦. Let X be the second intersection of AO with
the circle, and let Y and Z be the intersections of CF and BE with
AX respectively. Then ∠FXA = ∠FBA = 70◦, and ∠BXA =
∠AFB = 40◦. Then, because AFX and ABX are right triangles,
∠FAX = 90◦ − ∠FXA = 20◦ and ∠XAB = 90◦ − ∠AXB = 50◦,
and so ∠FY A = 180◦ − ∠Y FA − ∠FAY = 100◦ and ∠AZB =
180◦ − ∠ABY − ∠BAY = 50◦.

Now, we seek to prove that AY = AZ. To prove this, let R be the
length of my AX. Then the length of AB is simply R sin(40◦), and so
by the law of sines is R sin(40◦) sin(80◦)

sin(50◦) . Similarly, the length of AF is
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simply R sin(70◦), and so by the law of sines R sin(70◦) sin(60◦)
sin(100◦) . So it is

clear that proving the problem is equivalent to proving the following
trigonometric identity:

sin(40◦) sin(80◦)
sin(50◦)

=
sin(70◦) sin(60◦)

sin(100◦)

However, this is an equality, as the following chain of equations
shows:

cos(10◦) = 2 cos(60◦) cos(10◦)

cos(10◦) = cos(70◦) + cos(50◦)

(cos(30◦) + cos(10◦))− (cos(70◦) + cos(50◦)) =
√

3
2

1
2

cos(10◦)(cos(20◦)− cos(60◦)) =
√

3
8

4 sin(80◦) sin(20◦) sin(40◦) =
√

3
2

sin(100◦)(2 sin(20◦) cos(20◦))(2 sin(40◦) cos(40◦)) = sin 60 cos(20◦) cos(40◦)

sin(100◦) sin(40◦) sin(80◦) = sin(70◦) sin(60◦) sin(50◦)

sin(40◦) sin(80◦)
sin(50◦)

=
sin(70◦) sin(60◦)

sin(100◦)

Problem 10 Let n ≥ 4 be an integer and let a1, a2, . . . , an be
positive real numbers such that a2

1 + a2
2 + · · ·+ a2

n = 1. Show that

a1

a2
2 + 1

+
a2

a2
3 + 1

+· · ·+ an

a2
1 + 1

≥ 4
5

(a1
√

a1 + a2
√

a2 + · · ·+ an
√

an)2 .

Solution:

Lemma. given nonnegative variables x1 · · ·xn with x1 + · · ·xn = 1,
and n ≥ 4, we have

f(x) =
n∑

i=1

xixi+1 ≤
1
4

with subscripts interpreted mod n.

Proof. We take cases for n odd and n even. If n is even, then we have
f(x) a linear function in the variables x2i . By elementary properties
of linear functions, we then have that f takes on its maximum value
when all but one of these variables is equal to 0. A similar argument
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for the variables x2i+1 gives that f takes on its maximum value when
all but one of x2i+1 is equal to 0. This gives us that there exists a
maximizing assignment of variables such that f(x) contains at most
one nonzero term xixi+1. By the AM-GM inequality, we then have

f (x) ≤
(

xi + xi+1

2

)2

≤ 1
4
.

If n is odd, then f(x) is a linear function in the variables x1, x3.
Therefore f takes on its maximum value when one of x1, x3 = 0.
Then we may apply the above argument to the remaining nonzero
variables.

Now by Cauchy’s inequality, we have

(
∑
cyc

(
a3
1

a2
1a

2
2 + a2

1

)(
∑
cyc

a2
1a

2
2 + a2

1) ≥ (
∑
cyc

a1
√

a1)

But ∑
cyc

a2
1a

2
2 + a2

1 =
∑
cyc

a2
1a

2
2 + a2

1 ≤
∑
cyc

a2
1a

2
2 + 1 ≤ 5

4

with the last step proved by the lemma. Thus

5
4

∑
cyc

a3
1

a2
1a

2
2 + a2

1

≥
∑
cyc

a1
√

a1

as desired.

Problem 11 Let n be a positive integer. Let S be the set of all
positive integers a such that 1 < a < n and n | (aa−1− 1). Show that
if S = {n− 1}, then n is twice a prime number.

Solution: Assume n > 2, since the case n = 2 trivially does not
work. n − 1 ∈ S implies that n | (n− 1)n−1 − 1. So (n− 1)n−1 ≡
1 (mod n). But the order of n−1 (mod n) is simply 2, so 2+φ(n)k =
n − 2 for some k ∈ Z. Therefore, φ(n) | n − 4. Let n = 2x

∏m
i=1 pi

bi

Notice that if bi > 1, then pi | φ(n) and pi 6 | n − 4. So bi = 1 for all
i, 1 ≤ i ≤ m. Let l(p) be the highest power of two dividing p ∈ N;
so 2l(p) | p and 2l(p)+1 6 | p. We take the following cases based on
x = l(n):

Case 1: x > 3
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In this case, l(φ(n)) = x− 1 > 2 by definition of φ. But l(n− 4) ≥
l(φ(n)) by divisibilty, and l(n− 4) = 2. So 2 = l(n− 4) ≥ l(φ(n)) =
x− 1 > 2, which is impossible. So l(n) 6= 2

Case 2: x = 3
In this case, we have 2 = l(n − 4) ≥ l(φ(n)) = x − 1 ≥ 2 by the

same reasoning as in case 1. Therefore, l(φ(n)) = 2, so n can have
no odd prime factors. Therefore n = 8. Yet 32 − 1 = 8, so 3 ∈ S.
Therefore l(n) 6= 3.

Case 3: x = 2
We notice that(

2
m∏

i=1

pi + 1

)2
∏m

i=1 pi

− 1 =
2

∏m
i=1 pi∑

k=1

(
2
∏m

i=1 pi

k

)(
2

m∏
i=1

pi

)k

It is trivial to note that eeach term of this expression is divisible
by 4

∏m
i=1 pi = n. So 2

∏m
i=1 pi = n/2 ∈ S. Therefore, l(n) 6= 2.

Case 4: x = 0
This is clearly impossible, since n − 4 is odd if n is, yet φ(n) is

always even, showing φ(n) 6 | n− 4.
Case 5: x = 1
In this case, n = 2

∏m
i=1 pi, so φ(n) =

∏m
i=1(pi − 1). Notice that

n−4 = 2(
∏m

i=1 pi−2), so l(n−4) = 1. Yet l(φ(n)) = l(
∏m

i=1(pi−1)) ≥
m, since each term pi − 1 is even. Since φ(n) | n− 4, this shows that
only one odd prime can divide n. And some odd prime must do so:
For n 6= 2, S is the null set because no a exists so that 1 < a < 2.

So we must have n = 2p for some odd prime p.

Problem 12 Show that there does not exist a function f : Z →
{1, 2, 3} satisfying f(x) 6= f(y) for all x, y ∈ Z such that |x − y| ∈
{2, 3, 5}.

Solution:
We show that any such function f satisfies f(x) = f(x + 1). This

results in a contradiction, because a constant function cannot satisfy
the condition.

Without loss of generality, we have that f(0) = 1, f(5) = 2.
Because |5 − 2| = 3, |2 − 0| = 2, we have that f(2) = 3. Then
f(7) = 1 also, because |7−2| = 5, |7−5| = 2 give that f(7) is different
from f(2), f(5). Finally, because |0 − 3| = 3, |3 − 5| = 2, we must
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have f(3) = 3. Hence f(3) = f(2); translating this argument to f(x)
instead of f(1) gives the desired result.

Problem 13 Let a1, a2, . . . be a sequence of positive integers de-
fined as follows:

• a1 > 0, a2 > 0;

• an+1 is the smallest prime divisor of an−1 + an, for all n ≥ 2.

The digits of the decimal representations of a1, a2, . . . are written in
that order after a decimal point to form a real (decimal) number x.
Prove that x is rational.

Solution: Say that a1 = 2 and a2 = 2. Then a1 +a2 = 4, so a3 = 2.
Proceeding trivially, we see that x = 2

9 . Say that a1 = x, a2 = y,
where x, y are odd. Then 2 | x + y, so a3 = 2. Yet y + 2 is odd, so
a4 is odd. Similarly, a5 is odd and a6 is 2. In general, every third
term is 2, and all other terms are odd. Let b1, b2, . . . , bn, . . . be the
odd terms. Every bn is the smallest prime divisor of bn − 1 + 2. If
bn = 3, then by the recurrence bn +1 = 5, bn +2 = 7, bn +3 = 3, and
the sequence repeats periodically. If bn is not 3, we can show that
either bn+1 or bn+2 must be smaller than bn, by the following: If bn+2

is not prime, then bn+1 ≤
√

bn + 2. But bn is a positive odd prime,
so bn

2 − bn − 2 ≥ 4 > 0, so
√

bn + 2 ≤ bn. Therefore bn < bn−1. If
bn−1 + 2 is prime, then bn−1 + 4 cannot be prime unless bn−1 is 3.
Otherwise,

√
bn + 4 ≤ bn by the same reasoning. So the odd terms

must eventually decrease until bn = 3 for some n, and after that n

the decimal is repeating. Therefore, x is rational.

Problem 14 Let r be a positive number and let A1A2A3A4 be
a unit square. Given any four discs D1,D2,D3,D4 centered at
A1, A2, A3, A4 with radii whose sum is r, we are given that there exists
an equilateral triangle whose vertices lie in three of the four discs.
(That is, there is an equilateral triangle BCD and three distinct discs
Di,Dj ,Dk such that B ∈ Di, C ∈ Dj , D ∈ Dk.) Find the smallest
positive number r with this property.

Solution: The required number is 8 sin 15
3 . To show that this r

is sufficient, given r ≥ 8 sin 15
3 , choose three discs Dp, Dq, Dr from

D1,D2,D3,D4 so that p + q + r ≥ 3r
4 . Set up complex coordinates in

the plane so that Dp is centered at 1, Dq at 0, and Dp at i without loss
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of generality. To see if points from Dp, Dq, Dr can form an equilateral
triangle, choose points 1 + a ∈ Dp, b ∈ Dq, c ∈ Dr. Then it is well
known that these points make an equilateral triangle if and only if

(i + c) + ω(b) + ω2(1 + a) = 0,

if and only if
c + bω + aω2 = −i− ω2. (∗)

We have that −i− ω2 has modulus

| cis (90) + cis(240)| = 2| cis (75) + cis(−75)
2

| = 2 sin 15.

Because |c| + |b| + |a| ≥ 3r
4 ≥ 2 sin 15, we can choose a, b, c to be

positive scalar multiples of −i − ω2 in a way that satisfies ∗. This
proves sufficiency.

To show that r ≥ 8 sin 15
3 is necessary, give each of the four discs

radius r
4 . Then Dp, Dq, Dr in the above construction will have radius

r
4 . We can find the required equilateral triangle if and only if we can
satisfy equation ∗, and if ∗ is satisfied then we must have

3r

4
= |c|+ |b|+ |a| ≥ c + bω + aω2 = | − i− ω2| = 2 sin 15.

This gives the desired bound on r.

Problem 15 Elections occur and every member of parliament is
assigned a positive number, his or her absolute rating. On the first
day of parliament, the members are partitioned into groups. In each
group, every member of that group receives a relative rating : the ratio
if his or her absolute rating, to the sum of the absolute ratings of all
members in that group. From time to time, a member of parliament
decides to move to a different group, and immediately after the switch
each member’s relative rating changes accordingly. No two members
can move to different groups at the same time. Show that only a
finite number of moves to different groups can be made.

Solution: We proceed by induction. If there is only one group, then
nobody can move. Say that this is true for n − 1 or fewer groups.
Let the politicians be P1, P2, . . . Pm, with ratings E1, E2, . . . Em re-
spectively. Let the groups at the beginning be G1, G2, . . . Gn. Let
R(Gi) be the sum of all ratings of the members of Gi. Note that
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the number of groups never changes: the number cannot increase
trivially. If at some point it decreases, the politician that moved
went from being in his own group (and having a rating of 1) to
another nonempty group, giving him a rating strictly less than one.
Let M = Max(R(G1) . . . R(Gn)).

Lemma. M can never increase.

Proof. Suppose after some move of Pi from Gj to Gk, M increases
to M ′. Before the move, R(Gj) ≤ M , so Pi’s relative rating was

Ei

R(Gj)
≥ Ei

M . Afterwards, R(Gk) ≥ M ′ > M, so Ei

R(Gk) > Ei

M .
Therefore, Ei’s move has decreased his realtive rating.

If we can show that only finitly many moves can be made preserving
M , we will be done. Without loss of generallity, say that Gi . . . Gn

are all the groups Gj with R(Gj) = M . Then only finitely many
moves can be made within groups G1 . . . Gi − 1 alone by inductive
hypothesis, and trivially no one will move from one of the groups
G1 . . . Gi − 1 to Gi . . . Gn. So eventually someone will have to move
out of one of the groups Gj of Gi . . . Gn, decreasing R(Gj). Then
R(Gj) < M . Continuing, eventualy all groups Gj will have to have
R(Gj) < M .

Problem 16 Let m,n be positive integers of distinct parities
such that m < n < 5m. Show that there exists a partition of
{1, 2, . . . , 4mn} into two-element subsets, such that the sum of the
numbers in each pair is a perfect square.

Solution: Let A = {1, . . . , n2−2mn+m2−1} and B = {n2−2mn+
m2, . . . , 4mn}. Notice that this is possible because n2 − 2mn + m2 ∈
{1, . . . , 4mn}: n2 − 2mn + m2 < 5nm − 2nm + nm = 4nm. Notice
also that the cardinalities of A and B are even, because if n and m

are of different parities then (n−m)2 is odd, so the cardinallity of A,
(n−m)2 − 1, is even, and the carinallity of B, 4mn− (n−m)2 + 1,
is also even. Therefore we can seperate A completely into disjoint
pairs by pairing each element k ∈ A with n2 − 2mn + m2 − k. We
can do the same for B by pairing k with n2 + 2mn + m2 − k. Each
of these pairs has a sum of either n2 − 2mn + m2 = (n − m)2 or
n2 + 2mn + m2 = (n + m)2, so they clearly satisfy the problem’s
requirements.
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Problem 17 Let ABC be a triangle such that AC 6= BC and
AB < AC. Let Γ be its circumcircle. Let D be the intersection of
line BC with the tangent line to Γ at A. Let Γ1 be the circle tangent
to Γ, segment AD, and segment BD. We denote by M the point
where Γ1 touches segment BD. Show that AC = MC if and only if
line AM is the angle bisector of angle DAB.

Solution:
We first show that AC = MC implies ∠MAD = ∠BAM . Let Γ3

be the circle with center C and radius AC. Then the radius MC of
Γ3 is tangent to Γ1, so the circles Γ3 and Γ1 are orthogonal. Let σ

be the inversion through circle Γ3. Then σ takes Γ1 to itself, and
therefore takes Γ1 to the line AD tangent to Γ1 at A. Because of this,
we must have that σ take B to D, and that 4DAC ∼ 4ABC. This
gives that ∠ABC = ∠CAD = 90.

Now let x = ∠DCA. By tangent line AD we have ∠BAD =
∠BCA = x, and by isoceles triangle MCA we have ∠CAM = 90− x

2 .
By right triangle ABC we have ∠CAB = 90 − x. Combining our
information gives us

∠CAD = 90

∠CAM = 90− x
2

∠CAB = 90− x

∠MAD = ∠CAD − ∠CAM = x
2

∠BAM = ∠CAM − ∠CAB = x
2

and ∠MAD = ∠BAM as desired.
We now show the converse. Suppose we have ∠MAD = ∠BAM .

Let x = ∠DAB. Then we have ∠BCA = x, ∠DAC = 90, and
∠MAD = ∠BAM = x

2 . Now invert about A, and denote the image
of point P by P ′. We now have that D′, B′, C ′, A′ are concyclic,
∠D′A′C ′ = 90, ∠D′A′B′ = x, ∠D′AM ′ = ∠M ′AB′ = x

2 , and
∠B′AD′ = x. Therefore we have D′A ‖ B′C ′.’ Because of this
and the right angles at B′ and A, we have ∠AD′B′ = ∠B′C ′A = 90.
We now have that
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∠M ′B′C ′ = ∠M ′B′A′ + ∠D′B′C ′ = ∠M ′AD′ + 90 = 90 + x
2

∠AD′M ′ = ∠B′D′M ′ + ∠AD′B′ = 90 + ∠B′AM ′ = 90 + x
2

which gives that ÂM ′ = M̂ ′C ′ in circle AD′B′C ′, and that AM ′C ′

is isoceles. By inversion, we have that ACM is isoceles and that
AC = CM as desired.

Problem 18 There are n ≥ 2 players who are playing a card game
with np cards. The cards are colored in n colors, and there are p

cards of each color, labelled 1, 2, . . . , p. They play a game according
to the following rules:

• Each player receives p cards.

• During each round, one player throws a card (say, with the color
c) on the table. Every other player also throws a card on the
table; if it is possible to throw down a card of color c, then the
player must do so. The winner is the player who puts down the
card of color c labelled with the highest number.

• A person is randomly chosen to start the first round. Thereafter,
the winner of each round starts the next round.

• All the cards thrown on the table during one round are removed
from the game at the end of the round, and the game ends after
p rounds.

At the end of the game, it turns out that all cards labeled 1 won some
round. Prove that p ≥ 2n.

Solution: Call the players A1 . . . An, and let the colors be 1 . . . n.

Lemma. In the last round, each player must have a differently colored
card.

Proof. Let the card played in the last round by player Ai be Ci.
Without loss of generallity, we will show that C1’s color is different
from Cj ’s, for i 6= j. Say C1 is of color c. If C1 is labelled one, then
C1 must win the round, but any other card of color c would beat C1.
So not Ci, i > 1 is of color c. If C1 is not labelled one, then say there
is a j > 1 so that Cj is of color c. Cj obviously cannot be 1, for
there is no way it could beat C1 if it was. So the card X of color c,
label one, must have won a previous round. But when X was played,
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player A1 had C1 in his hand, and player Aj had Cj in his hand, so
one of the two was forced to play his card and beat X. Therefore Cj

cannot be of color c.

Lemma. Every card of label one was played by a different player.

Proof. Let the color of Ci be i, and let the card of color i, label one
be xi. If the card xi is played by someone other than Ai, Ai will be
forced to play Ci and beat xi. So xi must be played by Ai.

Notice this also gives us that player Ai has xi in his hand. Without
loss of generallity, say the cards xi are played in the order x1 . . . xn.
If A1 has all the cards of color 1, then A1 will win every round by the
rules. But there cannot be any cards of color 1 in anyone else’s hands
when x1 is played. So the must be at least one round before x1 is
played to eliminate the cards of color 1 from the hands of A2 . . . An.
A2 cannot win with x2 unless he is the challenger, so there must be a
round in between the round when x1 wins and when x2 wins. By the
same reasoning, there must be a round in between the round when
xi wins and when xi+1 wins. So in total, there must be at least 2n

rounds. Because there are p rounds in all, p ≥ 2n as desired.
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1.12 Russia

Problem 1 Each cells in a 9× 9 grid is painted either blue or red.
Two cells are called diagonal neighbors if their intersection is exactly
a point. Show that some cell has exactly two red neighbors, or exactly
two blue neighbors, or both.

Problem 2 A monic quadratic polynomial f with integer coeffi-
cients attains prime values at three consecutive integer points. Show
that it attains a prime value at some other integer point as well.

Problem 3 Let O be the circumcenter of an acute triangle ABC

with AB = AC. Point M lies on segment BO, and point M ′ is
the reflection of M across the midpoint of side AB. Point K is the
intersection of lines M ′O and AB. Point L lies on side BC such that
∠CLO = ∠BLM . Show that O,K, B, L are concyclic.

Problem 4 There are b 4
3nc rectangles on the plane whose sides

are parallel to the coordinate axes. It is known that any rectangle
intersects at least n other rectangles. Show that one of the rectangles
intersects all the other rectangles.

Problem 5 Around a circle are written the numbers a1, a2, . . . , a60,
a permutation of the numbers 1, 2, . . . , 60. (All indices are taken
modulo 60.) Is it possible that 2 | (an + an+2), 3 | (an + an+3), and
7 | (an + an+7) for all n?

Problem 6 Let ABCD be a trapezoid with AB ‖ CD and BC 6‖
DA. Let A′ be the point on the boundary of the trapezoid such that
line AA′ splits the trapezoid into two halves with the same area. The
points B′, C ′, D′ are defined similarly. Let P be the intersection of
the diagonals of quadrilateral ABCD, and let P ′ be the intersection
of the diagonals of quadrilateral A′B′C ′D′. Prove that P and P ′

are reflections of each other across the midpoint of the midline of
trapezoid ABCD. (The midline of the trapezoid is the line connecting
the midpoints of sides BC and DA.)

Problem 7 18 stones are arranged on a line. It is known that there
are 3 consecutive stones that weigh 99 grams each, whereas all the
other stones weigh 100 grams each. You are allowed to perform the
following operation twice: choose a subset of the 18 stones, then weigh
that collection of stones. Describe a method for determining which
three stones weigh 99 grams each.
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Problem 8 What is the largest possible length of an arithmetic
progression of positive integers a1, a2, . . . , an with difference 2, such
that a2

k + 1 is prime for k = 1, 2, . . . , n?

Problem 9 A convex polygon on the plane contains at least m2 +1
lattice points strictly in its interior. Show that one some m+1 lattice
points strictly inside the polygon lie on the same line.

Problem 10 The perpendicular bisector of side AC of a triangle
ABC meets side BC at a point M . The ray bisecting angle AMB

intersects the circumcircle of triangle ABC at K. Show that the
line passing through the incenters of triangles AKM and BKM is
perpendicular to the angle bisector of angle AKB.

Problem 11

(a) The sequence a0, a1, a2, . . . satisfies a0 = 0 and 0 ≤ ak+1−ak ≤ 1
for k ≥ 1. Prove that

n∑
k=0

a3
k ≤

(
n∑

k=0

ak

)2

.

(b) If the sequence a0, a1, a2, . . . instead satisfies a0 = 0 and ak+1 ≥
ak + 1 for k ≥ 1, prove the reverse of the inequality in (a).

Let n ≥ 3 be an integer. On the x-axis have been chosen pair-
wise distinct points X1, X2, . . . , Xn. Let f1, f2, . . . , fm be the monic
quadratic polynomials that have two distinct Xi as roots. Prove that
y = f1(x) + · · ·+ fm(x) crosses the x-axis at exactly two points.

Problem 12 What is the largest number of colors in which one can
paint all the squares of a 10 × 10 checkerboard so that each of its
columns, and each of its rows, is painted in at most 5 different colors?

Problem 13 Real numbers x and y have the property that xp + yq

is rational for any distinct odd primes p, q. Prove that x and y are
rational.

Problem 14 The altitude from S of pyramid SABCD passes
through the intersection of the diagonals of base ABCD. Let AA1,
BB1, CC1, DD1 be the perpendiculars to lines SC, SD, SA, and
SB, respectively (where A1 lies on line SC, etc.). It is known that
S, A1, B1, C1, D1 are distinct and lie on the same sphere. Show that
lines AA1, BB1, CC1, DD1 are concurrent.
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Solution: Let E denote the intersection of AC and BD. Lines
SE, AA1, and CC1 pass through the orthocenter of 4ASC, which
we denote H1. Similarly, we denote H2 as the orthocenter of 4BSD.
Let R denote sphere SABCD.Now, H1 must be on R due to cyclic
quadrilateral SA1H1C1. Similarly, H2 is on R due to cyclic quadri-
lateral SB1H2D1. However, since both H1 and H2 are on SE, they
must be the same point, and we are done.

