
Preface

This book is a continuation of Mathematical Olympiads 1996-1997: Olym-
piad Problems from Around the World, published by the American Math-
ematics Competitions. It contains solutions to the problems from 34 na-
tional and regional contests featured in the earlier book, together with
selected problems (without solutions) from national and regional contests
given during 1998.

This collection is intended as practice for the serious student who
wishes to improve his or her performance on the USAMO. Some of the
problems are comparable to the USAMO in that they came from na-
tional contests. Others are harder, as some countries first have a national
olympiad, and later one or more exams to select a team for the IMO. And
some problems come from regional international contests (“mini-IMOs”).

Different nations have different mathematical cultures, so you will find
some of these problems extremely hard and some rather easy. We have
tried to present a wide variety of problems, especially from those countries
that have often done well at the IMO.

Each contest has its own time limit. We have not furnished this infor-
mation, because we have not always included complete exams. As a rule
of thumb, most contests allow a time limit ranging between one-half to
one full hour per problem.

Thanks to the following students of the 1998 and 1999 Mathematical
Olympiad Summer Programs for their help in preparing and proofreading
solutions: David Arthur, Reid Barton, Gabriel Carroll, Chi-Bong Chan,
Lawrence Detlor, Daniel Katz, George Lee, Po-Shen Loh, Yogesh More,
Oaz Nir, David Speyer, Paul Valiant, Melanie Wood. Without their ef-
forts, this work would not have been possible. Thanks also to Alexander
Soifer for correcting an early draft of the manuscript.

The problems in this publication are copyrighted. Requests for repro-
duction permissions should be directed to:

Dr. Walter Mientka
Secretary, IMO Advisory Board
1740 Vine Street
Lincoln, NE 68588-0658, USA.
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1 1997 National Contests: Solutions

1.1 Austria

1. Solve the system for x, y real:

(x− 1)(y2 + 6) = y(x2 + 1)
(y − 1)(x2 + 6) = x(y2 + 1).

Solution: We begin by adding the two given equations together.
After simplifying the resulting equation and completing the square,
we arrive at the following equation:

(x− 5/2)2 + (y − 5/2)2 = 1/2. (1)

We can also subtract the two equations; subtracting the second given
equation from the first and grouping, we have:

xy(y − x) + 6(x− y) + (x+ y)(x− y) = xy(x− y) + (y − x)
(x− y)(−xy + 6 + (x+ y)− xy + 1) = 0

(x− y)(x+ y − 2xy + 7) = 0

Thus, either x − y = 0 or x + y − 2xy + 7 = 0. The only ways to
have x − y = 0 are with x = y = 2 or x = y = 3 (found by solving
equation (1) with the substitution x = y).

Now, all solutions to the original system where x 6= y will be solutions
to x+ y − 2xy + 7 = 0. This equation is equivalent to the following
equation (derived by rearranging terms and factoring).

(x− 1/2)(y − 1/2) = 15/4. (2)

Let us see if we can solve equations (1) and (2) simultaneously. Let
a = x− 5/2 and b = y − 5/2. Then, equation (1) is equivalent to:

a2 + b2 = 1/2 (3)

and equation (2) is equivalent to:

(a+2)(b+2) = 15/4⇒ ab+2(a+b) = −1/4⇒ 2ab+4(a+b) = −1/2.
(4)
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Adding equation (4) to equation (3), we find:

(a+ b)2 + 4(a+ b) = 0⇒ a+ b = 0,−4 (5)

Subtracting equation (4) from equation (3), we find:

(a− b)2 − 4(a+ b) = 1. (6)

But now we see that if a + b = −4, then equation (6) will be false;
thus, a+ b = 0. Substituting this into equation (6), we obtain:

(a− b)2 = 1⇒ a− b = ±1 (7)

Since we know that a + b = 0 from equation (5), we now can find
all ordered pairs (a, b) with the help of equation (7). They are
(−1/2, 1/2) and (1/2,−1/2). Therefore, our only solutions (x, y)
are (2, 2), (3, 3), (2, 3), and (3, 2).