Problem 15 The plane is divided into 1 × 1 cells. Each cell is
colored in one of n2 colors so that any n×n grid of cells contains one
cell of each color. Show that there exists an (infinite) column colored
in exactly n colors.

Solution: Counterexample?
Problem 15 - for colors 1a, 2a, 1b ... tessalate
1a 2a 3a 4a 1b 2b 3a 4a 1b 2b 3b 4b 1a 2a 3b 4b 1c 2c 3c 4c 1c 2c

3d 4d 1d 2d 3d 4d 1d 2d 3c 4c
1a 2a 4a 3a 1b 2b 4a 3a 1b 2b 4b 3b 1a 2a 4b 3b 2c 1c 3c 4c 2c 1c

3d 4d 2d 1d 3d 4d 2d 1d 3c 4c

Problem 16 Let p(x) be a polynomial of odd degree. Show that the
equation p(p(x)) = 0 has at least as many real roots as the equation
p(x) = 0.

Solution: Because p(x) is surjective, for every root r of pthere exists
an a such that p(a) = r, or p(p(a)) = 0.

Problem 17 There are n > 1 points on the plane. Two players
choose in turn a pair of points and draw a vector from one to the
other. It is forbidden to choose points already connected by a vector.
If at a certain moment the sum of all drawn vectors is zero, then the
second player wins. If at a certain moment it is impossible to draw a
new vector and the sum of the existing vectors is not zero, then the
first player wins. As a function of the choice of n points, which player
has a winning strategy?

Solution: The first player wins in every configuration. For the
first move she simply chooses the vector

−−→
AA′ with largest possible

magnitude. Suppose for contradiction the second player can choose
a
−−→
BB′ such that

−−→
AA′ +

−−→
BB′ = 0. Then AA′BB′ is a parallelogram
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and one of
−−→
AB′,

−−→
BA′ has a larger magnitude than

−−→
AA′, which is a

contradiction. On the remaining moves, suppose the sum of the down
vectors equals ~V 6= 0 before the first player plays. The first player
now chooses a vector such that:

(i) It has the largest possible magnitude

(ii) Itmakes an angle ≥ 90 with ~V when placed on its head.

Clearly, the second player can no longer choose a vector with
magnitude large enough to make the sum of all the vectors equal
zero. The first player simply continues the above strategy till it is
impossible to draw more vectors.

Problem 18 Let ABCD be a convex quadrilateral, and let `A, `B , `C , `D

be the bisectors of its external angles. Lines `A and `B meet at a point
K, `B and `C meet at a point L, `C and `D meet at a point M , and `D

and `A meet at a point N . Show that if the circumcircles of triangles
ABK and CDM are externally tangent to each other, then the same
is true for the circumcircles of triangles BCL and DAN .

Solution: Let lines `′A, `′B , `′C , `′D be the internal angle bisectors
of ABCD, and let `′A and `′B meet at K ′, with L′,M ′, N ′ defined
similarly. Let circle CK be the circumcircle of triangle ABK, with
circles CL, CM , CN defined symmetrically. Let P be the intersection
of AD and BC, with line `P the internal angle bisector of ∠APB. (If
AD ‖ BC, P becomes a point on the line at infinity in the projective
plane and line `P becomes a line parallel to AD and BC halfway
between them.)Now, ∠KAK ′ = ∠KBK ′ = 90 so K ′ is on circle CK

and KK ′ is a diameter. Similarly, MM ′ is a diameter of CM . Also,
K, K ′ and M,M ′ are the incenters/excenters of triangles PAB and
PDC respectively, so all four are on line `P . This implies that CK

and CM are externally tangent if and only if K ′ and M ′ are the same
point, which is true if and only if L′ and N ′ are (that) same point as
well, which lea to the desired result.
Note: A direct result is that CK and CM are tangent if and only if
ABCD is a rhombus.

Problem 19 Let n be a fixed integer between 2 and 2002, inclusive.
On the segment [0, 2002] are marked n + 1 points with integer coor-
dinates, including the two endpoints of the segment. These points
divide [0, 2002] into n segments, and we are given that the lengths of
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these segments are pairwise relatively prime. One is allowed to choose
any segment whose endpoints are already marked, divide it into n

equal parts, and mark the endpoints of all these parts — provided
that these new marked points all have integer coordinates. (One is
allowed to mark the same point twice.)

(a) By repeating this operation, is it always possible — for fixed n,
but regardless of the choice of initial markings — to mark all the
points on the segment with integer coordinates?

(b) Suppose that n = 3, and that when we divide any segment into
3 parts we must erase one of its endpoints. By repeating the
modified operation, is it always possible — regardless of the choice
of initial markings — to mark any given single point of [0, N ]?

Problem 20 Distinct points O,B,C lie on a line in that order, and
point A lies off the line. Let O1 be the incenter of triangle OAB, and
let O2 be the excenter of triangle OAC opposite A. If O1A = O2A,
show that triangle ABC is isosceles.

Problem 21 Six red, six blue, and six green points are marked on
the plane. No three of these points are collinear. Show that the sum
of the areas of those triangles whose vertices are marked points of the
same color, does not exceed one quarter of the sum of the areas of all
the triangles whose vertices are marked points.

Solution: Let us label the eighteen points r1, r2, . . . , r6, b1, . . . , b6,

g1, . . . , g6 (r, b, g for red, blue, and green respectively). Let [ABC]
denote the area of triangle ABC. Using symmetric sum notation, we
have ∑

symr

f(r1, r2, . . . , r6) =
∑

σ(r1,r2,...,r6)

f(r1, r2, . . . , r6),

where we sum over permutations of the ri on the right side. Let
R denote the sum of the areas of the triangles formed by three red
points, let Rb denote the sum of the areas of the triangles with two red
and one blue point, and let Rg, B, Br . . . be defined similarly. Now,
observe that

[ABC] ≤ [ABD] + [ACD] + [BCD].
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From this, we have

[r1r2r3] ≤ [r1r2b1] + [r2r3b1] + [r3r1b1].

Summing over both sides,∑
symr

[r1r2r3] ≤
∑

symr

[r1r2b1] + [r2r3b1] + [r3r1b1] = 3 ·
∑

symr

[r1r2b1].

Summing over bi,

2 ·
∑

symr

[r1r2r3] ≤
6∑

x=1

∑
symr

[r1r2bx].

Now,

R =

∑
symr

[r1r2r3]
3! · 3!

and Rb =

∑6
x=1

∑
symr

[r1r2bx]
2! · 4!

, so

2 · 3! · 3! ·R ≤ 2! · 4! ·Rb and
3R

2
≤ Rb.

It follows from symmetry that

R +
3R

2
+

3R

2
≤ R + Rb + Rg and again by symmetry

4R + 4B + 4G ≤ R + Rb + Rg + B + Bg + Br + G + Gr + Gb

which yields the desired result.

Problem 22 A mathematical hydra consists of heads and necks,
where any neck joins exactly two heads, and where each pair of heads
is joined by exactly 0 or 1 necks. With a stroke of a sword, Hercules
can destroy all the necks coming out of some head A of the hydra.
Immediately after that, new necks appear joining A with all the heads
that were not joined with A immediately before the stroke. To defeat
a hydra, Hercules needs to chop it into two parts not joined by necks
(that is, given any two heads, one from each part, they are not joined
by a neck). Find the minimal N for which he can defeat any hydra
with 100 necks by making at most N strokes.

Solution: The answer is 10. Let c(X) denote a stroke of Hercules’
sword around head X. Let the degree of a head denote the number
of heads that are joined to it. We have the following lemma:
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Lemma. A hydra with h heads and H the head with least degree d

can be defeated in min{d, h− d} strokes.

Proof. Let H be joined to heads H1,H2, . . . ,Hd and not joined to
heads Hd+1,Hd+2, . . . ,Hh−1. The strokes c(H1), c(H2), . . . , c(Hd)
will separate H from g in d strokes and the strokes c(H), c(Hd+1),
c(Hd+2), . . . , c(Hh−1) will separate H from g in h− d strokes.

We will now prove that N ≤ 10. Suppose by way of contradiction a
hydra w ith h heads and 100 necks takes more than 10 strokes to die.
By the lemma, each head has a degree of at least 11, so 11h

2 ≤ 100 or
h ≤ 18. However, by the lemma this means the hydra can be defeated
in at most 18− 11 = 7 strokes which is a contradiction.Now, let Ka,b

denote a hydra that can be partitioned into two sets of heads α and
β of sizes a and b respectively such that

(i) every head in α is joined to every head in β,

(ii) no two heads in α are joined, and

(iii) no two heads in β are joined.

We claim that K10,10 takes 10 strokes to die. Clearly, it is 100-necked,
so if true our claim would prove that N = 10 and we’d be done. Let
A be an element of α. Performing c(A) would result in A being joined
to every other element in α and being n joined to every element in β,
resulting in Ka−1,b+1. Similarly, cutt ing a head from β would have
resulted in Ka+1,b−1. A hydra of this form is defeated if and only if
either a or b equals 0, which leads to the desired result.
Note: In graph theory Ki,j is known as the complete bipartite graph
or complete bigraph on i and j vertices.

Problem 23 There are 8 rooks on a chessboard, no two of which
lie in the same column or row. We define the distance between two
rooks to be the distance between the centers of the squares that they
lie on. Prove that among all the distances between rooks, there are
at least two distances that are equal.

Solution: We will first find an upper limit on the number of
possible distances between two rooks. Without loss of generality,
let the distance between two adjacent squares on the board equal 1.
If two rooks are r rows and c columns apart, the distance between
them is

√
r2 + c2. We know that for any pair of rooks, 1 ≤ r, c ≤ 7,

giving at most 28 = 7 +
(
7
2

)
(for r = c and r 6= c respectively)
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different values for
√

r2 + c2. However, we have double counted√
50 =

√
52 + 52 =

√
12 + 72, implying at most 27 different possible

distances.On the other hand, 8 rooks implies
(
8
2

)
= 28 > 27 different

pairs of rooks, so two of them must share the same distance by the
Pigeonhole Principle.

Problem 24 There are k > 1 blue boxes, one red box, and a stack
of 2n cards numbered from 1 to 2n. Originally, the cards in the stack
are in some arbitrary order, and the stack is in the red box. One is
allowed to take the top card from any box; say that the card’s label
is m. Then the card is put either (i) in an empty box, or (ii) in a box
whose top card is labelled m + 1. What is the maximal n for which
it is possible to move all of the cards into one blue box?

Solution: The answer is k − 1. We can label the boxes
R,B1, B2, . . . , Bk and denote e cards in box X by [X | c1, c2, . . . , cz]
(c1 is the top card). Let (c : X, Y ) denote moving card c from box
X to box Y and be called a move.First, we will show that n < k. If
n ≥ k, the initial arrangement could be [R | 1, 3, 5, . . . , 2k−1, 2k . . . ].
The first k moves would necessarily move the top card of R to an
empty blue box. After this there are no more empty boxes and every
subsequent move will involve moving card 2k−1 between R and some
Bx, leaving the problem statement unfulfilled.Now, we will provide
an algorithm for moving the stack to a blue box when n = k− 1. Let
r denote the top card in R, and d = dr/2e. (Note 1 ≤ d ≤ k−1.) For
the first 2k − 2 moves:

(i) If Bd is empty or if r is odd do (r : R,Bd).

(ii) Otherwise, we have [Bd | r − 1]. We now do the following:
(r − 1 : Bd, Bk), (r : R,Bd), and then (r − 1 : Bk, Bd).

After these moves, R and Bk are empty and for 1 ≤ j ≤ k − 1
we have [Bj | 2j, 2j − 1]. Now, for j = 2, 3, . . . , k − 1, we do
(2j : Bj , Bk), (2j − 1 : Bj , B1), and (2j : Bk, B1) in order, after
which we have [B1 | 2k − 2, 2k − 3, . . . , 1] and are done.

Problem 25 Let O be the circumcenter of triangle ABC. On sides
AB and BC there have been chosen points M and N , respectively,
such that 2∠MON = ∠AOC. Show that the perimeter of triangle
MBN is at least AC.
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Problem 26 Let n ≥ 1 be an integer. 22n−1 + 1 odd numbers are
chosen from the interval (22n, 23n). Show that among these numbers,
one can find two numbers a, b for which a 6 | b2 and b 6 | a2.

Solution: Let P (c) denote the set of prime factors of c. Assume
for contradiction there are no two numbers a, b such that a 6 | b2 and
b 6 | a2. Clearly, a | b2 only if P (a) ⊆ P (b), so if |P (a)| = |P (b)|
we must have P (a) = P (b) as well. This means w e can partition
our 22n−1 + 1 number into categories C0, C1, C2, . . . where for any j

and any two numbers ρ, σ in Cj we have |P (ρ)| = |P (σ)| = j and
P (ρ) = P (σ).

Lemma. |Cm| ≤
(
2n−1

m

)
.

Proof. For integer r in Cm let P (r) have elements p1, p2, . . . , pm. For
some ai ≥ 1, we have

3
∑m

i=1 ai ≤ pa1
1 pa2

2 · · · pam
m = r < 23n < 32n implying∑

ai < 2n.

The number of different ways for ai ≥ 1 and
∑

ai = ω is
(

ω−1
m−1

)
.

(Prove it!) Given m ≤ ω ≤ 2n− 1, we have

|Cm| ≤
2n−1∑
ω=m

(
ω − 1
m− 1

)
=
(

2n− 1
m

)
by induction or Pascal’s Triangle (Why?).

We now have

22n−1 + 1 =
∑

i

|Ci| ≤
∑

i

(
2n− 1

i

)
= 22n−1

which is a contradiction and leads to the desired result.

Problem 27 Let p, q, r be polynomials with real coefficients, such
that at least one of the polynomials has degree 2 and at least one of
the polynomials has degree 3. Assume that

p2 + q2 = r2.

Show that at least one of the polynomials both has degree 3 and has
3 (not necessarily distinct) real roots.
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Solution: Define deg(p) to mean the degree of p, and likewise deg(q)
and deg(r). Observe that max {deg(p),deg(q)} = deg(r). This is
because deg(r2) = deg(p2 +q2) = max {deg(p2),deg(q2)} (leading co-
efficients of p2 and q2 are positive and do not cancel), and 2 ·deg(r) =
deg(r2) = max {deg(p2),deg(q2)} = 2 · max {deg(p),deg(q)}. Thus
one of p, q (without loss of generality, q) must have degree 2, and
both p and r must have degree 3.

Now we write p2 = (r+q) · (r−q). We know that both factors have
degree 3. Since p has either 1 or 3 real roots, r + q and r − q either
both have one real root or three real roots accordingly. Assume that
p, r + q, and r − q each have one real root; let the root of p be r1.
Since r2

1|p2, this means that r1 is a root of both r + q and r − q, and
is therefore a root of both r and q. Now let p′, q′, and r′ be the three
polynomials p, q, and r with the common root divided out. We have
(p′)2+(q′)2 = (r′)2. Then all three polynomials have real coefficients,
p′ and r′ have degree 2, and q′ has degree 1. We also know that p′

has 0 real roots, q′ has 1, and r′ has 0 or 2. Since the latter case
would imply that r has 3 real roots, we instead assume that r′ has 0
real roots.

Writing (q′)2 = (r′ + p′) · (r′ − p′), we see that one of the factors
must have degree 2 and the other degree 0. If the first factor has
degree 2, we may write

p′ = ax2 + bx + c

r′ = ax2 + bx + d

for real a, b, c, d. Then q′ = (d − c) · (2ax2 + 2bx + c + d). Since p′

and r′ have no real roots, we know that b2 − 4ac < 0 and b2 − 4ad <

0. Adding the two inequalities and multiplying by 2, this means
4b2 − 8a · (c + d) < 0. But then q′ has no real roots, a contradiction.

Similarly, if r′ + p′ has degree 0 and r′ − p′ has degree 2, we write

p′ = ax2 + bx + c

r′ = −ax2 − bx + d.

Then q′ = −(c + d) · (2ax2 + 2b + (c− d)). Again, p′ and r′ have no
real roots, so b2− 4ac < 0 and b2 + 4ad < 0. Adding and multiplying
by 2 gives 4b2 − 8a · (c − d) < 0, which again implies that q′ has no
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real roots. Thus our original assumption is false, and either p or r

must be a third-degree polynomial with 3 real roots.

Problem 28 Quadrilateral ABCD is inscribed in circle ω. The line
tangent to ω at A intersects the extension of side BC past B at a
point K. The line tangent to ω at B meets the extension of side
AD past A at a point M . If AM = AD and BK = BC, show that
quadrilateral ABCD is a trapezoid.

Solution: We reflect A over B to point A′. Then 4A′KB ∼=
4ACB, and ∠A′KB = ∠ACB = ∠ABM = ∠ADB = ∠BAK = α.
Looking at triangles AA′K and DMB, we have two triangles of the
form XY Z with median ZP such that ∠PXZ = ∠PZY = α. For
such a triangle, let ∠XZP = θ, ∠ZY P = φ, and ∠ZPX = β.
Then θ + φ = 180 − 2α is constant. By the law of sines applied to
triangles XPZ and Y PZ, we have sin θ

sin α = sin α
sin φ , so that sin θ sinφ =

1
2 ·(cos (θ − φ)−cos (θ + φ)) is also constant. Thus cos (θ − φ) is equal
to a constant, and θ−φ = ±k for some constant k (since 0 < θ, φ < π).

Furthermore, 180 − α − θ = β = α + φ. Thus β = 1
2 · (180 −

α − θ + α + φ) = 90 − 1
2 · (θ − φ) = 90 ∓ k

2 . Looking back at
the original figure, β corresponds to ∠KBA and ∠BAD, so that
∠KBA = ∠BAD or ∠KBA + ∠BAD = 180. The first case gives a
trapezoid with AD ‖ BC, and the second case gives a trapezoid with
AB ‖ CD.

Problem 29 Show that for any positive integer n > 10000, there
exists a positive integer m that is a sum of two squares and such that
0 < m− n < 3 4

√
n.

Solution: We have a2 < n ≤ (a + 1)2 for some integer a ≥ 100.
If we write n = a2 + k, this means that k ≤ 2a + 1. We want
m = a2 + b2 for some integer b. The condition 0 < m − n < 3 4

√
n

becomes k < b2 < k + 3 4
√

a2 + k. We will show that

b =
{ √

k + 1 if k is a perfect square
d
√

ke if k is not a perfect square

will work.
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Note that in both cases, k < b2 ≤ (
√

k + 1)2. Thus we want

(
√

k + 1)2 < k + 3 4
√

a2 + k

2
√

k + 1 < 3 4
√

a2 + k

4k + 4
√

k + 1 < 9
√

a2 + k.

Since k ≤ 2a + 1, it is sufficient to prove

4 · (2a + 1) + 4
√

2a + 1 + 1 < 9a

a > 4
√

2a + 1 + 5

a2 − 10a + 25 > 16 · (2a + 1)

a2 − 42a + 9 > 0.

By a simple application of the quadratic formula, this last inequality
is clearly true for a ≥ 100.

Problem 30 Once upon a time, there were 2002 cities in a kingdom.
The only way to travel between cities was to travel between two cities
that are connected by a (two-way) road. In fact, the road system was
such that even if it had been forbidden to pass through any one of the
cities, it would still have been possible to get from any remaining city
to any other remaining city. One year, the king decided to modify
the road system from this initial set-up. Each year, the king chose a
loop of roads that did not intersect itself, and then ordered:

(i) to build a new city,

(ii) to construct roads from this new city to any city on the chosen
loop, and

(iii) to destroy all the roads of the loop, as they were no longer useful.

As a result, at a certain moment there no longer remained any loops
of roads. Show that at this moment, there must have been at least
2002 cities accessible by exactly one road.

Solution: We represent the kingdoms by vertices and the roads
by edges of a graph. We will show that at any point in the process,
any two distinct edges emanating from one of the original vertices are
always part of a loop. Thus the process will continue as long as one
of the 2002 vertices is connected by more than one edge. Since every
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vertex is always connected by at least one edge, in the end all 2002
original vertices will be accessible by exactly one edge.

First note that the claim is true in the beginning. Consider one of
the original vertices with two distinct edges emanating from it; call
the vertex A and its neighbors B and C. Since it is still possible to
travel from B to C without passing through A, there must be a path
connecting B and C that does not include A. If we combine this path
with edges AB and AC, we have a loop which passes through A and
includes AB and AC.

Now we use induction. Assume that the claim is true for all steps
in the process up to a certain point. After the next step, let A be the
vertex in question (one of the original 2002 vertices with two distinct
edges emanating from it) and again call its neighbors B and C. We
have three cases:

Case i: None of the edges emanating from A were affected in the
step. Edges AB and AC were part of a loop before the step, so we
follow the loop until we reach an edge that was removed (such an
edge may or may not exist). Suppose we have a path from A through
B that terminates at D, where the next edge in the loop (emanating
from D) has been removed, and a path from A through C that likewise
terminates at E. Then in the step, we must have created vertex F

such that DF and EF are edges of the graph. Thus, the paths from
A to D and A to E, together with the edges DF and EF , form a
loop which passes through A and includes AB and AC.

Case ii: Two edges emanating from A were removed; AB was
created in the step, but AC was not. Then we know that B must
have been the vertex created in the step. Furthermore, A had at least
three distinct edges emanating from it before the step (AC and the
two removed), so there must have been a loop through A containing
AC. As before, we follow the loop from A through C until we reach
an edge which was removed, which emanates from D. Then edge BD

must also have been created in the step, and the path from A to D,
together with edges AB and BD, forms a loop that passes through
A and includes AB and AC.

Case iii: Two edges emanating from A were removed; neither AB

nor AC were created in the step. This is identical to the first case,
because we may follow the loop which previously contained AB and
AC and passed through A, in both directions to D and E, which are
connected to the new vertex F . Then the paths from A to D and
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A to E, together with edges DF and EF , form a loop which passes
through A and includes AB and AC.

Thus we have considered all cases, concluding the proof.

Problem 31 Let a, b, c be positive numbers with sum 3. Prove that
√

a +
√

b +
√

c ≥ ab + bc + ca.

Solution: Observe that

ab + bc + ca =
(a + b + c)2 − (a2 + b2 + c2)

2
=

9
2
− 1

2
· (a2 + b2 + c2),

so that the inequality in question is equivalent to

√
a +

√
b +

√
c +

1
2
· (a2 + b2 + c2) ≥ 9

2
.

By weighted AM-GM, we have

2
3
·
√

a +
1
3
· a2 ≥ (a1/2)2/3 · (a2)1/3 = a.

Summing cyclically over a, b, and c, multiplying by 3
2 , and using the

equality a + b + c = 3 produces the desired result.

Problem 32 The excircle of triangle ABC opposite A touches side
BC at A′. Line `A passes through A′ and is parallel to the angle
bisector of angle CAB. The lines `B and `C are defined similarly.
Prove that `A, `B , `C are concurrent.

Solution: Let A1, B1, and C1 be the centers of the excircles
opposite A,B, and C, respectively. It is a well-known fact that
triangle A1B1C1 circumscribes ABC, and AA1, BB1, and CC1 are
the altitudes of A1B1C1.