2. Consider the sequence of positive integers which satisfies an = a2
n−1+

a2
n−2 + a2

n−3 for all n ≥ 3. Prove that if ak = 1997 then k ≤ 3.

Solution: We proceed indirectly; assume that for some k > 3,
ak = 1997. Then, each of the four numbers ak−1, ak−2, ak−3,
and ak−4 must exist. Let w = ak−1, x = ak−2, y = ak−3, and
z = ak−4. Now, by the given condition, 1997 = w2 + x2 + y2. Thus,
w ≤

√
1997 < 45, and since w is a positive integer, w ≤ 44. But

then x2 + y2 ≥ 1997− 442 = 61.

Now, w = x2 + y2 + z2. Since x2 + y2 ≥ 61 and z2 ≥ 0, x2 + y2 +
z2 ≥ 61. But w ≤ 44. Therefore, we have a contradiction and our
assumption was incorrect.

If ak = 1997, then k ≤ 3.

3. Let k be a positive integer. The sequence an is defined by a1 = 1, and
an is the n-th positive integer greater than an−1 which is congruent
to n modulo k. Find an in closed form.

Solution: We have an = n(2+(n−1)k)/2. If k = 2, then an = n2.

First, observe that a1 ≡ 1 (mod k). Thus, for all n, an ≡ n
(mod k), and the first positive integer greater than an−1 which is
congruent to n modulo k must be an−1 + 1.
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The n-th positive integer greater than an−1 that is congruent to n
modulo k is simply (n − 1)k more than the first positive integer
greater than an−1 which satisfies that condition. Therefore, an =
an−1 + 1 + (n− 1)k. Solving this recursion gives the above answer.

4. Given a parallelogram ABCD, inscribe in the angle ∠BAD a circle
that lies entirely inside the parallelogram. Similarly, inscribe a circle
in the angle ∠BCD that lies entirely inside the parallelogram and
such that the two circles are tangent. Find the locus of the tangency
point of the circles, as the two circles vary.

Solution: Let K1 be the largest circle inscribable in ∠BAD such
that it is completely inside the parallelogram. It intersects the line
AC in two points; let the point farther from A be P1. Similarly, let
K2 be the largest circle inscribable in ∠BCD such that it is com-
pletely inside the parallelogram. It intersects the line AC in two
points; let the point farther from C be P2. then the locus is the
intersection of the segments AP1 and CP2.

We begin by proving that the tangency point must lie on line AC.
Let I1 be the center of the circle inscribed in ∠BAD. Let I2 be
the center of the circle inscribed in ∠BCD. Let X represent the
tangency point of the circles.

Since circles I1 and I2 are inscribed in angles, these centers must
lie on the respective angle bisectors. Then, since AI1 and CI2 are
bisectors of opposite angles in a parallelogram, they are parallel;
therefore, since I1I2 is a transversal, ∠AI1X = ∠CI2X.

Let T1 be the foot of the perpendicular from I1 to AB. Similarly,
let T2 be the foot of the perpendicular from I2 to CD. Observe that
I1T1/AI1 = sin∠I1AB = sin∠I2CD = I2T2/CI2. But I1X = I1T1

and I2X = I2T2. Thus, I1X/AI1 = I2X/CI2.

Therefore, triangles CI2X and AI1X are similar, and vertical angles
∠I1XA and ∠I2XC are equal. Since these vertical angles are equal,
the points A, X, and C must be collinear.

The tangency point, X, thus lies on diagonal AC, which was what
we wanted.

Now that we know that X will always lie on AC, we will prove that
any point on our locus can be a tangency point. For any X on our
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locus, we can let circle I1 be the smaller circle through X, tangent
to the sides of ∠BAD.

It will definitely fall inside the parallelogram because X is between
A and P1. Similarly, we can draw a circle tangent to circle I1 and
to the sides of ∠BCD; from our proof above, we know that it must
be tangent to circle I1 at X. Again, it will definitely fall in the
parallelogram because X is between C and P2.

Thus, any point on our locus will work for X. To prove that any
other point will not work, observe that any other point would either
not be on line AC or would not allow one of the circles I1 or I2 to
be contained inside the parallelogram.

Therefore, our locus is indeed the intersection of segments AP1 and
CP2.
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1.2 Bulgaria

1. Find all real numbers m such that the equation

(x2 − 2mx− 4(m2 + 1))(x2 − 4x− 2m(m2 + 1)) = 0

has exactly three different roots.

Solution: Answer: m = 3. Proof: By setting the two factors
on the left side equal to 0 we obtain two polynomial equations, at
least one of which must be true for some x in order for x to be a
root of our original equation. These equations can be rewritten as
(x−m)2 = 5m2 + 4 and (x− 2)2 = 2(m3 +m+ 2). We have three
ways that the original equation can have just three distinct roots:
either the first equation has a double root, the second equation has
a double root, or there is one common root of the two equations.The
first case is out, however, because this would imply 5m2 + 4 = 0
which is not possible for real m.

In the second case, we must have 2(m3 + m + 2) = 0; m3 + m + 2
factors as (m+1)(m2−m+2) and the second factor is always positive
for real m. So we would have to have m = −1 for this to occur. Then
the only root of our second equation is x = 2, and our first equation
becomes (x + 1)2 = 9, i.e. x = 2,−4. But this means our original
equation had only 2 and -4 as roots, contrary to intention.

In our third case let r be the common root, so x − r is a factor of
both x2− 2mx− 4(m2 + 1) and x2− 4x− 2m(m2 + 1). Subtracting,
we get that x−r is a factor of (2m−4)x− (2m3−4m2 +2m−4), i.e.
(2m−4)r = (2m−4)(m2+1). So m = 2 or r = m2+1. In the former
case, however, both our second-degree equations become (x− 2)2 =
24 and so again we have only two distinct roots. So we must have
r = m2 +1 and then substitution into (r−2)2 = 2(m3 +m+2) gives
(m2 − 1)2 = 2(m3 + m + 2), which can be rewritten and factored
as (m + 1)(m − 3)(m2 + 1) = 0. So m = −1 or 3; the first case
has already been shown to be spurious, so we can only have m = 3.
Indeed, our equations become (x − 3)3 = 49 and (x − 2)2 = 64 so
x = −6,−4, 10, and indeed we have 3 roots.

2. Let ABC be an equilateral triangle with area 7 and let M,N be
points on sides AB,AC, respectively, such that AN = BM . Denote
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by O the intersection of BN and CM . Assume that triangle BOC
has area 2.

(a) Prove that MB/AB equals either 1/3 or 2/3.
(b) Find ∠AOB.

Solution:

(a) Let L be on BC with CL = AN , and let the intersections of
CM and AL, AL and BN be P,Q, respectively. A 120-degree
rotation about the center of ABC takes A to B, B to C, C to
A; this same rotation then also takes M to L, L to N , N to
M , and also O to P , P to Q, Q to O. Thus OPQ and MLN
are equilateral triangles concentric with ABC. It follows that
∠BOC = π−∠NOC = 2π/3, so O lies on the reflection of the
circumcircle of ABC through BC. There are most two points
O on this circle and inside of triangle ABC such that the ratio
of the distances to BC from O and from A — i.e. the ratio of
the areas of triangles OBC and ABC — can be 2/7; so once we
show thatMB/AB = 1/3 or 2/3 gives such positions of O it will
follow that there are no other such ratios (no two points M can
give the same O, since it is easily seen that as M moves along
AB, O varies monotonically along its locus). If MB/AB =
1/3 then AN/AC = 1/3, and Menelaus’ theorem in triangle
ABN and line CM gives BO/ON = 3/4 so [BOC]/[BNC] =
BO/BN = 3/7. Then [BOC]/[ABC] = (3/7)(CN/CA) =
2/7 as desired. Similarly if MB/AB = 2/3 the theorem gives
us BO/BN = 6, so [BOC]/[BNC] = BO/BN = 6/7 and
[BOC]/[ABC] = (6/7)(CN/AC) = 2/7.