Now let X be the intersection of `A and `B . We want to prove that
`C passes through X. Using vectors, we have

(X−A′) · (B1 −C1) = 0

and
(X−B′) · (C1 −A1) = 0,

and we want
(X−C′) · (A1 −B1) = 0.
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Rewriting the three equations, we have

X · (B1 −C1) = A′ · (B1 −C1), (*)

X · (C1 −A1) = B′ · (C1 −A1), (**)

and want
X · (A1 −B1) = C′ · (A1 −B1). (***)

We use the identity

cos A1 sin (B1 − C1)+cos B1 sin (C1 −A1)+cos C1 sin (A1 −B1) = 0,

or equivalently,

cot A1 sinA1 sin (B1 − C1) + cot B1 sinB1 sin (C1 −A1)

+ cot C1 sinC1 sin (A1 −B1) = 0.(†)

By angle chasing, we see that 4A1A
′B ∼ 4A1CH, where H is the

orthocenter of A1B1C1. Then

A1A
′ =

A1B

AH
·A1C = sinC1 ·AC1 cos A

= sinC1 · 2R sinB1 · cos A = 2R sinA sinB sinC · cot A,

where R is the circumradius of A1B1C1. We can obtain similar
expressions for B1B

′ and C1C
′, so that A1A

′ : B1B
′ : C1C

′ = cotA :
cot B : cot C. Furthermore, B1C1 : C1A1 : A1B1 = sinA : sinB :
sinC, so that (†) becomes

A1A
′ ·B1C1 · sin (B1 − C1) + B1B

′ · C1A1 · sin (C1 −A1)

+ C1C
′ ·A1B1 · sin (A1 −B1) = 0.

Then ∠A′A1A = ∠A′A1C − ∠AA1B1 = (90 − C1) − (90 − B1) =
B1−C1, so that the cosine of the angle between A1 −A′ and B1 −C1

is equal to sin(B1 − C1). Hence our equation is actually

(A1−A′)·(B1−C1)+(B1−B′)·(C1−A1)+(C1−C′)·(A1−B1) = 0.

Subtracting the identity

A1 · (B1 −C1) + B1 · (C1 −A1) + C1 · (A1 −B1) = 0

and taking the inverse of both sides, we then obtain

A′ · (B1 −C1) + B′ · (C1 −A1) + C′ · (A1 −B1) = 0,
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or
C′ · (A1 −B1) = −A′ · (B1 −C1)−B′ · (C1 −A1).

Adding (∗) and (∗∗), we then have

X · (B1 −A1) + C′ · (A1 −B1) = 0,

which is exactly (∗ ∗ ∗).

Problem 33 A finite number of red and blue lines are drawn on
the plane. No two of the lines are parallel to each other, and through
any point where two lines of the same color meet, there also passes a
line of the other color. Show that all the lines have a common point.

Problem 34 Some points are marked on the plane in such a way
that for any three marked points, there exists a Cartesian coordinate
system in which these three points are lattice points. (A Carte-
sian coordinate system is a coordinate system with perpendicular
coordinate axes with the same scale.) Show that there exists a
Cartesian coordinate system in which all the marked points have
integer coordinates.

Solution: We begin with a lemma.

Lemma. Given a Cartesian coordinate system with origin O and
lattice point A, there exists a coordinate system with the same origin
and axis OA such that all lattice points of the original coordinate
system are also lattice points of the new system.

Proof. We use vectors. Let the coordinates of O in the original
system be (0, 0) and the coordinates of A be (m,n), where m and
n are integers. If P = (x, y) is any lattice point of the original
system, we need to prove that projxi+yj(mi + nj) = k1

‖mi+nj‖ and
compxi+yj(mi + nj) = k2

‖mi+nj‖ for integers k1 and k2. If we scale the
new system so that each unit is of length 1

‖mi+nj‖ , the coordinates of
P in the new system will then be the lattice point (k1, k2). Since

projxi+yj(mi + nj) =
(xi + yj) · (mi + nj)

‖mi + nj‖
=

xm + yn

‖mi + nj‖
and

compxi+yj(mi + nj) = projxi+yj(−ni + mj)

=
(xi + yj) · (−ni + mj)

‖mi + nj‖
=
−xn + ym

‖mi + nj‖
,
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the result follows immediately.

Now we apply the lemma to the original problem. We use induction
on the number of points, n, where the base case n = 3 is given. (The
cases n = 1 and n = 2 are trivial.) Now assume that there exists
a coordinate system for every k points with the desired property.
We want to show that if we instead have k + 1 points, we can find
a coordinate system where they are all lattice points. Choose k of
the points, call two of them A and B, and let C be the remaining
point. We know by the assumption that some coordinate system S1

includes the first set of k points as lattice points. Note that we may
translate the axes of S1 by any integral number of units to create
a new coordinate system where all of the lattice points of S1 are
still lattice points of the new system. Thus we may create a new
coordinate system, S2, where the original k points are all lattice points
and A is the origin. By the lemma, there then exists a coordinate
system S3 with one axis AB and the origin at A. Since B is a lattice
point of the system, this means that a unit of S3 must be of length
1

m1
, where m1 is an integer.

By the given condition, we also know that there exists a coordinate
system where A, B, and C are lattice points. As before, we translate
the axes to make A the origin, then use the lemma to create a new
coordinate system, S4, where AB is an axis and A is the origin. Since
B is again a lattice point, the units of S4 must be have length 1

m2
,

where m2 is an integer. If we now create a coordinate system S5 with
A as the origin, axis AB, and units of length 1

k1·k2
, we see that all of

the lattice points of S3 and S4 are among the lattice points of S5. In
particular, the original k points, along with C, are lattice points of
S5, completing the induction.

Problem 35 Show that

2| sinn x− cosn x| ≤ 3| sinm x− cosm x|

for all x ∈ (0, π/2) and for all positive integers n > m.

Solution: When x ∈ [π
4 , π

2 ), the inequality becomes

2 · (sinn x− cosn x) ≤ 3 · (sinm x− cosm x). (*)

If we replace x by π
2−y, we obtain the original inequality for y ∈ (0, π

4 ].
Thus it suffices to show that (∗) is true.
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First consider the case n = m + 2 for m > 1. We will prove that

sinn x− cosn x ≤ sinm x− cosm x (**)

for such n. Since cos x ≤ sinx in the given interval,

cosm−2 x ≤ sinm−2 x

cosm x · (1− cos2 x) ≤ sinm x · (1− sin2 x)

sinm+2 x− cosm+2 x ≤ sinm x− cosm x,

as we want. By combining these inequalities, we have (∗∗) whenever
n = m + 2k for m > 1 and positive integers k, so that (∗) is certainly
true.

In order to prove (∗) for m and n of different parity, we show that
the inequality is true when n = m + 1 and m > 1. Observe that
sinx + cos x =

√
2 · sin

(
x + π

4

)
≤ 1, so that sinx + cos x ≤ 1√

2
< 3

2 .
Then

sinm x + sinm−1 x · cos x + · · ·+ cosm x

≤ (sinx + cos x) · (sinm−1 x + sinm−2 x · cos x + · · ·+ cosm−1 x)

≤ 3
2
· (sinm−1 x + sinm−2 x · cos x + · · ·+ cosm−1 x).

Multiplying both sides of the above inequality by 2 · (sinx − cos x),
we obtain (∗) for n = m + 1. This fact combined with the previous
result proves (∗) for all n > m > 1.

Now all that remains is the case m = 1. Note that we need only
prove the inequalities

2 · (sin2 x− cos2 x) ≤ 3 · (sinx− cos x), (1)

2 · (sin3 x− cos3 x) ≤ 3 · (sinx− cos x), (2)

then apply (∗∗) repeatedly for even and odd n, respectively. We
have already shown that sinx + cos x ≤ 3

2 ; multiplying both sides by
2 · (sinx− cos x) gives (1). Furthermore, sin x · cos x = 1

2 · sin 2x ≤ 1
2 ,

so that sin2 x+sin x ·cos x+cos2 x ≤ 3
2 . Again multiplying both sides

by 2 · (sinx − cos x), we obtain (2). Thus (∗) holds for all positive
integers n > m.
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Problem 36 In a certain city, there are several squares. All streets
are one-way and start or terminate only in squares; any two squares
are connected by at most one road. It is known that there are exactly
two streets that go out of any given square. Show that one can divide
the city into 1014 districts so that (i) no street connects two cities in
the same district, and (ii) for any two districts, all the streets that
connect them have the same direction (either all the streets go from
the first district to the second, or vice versa).

Problem 37 Find the smallest positive integer which can be written
both as (i) a sum of 2002 positive integers (not necessarily distinct),
each of which has the same sum of digits; and (ii) as a sum of 2003
positive integers (not necessarily distinct), each of which has the same
sum of digits.

Solution: The answer is 10010. First observe that this is indeed a
solution: 10010 = 2002 · 5 = 1781 · 4 + 222 · 13, so may express 10010
as the sum of 2002 fives or of 1781 fours and 222 thirteens, where
1781 + 222 = 2003. To prove minimality, observe that a number is
congruent modulo 9 to the sum of its digits, so two positive integers
with the same digit sum are in the same residue class modulo 9. Let
k1 be the digit sum of the 2002 numbers and k2 the digit sum of the
2003 numbers. Then 4 · k1 ≡ 2002 · k1 ≡ 2003 · k2 ≡ 5 · k2 (mod 9).
If k1 ≥ 5, the sum of the 2002 numbers is at least 10010; if k2 ≥ 5,
the sum of the 2003 numbers is greater than 10010. However, the
solutions k1 ≡ 1, 2, 3, 4 (mod 9) give k2 ≡ 8, 7, 6, 5, respectively, so
that at least one of k1 or k2 is greater than or equal to 5, and the
minimal integer is 10010.

Problem 38 Let ABCD be a quadrilateral inscribed in a circle,
and let O be the intersection point of diagonals AC and BD. The
circumcircles of triangles ABO and COD meet again at K. Point L

has the property that triangles BLC and AKD are similar (with the
similarity respecting this order of vertices). Show that if quadrilateral
BLCK is convex, then it is circumscribed about some circle.

Solution: Note that BLCK is circumscribable about a circle if and
only if BL + CK = CL + BK. Expressing the area of ABCD in two
ways, we have

sin∠ABC ·(AB ·BC +AD ·CD) = sin ∠BAD ·(AB ·AD+BC ·CD).
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Furthermore, by the law of sines applied to triangles ABC and ABD

and the fact that ∠ACB = ∠ADB,

sin∠ABC

AC
=

sin∠ACB

AB
=

sin∠ADB

AB
=

sin∠BAD

BD
.

Thus our equation becomes

AC · (AB ·BC + AD · CD) = BD · (AB ·AD + BC · CD).

Now note that ∠KCA = ∠KDB and ∠KAC = ∠KBD, so that
4KAC ∼ 4KBD and AK

AC = BK
BD , and our equation turns into

AK · (AB ·BC + AD · CD) = BK · (AB ·AD + BC · CD). (*)

Since triangles KAC and KBD are related by a spiral similarity,
triangles KCD and KAB must also be similar. Then AB

CD = AK
CK =

BK
DK . Dividing both sides of (∗) by AB and using this fact, we obtain

AK ·BC + CK ·AD = BK ·AD + DK ·BC

AD · (BK − CK) = BC · (AK −DK).

Since BLC and AKD are similar, we also have BC · (AK −DK) =
AD · (BL − CL). Combining this with the above equation, dividing
through by AD, and rearranging terms, we have the equation that
we want.

Problem 39 Show that there are infinitely many positive integers
n for which the numerator of the irreducible fraction equal to 1+ 1

2 +
· · ·+ 1

n is not a positive integer power of a prime number.

Solution: We write S(a, b) = 1
a + 1

a+1 + · · ·+ 1
b for positive integers

a and b. Furthermore, whenever we refer to the numerator and
denominator of a fraction, we assume that the fraction is irreducible.
We will show that for each odd prime p, there exists an n such that
the numerator of S(1, n) is divisible by p but is not a prime power.

First observe that S(1, pk+1 − 1) = 1
p · S(1, pk − 1) + Sp(1, pk+1),

where the latter quantity denotes the sum of the reciprocals of the
numbers between 1 and pk+1 that are coprime to p. We use a lemma:

Lemma. The numerator of Sp(1, pk+1) is divisible by pk+1.

Proof. We multiply the whole quantity by (pk+1−1)! to clear denom-
inators, then prove that the new expression is congruent to 0 modulo
pk+1, where reciprocals are multiplicative inverses of numbers. Then
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the reciprocals of the numbers between 1 and pk+1 coprime to p are
simply the same numbers in a different order. Hence if g is a primitive
root of pk+1,

Sp(1, pk+1) ≡ 1 + g + g2 + · · ·+ gφ(pk+1)−1 =
gφ(pk+1) − 1

g − 1
.

Furthermore, g is not congruent to 0 or 1 modulo p, so that the
numerator is congruent to 0 modulo pk+1 but the denominator is
not, making Sp(1, pk+1) ≡ 0 (mod pk+1), as wanted.

Now observe that the numerator of S(1, pk − 1) is either always di-
visible by p or exactly divisible by p for some k. We use induction: For
the base case, k = 1, we add S(1, p−1) forward and backward term by
term to obtain 2 · S(1, p − 1) = p ·

(
1

1(p−1) + 1
2(p−2) + · · ·+ 1

(p−1)1

)
,

which clearly has a numerator divisible by p. Since p is odd, this
means that the numerator of S(1, p − 1) is also divisible by p. Now
consider the case when the numerator of S(1, pk − 1) is never exactly
divisible by p, and assume that p divides the numerator of S(1, pm−1),
where m > 1. Observe that S(1, pm+1 − 1) = 1

p · S(1, pm − 1) +
Sp(1, pm+1)(∗). Since p divides the numerator of the first quantity
by the assumption and the numerator of the second quantity by the
lemma, this means that p must divide the numerator of S(1, pm+1−1),
as well. We assume that the numerator of S(1, pk − 1) is always a
prime power, or else we would have found a value of n for this value
of p.

Next we will show that the numerator of S(1, pk − 1) can never be
exactly divisible by p (and hence be equal to p). Then S(1, pk − 1) =
S(1, pk − p) + S(pk − 1, pk − (p− 1)). We see that the numerator of
the second quantity has a factor of p2: As in the previous argument,
we add the sum forward and backward to obtain

2·S(pk−1, pk−(p−1)) = (2pk−p)·
(

1
(pk − 1)(pk − (p− 1))

+ · · ·+ 1
(pk − (p− 1))(pk − 1)

)
;

dividing by p and looking at the quantity modulo p, we then have
1
12 + 1

22 + · · ·+ 1
(p−1)2 . The multiplicative inverses of the residues of

p are again the residues in a different order, so that the expression is
congruent to 12 + 22 + · · ·+ (p− 1)2 = (p−1)(p)(2p−1)

6 ≡ 0 (mod p), as
wanted. Since S(1, pk−p) = S(1, pk−1)−S(pk−1, pk− (p−1)), the
numerator of S(1, pk − p) must also be exactly divisible by p. Again,
we assume that the numerator of S(1, pk − p) is a prime power, so it
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is equal to p. Now we have S(1, pk − 1) = p
a and S(1, pk − p) = p

b

for some integers a and b, where a, b < p (S(1, n) > 1 for n > 1).
But then S(pk − 1, pk − (p− 1)) = p · b−a

ab , and the numerator clearly
cannot be divisible by p2, a contradiction.

If for some m, the number of factors of p in the numerator of
S(1, pm − 1) is f , where f ≤ m + 1, we will have S(1, pm+1 − 1)
expressed as the sum of two fractions in (∗), one of which has a
numerator less than or equal to m and the other greater than or
equal to m+1, by the lemma. This means that the number of factors
of p in the numerator of S(1, pm+1− 1) is also equal to f , making the
numerator exactly equal to pf .

Repeating the process, we have S(1, pm+2 − 1) = 1
p · S(1, pm+1 −

1)+Sp(1, pm+2), so that S(1, pm+2−1) is expressed as the sum of two
fractions with numerators divisible by pf−1 and pm+2, respectively.
Since f −1 ≤ m+2, this means that the numerator of S(1, pm+2−1)
is exactly divisible by pf−1 and therefore equal to it. Hence we
may continue to reduce the power of p in the numerator of the sum
in question. Eventually, we come to the equation S(1, pe − 1) =
1
p ·S(1, pe−1−1)+Sp(1, pe), where the numerator of S(1, pe−1) is equal
to p. But by the previous argument, this leads to a contradiction.

The only remaining case is when the numerator of S(1, pk − 1) is
divisible by pk for every positive integer k. Let c be the number
of factors of p in the numerator of S(1, p − 1). If we add the sums
S(1, p− 1) and S(pk − (p− 1), pk − 1) (the second in reverse order),
we obtain the fraction pk ·

(
1

1(pk−1)
+ 1

2(pk−2)
+ · · ·+ 1

(p−1)(pk−(p−1))

)
,

which has a numerator divisible by pk. For k > c, this means that the
largest power of p in the numerator of S(pk − 1, pk − (p− 1)) is equal
to c. But then S(1, pk − p) = S(1, pk − 1) − S(pk − (p − 1), pk − 1),
so that the largest power of p in the numerator of S(1, pk − p) is
also equal to c, making the numerator equal to pc (again assuming
that it is a prime power). This cannot be true for every k, since the
harmonic series is unbounded as k tends to infinity. Hence this last
case produces a contradiction, completing the proof.
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1.13 Taiwan

Problem 1 For each n, determine all n-tuples of nonnegative
integers x1, x2, . . . , xn such that

n∑
i=1

x2
i = 1 +

4
4n + 1

(
n∑

i=1

x

)2

.

Solution: Without loss of generality, suppose that n-tuples are
always listed in descending order.

The value n = 2 yields the double (2, 1), and n = 6 yields the
6-tuple (1, 1, 1, 1, 1, 0). All other values of n yield no n-tuples with
the given property.

Multiplying both sides of the equation by 4n+1
4 and rearranging

terms yields

n
n∑

i=1

x2
i −

(
n∑

i=1

xi

)2

= n− 1
4

(
n∑

i=1

x2
i − 1

)
. (*)

We can rearrange the left side of this equation into a single double
summation as follows.

1
2

n
n∑

i=1

x2
i − 2

n∑
i=1

xi

n∑
j=1

xj + n
n∑

j=1

x2
j

 ,

1
2

 n∑
i=1

n∑
j=1

x2
i −

n∑
i=1

n∑
j=1

2xixj +
n∑

i=1

n∑
j=1

x2
j

 ,

1
2

n∑
i=1

n∑
j=1

(x2
i − 2xixj + x2

j ),

1
2

n∑
i=1

n∑
j=1

(xi − xj)2.

If x1 = x2 = · · · = xn, then this is equal to 0. However, we see that
this is impossible by supposing it to be true. Setting the right hand
side of (∗) equal to 0 and supposing that all xi are equal, we find:
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0 = n− 1
4

(
n∑

i=1

x2
i − 1

)
,

n∑
i=1

x2
i − 1 = 4n,

nx2
1 − 1 = 4n,

n(x2
1 − 4) = 1.

However, n divides the left side but not the right, and we have a
contradiction. Thus the xi cannot be equal. Suppose that k of the
xi have the same value as x1. There will thus be at least k(n − k)
pairs (i, j) such that xi 6= xj , thus (xi−xj)2 ≥ 1. Because this means
i 6= j, there must be at least 2k(n − k) ordered pairs (i, j) with this
property. Clearly 2k(n− k) is minimized when k = 1, so there are at
least 2(n− 1) ordered pairs (i, j) such that (xi − xj)2 ≥ 1. From this
we can conclude that 1

2

∑n
i=1

∑n
j=1(xi − xj)2 ≥ n− 1. Thus:

n− 1
4

(
n∑

i=1

x2
i − 1

)
=

1
2

n∑
i=1

n∑
j=1

(xi − xj)2 ≥ n− 1,

n− 1
4

(
n∑

i=1

x2
i − 1

)
≥ n− 1,

1 ≥ 1
4

(
n∑

i=1

x2
i − 1

)
,

5 ≥
n∑

i=1

x2
i .

Notice also that the right side of (∗) is an integer if and only if∑n
i=1 x2

i ≡ 1(mod4). Thus we must have
∑n

i=1 x2
i = 1 or 5. In the

former case, the n-tuple would have to consist of 1 and some number
of 0s. In this case, the given equation would lead to 0 = 4, which is a
contradiction, so some of these n-tuples are valid. The only n-tuples
such that

∑n
i=1 x2

i = 5 are (2, 1), (1, 1, 1, 1, 1), and either of these with
some number of 0s appended. Plugging in the appropriate values for
the summations and solving for n to determine the number of 0s that
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must be appended, we find that (2, 1) and (1, 1, 1, 1, 1, 0) are the only
valid n-tuples for any n.

Problem 2 We call a lattice point X in the plane visible from the
origin O if the segment OX does not contain any other lattice points
besides O and X. Show that for any positive integer n, there exists
an square of n2 lattice points (with sides parallel to the coordinate
axes) such that none of the lattice points inside the square is visible
from the origin.

Solution: Suppose that the lower-left lattice point of such a square
has coordinates (x1, y1). We shall show that it is possible to select
(x1, y1) such that the square of lattice points with (x1, y1) at it’s
corner and n points on a side contains only invisible points. This can
be accomplished by ensuring that each point has both coordinates
divisible by some prime number; this would imply that by dividing
both coordinates by this prime we could find another lattice point
that is between the origin and this point.

Select n2 distinct prime numbers and call them pi,j |1 ≤ i, j ≤ n.
Now find x1 satisfying the following congruences:

x1 ≡ 0(modp1,1p1,2 . . . p1,n),

x1 + 1 ≡ 0(modp2,1p2,2 . . . p2,n),

· · ·

x1 + n− 1 ≡ 0(modpn,1pn,2 . . . pn,n).

Likewise select y1 satisfying:

y1 ≡ 0(modp1,1p2,1 . . . pn,1),

y1 + 1 ≡ 0(modp1,2p2,2 . . . pn,2),

· · ·

y1 + n− 1 ≡ 0(modp1,np2,n . . . pn,n).

Both values must exist by the Chinese Remainder Theorem. Thus
we have demonstrated that it is possible to determine a position for
(x1, y1) such that every point in the square of n2 lattice points with
(x1, y1) at it’s lower left corner is associated with some prime by which
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both of its coordinates are divisible, thus all points in this square are
not visible from the origin.

Problem 3 Let x, y, z, a, b, c, d, e, f be real numbers satisfying

max{a, 0}+ max{b, 0} < x + ay + bz < 1 + min{a, 0}+ min{b, 0},

max{c, 0}+ max{d, 0} < cx + y + dz < 1 + min{c, 0}+ min{d, 0},

max{e, 0}+ max{f, 0} < ex + fy + z < 1 + min{e, 0}+ min{f, 0}.

Show that 0 < x, y, z < 1.

Solution: Define m = min{x, 1 − x, y, 1 − y, z, 1 − z}. We wish to
show that m > 0, which will in turn imply that 0 < x, y, z < 1.

Observe that, for any (k, h) if k > h, k + h + |k − h| = 2k,
and if k ≤ h, k + h + |k − h| = 2h. Thus, we can conclude
that max{k, h} = (k + h + |k − h|)/2, and similar logic shows that
min{k, h} = (k + h− |k − h|)/2.

Using this last observation, and the fact that −|x| ≤ x ≤ |x| for
any x, notice that:

|a|min{y, 1− y} = |a|1− |2y − 1|
2

=
|a| − |a(2y − 1)|

2

≤ |a| − a(2y − 1)
2

=
|a|+ a

2
− ay = max{a, 0} − ay,

|a|min{y, 1− y} =
|a| − |a(2y − 1)|

2

≤ |a|+ a(2y − 1)
2

=
|a| − a

2
+ ay = ay −min{a, 0}.

Because this does not depend on any given conditions, the same
result holds for any pair of variables.

Combining this with the first given equation, we see that:
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x + ay + bz > max{a, 0}+ max{b, 0},

x > max{a, 0} − ay + max{b, 0} − bz,

x > |a|min{y, 1− y}+ |b|+ |b|min{z, 1− z},

x > (|a|+ |b|)m,

1 + min{a, 0}+ min{b, 0} > x + ay + bz,

1− x > ay −min{a, 0}+ bz −min{b, 0},

1− x > |a|min{y, 1− y}+ |b|+ |b|min{z, 1− z},

1− x > (|a|+ |b|)m.

Combining this with similar results for y and z we see that

x, 1− x > (|a|+ |b|)m,

y, 1− y > (|c|+ |d|)m,

z, 1− z > (|e|+ |f |)m.

Notice that, from the first given inequality:

max{a, 0}+ max{b, 0} < 1 + min{a, 0}+ min{b, 0},

max{a, 0} −min{a, 0}+ max{b, 0} −min{b,−} < 1,

|a|+ |b| < 1.

Suppose for contradiction that m ≤ 0. This would imply that
(|a|+ |b|)m > m and similarly (|c|+ |d|)m > m and (|e|+ |f |)m > m,
thus x, 1 − x, y, 1 − y, z, 1 − z > m. However, this is clearly a
contradiction since at least one of these values is equal to m. Thus
m > 0 and therefore 0 < x, y, z < 1.

Problem 4 Suppose that 0 < x1, x2, x3, x4 ≤ 1
2 . Prove that

x1x2x3x4

(1− x1)(1− x2)(1− x3)(1− x4)
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is less than or equal to

x4
1 + x4

2 + x4
3 + x4

4

(1− x1)4 + (1− x2)4 + (1− x3)4 + (1− x4)4
.

Problem 5 The 2002 real numbers a1, a2, . . . , a2002 satisfy
a1

2
+

a2

3
+ · · ·+ a2002

2003
=

4
3
,

a1

3
+

a2

4
+ · · ·+ a2002

2004
=

4
5
,

...
a1

2003
+

a2

2004
+ · · ·+ a2002

4004
=

4
4005

.

Evaluate
a1

3
+

a2

5
+

a3

7
+ · · ·+ a2002

4005
.

Problem 6 Given three fixed points A,B, C in a plane, let D be a
variable point different from A,B,C such that A,B,C, D are concylic.
Let `A be the Simson line of A with respect to triangle BCD, and
define `B , `C , `D analogously. (It is well known that if W is a point on
the circumcircle of triangle XY Z, then the feet of the perpendiculars
from W to lines XY , Y Z, ZX lie on a single line. This line is called
the Simson line of W with respect to triangle BCD.) As D varies,
find the locus of all possible intersections of some two of `A, `B , `C , `D.
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1.14 Vietnam

Problem 1 Let ABC be a triangle such that angle BCA is acute.
Let the perpendicular bisector of side BC intersect the rays that
trisect angle BAC at K and L, so that ∠BAK = ∠KAL = ∠LAC =
1
3∠BAC. Also let M be the midpoint of side BC, and let N be the
foot of the perpendicular from A to line BC. Find all such triangles
ABC for which AB = KL = 2MN .

There are no such triangles.
We first prove that ∠BCA = 2∠BAC. Let A′, N ′, be the

reflections of A and N in the perpendicular bisector of BC. Note
that this reflection fixes both the circumcircle of ABC, call it ω and
BC, and thus A′ lies on ω and N ′ on BC. Also, NN ′ = NM+MN ′ =
2MN = AB.

Now AN and A′N ′ are both perpendicular to line BC (the first
by definition, and the second being the reflection of the first in the
perpendicular bisector of BC), AA′ is parallel to line BC (because it
is perpendicular to the perpendicular bisector of BC) and NN ′ lies
on line BC. This means that quadrilateral AA′N ′N is a rectangle.
Hence AA′ = NN ′ = 2MN = AB, and triangle AA′B is isosceles.

We now use the fact that quadrilateral A′ABC is cyclic and obtain

2∠ACB = 2∠AA′B

= ∠A′AB + ∠A′BA

= (180◦ − ∠A′AB)

= ∠A′CB

= ∠ABC,

the final step holding because triangles A′CB and ABC are congru-
ent by reflection. At this point, the problem becomes nearly identical
to USA TSE 2001 problem 5, and the assumption that angle BCA

is acute implies that AB < KL, meaning that there are no such
triangles.

Problem 2 A positive integer is written on a board. Two players
alternate performing the following operation until 0 appears on the
board: the current player erases the existing number N from the
board and replaces it with either N − 1 or bN/3c. Whoever writes
the number 0 on the board first wins. Determine who has the winning
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strategy when the initial number equals (a) 120, (b) (32002−1)/2, and
(c) (32002 + 1)/2.

The answers to the three parts are a) the second player, b) the first
player, and c) the second player.

Define an integer n to be winning if when n is written on the board,
the player to move has a winning strategy. If not, n is losing. Now, n

is winning if and only if the player to move can make a move that puts
the second player in a position without a winning strategy. Hence n

is winning, if and only if at least one of the first player’s options, n−1
and bn

3 c is losing. Conversely, n is losing if and only if both n and
bn

3 c are winning (or n = 0, which implies that the player last to move
has just won and there is nothing to be done).

We will solve this problem by induction upon a general result.

Lemma. For all n ≥ 2,

• i) 3n−5
2 is winning.

• ii) 3n−3
2 is losing.

• iii) 3n−1
2 is winning.

• iv) 3n+1
2 is losing.

Proof. By induction.
Base Case: n = 2. First of all, we note that 1 and 2 are trivially

winning: in either case the first player has only to move to b 1
3c =

b 2
3c = 0. Now 2 = 32−5

2 and so i) holds. However, 3 is losing, for the
player to move has only the options 3 − 1 = 2 and b 3

3c = 1 both of
which are winning. This shows part ii), because 3 = 32−3

2 .
In addition, 4 = 32−1

2 is winning because the first player can move
from 4 to the losing number 3, and iii) is proved. As for iv), from
5 = 32+1

2 one can only move to the winning numbers 4 and 1, making
5 losing. This establishes our base case.

Inductive Step. Suppose that i) – iv) all hold for n = k. We must
show they hold in addition that they hold for n = k+1. We establish
our three propositions in order.

• i) From the number 3k+1−5
2 , the player can use the second option

to move to b 3k+1−5
6 c = 3k−3

2 . By part ii) of the induction
hypothesis, that option is losing. Hence the original number
3k+1−5

2 is winning.

• ii) We must show that the player’s two options from the number
3k+1−3

2 both give the other player a winning number. These
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options are 3k+1−3
2 − 1 = 3k+1−5

2 which was just shown to be
winning, and b 3k+1−3

6 c = 3k−1
2 which is winning by part iii) of

the inductive hypothesis.

• iii) 3k+1−1
2 is winning. From 3k+1−1

2 the player to move can
subtract 1 to produce 3k+1−3

2 which is a losing position. This
establishes that 3k+1−1

2 is winning.

• iv) 3k+1+1
2 is losing. We again need to show that its two options

are both winning. Now, 3k+1+1
2 −1 = 3k+1−1

2 was proved winning
in the previous case, and b 3k+1+1

6 c = 3k−1
2 which is winning by

part iii) of the inductive hypothesis.

Our induction has been established, and so all four claims are true
for all integer n ≥ 2.

We now apply the above result to the problem at hard. For part a),
we note that 120 = 35−3

2 , and so by ii) it is losing, that is to say, the
second player to move wins. Letting n = 2002 in parts iii) and iv)
shows that the first player wins in b) and the second in c).

Problem 3 The positive integer m has a prime divisor greater than√
2m+1. Find the smallest positive integer M such that there exists

a finite set T of distinct positive integers satisfying: (i) m and M

are the least and greatest elements, respectively, in T , and (ii) the
product of all the numbers in T is a perfect square.

Write m = kp where p >
√

2m + 1 is prime. We claim that M =
(k + 1)p. First we show that M ≥ (k + 1)p. For if not, m would be
the only multiple of p in T , and the product of all elements in T could
not be a square being divisible by p but not p2.

We now give a construction for M = (k + 1)p. Now,

2k <
2m√

2m + 1
<
√

2m < p− 1.

Now, p > 2k + 1 > 3 is an odd prime, making p+1
2 and p−1

2 both
integral.

Repeatedly using the key inequality 2k < p−1 (which implies that
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k < p−1
2 < p− 1 < p) we find in turn that

m = kp < k(p + 1) = kp + k < kp + p = M

m = kp < kp + p− 1 + k = (k + 1)(p− 1) < (k + 1)p = M

m = kp < kp− k +
p

2
− 1 < (2k + 1)

p− 1
2

< (k + 1)p = M

m = kp < (2k + 1)
p + 1

2
= kp + k +

p + 1
2

< kp +
p− 1

2
+

p + 1
2

= M.

Hence all of the quantities k(p + 1), (k + 1)(p − 1), (2k + 1)p−1
2 ,

(2k + 1)p+1
2 are integers strictly between m and M . Let A be the

multiset {m,M, k(p + 1), (k + 1)(p − 1), (2k + 1)p−1
2 , (2k + 1)p+1

2 }
which may contain repeated elements. We claim that the product of
all the elements of A (with repetitions counted multiple times) is a
square. For that product equals

kp(k + 1)pk(p + 1)(k + 1)(p− 1)(2k + 1)
p− 1

2
(2k + 1)

p− 1
2

=
kp(k + 1)(p + 1)(p− 1)(2k + 1)

2

2

If A has no repetitions, A is the desired set T . If it does, none of
its repeated elements can equal m or M for all other elements of A

are strictly between those two. Hence if x appears more than once
in A, both repetitions of x may be removed from A to form a new
multiset A′ with two fewer elements whose product is still a square.
This can be done until all repetitions are removed to produce such a
set T . Thus the lower bound M = p(k + 1) proved above can indeed
be attained.

Problem 4 On an n × 2n rectangular grid of squares (n ≥ 2)
are marked n2 of the 2n2 squares. Prove that for each k =
2, 3, . . . , bn/2c+ 1, there exists k rows of the board and

d k!(n− 2k + 2)
(n− k + 1)(n− k + 2) · · · (n− 1)

e

columns, such that the intersection of each chosen row and each
chosen column is a marked square.

Label the 2n columns of the grid C1, C2 . . . C2n. Let aj , 1 ≤ j ≤ 2n

be the number of marked squares in the jth column. Then the number
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of sets of k squares on the grid that are all in the same column is∑
1≤j≤2n

(
Cj

k

)
. (∗)

In order to bound the quantity in (∗) using Jensen’s inequality, we
consider the function fk : R → R defined piecewise by fk(x) = 0
for x ≤ k − 1 and fk(x) =

(
x
k

)
= x(x−1)···(x−k+1)

k for x ≥ k − 1.
This function is important because fk(m) =

(
m
k

)
for any nonnegative

integer m. In addition, it is continuous everywhere and differentiable
except at x = k − 1. We show fk is (weakly) convex by showing
that f ′k, where defined, is nondecreasing. This is clear on the interval
(−∞, k − 1) where it is identically 0. For (k − 1,+∞) we prove
the equivalent statement that g′k(x) is increasing on (0,∞) where
gk(x) = fk(x + k − 1) = x(x+1)···(x+k+1)

(k+1)! . Indeed gk(x) has all
coefficents positive, as does g′k(x), so the latter is positive increasing
on (0,+∞). Hence f ′k(x) is positive and increasing on (k − 1,+∞).
Putting the pieces together shows that fk(x) is a convex function.

We now apply this result to bound the quantity in (∗). Because
all the Cj are nonnegative integers, we may convert the binomial
coefficients into fk’s, and apply Jensen’s inequality:∑

1≤j≤2n

(
Cj

k

)
=

∑
1≤j≤2n

fk(j)

≥ 2nfk

 1
2n

 ∑
1≤j≤2n

Cj


= 2nfk

(n

2

)
= 2n

(n
2

k

)
.

because
∑

1≤j≤2n Cj is the total number of marked squares, or n2.
This establishes that there are at least 2n

(n
2
k

)
subsets containing k

marked squares all in one column.
We now wish to use the pigeonhole principle to find an M for which

some union of k rows must contains M distinct such sets of k marked
squares all in a column, or equivalently that the intersection of some
k rows and M columns contains only marked squares. There are n

rows in total, hence there are
(
n
k

)
sets containing k rows. Each of the
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at least 2n
(n

2
k

)
sets of k marked squares all in a column is contained

in exactly one set of k rows. By the pigeonhole principle, some set of
k rows must contain at least

M =

⌈
2n
(n

2
k

)(
n
k

) ⌉
distinct sets of k marked squares all in a column.
This shows that there exist k rows and M columns whose intersec-

tion contains only marked squares. However, our bound M is better
than the bound the problem requires, which is

N =

⌈
k!(n− 2k + 2)

(n− k + 1)(n− k + 2) · · · (n− 1)
=

n(n− 2k + 2)(
n
k

) ⌉
.

However,(n
2

k

)
=
(

n− 2k + 2
2

)(
n− 2k + 4

4

)
· · ·
( n

2k

)
≥ n− 2k + 2

2

for all the other terms in the product are ≥ 1 because k ≤ n
2 + 1.

Making use of this result,

M =

⌈
2n
(n

2
k

)(
n
k

) ⌉

≥

⌈
2nn−2k+2

2(
n
k

) ⌉

=

⌈
n(n− 2k + 2)(

n
k

) ⌉
= N

We have shown there are k rows and M columns whose intersec-
tion contains only marked squares. Therefore there are definitely k

rows and N ≤ M columns whose intersection contains only marked
squares.

Problem 5 Find all polynomials p(x) with integer coefficients such
that

q(x) = (x2 + 6x + 10)(p(x))2 − 1

is the square of a polynomial with integer coefficients.
Define the sequence {An(y)} of polynomials in y recursively by

A0(x) = 0, A1(x) = y and for n ≥ 2, An(y) = (4y2 + 2)An−1(y) −
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An−2(y). We claim that the required polynomials p(x) are exactly
those of the form p(x) = ±An+1(x+3)−An(x+3)

2(x+3) .
In order to simplify the calculations, we make the substitution

y = x + 3, so that there are integer polynomials r(y), s(y) in y

such that p(x) = r(x + 3), and q(x) = (s(x + 3))2. Then because
x2 + 6x + 10 = (x + 3)2 + 1 our equation turns into

(s(y))2 = (y2 + 1)(r(y))2 − 1. (1)

Now, let u(y) = r(y) + ys(y) and v(y) = r(y) − ys(y), so that
r(y) = u(y)+v(y)

2 and s(y) = u(y)−v(y)
2y . Then we can rewrite (1)

as (
(u(y) + v(y))

2

)
= (y2 + 1)

(
(u(y)− v(y)

2y

)
− 1. (2)

After multiplying through by 4y2 and expanding, (2) becomes

(u(y))2 + (v(y))2 − (4y2 + 2)u(y)v(y)− 4y2 = 0. (3)

We claim that if u(y), v(y) are polynomials in y that satisfy (3),
then the set {u(y), v(y)}must be either {An, An+1} or {−An,−An+1}.
We proceed by induction on max(deg(u),deg(v)).

Base Case: max(deg(u),deg(v)) ≤ 1. That is to say, u(y) and v(y)
are both at most linear. This means that,

0 = (u(y))2 + (v(y))2 − (4y2 + 2)u(y)v(y)− 4y2

= −4y2u(y)v(y) + Q(y)

where Q(y) = u((y))2 + v((y))2 − 2u(y)v(y) − 4y2 is at most a
quadratic. Therefore 4y2u(y)v(y) cannot have degree > 2. This can
only happen if both of u(y), v(y) are constant or at least one is zero.

If both are constant – u(y) = U and v(y) = V for constants U

and V , then by (3) U2 + V 2 − 2UV − (4 + 4UV )y2 = 0. Equating
coefficients, 0 = U2 + V 2 − 2UV = (U − V )2 and 8UV = 4. The
first equation implies that U = V and the second that −1 = UV =
U2, giving no integer solutions for U and V . We are left with the
possibility that one of u(y), v(y) is zero. Without loss of generality
we may let u(y) = 0 = A0(y). Then by (3), (v(y))2 − 4y2 = 0. This
has the solutions v(y) = ±y = ±A1(y), and the base case holds. In
addition, the only solution to (3) with one of u(y), v(y) zero is the
one found above, and so we can assume in our inductive step that
u(y), v(y) are nonzero.
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Inductive Step: Assume that the claim holds for all u(y), v(y) with
max(deg(u),deg(v)) < k. Let u(y). v(y) be polynomials satisfying
(3) with max(deg(u),deg(v)) = k ≥ 2. We count degrees in order
to establish an infinite descent. Consider the left hand side of (3).
It is composed of four terms whose sum is zero, and so among those
four terms there cannot be a unique term of highest degree. Without
loss of generality, assume deg(u) = k, so deg(v) = j ≤ k. Then
deg((u(y))2) = 2k, deg((v(y))2) = 2j, deg(−(4y2 + 2)u(y)v(y)) =
2 + j + k, and deg(−4y2) = 2. Then deg(−4y2) = 2 < 2k =
deg((u(y))2) so −4y2 cannot be a term of highest degree. In addition
deg((v(y)2)) = 2j < 2 + j + k deg(−(4y2 + 2)u(y)v(y)) cannot be a
term of highest degree either. Thus 2k = deg((u(y))2) = deg(−(4y2+
2)u(y)v(y)) = 2 + j + k, or j = k − 2.

Now, we rewrite (3) as a quadratic in u(y):

(u(y))2 − ((4y2 + 2)v(y))u(y) + (v(y))2 − 4y2 = 0

Thus the quadratic z2 − ((4y2 + 2)v(y))z + (v(y))2 − 4y2 has the
root z = u(y). Hence it also has another root, call it z = w(y).
Then w(y) = (4y2 + 2)v(y) − u(y) = (v(y))2−4y2

u(y) , and w(y) has
integer coefficients. We deduce from the relactionship between the
coefficients of the quadratic and its roots that w(y) = (v(y))2−4y2

u(y) that
deg w = 2(k − 2)− k = k − 4. Thus maxdeg v,deg w < n and by the
definition of w(y), (w(y))2 + (v(y))2 − (4y2 + 2)w(y)v(y) − 4y2 = 0.
Hence by the induction hypothesis, {v(y), w(y)} = {An, An+1} or
{−An,−An+1}. Because v(y) has the greater degree and deg An is
strictly increasing (by induction), it must be that v(y) = ±An+1.

Without loss of generality we may assume v(y) = +An+1. Then

u(y) = (4y2 + 2)v(y)− w(y) = (4y2 + 2)An+1 −An = An+2,

similarly if v(y) = −An + 1, u(y) = −An+2. This proves that the
inductive step works.

Hence by induction all solutions to (3) are of the form {An, An+1}
or {−An,−An+1}. We have also shown that if {u(y), v(y)} solves (3),
{(4y2 +2)v(y), u(y)} does too. Because {A0, A1} and its negative are
solutions to (3), by an induction argument using the recurrence for
An, {u(y), v(y)} = {An, An+1} or {−An,−An+1} are all solutions to
(3) as well, and we have just shown that they are the only solutions.

Retracing our steps, we find that any solution to the original
equation must be of the form p(x) = ±An+1(x+3)−An(x+3)

2(x+3) and q(x) =
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(
An+1(x+3)+An(x3)

2

)2

. If we can show that for any n, the values p(x)
defined by those polynomials are integer polynomials, we will have
proved that those values of p(x) are exactly those integer polynomials
that make q(x) a square.

Essentially, we must prove that 2y | An(y) − An+1(y) and 2 |
An(y) + An−1(y). But we know that u(y) = An(y), v(y) = An+1(y)
is a solution to (3), so

0 = (An(y))2 + (An+1(y))2 − (4y2 + 2)An(y)An+1(y)− 4y2

= (An(y)−An+1(y))2 − 4y2(An(y)An+1(y)− 1).

This means that 4y2 | (An(y)−An+1(y))2 and 2y | An(y)−An+1(y).
Thus also 2 | An(y) − An+1(y) + 2(An+1(y)) = An(y) + An−1(y).
This establishes that p(x) = ±An+1(x+3)−An(x+3)

2(x+3) is always an integer
polynomial, and that those polynomials p(x) are exactly the values
of p(x) that make q(x) a square.

Problem 6 Prove that there exists an integer m ≥ 2002 and m

distinct positive integers a1, a2, . . . , am such that

m∏
i=1

a2
i − 4

m∑
i=1

a2
i

is a perfect square.
We proceed by solving the problem with the condition of distinct-

ness relaxed, and then proceed to make the ai distinct, one by one.
For if we need not have the ai distinct, we first choose a1, a2 to be

odd and large enough so that a2
1a

2
2 − 4(a2

1 + a2
2) > 4 · 2000. (This can

be done because a2
1a

2
2−4(a2

1+a2
2) = (a2

1−4)(a2
2−4)−16.) Because a2

1,
a2
2 are both 1 mod 4, a2

1a
2
2 − 4(a2

1 + a2
2) = 4k + 1 for some k ≥ 2000.

Let m = k + 2 ≥ 2002 and let a3, a4, . . . , am all equal 1.
Then

m∏
i=1

a2
i − 4

m∑
i=1

a2
i = a2

1a
2
2 − 4a2

1 − 4a2
2 − 4k = 1

is square.
We now must modify our sequence to make all the terms distinct.

To do so, we induct upon the following claim.
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Claim: For any integer 1 ≤ j ≤ m, there exists a sequence
a1, a2, . . . , am of positive integers satisfying

m∏
i=1

a2
i − 4

m∑
i=1

a2
i = b2 (∗)

for some integer b and such that ai < ai+1 for all i with 1 ≤ i < j.
Proof of Claim: By induction.
Base Case: j = 1. In this case, the condition ai < ai+1 for all

1 ≤ i < j holds vacuously. We have already constructed a sequence
a1, a2, . . . , an which satisfies all other conditions. Thus the base case
is established.

Inductive Step: Suppose there exists such a sequence a1, a2, . . . an

of positive integers satisfying (∗) such that ai < ai+1 for all i with
1 ≤ i < j. We must show there is such a sequence a′1, a

′
2, . . . , a

′
n with

a′i < a′i+1 for all i with 1 ≤ i < j + 1.
Consider the Diophantine equation ∏

i 6=j+1

a2
i − 4

 p2 − 4
∑

i 6=j+1

a2
i = q2

with p, q positive integers. This is a Pell equation of the form
Ap2 − B = q2. A basic result in the theory of Pell equations states
that if such an equation has a solution in positive integers, it has
infinitely many solutions in positive integers. However, by (∗), the
above equation has the solution p = aj+1, q = b. Hence it has
infinitely many positive integer solutions, namely, it has a positive
integer solution with p > aj . Let that solution be p = a′j+1 > aj ,
q = b′.

We claim that the sequence a′1, a
′
2, . . . , a

′
n with a′j+1 defined as

above and a′i = ai, i 6= j + 1 is our desired sequence. For by the
induction hypothesis a′i ≤ a′i+1 for 1 ≤ i < j and a′j < a′j+1 by
construction. To show that (∗) holds with b = b′, we use the definition
of a′j+1, b′ to show

m∏
i=1

a′i
2 − 4

m∑
i=1

a′i
2 =

 ∏
i 6=j+1

a2
i − 4

 a′j+1 − 4
∑

i 6=j+1

a2
i = b′2

This shows that if our induction hypothesis holds for j, it holds
in addition for j + 1. Hence by mathematical induction it is true
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for all positive integer j ≤ m. If we let j = m, then our sequence
a1, a2, . . . , an has all terms distinct and satisfies (∗), as desired.
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Problem 1 Let a1, a2, . . . , an be a sequence of non-negative inte-
gers, where n is a positive integer. Let

An =
a1 + a2 + · · ·+ an

n
.