(b) If MB/AB = 1/3 then MONA is a cyclic quadrilateral since
∠A = π/3 and ∠O = π − (∠POQ) = 2π/3. Thus ∠AOB =
∠AOM + ∠MOB = ∠ANM + ∠POQ = ∠ANM + π/3. But
MB/AB = 1/3 and AN/AC = 1/3 easily give that N is the
projection of M onto AC, so ∠ANM = π/2 and ∠AOB =
5π/6.
If MB/AB = 2/3 then MONA is a cyclic quadrilateral as
before, so that ∠AOB = ∠AOM+∠MOB = ∠ANM+∠POQ.
But AMN is again a right triangle, now with right angle at M ,
and ∠MAN = π/3 so ∠ANM = π/6, so ∠AOB = π/2.
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3. Let f(x) = x2 − 2ax − a2 − 3/4. Find all values of a such that
|f(x)| ≤ 1 for all x ∈ [0, 1].

Solution: Answer: −1/2 ≤ a ≤
√

2/4. Proof: The graph of f(x)
is a parabola with an absolute minimum (i.e., the leading coefficient
is positive), and its vertex is (a, f(a)). Since f(0) = −a2 − 3/4, we
obtain that |a| ≤ 1/2 if we want f(0) ≥ −1. Now suppose a ≤ 0;
then our parabola is strictly increasing between x = 0 and x = 1 so
it suffices to check f(1) ≤ 1. But we have 1/2 ≤ a + 1 ≤ 1, 1/4 ≤
(a+ 1)2 ≤ 1, 1/4 ≤ 5/4− (a+ 1)2 ≤ 1. Since 5/4− (a+ 1)2 = f(1),
we have indeed that f meets the conditions for −1/2 ≤ a ≤ 0. For
a > 0, f decreases for 0 ≤ x ≤ a and increases for a ≤ x ≤ 1. So we
must check that the minimum value f(a) is in our range, and that
f(1) is in our range. This latter we get from 1 < (a + 1)2 ≤ 9/4
(since a ≤ 1/2) and so f(x) = −1 ≤ 5/4 − (a + 1)2 < 1/4. On
the other hand, f(a) = −2a2 − 3/4, so we must have a ≤

√
2/4 for

f(a) ≥ −1. Conversely, by bounding f(0), f(a), f(1) we have shown
that f meets the conditions for 0 < a ≤

√
2/4.

4. Let I and G be the incenter and centroid, respectively, of a triangle
ABC with sides AB = c, BC = a, CA = b.

(a) Prove that the area of triangle CIG equals |a− b|r/6, where r
is the inradius of ABC.

(b) If a = c+ 1 and b = c− 1, prove that the lines IG and AB are
parallel, and find the length of the segment IG.

Solution:

(a) Assume WLOG a > b. Let CM be a median and CF be the
bisector of angle C; let S be the area of triangle ABC. Also let
BE be the bisector of angle B; by Menelaus’ theorem on line
BE and triangle ACF we get (CE/EA)(AB/BF )(FI/IC) =
1. Applying the Angle Bisector Theorem twice in triangle
ABC we can rewrite this as (a/c)((a + b)/a)(FI/IC) = 1, or
IC/FI = (a + b)/c, or IC/CF = (a + b)/(a + b + c). Now
also by the Angle Bisector Theorem we have BF = ac/(a+ b);
since BM = c/2 and a > b then MF = (a − b)c/2(a + b). So
comparing triangles CMF and ABC, noting that the altitudes
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to side MF (respectively AB) are equal, we have [CMF ]/S =
(a− b)/2(a+ b). Similarly using altitudes from M in triangles
CMI and CMF (and using the ratio IC/CF found earlier),
we have [CMI]/S = (a − b)/2(a + b + c); and using altitudes
from I in triangles CGI and CMI gives (since CG/CM = 2/3)
[CGI]/S = (a−b)/3(a+b+c). Finally S = (a+b+c)r/2 leads
to [CGI] = (a− b)r/6.

(b) As noted earlier, IC/CF = (a + b)/(a + b + c) = 2/3 =
CG/CM in the given case. But C,G,M are collinear, as are
C, I, F , giving the desired parallelism (since line MF = line
AB). We found earlier MF = (a − b)c/2(a + b) = 1/2, so
GI = (2/3)(MF ) = 1/3.

5. Let n ≥ 4 be an even integer andA a subset of {1, 2, . . . , n}. Consider
the sums e1x1 + e2x2 + e3x3 such that:

• x1, x2, x3 ∈ A;

• e1, e2, e3 ∈ {−1, 0, 1};
• at least one of e1, e2, e3 is nonzero;

• if xi = xj , then eiej 6= −1.

The set A is free if all such sums are not divisible by n.

(a) Find a free set of cardinality bn/4c.
(b) Prove that any set of cardinality bn/4c+ 1 is not free.

Solution:

(a) We show that the set A = {1, 3, 5, ..., 2bn/4c − 1} is free. Any
combination e1x1 + e2x2 + e3x3 with zero or two ei’s equal
to 0 has an odd value and so is not divisible by n; otherwise,
we have one ei equal to 0, so we have either a difference of
two distinct elements of A, which has absolute value less than
2bn/4c and cannot be 0, so it is not divisible by n, or a sum
(or negative sum) of two elements, in which case the absolute
value must range between 2 and 4bn/4c − 2 < n and so again
is not divisible by n.
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(b) Suppose A is a free set; we will show |A| ≤ bn/4c. For any k,
k and n− k cannot both be in A since their sum is n; likewise,
n and n/2 cannot be in A. If we change any element k of A to
n−k then we can verify that the set of all combinations

∑
eixi

taken mod n is invariant, since we can simply flip the sign of
any ei associated with the element k in any combination. Hence
we may assume that A is a subset of B = {1, 2, ..., n/2− 1}.
Let d be the smallest element of A. We group all the elements
of B greater than d into “packages” of at most 2d elements,
starting with the largest; i.e. we put the numbers from n/2 −
2d to n/2 − 1 into one package, then put the numbers from
n/2 − 4d to n/2 − 2d − 1 into another, and so forth, until we
hit d+ 1 and at that point we terminate the packaging process.
All our packages, except possibly the last, have 2d elements; so
let p + 1 be the number of packages and let r be the number
of elements in the last package (assume p ≥ 0, since otherwise
we have no packages and d = n/2− 1 so our desired conclusion
holds because |A| = 1). The number of elements in B is then
2dp+r+d, so n = 4dp+2d+2r+2. Note that no two elements
of A can differ by d, since otherwise A is not free. Also the
only element of A not in a package is d, since it is the smallest
element and all higher elements of B are in packages.
Now do a case analysis on r. If r < d then each complete
package has at most d elements in common with A, since the
elements of any such package can be partitioned into disjoint
pairs each with difference d. Thus |A| ≤ 1 + dp+ r and 4|A| ≤
4dp+4r+4 ≤ n (since r+1 ≤ d) so our conclusion holds. If r = d
then each complete package has at most d elements in common
with A, and also the last package (of d elements) has at most
d− 1 elements in common with A for the following reason: its
highest element is 2d, but 2d is not in A since d+d−2d = 0. So
|A| ≤ d(p+1), 4|A| < n and our conclusion holds. If r > d then
we can form r − d pairs in the last package each of difference
d, so each contains at most 1 element of A, and then there
are 2d− r remaining elements in this package. So this package
contains at most d elements, and the total number of elements
in A is at least d(p + 1) + 1, so 4|A| ≤ n and our conclusion
again holds.
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6. Find the least natural number a for which the equation

cos2 π(a− x)− 2 cosπ(a− x) + cos
3πx
2a

cos
(πx

2a
+
π

3

)
+ 2 = 0

has a real root.