Prove that
a1!a2! · · · an! ≥ (bAnc!)n

,

and determine when equality holds. (Here, bAnc denotes the greatest
integer less than or equal to An, a! = 1 × 2 × · · · × a for a ≥ 1, and
0! = 1.)

Solution: Let’s prove the following statement.

Lemma. Let a, b be nonnegative integers such that a − b > 1. Then
a!b! > (a− 1)!(b + 1)!.

Proof. Dividing both sides by (a − 1)!b!, we obtain an equivalent
inequality a > b + 1 that is obvious.

The number of sequences a1, a2, . . . , an of nonnegative integers with
constant sum is finite. Hence, there exists such sequence b1, b2, . . . , bn

with minimal b1!b2! · · · bn! over all such sequences. It is sufficient to
solve the problem only for that sequence.

Let’s prove that any two of bi differs on at most 1. Otherwise there
exist i 6= j such that bi − bj > 1. Let’s substitute bi and bj in the
sequence by bi − 1 and bj + 1. Then the sum of numbers will not
change but, as a consequence of Lemma, the product of factorials of
the numbers will decrease. It makes a contradiction with our choice
of the numbers.

Therefore, all numbers in the sequence take at most two values, say
x and x + 1 for some nonnegative integer x. Let k < n of them equal
to x + 1 and other n− k equal to x. We have⌊

b1 + b2 + · · ·+ bn

n

⌋
=
⌊

k(x + 1) + (n− k)x
n

⌋
=
⌊

nx + k

n

⌋
= x.

It makes the inequality obvious: b1!b2! · · · bn! ≥ (x!)n because each of
bi is at least x.
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Problem 2 Find all positive integers a and b such that

a2 + b

b2 − a
and

b2 + a

a2 − b

are both integers.

Solution: The answers are (2, 2), (3, 3), (1, 2), (2, 3), (2, 1) and (3, 2)
Consider the following cases.
First case: a = b. In this case a2+a

a2−a = a+1
a−1 is an integer. It implies

that a-1 divides a+1 so

(a−1) | gcd(a+1, a−1) = gcd(a−1, a+1−(a−1)) = gcd(a−1, 2) | 2.

Hence, a−1 is either 1 or 2 because a is a positive integer. If a−1 = 1,

then a = 2 and a+1
a−1 = 3 is an integer. If a − 1 = 2, then a = 3 and

a+1
a−1 = 2 is an integer too. So we have only two answers (2, 2) and
(3, 3) in this case.

Second case: a > b. Look at b2+a
a2−b . It is an integer and it is

positive because a2 > b. So b2+a
a2−b ≥ 1 and b2 + a ≥ a2 − b that

implies a + b ≥ a2 − b2 = (a − b)(a + b) that holds if and only if
a − b = 1. So it is sufficient to find all such positive integers b, that
a2+b
b2−a = (b+1)2+b

b2−(b+1) = b2+3b+1
b2−b−1 = 1 + 4b+2

b2−b−1 is an integer so 4b+2
b2−b−1 is

an integer too. If b ≥ 6, then b2 ≥ 6b = 5b + b > 5b + 3. Therefore,
b2− b− 1 > 4b + 3 and 4b+2

b2−b−1 can not be an integer. Now we should
check all b less than 6. For b = 1, 2, 3, 4 and 5 4b+2

b2−b−1 equals to
−6, 10, 12

5 , 18
11 and 22

19 respectively. So the only answers in this case
are (1, 2) and (2, 3).

The third case a < b is similar to second one with transposition of
a and b, and the answers are (2, 1) and (3, 2).

Problem 3 Let ABC be an equilateral triangle. Let P be a point on
side AC and let Q be a point on side AB so that both triangles ABP

and ACQ are acute. Let R be the orthocenter of triangle ABP and
let S be the orthocenter of triangle ACQ. Let T be the intersection of
segments BP and CQ. Find all possible values of ∠CBP and ∠BCQ

such that triangle TRS is equilateral.

Solution: Angles ∠CBP and ∠BCQ are both equal to 15◦. We
will present quite technical solution using barycentric coordinates.

Let O be the center of triangle ABC and B1 and C1 be the
midpoints of AC and AB respectively. Assume that barycentric
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coordinates of T in triangle ABC are (x, y, z). Points P and Q lie
on segments CB1 and BC1 respectively because both triangles ABP

and ACQ are acute.
We have CP

B1A = x
z and PC = x

x+z . So B1P =
(

1
2 −

x
x+z

)
AC

because B1 is the midpoint of AC. Point R lies on BB1 and PR⊥AB.

It means that RP is parallel to CO and, as a consequence, triangles
B1PR and B1CO are similar. Therefore, B1R

B1O = B1P
B1C = 1− 2x

x+z and
OR
B1O = 1− B1R

B1O = 2x
x+z . We have OB = 2OB1 so

−−→
OR = − x

x+z

−−→
OB. In

the same manner we can prove that
−→
OS = − x

x+y

−−→
OC using similarity

of triangles RC1S and BC1O.

Let’s find vectors
−→
TS and

−→
TR. We have

−→
OT = x

−→
OA + y

−−→
OB + z

−−→
OC

because (x, y, z) are barycentric coordinates of T. Using
−→
OA +

−−→
OB +−−→

OC = 0 we get
−→
TS =

−→
OS −

−→
OT = − x

x + y

−−→
OC − (x

−→
OA + y

−−→
OB + z

−−→
OC)

= − x

x + y

−−→
OC − (x

−→
OA + y(−

−→
OA−

−−→
OC) + z

−−→
OC)

=
(

y − z − x

x + y

)
−−→
OC + (y − x)

−→
OA

and
−→
TR =

−−→
OR−

−→
OT

= − x

x + z

−−→
OB − (x

−→
OA + y

−−→
OB + z

−−→
OC)

= − x

x + z

−−→
OB − (x

−→
OA + y

−−→
OB + z(−

−→
OA−

−−→
OB))

= (z − y − x

x + z
)
−−→
OB + (z − x)

−→
OA.

Let ~v be the image of
−→
TS after counterclockwise rotation on 60◦.

Vectors
−→
OA,

−−→
OB and

−→
AC rotated on 60◦ equal to −

−−→
OB,−

−−→
OC and

−
−→
OA respectively. It means that ~v = (z − y + x

x+y )
−→
OA + (x− y)

−−→
OB.

Points S and R lie on segments OC1 and OB1 respectively and T

lies in the interior of triangle OBC. Thus,
−→
TR equals to ~v and the

following equation holds if and only if triangle RTS is equilateral:
(z − y − x

x+z )
−−→
OB + (z − x)

−→
OA = (z − y + x

x+y )
−→
OA + (x − y)

−−→
OB.

Vectors
−→
OA and

−−→
OB are not parallel so z − x = z − y + x

x+y and
z − y − x

x+z = x − y. Multiplying by x + y and x + z respectively
we obtain y2 − x2 = x and z2 − x2 = x. Coordinates z and y are
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equal because z2 = y2 and they are positive. The sum of x, y, z is
1, so z = 1−x

2 because y = z. Substituting z in z2 − x2 = x we
get

(
1−x

2

)2 − x2 = x and 3x2 + 6x − 1 = 0. For positive x there is
only one solution, x = 2

√
3

3 − 1. Thus, triangle RST is equilateral if
and only if x = 2

√
3

3 − 1 and y = z = 1−x
2 = 1 −

√
3

3 . Let’s prove
that it is equivalent to B1P

PC = B1B
BC . The right-hand side equals to

sin 60◦ =
√

3
2 . The left-hand side equals to

1
2−

x
x+z
x

x+z
= z−x

2x . It is equal

to
√

3
2 = (2−

√
3)
√

3

2(2−
√

3)
= (2−

√
3)
√

3

2
√

3( 2
√

3
3 −1)

= 2−
√

3

2( 2
√

3
3 −1)

if and only if x = 2
√

3
3 −1.

The equality B1P
PC = B1B

BC holds if and only if CQ is the bisector of
∠B1BC and ∠PBC = 15◦. Therefore, triangle RST is equilateral if
and only if y = z and ∠PBC = 15◦ (and ∠QCB = 15◦ because y = z

and T lies on line AO).

Problem 4 Let x, y, z be positive numbers such that

1
x

+
1
y

+
1
z

= 1.

Show that

√
x + yz +

√
y + zx +

√
z + xy ≥ √

xyz +
√

x +
√

y +
√

z.

Solution: Let’s denote 1
x , 1

y , 1
z by a, b, c respectively. The sum of

a, b, c is 1. So the inequality can be rewritten as√
1
a

+
1
bc

+

√
1
b

+
1
ca

+

√
1
c

+
1
ab

≥
√

1
abc

+

√
1
a

+

√
1
b

+

√
1
c
.

or
√

a + bc +
√

b + ca +
√

c + ab ≥ 1 +
√

bc +
√

ca +
√

ab (∗)

after multiplying by
√

abc. We can factorize

a = (
√

a + bc)2 − (
√

bc)2 = (
√

a + bc−
√

bc)(
√

a + bc +
√

bc) (†)

The next step consists of proving that
√

a + bc +
√

bc ≤ 1. From
a + b + c = 1 we get a = 1− b− c and

√
a + bc +

√
bc =

√
1− b− c + bc +

√
bc =

√
(1− b)(1− c) +

√
bc.
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Applying Cauchy-Schwarz inequality we obtain

1 = (b + (1− b))(c + (1− c))

= ((
√

b)2 + (
√

(1− b))2)((
√

c)2 + (
√

(1− c))2)

≥ (
√

bc +
√

(1− b)(1− c))2

Therefore,
√

a + bc+
√

bc ≤ 1 and a ≥
√

a + bc−
√

bc by (†). Similarly
one can prove that b ≥

√
b + ca −

√
ca, c ≥

√
c + ab −

√
ab. These

three inequalities add up to

a + b + c ≥
√

a + bc +
√

b + ca +
√

c + ab−
√

bc−
√

ca−
√

ab

that is the same as (∗) because a + b + c = 1.

Problem 5 Find all functions f : R → R with the following
properties:

(i) there are only finitely many s in R such that f(s) = 0, and

(ii) f(x4 + y) = x3f(x) + f(f(y)) for all x, y ∈ R.

Solution: The only answer is f(x) ≡ x. The first our goal is to
prove additivity of f. We have

f(x4 + y) = x3f(x) + f(f(y))

Substituting x by 0, we obtain f(y) = f(f(y)) for all y ∈ R. Therefore,

f(x4 + y) = x3f(x) + f(y) (∗)

Substituting y in (∗) by 0, we have f(x4) = x3f(x) + f(0). When
x = 1 f(1) = f(1) + f(0) so f(0) = 0 and f(x4) = x3f(x). Applying
this to (∗) gives us f(x4 + y) = f(x4) + f(y) or in other words

f(a + y) = f(a) + f(y) for all a ≥ 0, (†)

because for all a ≥ 0 there exists such x that x4 = a. When y = −a

f(a) = −f(−a). Therefore, f is additive because f(x + y) = f(x) +
f(y) holds when x or y is nonnegative as a consequence of (†) and
holds when x and y are negative, because

f(x + y) = −f(−x− y) = −f(−x)− f(−y) = f(x) + f(y).

We will present two approaches for the final part of solution.
First approach. As proved above, f(f(y)) = f(y), so from additiv-

ity of f we obtain that f(f(y)− y) = 0 which means that there exist
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only finitely many values of f(y)−y. Suppose that there exist such z,

that f(z)− z = c 6= 0. Then f(kz)− kz = f(z) + · · ·+ f(z)− kz = kc

for all positive integers k that gives a contradiction with finiteness of
values of f(y) − y. It proves that f(z) = z for all z ∈ R. Checking
that f(z) ≡ z really works we get full solution.

Second approach. For any function g(x) let’s denote g(x) by ∆0
g(x),

∆0
g(x+1)−∆0

g(x) by ∆1
g(x), ∆1

g(x+1)−∆1
g(x) by ∆2

g(x) and so on.
Let f(1) = c. As was proved above f(x4) = x3f(x). Now we will

find ∆3
r(x) and ∆3

s(x) where r(x) = f(x4) and s(x) = x3f(x), expand-
ing powers of x + 1 by Binomial Theorem and applying additivity:

∆1
r = f((x + 1)4)− f(x4) = f(x4 + 4x3 + 6x2 + 4x + 1)− f(x4)

= 4f(x3) + 6f(x2) + 4f(x) + c,

∆2
r = 4(f(x + 1)3 − f(x3)) + 6(f(x + 1)2 − f(x2)) + 4(f(x + 1)− f(x))

= 4(3f(x2) + 3f(x) + c) + 6(2f(x) + c) + 4c

= 12f(x2) + 24f(x) + 10c,

∆3
r = 12f((x + 1)2 − x2) + 24(f(x + 1)− f(x))

= 24f(x) + 12c + 24c = 24f(x) + 36c,

∆1
s = (x + 1)3f(x + 1)− x3f(x)

= ((x + 1)3 − x3)f(x) + c(x + 1)3

= (3x2 + 3x + 1)f(x) + c(x + 1)3,

∆2
s = f(x + 1)(3(x + 1)2 + 3(x + 1) + 1) + c(x + 2)3

− f(x)(3x2 + 3x + 1)− c(x + 1)3

= f(x)(3(x + 1)2 + 3(x + 1)− 3x2 − 3x)

+ c(3(x + 1)2 + 3(x + 1) + 1) + c((x + 2)3 − (x + 1)3)

= (6x + 6)f(x) + c(3x2 + 6x + 3 + 3x + 3 + 1) + c(3x2 + 9x + 7)

= (6x + 6)f(x) + c(6x2 + 18x + 14),

∆3
s = (6(x + 1) + 6)f(x + 1) + c(6(x + 1)2 + 18(x + 1) + 14)

− (6x + 6)f(x)− c(6x2 + 18x + 14)

= 6f(x) + (6(x + 1) + 6)c + c(6(x + 1)2 + 18(x + 1)− 6x2 − 18x)

= 6f(x) + 18xc + 36c.
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We have ∆3
s(x) = ∆3

r(x) for all x because r(x) = s(x). Hence,
24f(x) + 36c = 6f(x) + 18xc + 36c that implies 18f(x) = 18xc and
f(x) = cx. From f(f(y)) = f(y) we obtain cx = c2x and c = 0 or 1.

If c = 1, then f(x) = cx for all x. If c = 0, then f(x) = 0 for all x

that does not agree with statement (ii).
Notice that this is the only place where (ii) is used with the second

approach.
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2.2 Austrian-Polish Mathematics Olym

piad

Problem 1 Let A = {2, 7, 11, 13}. A polynomial f with integer
coefficients has the property that for each integer n, there exists p ∈ A

such that p | f(n). Prove that there exists p ∈ A such that p | f(n)
for all integers n.

Solution: Suppose that there is no value such that it divides f(x)
for all x. Then, there exist integers a, b, c, and d such that 2 does not
divide f(a), 7 does not divide f(b), 11 does not divide f(c), and 13
does not divide f(d). Thus, we know that f(a+7 ·11 ·13) = f(a)+k ·
7 · 11 · 13, where k is some integer. Similarly for b, c, and d. Thus, we
can use the Chinese Remainder Theorem to find a value r such that
r = a+r1 ·7 ·11 ·13 = b+r2 ·2 ·11 ·13 = c+r3 ·2 ·7 ·13 = d+r4 ·2 ·7 ·11
where r1, r2, r3, and r4 are integers. Thus, 2, 7, 11, and 13 do not
divide f(r).

Problem 2 The diagonals of a convex quadrilateral ABCD inter-
sect at the point E. Let triangle ABE have circumcenter U and
orthocenter H. Similarly, let triangle CDE have circumcenter V and
orthocenter K. Prove that E lies on line UK if and only if it lies on
line V H.

Problem 3 Find all functions f : Z+ → R such that f(x + 22) =
f(x) and f(x2y) = (f(x))2f(y) for all positive integers x and y.

Solution: Look at what f(0) is. f(02x) = f(0)2f(x), so f(0) must
equal -1, 0, or 1. However, if f(0) = -1, then f(x) must also equal
-1. Also, if f(0) = 1 then f(x) = 1. Each of these simple cases is
self-consistent, and we will now look at the case where f(0) = 0. We
know that f(12 ·1) = f(1)2f(1), so f(1) is either 1, 0, or -1. If f(1) = 0,
then f(12 ·x) = 0 for all x. However, if f(1) is either ±1, then we know
that f(1 + 44) = f(3)2f(5). f(3) = f(5)2f(1), so f(1) = f(5)5f(1)2,
so f(5) = f(1) as does f(3). Similarly, f(9) = f(3)2f(1) = f(1).
f(15+66) = f(9)2f(1) = f(1). Thus we have f(1) = f(3) = f(5) = f(9)
= f(15). However, we know that f(5 + 44) = f(7)2f(1), so f(7) = f(1).
Similarly, f(72 · 7) = f(13) = ±f(1). We can continue this argument
to find that f(7) = f(13) = f(17) = f(19) = f(21) = ±f(1).
f(2 + 66) = f(2)2f(17) = ±f(1) or 0. If f(2) = 0, then since we
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can write every even value as 4 · k, where k is some odd value or
previously determined even value, then f of every even value is 0. If
f(2) does not equal 0, then since f(22) = f(0) = 0 then f(11) = 0.
However, if f(2) = 0, then f(11 + 110) = f(11)2f(1), so f(11) = f(1).

Problem 4 Determine the number of real solutions of the system

x1 = cos xn, x2 = cos x1, . . . , xn = cos xn−1.

Solution: We will show that unless x1 = cos(x1), we cannot have
such a chain for any value of n. To do this, we will do a case analysis
by quadrants. Notice that since cos(0) = 1 and cos(p/2) = 1 and
cosine is continuously decreasing in the first quadrant, there must be
only one positive value x such that cos(x) = x. Now notice that cos(k)
will be greater than x if k is less than x but will be less than x if k
is greater than x (this is because cosine is a continuously decreasing
function). Now, we must show that cos(x + r) is greater than x - r.
Since the derivative of cosine is never greater than 1, we can see that
this is true. Thus, if we begin with a point in the first quadrant and
continue taking cosines of it, we will become closer and closer to the
value of x. If we choose a point in the second or third quadrants, its
absolute value will be greater than 1 and thus it will be impossible
to ever obtain it. If we choose a point in the fourth quadrant and
take cosine of it, we will come up with a positive value between 0 and
1, which is in the first quadrant. Taking successive cosines will not
allow us to obtain a negative value.

Problem 5 For every real number x, let F (x) be the family of real
sequences a1, a2, . . . satisfying the recursion

an+1 = x− 1
an

for n ≥ 1. The family F (x) has minimal period p if (i) each sequence
in F (x) is periodic with period p, and (ii) for each 0 < q < p, some
sequence in F (x) is not periodic with period q. Prove or disprove
the following claim: for each positive integer P , there exists a real
number x such that the family F (x) has minimal period p > P .
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2.3 Balkan Mathematical Olympiad

Problem 1 Let A1, A2, . . . , An (n ≥ 4) be points in the plane such
that no three of them are collinear. Some pairs of distinct points
among A1, A2, . . . , An are connected by line segments, such that every
point is directly connected to at least three others. Prove that from
among these points can be chosen an even number of distinct points
X1, X2, . . . , X2k (k ≥ 1) such that Xi is directly connected to Xi+1

for i = 1, 2, . . . , 2k. (Here, we write X2k+1 = X1.)

Solution:
First, assume that the problem intends (k ≥ 2) in the second

to last sentence, because otherwise any two connected points would
satisfy the conditions, trivializing the problem. Then, assume the
proposition is untrue. Choose a contradictory A1, A2, . . . , An (n ≥ 4)
such that n is at a minimum. Let a cycle of length k denote a
sequence of distinct points X1, X2, . . . , Xk (k ≥ 3) such that Xi

is directly connected to Xi+1 for i = 1, 2, . . . , k and Xk+1 = X1.
Let a path of length k from A to B denote a sequence of points
A,X2, . . . , Xk−1, B such that Xi is connected to Xi+1 and X1 =
A,Xk = B. By assumption, there are no cycles of even length. We
will show that there exists a cycle. Starting from one point, move to
a point connected to it. Continue moving to connected points– since
each point has at least three adjacent points, we can continue without
backtracking until we repeat a point. Then the set of points from the
first to the second visitation of that point would constitute a cycle,
which we will denote C, consisting of X1, X2, . . . , Xk.

Now, note that for any Xi and Xj in the C, i < j− 1, there can be
no path connecting Xi to Xj which is completely separate from C.
This is because if that were the case, there would be at least three
distinct paths from Xi to Xj : this path, the path around one side of
the C, and the path around the other side of C. Then some two of
these must have the same parity, so the two together would form a
cycle of even length, a contradiction. Therefore no two points on C

have a path between them independent of C. Hence, no two points
on C have a path between them independent of C in any portion,
because some portion of that path would be completely independent.

Consider the graph obtained when C is shrunk to a point, with all
external lines moved to the point. Since C has at least three points
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and each point on it has at least one external line, this point has
at least three lines passing through it. Also, no cycles have changed
in length beyond C, since any such cycle must contain at least two
of the points in C, and then would have a path between those two
points not entirely on C, which would cannot happen, as shown above.
In addition, the number of edges from any point not in C has not
changed. Since C has at least three points, the new graph has at
least four; the point formed from C and at least one external to each
point in C. Therefore the new graph satisfies all the conditions for
being a graph and if the original graph does not have an even cycle,
neither does the new graph. Since we assumed that the original graph
has the smallest number of points for a contradictory example and
the new graph has fewer points, this is a contradiction. Therefore all
such graphs have even cycles, QED.

Problem 2 The sequence a1, a2, . . . is defined by the initial con-
ditions a1 = 20, a2 = 30 and the recursion an+2 = 3an+1 − an for
n ≥ 1. Find all positive integers n for which 1 + 5anan+1 is a perfect
square.

Solution: The only solution is n = 3. We can check that 20 · 30 ·
5 + 1 = 3001 and 30 · 70 · 5 + 1 = 10501 are not perfect squares, while
70 ·180 ·5+1 = 63001 = 2512 is a perfect square. Then we must only
prove that 1 + 5anan+1 is not a perfect square for n ≥ 4. First, we
will prove a lemma:

Lemma. For any integer n ≥ 2,

a2
n + 500 = an−1an+1.

Proof. We will prove this by induction on n. In the base case,
302 + 500 = 1400 = 20 · 70. Now assume that a2

n + 500 = an−1an+1.
Then anan+2 = (3an+1 − an)(an) = 3an+1an − a2

n = 3an+1an −
(an−1an+1 − 500) = 500 + an+1(3an − an−1) = 500 + a2

n+1, proving
the inductive step. Therefore the desired statement is true from
induction.

Now, for n ≥ 4, (an + an+1)2 = a2
n + a2

n+1 + 2anan+1. But
a2

n+1 = 9a2
n+a2

n−1−6an−1an, so (an+an+1)2 = 2anan+1+3an(3an−
an−1) + a2

n−1 + a2
n − 3anan−1 = 5anan+1 + a2

n−1 − anan − 2 =
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5anan+1 + a2
n−1 − (a2

n−1 + 500) = 5anan+1 − 500, by the lemma
and definition of a.