Solution: The smallest such a is 6. The equation holds if a =
6, x = 8. To prove minimality, write the equation as

(cosπ(a− x)− 1)2 + (cos(3πx/2a) cos(πx/2a+ π/3) + 1) = 0;

since both terms on the left side are nonnegative, equality can only
hold if both are 0. From cosπ(a − x) − 1 = 0 we get that x is an
integer congruent to a (mod 2). From the second term we see that
each cosine involved must be −1 or 1 for the whole term to be 0; if
cos(πx/2a + π/3) = 1 then πx/2a + π/3 = 2kπ for some integer k,
and multiplying through by 6a/π gives 3x ≡ −2a (mod 12a), while
if the cosine is −1 then πx/2a+π/3 = (2k+ 1)π and multiplying by
6a/π gives 3x ≡ 4a (mod 12a). In both cases we have 3x divisible
by 2, so x is divisible by 2 and hence so is a. Also our two cases give
−2a and 4a, respectively, are divisible by 3, so a is divisible by 3.
We conclude that 6|a and so our solution is minimal.

7. Let ABCD be a trapezoid (AB||CD) and choose F on the segment
AB such that DF = CF . Let E be the intersection of AC and BD,
and let O1, O2 be the circumcenters of ADF,BCF . Prove that the
lines EF and O1O2 are perpendicular.

Solution: Project each of points A,B, F orthogonally onto CD to
obtain A′, B′, F ′; then F ′ is the midpoint of CD. Also let the cir-
cumcircles of AFD,BFC intersect line CD again at M,N respec-
tively; then AFMD,BFNC are isosceles trapezoids and F ′M =
DA′, NF ′ = B′C. Let x = DA′, y = A′F ′ = AF , z = F ′B′ = FB,
w = B′C, using signed distances throughout (x < 0 if D is be-
tween A′ and F ′, etc.), so we have x+y = z+w; call this value S, so
DC = 2S. Also let line FE meet DC at G; since a homothety about
E with (negative) ratio CD/AB takes triangle ABE into CDE it
also takes F into G, so DG/GC = FB/AF = F ′B′/A′B′ = z/y
and we easily get DG = 2zS/(y + z), GC = 2yS/(y + z). Now
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NF ′ = w,DF ′ = S implies DN = z and so DN/DG = (y + z)/2S.
Similarly F ′M = x, F ′C = S so MC = y and MC/GC = (y+z)/2S
also. So DN/DG = MC/GC, NG/DG = GM/GC and NG ·GC =
DG · GM . Since NC and DM are the respective chords of the
circumcircles of BFC and ADC that contain point G we conclude
that G has equal powers with respect to these two circles, i.e. it is
on the radical axis. F is also on the axis since it is an intersection
point of the circles, so the line FGE is the radical axis, which is
perpendicular to the line O1O2 connecting the centers of the circles.

8. Find all natural numbers n for which a convex n-gon can be di-
vided into triangles by diagonals with disjoint interiors, such that
each vertex of the n-gon is the endpoint of an even number of the
diagonals.

Solution: We claim that 3|n is a necessary and sufficient condition.
To prove sufficiency, we use induction of step 3. Certainly for n = 3
we have the trivial dissection (no diagonals drawn). If n > 3 and 3|n
then let A1, A2, . . . , An be the vertices of an n-gon in counterclock-
wise order; then draw the diagonals A1An−3, An−3An−1, An−1A1;
these three diagonals divide our polygon into three triangles and an
(n − 3)-gon A1A2 . . . An−3. By the inductive hypothesis the latter
can be dissected into triangles with evenly many diagonals at each
vertex, so we obtain the desired dissection of our n-gon, since each
vertex from A2 through An−4 has the same number of diagonals in
the n-gon as in the (n−3)-gon (an even number), A1 and An−3 each
have two diagonals more than in the (n− 3)-gon, while An−1 has 2
diagonals and An and An−2 have 0 each.

To show necessity, suppose we have such a decomposition of a poly-
gon with vertices A1, A2, . . . , An in counterclockwise order, and for
convenience assume labels are mod n. Call a diagonal AiAj in our
dissection a “right diagonal” fromAi if no pointAi+2, Ai+3, . . . , Aj−1

is joined to Ai (we can omit Ai+1 from our list since it is joined
by an edge). Clearly every point from which at least one diagonal
emanates has a unique right diagonal. Also we have an important
lemma: if AiAj is a right diagonal from Ai, then within the polygon
AiAi+1 . . . Aj , each vertex belongs to an even number of diagonals.
Proof: Each vertex from any of the points Ai+1, . . . , Aj−1 belongs
to an even number of diagonals of the n-gon, but since the diagonals
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of the n-gon are nonintersecting these diagonals must lie within our
smaller polygon, so we have an even number of such diagonals for
each of these points. By hypothesis, Ai is not connected via a diag-
onal to any other point of this polygon, so we have 0 diagonals from
Ai, an even number. Finally evenly many diagonals inside this poly-
gon stem from Aj , since otherwise we would have an odd number of
total endpoints of all diagonals.

Now we can show 3|n by strong induction on n. If n = 1 or 2, then
there is clearly no decomposition, while if n = 3 we have 3|n. For
n > 3 choose a vertex Ai1 with some diagonal emanating from it,
and let Ai1Ai2 be the right diagonal from Ai1 . By the lemma there
are evenly many diagonals from Ai2 with their other endpoints in
{Ai1+1, Ai1+2, . . . , Ai2−1}, and one diagonal Ai1Ai2 , so there must
be at least one other diagonal from Ai2 (since the total number of di-
agonals there is even). This implies Ai1Ai2 is not the right diagonal
from Ai2 , so choose the right diagonal Ai2Ai3 . Along the same lines
we can choose the right diagonal Ai3Ai4 from Ai3 , with Ai2 and Ai4
distinct, then continue with Ai4Ai5 as the right diagonal from Ai4 ,
etc. Since the diagonals of the n-gon are nonintersecting this pro-
cess must terminate with some Aik+1 = Ai1 . Now examine each of
the polygons AixAix+1Aix+2 . . . Aix+1 , x = 1, 2, . . . , k (indices x are
taken mod k). By the lemma each of these polygons is divided into
triangles by nonintersecting diagonals with evenly many diagonals
at each vertex, so by the inductive hypothesis the number of vertices
of each such polygon is divisible by 3. Also consider the polygon
Ai1Ai2 . . . Aik . We claim that in this polygon, each vertex belongs
to an even number of diagonals. Indeed, from Aix we have an even
number of diagonals to points in Aix−1+1, Aix−1+2, . . . , Aix−1, plus
the two diagonals Aix−1Aix and AixAix+1 . This leaves an even num-
ber of diagonals from Aix to other points; since Aix was chosen as
the endpoint of a right diagonal we have no diagonals lead to points
in Aix+1, . . . , Aix+1−1, so it follows from the nonintersecting crite-
rion that all remaining diagonals must lead to points Aiy for some y.
Thus we have an even number of diagonals from Aix to points Aiy
for some fixed x; it follows from the induction hypothesis that 3|k.
So, if we count each vertex of each polygon AixAix+1Aix+2 . . . Aix+1

once and then subtract the vertices of Ai1Ai2 . . . Aik , each vertex of
our n-gon is counted exactly once, but from the above we have been
adding and subtracting multiples of 3. Thus we have 3|n.
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9. For any real number b, let f(b) denote the maximum of the function∣∣∣∣sinx+
2

3 + sinx
+ b

∣∣∣∣
over all x ∈ R. Find the minimum of f(b) over all b ∈ R.