Therefore (an + an+1)2 = 5anan+1 − 500 < 5anan+1 + 1. Since
an is increasing and n ≥ 4, an + an+1 ≥ 180 + 470 = 650, so
(an + an+1 + 1)2 = (an + an+1)2 + 2(an + an+1) + 1 > (an + an+1)2 +
501 = 5anan+1+1. Because two adjacent integers have squares above
and below 5anan+1 + 1, that value is not a perfect square for n ≥ 4,
QED.

Problem 3 Two circles with different radii intersect at two points
A and B. The common tangents of these circles are segments MN

and ST , where M,S lie on one circle while N,T lie on the other.
Prove that the orthocenters of triangles AMN , AST , BMN , and
BST are the vertices of a rectangle.

Solution: Because you can separate ∠MAN and ∠SAT by the line
AB,

∠MAN =
1
2
(M̂B + N̂B)

∠SAT =
1
2
(B̂S + B̂T )

∠MAN + ∠SAT =
1
2
(N̂AT + M̂AS)

Therefore since O1S ‖ O2T and O1M ‖ O2N , we have N̂AT +
M̂AS = 2π, so

∠MAN + ∠SAT = π

Let C,D,EF be the orthocenters of MAN,SAT, SBT, and MBN ,
respectively. Since SBT, MBN are reflections of MAN,MBN over
O1O2, E,F are reflections of C,D over O1O2, so CE ‖ AB ‖ DF .
Therefore if CD ⊥ AB, CDFE would form a rectangle, and we
would be done. Reflect TSD over AB to T ′S′D′. Since D′D ⊥ AB,
it would be sufficient to prove that D′ = C. Note that T ′S′ ‖ MN

and T ′S′ = MN , so we can translate T ′AS′D′ to MA′ND′′. Since
∠MA′N + ∠MAN = ∠SAT + ∠MAN = π, MA′NA is cyclic. To
proceed we will prove a lemma:

Lemma. Let ABCD be a cyclic quadrilateral, and E,F be the
orthocenters of ABC, ACD respectively. Then

−−→
BD =

−−→
EF .
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Proof. Let O be the circumcenter of ABCD. Then
−−→
OE =

−→
OA+

−−→
OB+−→

AC and
−−→
OF =

−→
OA+

−−→
OC+

−−→
OD, so

−−→
EF =

−−→
OF−

−−→
OE =

−−→
OD−

−−→
OB =

−−→
BD,

QED.

By applying the lemma to MA′NA,
−−→
AA′ =

−−−→
CD′′. But since

MA′ND′′ was translated from T ′ASD′,
−−→
AA′ =

−−−→
D′D′′. Therefore−−−→

D′D′′ =
−−−→
CD′′, so C = D. Thus we have CDEF is a rectangle, QED.

Problem 4 Find all functions f : Z+ → Z+ such that

2n + 2001 ≤ f(f(n)) + f(n) ≤ 2n + 2003

for all positive integers n.

Solution: f(n) = n+667 or n+668, where the set S of n for which
f(n) = n + 668 is such that no two elements differ by 668. First,
we will show that f(n) = n + 667 or n + 668 for all n. Assume
the opposite, and let n be a value for which f(n) > n + 668 or
f(n) < n + 667. Then, define the sequence a0 = n, ai = f(ai−1)
for all integer i > 0. Notice that if ai − ai−1 ≥ 668 + k, k > 0
and by the given ai + ai+1 ≤ 2ai−1 + 2003, we have ai+1 − ai ≤
2ai−1 + 2003 − 2ai ≤ 2003 − 2(668 + k) = 667 − 2k. Similarly,
if ai − ai−1 ≤ 667 − k, k > 0 then ai + ai+1 ≥ 2ai−1 + 2001, so
ai+1 − ai ≥ 667 + 2k. Therefore, if ai+1 − ai = 668 + k, k > 0, then
ai+2 − ai+1 ≤ 667− 2k, so ai+3 − ai+2 ≥ 667 + 4k ≥ 668 + 3k. Since
either a1 − a0 < 667, in which case a2 − a1 > 668, or a1 − a0 > 668,
there must be some x for which ax − ax−1 = 668 + k, k > 0. But
then ax+2y − ax+2y−1 ≥ 668 + 3yk. Since this increases as y does,
for some m, an − an−1 ≥ 668 + 1336 for all n ≥ m with n − m

even. Now notice that if ai+1 − ai = 668 + k, then ai+2 − ai =
ai+2−ai+1 +ai+1−ai ≤ 667−2k +668+k = 1335−k. So for all the
n ≥ m, m , an+2 − an ≤ −1. So the sequence am, am+2, am+4, . . . is
strictly decreasing. Therefore for some n, an < 0. But by definition,
f(x) ≥ 0 for all x, a contradiction. Therefore f(n) = n + 667 or
n + 668 for all n.

Let S be the set of n for which f(n) = n + 668. Clearly, if
two elements in S differ by 668, then if n is the lower of the two
f(n) + f(f(n)) = n + 668 + n + 668 + 668 = 2n + 2004 > 2n + 2003,
a contradiction. So no two elements in S differ by 668, QED.
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2.4 Baltic Team Contest

Problem 1 A spider is sitting on a cube. A fly lands on the cube,
hoping to maximize the length of the shortest path to the spider
along the surface of the cube. Can the fly guarantee doing so by
choosing the point directly opposite the spider (i.e., the point that is
the reflection of the spider’s position across the cube’s center)?

Solution: The answer is no. Let A = (0, 0, 0), B = (1, 0, 0), C =
(1, 1, 0), D = (0, 1, 0) be one face of the cube and let EFGH be the
opposite face at z = 1. Consider the midpoint M of GH and its
opposite, N , the midpoint of AB. We will compute the shortest
distance d from M to points P = (x, 0, 0) on AB, 0 < x ≤ 1

2 (x = 1
2

corresponds to P = N). All possible paths are equivalent to one of
the following.

• Path through a point on HD, a point on AD, then to P .
Then d2 = (1 + 1

2 )2 + (1 + x)2, so d > 2 if x >
√

7
2 − 1 ≈ 0.32.

• Path through a point on CD, then to P .
Then d2 = 22 + (1

2 − x)2, so d > 2 for every x < 1
2 and d = 2 if

x = 1
2 .

• Path through a point on EH, a point on AD, then to P .
Then d2 = 12 + ( 3

2 + x)2, so d > 2 if x >
√

3− 3
2 ≈ 0.23.

Hence, the shortest distance from M to N along the cubic surface
is d = 2, while if

√
7

2 − 1 < x < 1
2 , the shortest distance between M

and P is always greater than 2. Therefore, the fly cannot guarantee
maximizing the length of the shortest path to the spider by choosing
the point directly opposite the spider.

Problem 2 Find all nonnegative integers m such that (22m+1)2 +1
is divisible by at most two different primes.

Solution: We claim m = 0, 1, 2 are the only such integers. It is
easy to check that these values of m satisfy the requirement. Suppose
some m ≥ 3 works. Write

(22m+1)2 + 1 = (22m+1 + 1)2 − 2 · 22m+1

= (22m+1 + 2m+1 + 1)(22m+1 − 2m+1 + 1).
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The two factors are both odd, and their difference is 2m+2; hence,
they are relatively prime. It follows that each is a prime power. We
also know that (22m+1)2 = 42m+1 ≡ −1 (mod 5), so one of the factors
22m+1±2m+1 +1 must be a power of 5. Let 22m+1 +2m+1s+1 = 5k,
where s = ±1 is the appropriate sign.

Taking the above equation modulo 8, and using the assumption
m ≥ 3, we obtain 5k ≡ 1 (mod 8), so that k is even. Writing k = 2l,
we have

2m+1(2m + s) = (5l − 1)(5l + 1).

The factor 5l + 1 ≡ 2 (mod 4), so 5l − 1 = 2ma for some odd integer
a. But if a = 1, then

2 = (5l + 1)− (5l − 1) = 2(2m + s)− 2m = 2m + 2s ≥ 23 − 2,

a contradiction, whereas if a ≥ 3, then 5l − 1 ≥ 3 · 2m while 5l + 1 ≤
2(2m + s), another contradiction.

Problem 3 Show that the sequence(
2002
2002

)
,

(
2003
2002

)
,

(
2004
2002

)
, . . . ,

considered modulo 2002, is periodic.

Solution: We will show that the sequence, taken modulo 2002, has
period m = 2002 · 2002!. Indeed,(

x + m

2002

)
=

(x + m)(x− 1 + m) · · · (x− 2001 + m)
2002!

=
x(x− 1) · · · (x− 2001) + km

2002!

=
x(x− 1) · · · (x− 2001)

2002!
+ 2002k

≡
(

x

2002

)
(mod 2002).

Problem 4 Find all integers n > 1 such that any prime divisor of
n6 − 1 is a divisor of (n3 − 1)(n2 − 1).

Solution: We show that n = 2 is the only such integer. It
is clear that n = 2 satisfies the conditions. For n > 2, write
n6−1 = (n3−1)(n3+1) = (n3−1)(n+1)(n2−n+1); hence, all prime
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factors of n2 − n + 1 must divide n3 − 1 or n2 − 1 = (n − 1)(n + 1).
Note, however, that (n2−n+1, n3−1) ≤ (n3 +1, n3−1) ≤ 2; on the
other hand, n2 − n + 1 = n(n− 1) + 1 is odd, so all prime factors of
n2−n+1 must divide n+1. But n2−n+1 = (n+1)(n−2)+3, so we
must have n2−n+1 = 3k for some k. Because n > 2, we have k ≥ 2.
Now 3 | (n2 − n + 1) gives n ≡ 2 (mod 3); but for each of the cases
n ≡ 2, 5, 8 (mod 9), we have n2 − n + 1 ≡ 3 (mod 9), a contradiction.

Problem 5 Let n be a positive integer. Prove that the equation

x + y +
1
x

+
1
y

= 3n

does not have solutions in positive rational numbers.

Solution: Suppose x = a
b , y = c

d satisfies the given equation, where
(a, b) = (c, d) = 1. Clearing denominators,

(a2 + b2)cd + (c2 + d2)ab = 3nabcd.

Thus, ab | (a2 + b2)cd and cd | (c2 + d2)ab. Now (a, b) = 1 implies
(a, a2 + b2) = (a, b2) = 1, so ab | cd; likewise, cd | ab, and together
these give ab = cd. Thus,

a2 + b2 + c2 + d2 = 3nab.

Now each square on the left is congruent to either 0 or 1 modulo
3. Hence, either all terms are divisible by 3 or exactly one is. The
first case is impossible by the assumption (a, b) = (c, d) = 1, and the
second is impossible because ab = cd.

Problem 6 Does there exist an infinite, non-constant arithmetic
progressions, each term of which is of the form ab where a and b are
positive integers with b ≥ 2?

First Solution: Consider the arithmetic progression c, c + k, c +
2k, . . . . Let d = (c, k). Then by Dirichlet’s Theorem, the arithmetic
progression

c

d
,
c

d
+

k

d
,
c

d
+

2k

d
, . . .

contains infinitely many primes. Choose such a prime p > d. Then
pd is a term of the original progression that is not of the form ab.
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Second Solution: It is enough to show that the numbers of
the form ab become arbitrarily sparse. That is, letting p(n) denote
the number of such numbers less than or equal to n, we show that
p(n)/n can be made arbitrarily small. Indeed, let n = 2k. Then the
exponents b that contribute terms ab counted in p(n) satisfy b ≤ k.
The number of terms each exponent contributes is at most 2k/2, so
we have

p(2k)
2k

≤ k · 2k/2

2k
=

k

2k/2
,

which clearly approaches 0 as k →∞.
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2.5 Czech-Polish-Slovak Mathematical C

ompetition

Problem 1 Let a and b be distinct real numbers, and let k and m

be positive integers with k + m = n ≥ 3, k ≤ 2m, and m ≤ 2k. We
consider n-tuples (x1, x2, . . . , xn) with the following properties:

(i) k of the xi are equal to a, and in particular x1 = a;

(ii) m of the xi are equal to b, and in particular xn = b;

(iii) no three consecutive terms of x1, x2, . . . , xn are equal.

Determine all possible values of the sum

xnx1x2 + x1x2x3 + · · ·+ xn−1xnx1.

Solution: Due to (iii) and x1 = a, xn = b, in the expression
xnx1x2 + x1x2x3 + · · ·+ xn−1xnx1, all of the terms will either equal
a2b or b2a. Furthermore, if we write them as aab or bba, then the
number of a’s will be 3k, since each xi appears 3 times. Similarly, the
number of b’s would be 3m.

I want to find how many are a2b and how many are b2a. Each term
a2b has two a’s, each term b2a has one a. Let s be the number of
a2b’s and t be the number b2a’s. Then

2s + t = 3k(the total number of a’s )

2t + s = 3m(the total number of b’s )

Solving, we get
s = 2k −m, t = 2m− k.

So the value of the sum xnx1x2 + x1x2x3 + · · ·+ xn−1xnx1 is

(2k −m)a2b + (2m− k)b2a = ab(2ka−ma + 2mb− kb).

Problem 2 Given is a triangle ABC with side lengths BC =
a ≤ CA = b ≤ AB = c and area S. Let P be a variable point
inside triangle ABC, and let D,E, F be the intersections of rays
AP,BP,CP with the opposite sides of the triangle. Determine (as a
function of a, b, c, and S) the greatest number u and the least number
v such that u ≤ PD + PE + PF ≤ v for all such P .
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Solution: The answer is u =
2S

c
, v = c.

Part One u =
2S

c
.

Proof of Part One: Construct D′ on BC, E′ on AC, F ′ on AB

such that PD′ ⊥ BC, PE′ ⊥ AC, PF ′ ⊥ AB. Then

PD+PE+PF ≥ PD′+PE′+PF ′ and PD′·BC+PE′·AC+PF ′·AB = 2S.

Since AB is the longest side,

(PD′ + PE′ + PF ′)AB ≥ PD′ ·BC + PE′ ·AC + PF ′ ·AB = 2S.

So

(PD′ + PE′ + PF ′) ≥ 2S

c
.

Now we will prove that there is no larger u satisfying the condition.
Since PD+PE +PF is converges to 2S

c as P is approaching C along
the altitude from C, there is no larger u satisfying the condition.

Part Two v = c.

Proof of Part Two: Construct X on BC and Y on AC such that
XY passes P and XY//AB. Since AB is the largest side, ∠BCA ≥
∠ABC and ∠BCA ≥ ∠CAB. ∠DXP = ∠ABC because XY//AB.
∠DPX = ∠DAB < ∠CAB because D is on the segment BC. Hence
∠XDP ≥ ∠BCA ≥ ∠DXP and ∠XDP ≥ ∠BCA ≥ ∠DPX.
Therefore XP is the largest side of 4DXP .

Similarly, PY is the largest side of 4PEY . So PD + PE ≤ XY ,
and PD + PE + PF ≤ XY + PF .

We will prove XY + PF ≤ AB.
First, note that CF is less than or equal to one of AC and BC.

This is because at least one of ∠CFA and ∠CFB must be larger
than or equal 90◦. It must be the largest angle in any triangle that
is is a part of so the side corresponding to it in such a triangle must
also be the largest side. So through 4CFB and 4CFA we can get
CF ≤ BC or CF ≤ AC. Hence, CF ≤ max{a, b} ≤ c.

Next, note that if CP = s and PF = t · s, then CF = (1 + t)s and
CP : CF = 1 : (1 + t). Hence if XY = l, then AB = (1 + t)l because
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XY//AB and XY : AB = 1 : (1 + t).

XY + PF = l + ts

AB = (1 + t)l = l + tl.

Since CF < AB, we conclude CP ≤ XY . Hence s < l. So
l + ts ≤ l + tl and XY + PF ≤ AB. Thus we have proved that
PD + PE + PF ≤ AB.

When P is on AB, clearly PD + PE + PF = AB. So as P

approaches to AB, PD + PE + PF can be as close to AB as we
want. Thus there is no smaller value of v satisfying the condition.

Problem 3 Let n be a given positive integer, and let S =
{1, 2, . . . , n}. How many functions f : S → S are there such that
x + f(f(f(f(x)))) = n + 1 for all x ∈ S?

Solution: Clearly, if

f(a) = b, f(b) = c, f(c) = d,

then

f(d) = f(f(f(f(a)))) = f4(a) = n + 1− a,

f(n + 1− a) = f(f(f(f(b)))) = f4(b) = n + 1− b

f(n + 1− b) = f(f(f(f(c)))) = f4(c) = n + 1− c

f(n + 1− c) = f(f(f(f(d)))) = f4(d) = n + 1− d

f(n + 1− d) = n + 1− (n + 1− a) = a

f8(a) = a.

So clearly the function f is made of loops

a → b → c → d → n+1− a → n+1− b → n+1− c → n+1− d → a

and every x ∈ S must be a part of one of these loops. If it is a part
of two loops, then clearly these two loops are the same.

Lemma If two terms of the same loop are equal, then this loop must
be

n + 1
2

−→ n + 1
2

−→ n + 1
2

−→ · · · .

Proof of the Lemma: Between the two terms, there can be 0, 1, 2, or
3 terms. We divide the Lemma into four cases.

Case One. 0 term.
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The loop must be

a → a → a → a → a → a → a → a .

So a = n + 1− a, a = n+1
2 .

Case Two. 1 term.
The loop must be

a → b → a → b → a → b → a → b .

So a = n + 1− a, b = n + 1− b, a = b = n+1
2 .

Case Three. 2 terms.
The loop must be

a → b → c → a → b → c → a → b .

Clearly the eighth term goes to the first term in the loop, b → a. But
b → c also. So a = c. Also, a → b and a = c → a, so b = a. Thus
a = b = c. This case is same as Case One.

Case Four. 3 terms.

a → b → c → d → a → b → c → d .

Here a = n + 1− a, b = n + 1− b, c = n + 1− c, d = n + 1− d,, so
a = b = c = d = n+1

2 . Thus the Lemma is proven.

Call the loop n+1
2 → n+1

2 → · · · a repeating loop. Notice that if
the function does not have a repeating loop, then the numbers in S

must be divided into sets of 8. There is a number k ∈ N such that
n = 8k. If there is a repeating loop, then other than n+1

2 , the rest
of the numbers are divided into sets of 8. So n = 8k + 1. Clearly, if
n is not one of the numbers 8k and 8k + 1, then there are no such
functions.

If n = 8k, then there cannot be a repeating loop. To find the
number of functions, we must find the number of ways to make the set
of loops a → b → c → d → n+1−a → n+1−b → n+1−c → n+1−d.

Let T be the set of unordered pairs,

T = {(1, 4k + 1), (2, 4k + 2), · · · , (4k, 8k)}.

Every number in S is in exactly one of the pairs in T . Also, each loop
in the function is formed by exactly four elements in T .



2002 Regional Contests: Solutions 23

First let us consider the number of ways to divide T into k sets of

four elements. There are

(
4k
4

)(
4k−4

4

)
· · ·
(

4
4

)
k!

to do so. In each of
the four element sets,

(a, n + 1− a), (b, n + 1− b), (c, n + 1− c), (d, n + 1− d),

we will see how many different loops can be created. Without loss
of generality, assume the first term is a. Then the fifth term would
be n + 1− a. So we now have six choices for the second term. Once
the second term is decided, the sixth term is also decided. We now
have four choices for the third term. Similarly, once the third term
is decided, the seventh term is also decided. And then there are two
choices for the fourth term, after which the eighth term is decided.
Hence there are 6 × 4 × 2 = 48 ways to make a loop of each set. So
the number of ways to make a set of k loops out of each set of k sets
is (48)k. So the number of functions must be(

4k
4

)(
4k−4

4

)
· · ·
(

4
4

)
k!

· (48)k .

If n = 8k + 1, then there must be one repeating loop. So the
number of functions is the number of ways to make the set of loops
a → b → c → d → n + 1 − a → n + 1 − b → n + 1 − c → n + 1 − d

out of the other 8k numbers. This is the same as the previous case.
So the answer is also(

4k
4

)(
4k−4

4

)
· · ·
(

4
4

)
k!

· (48)k .

In conclusion, if n 6= 8k and n 6= 8k + 1 for any k ∈ N, there are no
functions. If n = 8k or n = 8k + 1 for some k ∈ N, there are(

4k
4

)(
4k−4

4

)
· · ·
(

4
4

)
k!

· (48)k

functions.

Problem 4 Let n, p be integers such that n > 1 and p is a prime.
If n | (p− 1) and p | (n3 − 1), show that 4p− 3 is a perfect square.

Solution: n|(p− 1), so p− 1 ≥ n and p > n.

p|(n3 − 1) = (n− 1)(n2 + n + 1) and p | (n− 1)
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=⇒ p|(n2 + n + 1) =⇒ ∃k ∈ N, p · k = n2 + n + 1

n|(p− 1) =⇒ p ≡ 1 mod n =⇒ p · k ≡ k mod n

=⇒ n2 + n + 1 ≡ k mod n =⇒ k ≡ 1 mod n

There are integers a > 0, b ≥ 0 such that p = an + 1, k = bn + 1.

(an + 1)(bn + 1) = n2 + n + 1

abn2 + (a + b)n + 1 = n2 + n + 1, n > 0

abn + (a + b) = n + 1.

If b ≥ 1, then abn + (a + b) ≥ n + 2 > n + 1. So b = 0, k = 1, p =
n2 + n + 1. Therefore

4p− 3 = 4n2 + 4n + 4− 3 = 4n2 + 4n + 1 = (2n + 1)2.

Problem 5 In acute triangle ABC with circumcenter O, points P

and Q lie on sides AC and BC, respectively. Suppose that

AP

PQ
=

BC

AB
and

BQ

PQ
=

AC

AB
.

Show that O, P , Q, and C are concyclic.

Solution: Construct the circle circumscribed about 4ABC. Let
BC = a,CA = b, AB = c. Without loss of generality, assume a ≥ b.

From the given ratios, clearly there exists x such that AP = ax,
BQ = bx, PQ = cx. I want to find such x. Observe that CP = b−ax

and CQ = a− bx.
By the Law of Cosines,

PQ2 = CP 2 + CQ2 − 2(CP )(CQ) cos γ

⇐⇒ c2x2 = (b− ax)2 + (a− bx)2 − 2(b− ax)(a− bx) cos γ

⇐⇒ c2x2 = a2x2 + b2x2 + a2 + b2 − 4abx− 2ab cos γ − 2abx2 cos γ + 2(a2 + b2)x cos γ

⇐⇒ 0 = c2 − 4abx + 2(a2 + b2)x cos γ .

So

x =
c2

4ab− 2(a2 + b2) cos γ
=

c2

4ab + 2(a2+b2)(c2−a2−b2)
2ab

=
c2ab

4a2b2 − (a4 + b4 + 2a2b2) + a2c2 + b2c2
=

c2ab

(a2 + b2)c2 − (a2 − b2)2
.
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Lemma:
ax− b

2
a
2 − bx

=

√
R2 − ( b

2 )2√
R2 − (a

2 )2
.

Proof of the Lemma. Let y = (a2+b2)c2−(a2−b2)2. Then x = c2ab
y

and
2a2c2 − y = 2a2c2 − (a2 + b2)c2 + (a2 − b2)2

= (a2 − b2)c2 + (a2 − b2)2

= (a2 − b2)(c2 + a2 − b2).

So,

ax− b

2
=

b

2
(
2a2c2

y
− 1) =

b

2
(a2 − b2)(c2 + a2 − b2)

y
.

Symmetrically,

a

2
− bx = −(bx− a

2
) =

a

2
(a2 − b2)(c2 + b2 − a2)

y
.

left side =
b

a

(
c2 + a2 − b2

c2 + b2 − a2

)

right side =

√
R2 − ( b

2 )2√
R2 − (a

2 )2
=

√(
abc

4(ABC)

)2

− b2

4√(
abc

4(ABC)

)2

− a2

4

=
b

a

√√√√ a2c2

4(ABC)2 − 1
b2c2

4(ABC)2 − 1
=

b

a

√
a2c2 − 4(ABC)2

b2c2 − 4(ABC)2

=
b

a

√
a2c2 − 4(ac sin β

2 )2

b2c2 − 4( bc sin α
2 )2

=
b

a

√
a2c2 − a2c2 sin2 β

b2c2 − b2c2 sin2 α
=

b

a

√
a2c2 cos2 β

b2c2 cos2 α

=
b

a

ac cos β

bc cos α
=

b

a

ac c2+a2−b2

2ac

bc c2+b2−a2

2bc

=
b

a

(c2 + a2 − b2)
(c2 + b2 − a2)

= left side .

In the above, we use the fact that cosβ > 0 and cosα > 0 which
follows from that the triangle is acute.

Let E be the midpoint of AC and D be the midpoint of BC. Using
the Lemma, I want to prove that ∠POQ = ∠EOD.

Notice that OE =
√

R2 −
(

b
2

)2
, by the Pythagorean Theorem.

Similarly, OD =
√

R2 −
(

a
2

)2. Since 4ABC is acute and OD and



26 Czech-Polish-Slovak Mathematical Competition

OE are both nonzero, if one of ax− b
2 and a

2 − bx is zero, the other
must be zero. Next, notice that PE = |ax − b

2 | and DQ = |a2 − bx|.
If they are zero, then P coincides with E and D coincides with Q,
leaving the fact that ∠POQ = ∠EOD obvious. So assume they are
not zero. Then notice that

ax− b
2

a
2 − bx

=

√
R2 − ( b

2 )2√
R2 − (a

2 )2
> 0,

ax− b
2 has the same sign as a

2 − bx.
If ax > b

2 , then a
2 > bx. If ax < b

2 , then a
2 < bx. So P and Q are

on opposite sides of DE. Ir follows from the lemma and the fact that
OE and OD bisect chords AC and CB respectively, PE

DQ = OE
OD and

∠PEO = ∠QDO = 90◦. So 4OEP ∼ 4ODQ and they have the
same orientation. So ∠EOP = ∠DOQ. So ∠EOD = ∠POQ.

Let X be the point diametrically opposite to C on the circle. Then
CE = CA

2 , CO = CX
2 . So EO//AX. Similarly, DO//BX. So

∠EOD = ∠AXB,∠POQ = ∠EOD = ∠AXB.
Since ACBX is cocyclic, ∠AXB = 180◦ − ∠ACB . Therefore,

∠POQ = 180◦ − ∠ACB = 180◦ − ∠POQ. So PCQO is cocyclic.

Problem 6 Let n ≥ 2 be a fixed even integer. We consider
polynomials of the form

xn + an−1x
n−1 + · · ·+ a1x + 1

with real coefficients, having at least one real root. Determine the
least possible value of the sum a2

1 + · · ·+ a2
n−1.

Solution: The answer is 4/(n − 1). This can be achieved. When
a1 = a2 = a3 = · · · = an−1 = − 2

n−1 , the polynomial has root x = 1.

Here, a2
1 + a2

2 + · · ·+ a2
n−1 = (n− 1)

(
4

(n−1)2

)
= 4

n−1 .
Now I want to prove that it cannot be less. There exists real number

r such that

rn + an−1r
n−1 + · · ·+ a1r + 1 = 0,

where r is obviously nonzero. In this case, an−1r
n−1 + · · · + a1r =

−1− rn. By the Cauchy-Schwartz Inequality,

(−1−rn)2 = (an−1r
n−1+· · ·+a1r)2 ≤ (a2

1+a2
2+· · ·+a2

n−1)(r
2+r4+· · ·+r2n−2).
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So

(a2
1 + a2

2 + · · ·+ a2
n−1) ≥

(−1− rn)2

r2 + r4 + · · ·+ r2n−2
.

So I only need to prove

(r2n + rn + rn + 1)
r2 + r4 + · · ·+ r2n−2

≥ 4
n− 1

,

which is equivalent to

(r2n + rn + rn + 1)(n− 1) ≥ 4r2 + 4r4 + · · ·+ 4r2n−2.

To prove this, first observe that n is even, and therefore every term
(in the inequality that we want to prove) involving r is raised to an
even power. So if the inequality is true for r, it is also true for −r.
Without loss of generality, assume r > 0.

Next, observe that if a > c > d > b ≥ 0 and a + b = c + d, then
a− c = d− b and (ra−c − 1)rc ≥ (rd−b − 1)rb. This is because

if r > 1, then rc > rb and ra−c − 1 = rb−d − 1 > 0;

if r < 1, then rc < rb and ra−c − 1 = rb−d − 1 < 0;

if r = 1, then both sides are zero,

where we applied the fact that c > b.
So ra−rc ≥ rd−rb and ra+rb ≥ rd+rc. Thus if a > c > d > b ≥ 0

and a + b = c + d, then ra + rb ≥ rd + rc.
Observe the n

2 − 1 inequalities

2(r2n + rn) ≥ 2(r2n−2 + rn+2)
2(r2n + rn) ≥ 2(r2n−4 + rn+4)

...
2(r2n + rn) ≥ 2(rn+2 + r2n−2)

and the n
2 − 1 inequalities

2(rn + r0) ≥ 2(rn−2 + r2)
2(rn + r0) ≥ 2(rn−4 + r4)

...
2(rn + r0) ≥ 2(r2 + rn−2)

By AMGM,
(r2n + 2rn + 1) ≥ 4rn.
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So adding all of these 2(n
2 −1) inequalities and the last inequality, we

get

2(
n

2
−1)(r2n+rn)+2(

n

2
−1)(rn+1)+(r2n+2rn+1) ≥ 4(r2+r4+· · ·+r2n−2).

So

(r2n+rn+rn+1)(n−1) = 2(
n

2
−1)(r2n+rn)+2(

n

2
−1)(rn+1)+(r2n+2rn+1)

≥ 4(r2 + r4 + · · ·+ r2n−2),

as desired.
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Find all positive integers x, y such that y | (x2+1) and x2 | (y3+1).
Let x, y, a be real numbers such that

x + y = x3 + y3 = x5 + y5 = a.

Determine all positive values of a.

Solution: The only values for a are 1 and 2.
First, we consider the case x = y. Then 2x = 2x3 implies x = 0, 1,

or −1. x = 0 or −1 does not give a positive value for a, so x must
equal 1. Then a = 2. So assume that x > y. x cannot be 0 since then
a = x + y = y < x = 0. If y = 0, then x = x3 implies x = 0, 1, or −1.
Clearly, only x = 1 gives a positive value for a. So we additionally
assume that x and y are nonzero.

Case I: y > 0.
Then since both x and y are nonnegative, we apply the Cauchy-

Schwarz inequality to obtain the following:

(x5 + y5)(x + y) ≥ (x3 + y3)2.

But (x5 + y5)(x + y) = a2 = (x3 + y3)2, so equality holds in the
above inequality. By the equality condition of the Cauchy-Schwarz
inequality, x5/x = y5/y implies x = y or x = −y. x = −y cannot
occur because we require both x and y to be positive. x = y cannot
occur because of we assumed x > y. So there are no solutions for a

in this case.
Case II: y < 0.
Clearly, x > 0, since otherwise, a would be negative. Let y′ = −y.

Then we have x − y′ = x3 − y′3 = x5 − y′5 = a, where x and y′ are
positive. We claim that the following is true (*):

(x5 − y′5)(x− y′) ≤ (x3 − y′3)2

with equality iff x = y′ or x = −y′.
We expand * to obtain the equivalent inequality:

x6 + y′6 − x5y′ − xy′5 ≤ x6 + y′6 − 2x3y′3,

or

x5y′ + xy′5 − 2x3y′3 ≥ 0.
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Because x, y′ > 0, we may divide by xy′ to obtain the following:

x4 + y′4 − 2x2y′2 ≥ 0,

which is trivial because the left-hand side is (x2−y′2)2, a nonnegative
value, with equality iff x = y′ or x = −y′.

So our claim * is proven.
Because equality does indeed hold in *, x = y′ or x = −y′. Then

by the reasoning in Case I, no positive solutions for a exist.
Thus, the ordered pairs (x, y) = (1, 0), (0, 1) yield a = 1, and the

ordered pair (x, y) = (1, 1) yield a = 2. These two values are the only
values attainable by a.

Let ABC be an acute triangle. Let M and N be points on the
interiors of sides AC and BC, respectively, and let K be the midpoint
of segment MN . The circumcircles of triangles CAN and BCM meet
at C and at a second point D. Prove that line CD passes through the
circumcircle of triangle ABC if and only if the perpendicular bisector
of segment AB passes through K.

2002. numbers satisfying a2+b2+c2 = 1. Prove that a
b2+1 + b

c2+1 +
c

a2+1 ≥
3
4

(
a
√

a + b
√

b + c
√

c
)2

holds.

Solution: By the Cauchy-Schwarz inequality,∑ a

b2 + 1

∑
(b2 + 1)a2 ≥ (

∑
a3/2)2,

and multiplying 3
4 ,

3
4

∑ a

b2 + 1

∑
(b2 + 1)a2 ≥ 3

4
(
∑

a3/2)2

So it suffices to prove that∑ a

b2 + 1
≥ 3

4

∑ a

b2 + 1

∑
(b2 + 1)a2.

or

4
3
≥
∑

a2b2 +
∑

a2,

which is equivalent to

1 ≥ 3
∑

a2b2,

where we have used the fact that
∑

a2 = 1.
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We substitute 1 = (
∑

a2)2 =
∑

a4 + 2
∑

a2b2 into the inequality
above to obtain the following:∑

a4 + 2
∑

a2b2 ≥ 3
∑

a2b2,

or ∑
a4 ≥

∑
a2b2.

The above inequality is true because after moving all terms to the
left-hand side, we obtain∑ (a2 − b2)2

2
≥ 0.

From here it is easy to see that equality holds iff a = b = c.
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2.6 St. Petersburg City Mathematical

Olympiad (Russia)

Problem 1 Positive numbers a, b, c, d, x, y, and z satisfy a + x =
b + y = c + z = 1. Prove that

(abc + xyz)
( 1

ay
+

1
bz

+
1
cx

)
≥ 3.

Solution: Let us note that, by the rearrangement inequality, we
have ( 1

ay
+

1
bz

+
1
cx

)
≥
( 1

ax
+

1
by

+
1
cz

)
.

Therefore, we only need prove that

(abc + xyz)
( 1

ax
+

1
by

+
1
cz

)
≥ 3.

We do so by smoothing. Now, suppose that we wish to smooth a to
1
2 . Then, we want

bc

x
+

ca

y
+

ab

z
+

xy

c
+

xz

b
+

yz

a
≥ 2bc +

c

2y
+

b

2z
+

y

2c
+

z

2b
+ 2yz.

So, if we have that a ≥ x, c ≥ y, b ≥ z, bc ≥ yz or x ≥ a, y ≥ c, z ≥
b, yz ≥ bc, we can smooth a to 1

2 . Likewise, if b ≥ y, c ≥ x, a ≥
z, ac ≥ xz or y ≥ b, x ≥ c, z ≥ a, xz ≥ ac, we can smooth b to 1

2 and
if c ≥ z, b ≥ x, a ≥ y, ab ≥ xy or z ≥ c, x ≥ b, y ≥ a, xy ≥ ab, we can
smooth c to 1

2 . Therefore, we can always smooth one of a, b, c to 1
2 .

Because the variables are symmetric on the left side of the inequality,
we can smooth any of a, b, or c to 1

2 . Thus, without loss of generality,
smooth a to 1

2 . Then, applying the same reasoning, we can smooth
b to 1

2 and c to 1
2 . Therefore, because the expression equals 3 when

a = b = c = 1
2 , we have

(abc + xyz)
( 1

ax
+

1
by

+
1
cz

)
≥ 3

as desired.

Problem 2 Let ABCD be a convex quadrilateral such that ∠ABC =
90◦, AC = CD, and ∠BCA = ∠ACD. Let E be the midpoint of
segment AD, and L be the intersection point of segments BE and
AC. Prove that BC = CL.
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Problem 3 One can make the following operations on a positive
integer:

(i) raise it to any positive integer power;

(ii) cut out the last two digits of the integer, multiply the obtained
two-digit number by 3, and add it to the number formed by the
remaining digits of the initial integer. (For example, from 3456789
one can get 34567 + 3 · 89.)

Can one obtain 82 from 81 by using operations (i) and (ii)?

Solution: We claim that 82 cannot be reached from 81. Let
us consider the situation modulo 299. Suppose that we apply
the second operation to a number x. Then, we get the number
b x

100c+ 3
(
x− 100b x

100c
)

= 3x− 299b x
100c. Therefore, given a number

x, we obtain a number congruent to 3x modulo 299. Now, note
that starting with a number that is congruent to 3k modulo 299
and applying the second operation, we get another number that
is also congruent to 3k modulo 299. Now, if we start with such
a number and apply the first operation, we again get a number
that is congruent to 3k modulo 299. Therefore, regardless of the
operations we apply, we can only obtain numbers that are congru-
ent to 3k modulo 299 from 81. Now, note that numbers congru-
ent to 3k modulo 299 must be congruent to a number in the set
{1, 3, 9, 27, 81, 243, 131, 94, 282, 248, 146, 139, 118, 55, 165, 196, 289, 269
209, 29, 87, 261, 185, 256, 170, 211, 35, 105, 16, 48, 144, 133, 100}, where
each number is the residue modulo 299 of three times the previous
and 1 ≡ 3 · 100 modulo 299. Since 82 is not in this set, it cannot be
reached from 81, as desired.

Problem 4 Points M and N are marked on the diagonals AC

and BD of cyclic quadrilateral ABCD. Given that BN
DN = AM

CM and
∠BAD = ∠BMC, prove that ∠ANB = ∠ADC.

Problem 5 A country consists of no fewer that 100,000 cities, where
2001 paths are outgoing from each city. Each path connects two cities,
and every two cities are connected by no more than one path. The
government decides to close some of the paths (at least one but not
all) so that the number of paths outgoing from each city is the same.
Is this always possible?
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Problem 6 Let ABC be a triangle and let I be the center of its
incircle ω. The circle Γ passes through I and is tangent to AB and AC

at points X and Y , respectively. Prove that segment XY is tangent
to ω.

Solution: Extend line segment AI so that it meets with line segment
XY at a point M. Since AX is tangent to Γ at X, ∠AXI = ∠IY M .
Since AX and AY are both tangents to Γ at X and Y, their lengths
must be equal. Therefore, triangle XAY is isosceles. Because AI
is the angle bisector of ∠BAC, AM must be the angle bisector of
∠XAY . We just showed that triangle XAY is isosceles, so AM
is also the altitude and median of triangle XAY. Thus, IM = IM,
∠IMX = ∠IMY , and XM = YM and so triangles IMX and IMY
are congruent by the SAS congruence theorem. As a consequence, all
corresponding parts are congruent, in particular, ∠IY M = ∠IXM =
∠IXY . Therefore:

∠AXI = ∠IY M = ∠IXM = ∠IXY and so XI is the angle
bisector of ∠AXY .

This combined with the fact that AI is the angle bisector of ∠XAY ,
so conclude that I is the incenter of triangle AXY and therefore ω is
the incircle of triangle AXY.

Problem 7 Several 1×3 rectangles and 100 L-shaped figures formed
by three unit squares (“corners”) are situated on a grid plane. It is
known that these figures can be shifted parallel to themselves so that
the resulting figure is a rectangle. A student Olya can translate 96
corners to form 48 2 × 3 rectangles. Prove that the remaining four
corners can be translated to form two additional 2× 3 rectangles.

Problem 8 The sequence {an} is given by the following relation:

an+1 =
{

(an − 1)/2, if an ≥ 1;
2an/(1− an), if an < 1.

Given that a0 is a positive integer, an 6= 2 for each n = 1, 2, ..., 2001,
and a2002 = 2. Find a0.

Solution: Answer: a0 = 3 · 22002− 1.
We will first show that this value actually satisfies the condition

a2002 = 2andai 6= 2 for any i < 2002. Applying the first rule,
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a(n+1) = ((an−1)/22002 times will show that a2002 is in fact 2 and
ai is actually greater than 2 for all i < 2002.

Lemma 1 For n ≤ 2000, if an is not an integer, an = pn/qn, where
pn and qn are positive odd integers, (p, q) = 1 and q > 1.

Proof We proceed by using induction. Base Case: n = 2000. a2000
is either 5/7 or 1/5. Suppose a(n + 1) = p/q. Then:

Case 1: an = 2 ·p/q+1. Then an = (2p+q)/q. Suppose d | (2p+q)
and d | q. Then d | (2p + q − q) or d | 2p. Since q is odd, d must also
be odd. So (d, 2) = 1 and therefore d | p. Because d | p, d | q, and
(p, q) = 1, d must equal 1. Therefore (2p + q, q) = 1 and since 2p + q

and q are both odd as well, an satisfies the conditions stated in the
lemma, thus completing the inductive step.

Case 2: an = (p/q)/(2+p/q) = p/(2q +p) Again suppose d divides
both the numerator p and denominator 2q+p. Then d | (2q+p−p) or
d | 2q. But since p is odd, d is odd, and so d | q. Because (p, q) = 1, d

is equal to 1 and so (p, 2q+p) = 1. Since p and 2q+p are odd and are
relatively prime, an satisfies the conditions and completes the proof.

We must now only consider the case where a2001 = 1/2. In this
case, a2000 is either 2 or 5/7. If it is 2, the conditions of the problem
are violated. The lemma says that from the 5/7, we will never see an
integer value for any previous term.

Problem 9 There are two 2-pan balances in a zoo for weighing
animals. An elephant is located on a pan of the first balance and a
camel is on a pan of the second balance. The weight of the elephant,
as well as the weight of the camel, expressed in kilograms, is a whole
number. The total weight of both the elephant and the camel does not
exceed 2 tons (2000 kilograms). A set of weights, total of 2 tons, had
been delivered to the zoo, where each weight weighs a whole number
of kilograms. It turned out that no matter what the elephant’s and
the camel’s weights are, one can distribute some of the weights over
the 4 balances’ pans so that both balances are in the equilibrium.
Find the minimal possible number of weights that can be delivered
to the zoo.

Problem 10 An integer N = a0a0 ... a0b0c0c0 ... c0, where the
digits a and c are written 1001 times each) is divisible by 37. Prove
that b = a + c.

Problem 11 Let ABCD be a trapezoid the length of the lateral
side AB equals the sum of lengths of the base AD and base BC.
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Prove that the angle bisectors of the angles A and B meet at a point
belonging to the side CD.

Problem 12 Can the sum of the pairwise distances between the
vertices of a 25-vertex tree be equal to 1225?

Problem 13 The integers from 5 to 10 are written on a blackboard.
One time a minute, Kolya erases three or four smallest integers and
write down seven or eight consecutive integers followed by the biggest
integer. Prove that the sum of all the integers on the blackboard at
an arbitrary moment of time is not a power of 3.

Problem 14 Find the maximal value of α > 0 for which any set of
eleven real numbers,

0 = a1 ≤ a2 ≤ ... ≤ a11 = 1 ,

can be split into two disjoint subsets with the following property: the
arithmetical mean of the numbers in the first subset differs from the
arithmetical mean of the numbers in the second subset by less than
α.

Problem 15 Let O be the circumcenter of an acute scalene triangle
ABC, point C1 be the point symmetric to C with respect to O, D

be the midpoint of side AB, and K be the circumcenter of 4ODC1.
Prove that point O divides into two equal halves the segment of line
OK that lies inside the angle ACB.

Problem 16 Polygon F , any three vertices of which are not
collinear, can be dissected in two different ways into triangles by
drawing its non-intersecting diagonals. Prove that there some four
F ’s vertices form a convex quadrilateral lying entirely inside F .

Problem 17 Let p be a prime number. Given that the equation

pk + pl + pm = n2

has an integer solution, prove that p + 1 is divisible by 8.

Problem 18 Prove that any 13 numbers

0 = x1 ≤ x2 ≤ ... ≤ x12 ≤ x13 = 1

can be divided into two disjoint groups such that the arithmetic mean
of the first group differ from the arithmetic mean of the second group
by no less than 13/24.
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Problem 19 An alchemist has 50 different substances. He can
convert any 49 substances taken in equal quantities into the remaining
(i.e. the 50th) substance without changing the total mass. Prove
that, after finite number of manipulations, the alchemist can obtain
the same amount of each of the 50 substances.

Problem 20 Let ABCD be a cyclic quadrilateral. Points X and
Y are marked on the sides AB and BC such that XBY D is a
parallelogram. Points M and N are the midpoints of diagonals AC

and BD, and the lines AC and XY meet at point L. Prove that
points M, N, L, and D lie on the same circle.

Problem 21 Two players play the following game. There are 64
vertices on the plane at the beginning. The first player each time
picks any two vertices that are not connected yet and connect them
by an edge, and the second player orient this edge arbitrarily (i.e.
introduce a direction on this edge). The second player wins if the
graph obtained after 1959 moves is connected, otherwise the first
player wins. Which player wins in the true game?

Problem 22 The shape of a lakeside is a convex centrally-symmetric
100-gon A1A2 ... A100 with the center of symmetry O. There is
the island B1B2 ... B100 inside the lake whose vertices Bi are the
midpoints of segments OAi for each i = 1, 2, ..., 100. There is a jail
on the island surrounded with a high fence along its perimeter. Two
security guards are situated at the opposite points of the lakeside.
Prove that they observe together the whole lakeside entirely.

Problem 23 A secret code to any of the FBI’s safe is a positive
integer from 1 to 1700. Two spies learned two different codes, each
one his own, and decided to exchange their information. Coordinated
their action, they have met at the river’s shore nearby a pile of 26
rocks. At the beginning, the first spy threw several rocks into the river
water, then the second , then the first, and so on until all the rocks
were used. The spies went away after that. How can the information
be transmitted? (The spies said no word to each other.)

Problem 24 A flea jumps along integer points of the real line,
starting from the origin. The length of each its jump is 1. During
each jump, the flea sings one of the (p−1)/2 known songs, where p is
an odd prime number. Consider all the flea’s musical paths from the
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origin back to the origin each of which consists of no more than p− 1
jumps. Prove that the number of all such musical paths is divisible
by p.

Problem 25 Let ABCD be a quadrilateral, and O be the center
of the circle inscribed into ABCD. A line ` passes through O and
meet side AB at point X and side CD at point Y . Given that
∠AXY = ∠DY X, prove that AX/BX = CY/DY .

Problem 26 Let an = Fn
n be the sequence, where Fn are the

Fibonacci numbers (F1 = F2 = 1, Fn+1 = Fn+Fn−1). Is the sequence
bn =

√
a1 +

√
a2 + ...

√
an bounded from the above?

Problem 27 Let a and b be positive integers such that 2a + 1
and 2b + 1 are relatively prime integers. Find all possible values of
g.c.d.(22a+1 + 22a+1 + 1, 22b+1 + 22b+1 + 1).

Problem 28 Let O be the center of the circle inscribed into4ABC.
It is tangent to the sides BC, CA, and AB at points A1, B1, and
C1, respectively. Line ` passes through point A1, is perpendicular to
segment AA1, and meets line B1C1 at point X. Prove that line BC

passes through the midpoint of segment AX.

Problem 29 A positive integer is written on a blackboard. Dima
and Sasha play the following game. Dima calls some positive integer
x, and Sasha changes the number on the blackboard by either adding
x to it, or by subtracting x from it. They repeat this procedure many
times. Dima’s goal is to get eventually a power of a particular positive
integer k on the board (including also k0 = 1). Find all possible values
of k for which Dima will be able to do this independently of the initial
number written on the board.

Problem 30 Find all continuous functions f : (0,∞) −→ (0,∞)
such that for any positive x and y

f(x)f(y) = f(xy) + f(
x

y
) .
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3.1 Algebra

Problem 1 Find a monic polynomial f(x) with integer coefficients,
and degree at least three, such that there exist non-constant polyno-
mials g(x) and h(x) with integer coefficients for which

(f(x))3 − 2 = g(x)h(x).

Problem 2 Find all triples of positive real numbers (x, y, z), if any,
that satisfy the system of equations

x + y + z = x3 + y3 + z3

x2 + y2 + z2 = xyz.

Problem 3 Let a, b, and c be the side lengths of a triangle with
perimeter 2. Prove that

1 < ab + bc + ca− abc ≤ 28
27

.

Problem 4 Find all angles α for which the three-element set

S = {sinα, sin 2α, sin 3α}

is equal to the set

T = {cos α, cos 2α, cos 3α}.

Problem 5 Suppose we have a polynomial

f(x) = a2003x
2003 + a2002x

2002 + · · ·+ a1x + a0,

and there are positive integers p, q, and r with p < q < r such that
f(p) = q, f(q) = r, and f(r) = p. Prove that at least one coefficient
ai is not a integer (0 ≤ i ≤ 2003).

Problem 6 Find the number of triples of real numbers (x, y, z) that
satisfy

x + y + z = 3xy

x2 + y2 + z2 = 3xz

x3 + y3 + z3 = 3yz.
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Problem 7 Let P (x) be a polynomial with integer coefficients such
that P (n) > n for all positive integers n. Suppose that for each
positive integer m, there is a term in the sequence

P (1), P (P (1)), P (P (P (1))), . . .

which is divisible by m. Show that P (x) = x + 1.

Problem 8 Let p and q be positive integers, and let

P (x) = (x + 1)p(x− 3)q = xn + a1x
n−1 + · · ·+ an.

(a) Suppose that a1 = a2. Prove that 3n is a perfect square.

(b) Prove that there exist infinitely many pairs of positive integers
(p, q) such that a1 = a2.

Problem 9 Let n be an integer greater than 1, and let

p(x) = xn + an−1x
n−1 + · · ·+ a1x + 1

be a polynomial with nonnegative integer coefficients such that ak =
an−k for 1 ≤ k ≤ n−1. Prove that there exist infinitely many pairs of
positive integers a and b for which a divides p(b) and b divides p(a).

Problem 10 Find all functions f : Q → R such that for all rational
numbers x and y,

(a) f(x + y)− yf(x)− xf(y) = f(x)f(y)− x− y + xy

(b) f(x) = 2f(x + 1) + x + 2

(c) f(1) + 1 > 0.

Problem 11 Let a, b, and c be the lengths of the sides of a triangle
with a + b + c = 1. Prove that

n
√

an + bn + n
√

bn + cn + n
√

cn + an < 1 +
n
√

2
2

,

for all integers n greater than 1.

Problem 12 Find all functions f : R → R such that

f(x + y) + f(x)f(y) = f(x) + f(y) + f(xy),

for all pairs of real numbers x and y.
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Problem 13 Let a, b, and c be positive real numbers such that

a2 + b2 + c2 + abc = 4.

Prove that a + b + c ≤ 3.

Problem 14 Determine the smallest positive number a such that
there exists a positive real number b for which

√
1 + x +

√
1− x ≤ 2− xa

b
,

for all real numbers x in the interval [0, 1].

Problem 15 Let R+ denote the set of positive real numbers, and
let F be the set of all functions f : R+ → R+ such that

f(3x) ≥ f(f(2x)) + x

for all positive real numbers x. Determine the maximum value of
constant c such that f(x) ≥ cx for all f in the set F and all positive
real numbers x.

Problem 16 Determine if there exists a surjective function f : R →
R, such that the expression f(x + y)− f(x)− f(y) takes exactly two
values 0 and 1 for all pairs of real numbers x and y.

Problem 17 Let x, y, and z be nonnegative real numbers such that

x2 + y2 + z2 + x + 2y + 3z =
13
4

.

(a) Determine the maximum value of x + y + z.

(b) Prove that

x + y + z ≥
√

22− 3
2

.

Problem 18 Let k be an integer, and let {yn}n≥1 be a sequence of
real numbers such that y1 = y2 = 1, and

yn+2 = (4k − 5)yn+1 − yn + 4− 2k

for all n ≥ 1. Determine all integers k such that every term of the
sequence is a square of an integer.
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Problem 19 Let a, b, c, d be positive real numbers with ab+cd = 1.
For i = 1, 2, 3, 4, points Pi = (xi, yi) are on the unit circle. Prove that

(ay1 + by2 + cy3 + dy4)2 + (ax4 + bx3 + cx2 + dx1)2

≤ 2
(

a2 + b2

ab
+

c2 + d2

cd

)
.

Problem 20 Determine all polynomials P (x) with integer coeffi-
cients such that for any positive integer n the equation P (x) = 2n

has at least one integer root.

Problem 21 For every real number x, define 〈x〉 = min({x}, {1 −
x}), where {x} denotes the fractional part of x. Prove that for every
irrational number α and every positive real number ε there exists a
positive integer n such that

〈n2α〉 < ε.



6 Combinatorics

3.2 Combinatorics

Problem 1 Eight different positive integers are used to label the
vertices of a cube. Each edge of the cube is then labeled with the
unsigned difference of the labels of its endpoints. What is the smallest
number of distinct edge labels that could be produced in this way?

Problem 2 Consider the function f defined on the set of positive
integers

f(n) =
{

n + 1, if x is odd,
n
2 , if x is even.

For a positive integer k with k ≥ 2, let fk(n) = f(fk−1(n)). We
say n has characteristic k if k is the smallest positive integer such
that fk(n) = 1. For each positive integer k, determine the smallest
positive integer mk with characteristic k.

Problem 3 Nine chairs, indistinguishable except for color, are to
be placed around a circular table. Three of the chairs are red, three
are green, and three are blue. How many different arrangements are
possible? (Two arrangements are considered the same if and only if
one can be obtained from the other by a rotation.)

Problem 4 Let n be a positive integer. Alex and Chris play the
following game. Alex writes down n different positive integers. Chris
then deletes some numbers (possibly none, but not all), puts the signs
+ and − in front of each of the remaining numbers, and sums them
up. If the result is divisible by 2003, Chris wins the game. Otherwise,
Alex wins. Who has an winning strategy?

Problem 5 Let A = {1, 2, . . . , 2002} and M = {1001, 2003, 3005}.
A subset B of A is called M -free if the sum b1 + b2 of any pairs of
elements b1 and b2 in B is not in M . An ordered pair of subsets
(A1, A2) is called a M -partition of A if A1 and A2 form a partition
of A and both A1 and A2 are M -free. Determine the number of
M -partitions of A.

Problem 6 Let x1, x2, . . . , x5 be real numbers. Find the least
positive integer n with the following property: if some n distinct
sums of the form xp + xq + xr (1 ≤ p < q < r ≤ 5) are equal to 0,
then x1 = x2 = · · · = x5 = 0.



2003 Selected Problems from Around the World 7

Problem 7 Let n be a positive integer. Prove that one can partition
the set of all sides and diagonals of a convex 3n-sided polygon into
groups of three segments, such that in each group the three segments
form a triangle.

Problem 8 Determine if it is possible to color each positive integer
in either red or blue such that

(a) there are infinitely many integers in each color; and

(b) the sum of n = 2002 distinct red integers is red and the sum of
n = 2002 distinct blue integers is blue.

What if n = 2003?

Problem 9 Let m,n, and k be positive integers with m > n > k,
and let a1, a2, . . . , am be a binary sequence (that is, ai = 0 or 1 for
all 1 ≤ i ≤ m) such that the sum of every n consecutive terms is
equal to k. Let s = a1 + a2 + · · · + am, and let M1 and M2 be the
maximum and minimum value of s, respectively. Determine the value
of M1 −M2, in terms of m,n, and k.

Problem 10 Find the smallest positive integer n such that:

For every finite set of points in the plane, if for every n points
of this set, there exist two lines covering all n points, then
there exists two lines covering all the points in the set.

Problem 11 Ten people are applying for a job. The job selection
committee decides to interview the candidates one by one. The
order of candidates being interviewed is random. Assume that all
the candidates have distinct abilities. The following policies are set
up within the committee:

(i) The first three candidates interviewed will not be fired;

(ii) For 4 ≤ i ≤ 9, if the ith candidate interviewed is more capable
than all the previously interviewed candidates, then this candi-
date is hired and the interview process is terminated;

(iii) The 10th candidate interviewed will be hired.

For 1 ≤ k ≤ 10, let Pk denote the probability that the kth most able
person is hired under the selection policies. Show that,

1. P1 > P2 > · · · > P8 = P9 = P10
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2. There is more than 70% chance that one of the three most able
candidates is hired and there is no more than 10% chance that
one of the three least able candidates is hired.

Problem 12 Given two positive integers m and n, determine the
smallest positive integer k (in terms of n) such that among any k

people, either there are 2m of them who form m pairs of mutually
acquainted people or there are 2n of them forming n pairs of mutually
unacquainted people. (Acquaintance between two people is a mutual
relation.)

Problem 13 Let m and n be relatively prime odd integers. A
rectangle ABCD with AB = m and AD = n is partitioned into mn

unit squares. Starting from A1 = A denote by A1, A2, . . . Ak = C the
consequent intersecting points of the diagonal AC with the sides of
the unit squares. Prove that

k−1∑
j=1

(−1)j+1AjAj+1 =
√

m2 + n2

mn
.

Problem 14 Let n be a positive integer, and let A1, A2, . . . An+1

be nonempty subsets of the set {1, 2, . . . , n}. Prove that there exist
nonempty and disjoint index sets I1 = {i1, i2, . . . , ik} and I2 =
{j1, j2, . . . , jm} such that

Ai1 ∪Ai2 ∪ · · · ∪Aik
= Aj1 ∪Aj2 ∪ · · · ∪Ajm .

Problem 15 Let n be a positive integer such that one can place n

distinct points in the plane with no three collinear, and color them
with either red, green, or yellow so that

(i) inside each triangle with all red vertices, there is at least one
green point;

(ii) inside each triangle with all green vertices, there is at least one
yellow point; and

(iii) inside each triangle with all yellow vertices, there is at least one
red point.

Determine the maximum value of n.

Problem 16 We have partitioned a rectangular region into x

smaller rectangular regions (not necessarily distinct in size) in such a
way that the sides of the smaller rectangles are parallel to the sides
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of the original rectangular region. A point is a cross point if it is on
the boundary of four smaller regions. Suppose that there are y cross
points. A side of a region is maximal if there is no other side of a
region that properly contains it. Suppose that there are z maximal
sides. Compute x− y − z.

Problem 17 A set S of positive integers is good if for every integer
k there exist distinct elements a and b in S, such that the numbers
a + k and b + k are not relatively prime. Prove that if the sum of the
elements of a good set S equals 2003, then there exists an element s

in S such that S \ {s} is also good.

Problem 18 Let S be a set such that

1. Each element of S is a positive integer no greater than 100;

2. For any two distinct elements a and b in S, there exists an element
c in S such that a and c are relatively prime, as are b and c; and

3. For any two distinct elements a and b in S, there exists a third
element d in S such that a and d are not relatively prime, nor are
b and d.

Determine the maximum number of elements S can have.

Problem 19 Let set S = {(a1, a2, . . . , an) | ai ∈ R, 1 ≤ i ≤
n}, and let A be a finite subset of S. For any pair of elements
a = (a1, a2, . . . , an) and b = (b1, b2, . . . , bn) in A, define d(a, b) =
(|a1 − b1|, |a2 − b2|, . . . , |an − bn|) and D(A) = {d(a, b) | a, b ∈ A}.
Prove that the set D(A) contains more elements than the set A does.

Problem 20 A set A of positive integers is uniform if after any
one of its elements is removed, the remaining ones can be partitioned
into two subsets with equal sums of their elements. Find the smallest
positive integer n with n > 1 such that there exists a uniform set with
n elements.

Problem 21 Let n and k be two positive integers with 2 ≤ k ≤ n.
Denote by P the set of all permutations of the set {1, 2, . . . , n}. Let
F be a subset of P such that for every pair of elements f and g in
P , there exists a positive integer t with 1 ≤ t ≤ n satisfying this
property: the block (t, t + 1, . . . , t + k− 1) is contained in both f and
g. Prove that the set F contains at most 2n−k elements.
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3.3 Geometry

Problem 1 Prove that when three circles share the same chord
AB, every line through A, other from AB, determines the same ratio
XY : Y Z, where X is an arbitrary point different from B on the
first circle while Y and Z are the points where the line AX intersects
the other two circles. (The points are labled in such a way that Y is
between X and Z.)

Problem 2 In triangle ABC, AB = 5 and BC = 8. Let I be the
incenter of triangle ABC, and let A1, B1, C1 are the reflections of I

across lines BC, CA,AB, respectively. Suppose that B lies on the
circumcircle of triangle A1B1C1. Find CA.

Problem 3 In parallelogram ABCD, the bisector of ∠BAC inter-
sects side BC at E. Given that BE + BC = BD, compute BD/BC.

Problem 4 Triangle PEA has a right angle at E, and PE < EA.
Point X is on segment PE, and point Y is on segment AX, situated
so that ∠XY P = ∠Y PX = ∠EAP . Calculate the ratio AY/XE.

Problem 5 Suppose ABCD is a square piece of cardboard with
side length a. On a plane are two parallel lines `1 and `2, which
are also a units apart. The square ABCD is placed on the plane so
that sides AB and AD intersect line `1 at E and F , respectively, and
sides CB and CD intersect line `2 at G and H, respectively. Let the
perimeters of triangles AEF and CGH be m1 and m2, respectively.
Prove that no matter how the square was placed, m1 + m2 remains
constant.

Problem 6 Let ABC be a acute triangle with H as its orthocenter.
Points M and N lie on line AC with MN = AC. Let D and E be
the feet of perpendiculars from M to line BC and N to line AB,
respectively.

(a) Prove that B,D,E,H lie on a circle.

(b) Prove that the midpoint of segment AN is symmetric to B with
respect to the line passing through the circumcenters of triangles
ABC and BED.

Problem 7 Let AKS be a triangle with ∠AKS > 90◦. Construct
a triangle ABC so that side BC lies on line KS in such a way that
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segment AS and line AK are the median and angle bisector of triangle
ABC, respectively.

Problem 8 Let ABC be a fixed acute-angled triangle, and let S be
a point on side AB. Determine the minimum value of [SXY ], where
X and Y are the respective circumcenters of triangles ACS and BCS.

Problem 9 Point P lies inside triangle ABC. Line BP meets
segment AC at Q, and line CP meets segment AB at R. Suppose
that AR = RB = CP and CQ = PQ. Determine ∠BRC.

Problem 10 Points K, L, and M lie, in that order, on a line in
the plane. Find the locus of all the points C of squares ABCD in
the plane such that K, L, and M lie on segments AB,BD, and CD,
respectively.

Problem 11 Let S be a set of n points in the plane such that any
two points in S are at least 1 unit apart. Prove that there is a subset
T of S with at least

⌈
n
7

⌉
points such that any two points of T are at

least
√

3 units apart.

Problem 12 Let ABC be a triangle with AB 6= AC, and let D be
a point on line BC such that line AD is tangent to the circumcircle of
triangle ABC. Point E lies on the perpendicular bisector of segment
AB such that EB ⊥ CB. Point F lies on the perpendicular bisector
of segment AC such that FC ⊥ BC. Prove that points D,E, F are
collinear.

Problem 13 Let ABC be an acute triangle with I and H as
its incenter and orthocenter, respectively. Let B1 and C1 be the
midpoints of AC and AB respectively. Ray B1I intersects AB at
B2 6= B. Ray C1I intersects ray AC at C2 with C2A > CA. Let K

be the intersection of BC and B2C2. Prove that triangles BKB2 and
CKC2 have the same area if and only if A, I, A1 are collinear, where
A1 is the circumcenter of triangle BHC.

Problem 14 Suppose that the incircle of triangle ABC is tangent
to sides AB,BC, and CA at points P,Q, and R, respectively. Prove
that

BC

PQ
+

CA

QR
+

AB

RP
≥ 6.



12 Geometry

Problem 15 Point D lies on side AC of triangle ABC such that
BD = CD. Point E lie on side BC. Line ` passes through E and is
parallel to line BD. Lines AB and ` meet at F . Let G denote the
intersection of segments AE and BD. Prove that ∠BCG = ∠BCF .

Problem 16 Given a rhombus ABCD with ∠A < 90◦, its two
diagonals AC and BD meet at point M . A point O on the segment
MC is taken so that O 6= M and OB < OC. The circle centered
at O passing through B and D meets line AB at B and a point X

(X = B when line AB is tangent to the circle), and meets line BC

at B and Y . Lines DX and DY meet the segments AC at P and Q,
respectively. Suppose that t = MA

MO . Express OQ
OP in terms of t.

Problem 17 Let A be a point outside circle ω. Lines AB and AC

are tangent to circle ω at B and C, respectively. Line ` is tangent
to circle ω, and it meets lines AB and AC at P and Q, respectively.
Point R lies on line BC such that PR ‖ AC. Prove that as ` varies,
line QR passes through a fixed point.

Problem 18 Let ABC be a triangle with ω and I as its incircle
and incenter, respectively. Circle ω is tangent to sides AB and AC

at points X and Y , respectively. Line XI meets ω again at M , and
line CM meets side AB at Z. Point L lies on segment CZ such that
ZL = CM . Prove that points A, I, and L are collinear if and only if
AB = AC.

Problem 19 Let H be an arbitrary point on the altitude CP of the
acute-angled triangle ABC. Lines AH and BH intersect sides BC

and AC at M and N , respectively.

(a) Prove that ∠NPC = ∠MPC.

(b) Let lines MN and CP meet at O, and let ` be a line passing
through O. Line ` intersects the sides of of quadrilateral CNHM

at D and E. Prove that ∠EPC = ∠DPC.

Problem 20 Let ABC be an acute triangle, and let D be a point
on side BC such that ∠BAD = ∠CAD. Points E and F are the feet
of perpendiculars from D to sides AC and AB, respectively. Let H be
the intersection of segments BE and CF . The circumcircle of triangle
AFH meets line BE again at G. Prove that segments BG,GE, BF

can be the sides of a right triangle.
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Problem 21 Triangle ABC is inscribed in circle ω. Circle ωa is
tangent to sides AB and AC and circle ω. Denote by ra the radius
of circle ωa. Define rb and rc analogously. Let r be the inradius of
triangle ABC. Prove that

ra + rb + rc ≥ 4r.



14 Number Theory

3.4 Number Theory

Problem 1 We have two distinct positive integers a and b, with b

a multiple of a. Written in decimal, each of a and b consists of 2n

digits. Furthermore, the n left-most digits of a are identical to the n

right-most digits of b, and vice versa. (For example, n = 2, a = 1234,
and b = 3412, although this example does not meet another condition
that b be a multiple of a.) Determine a and b.

Problem 2 Find the last three digits of the number 200320022001
.

Problem 3 For each positive integer n, let f(n) be the smallest
positive number M for which M ! is divisible by n. Determine all
positive integers n for which

f(n)
n

=
2
3
.

Problem 4 Find all the ordered triples (a,m, n) of positive integers
such that a ≥ 2, m ≥ 2, and am + 1 divides an + 203.

Problem 5 Let k be an integer greater then 13, and let pk be the
largest prime less than k. You may assume that pk ≥ 3k

4 . Let n be a
composite integer. Prove that

(a) if n = 2pk, then n does not divide (n− k)!

(b) if n > 2pk, then n divides (n− k)!

Problem 6 Find all real numbers a such that

4banc = n + babancc

for every positive integer n. (We denote by bxc the greatest integer
not exceeding x.)

Problem 7 Find all ordered triples (a, b, c) of positive integers such
that

(a) a ≤ b ≤ c

(b) gcd(a, b, c) = 1

(c) a3 + b3 + c3 is divisible by each of the numbers a2b, b2c, and c2a.

Problem 8 Find all permutations (a1, a2, . . . , an) of {1, 2, . . . , n}
such that

(i + 1) | 2(a1 + a2 + · · ·+ ai)

for all 1 ≤ i ≤ n.
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Problem 9 Determine if there are infinitely many pairs of ordered
positive integers (a, b) such that

(1) a and b are relatively prime;

(2) a is a divisor of b2 − 5; and

(3) b is a divisor of a2 − 5.

Problem 10 Find the greatest positive integer n such that the
system of equations

(x + 1)2 + y2
1 = (x + 2)2 + y2

2 = · · · = (x + n)2 + y2
n

has an integer solution (x, y1, y2, . . . , yn).

Problem 11 Determine if it is possible to find 2002 distinct positive
integers a1, a2, . . . , a2002 such that |ai − aj | = gcd(ai, aj) for all
1 ≤ i < j ≤ 2002.

Problem 12 A positive integer is normal if it can be represented
as an arithmetic mean of some (not necessarily) distinct integers each
being a nonnegative power of 2. A positive integer is interesting if it
can be represented as an arithmetic mean of some distinct integers
each being a nonnegative power of 2. Prove that all positive integers
are normal and that there are infinitely not interesting positive
integers.

Problem 13 The sequence {ak}k≥0 is defined as a0 = 2, a1 = 1,
and an+1 = an + an−1 for all n ≥ 1. Prove that if p is a prime factor
of a2k − 2, then it is a factor of a2k+1 − 1.

Problem 14 The set {1, 2, . . . , 3n} is partitioned into three sets A,
B, and C with each set containing n numbers. Determine with proof
if it is always possible to choose one number out of each set so that
one of these numbers is the sum of the other two.

Problem 15 Let m be a positive integer.

(a) Prove that if 2m+1 + 1 divides 32m

+ 1, then 2m+1 + 1 is a prime.

(b) Is the converse of (a) true?

Problem 16 Let A be a subset of the set {1, 2, . . . , 29} such that
for any integer k and any elements a and b in A (a and b are not
necessarily distinct), a+b+30k is not the product of two consecutive
integers. Find the maximum number of elements A can have.
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Problem 17 Determine all ordered triples of integers (x, y, z) with
x 6= 0 such that

2x4 + 2x2y2 + y4 = z2.

Problem 18 Let a, b, c be rational numbers such that both a+b+c

and a2 + b2 + c2 are equal integers. Prove that there exist relative
prime integers m and n such that

abc =
m2

n3
.

Problem 19 Let n be a positive integer greater than 1, and let p

be a prime such that n divides p− 1 and p divides n3− 1. Prove that
4p− 3 is a perfect square.

Problem 20 Determine all positive integers n such that

1
n + 1

·
(

2n

n

)
is odd.

Problem 21 Determine all functions from the set of positive inte-
gers to the set of real numbers such that

(a) f(n + 1) ≥ f(n) for all positive integers n; and

(b) f(mn) = f(m)f(n) for all relatively prime positive integers m

and n.
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