Solution: The minimum value is 3/4. Let y = 3 + sinx; note
y ∈ [2, 4] and assumes all values therein. Also let g(y) = y + 2/y;
this function is increasing on [2, 4], so g(2) ≤ g(y) ≤ g(4). Thus
3 ≤ g(y) ≤ 9/2, and both extreme values are attained. It now fol-
lows that the minimum of f(b) = max(|g(y) + b − 3|) is 3/4, which
is attained by b = −3/4; for if b > −3/4 then choose x = π/2 so
y = 4 and then g(y) + b − 3 > 3/4, while if b < −3/4 then choose
x = −π/2 so y = 2 and g(y) + b− 3 = −3/4; on the other hand, our
range for g(y) guarantees −3/4 ≤ g(y) + b− 3 ≤ 3/4 for b = −3/4.

10. Let ABCD be a convex quadrilateral such that ∠DAB = ∠ABC =
∠BCD. Let H and O denote the orthocenter and circumcenter of
the triangle ABC. Prove that H,O,D are collinear.

Solution: Let M be the midpoint of B and N the midpoint of
BC. Let E = AB ∩ CD and F = BC ∩AD. Then EBC and FAB
are isosceles triangles, so EN ∩ FM = 0. Thus applying Pappus’s
theorem to hexagon MCENAF , we find that G,O,D are collinear,
so D lies on the Euler line of ABC and H,O,D are collinear.

11. For any natural number n ≥ 3, let m(n) denote the maximum num-
ber of points lying within or on the boundary of a regular n-gon of
side length 1 such that the distance between any two of the points
is greater than 1. Find all n such that m(n) = n− 1.

Solution: The desired n are 4, 5, 6. We can easily show that
m(3) = 1, e.g. dissect an equilateral triangle ABC into 4 congruent
triangles and then for two points P,Q there is some corner triangle
inside which neither lies; if we assume this corner is at A then the
circle with diameter BC contains the other three small triangles and
so contains P and Q; BC = 1 so PQ ≤ 1. This method will be
useful later; call it a lemma.
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On the other hand, m(n) ≥ n− 1 for n ≥ 4 as the following process
indicates. Let the vertices of our n-gon be A1, A2, . . . , An. Take
P1 = A1. Take P2 on the segment A2A3 at an extremely small
distance d2 from A2; then P2P1 > 1, as can be shown rigorously, e.g.
using the Law of Cosines in triangle P1A2P2 and the fact that the
cosine of the angle at A2 is nonnegative (since n ≥ 4). Moreover P2

is on a side of the n-gon other than A3A4, and it is easy to see that
as long as n ≥ 4, the circle of radius 1 centered at A4 intersects no
side of the n-gon not terminating at A4, so P2A4 > 1 while clearly
P2A3 < 1. So by continuity there is a point P3 on the side A3A4 with
P2P3 = 1. Now slide P3 by a small distance d3 on A3A4 towards A4;
another trigonometric argument can easily show that then P2P3 > 1.
Continuing in this manner, obtain P4 on A4A5 with P3P4 = 1 and
slide P4 by distance d4 so that now P3P4 > 1, etc. Continue doing
this until all points Pi have been defined; distances PiPi+1 are now
greater than by construction, Pn−1P1 > 1 because P1 = A1 while
Pn−1 is in the interior of the side An−1An; and all other PiPj are
greater than 1 because it is easy to see that the distance between any
two points of nonadjacent sides of the n-gon is at least 1 with equality
possible only when (among other conditions) Pi, Pj are endpoints of
their respective sides, and in our construction this never occurs for
distinct i, j. So our construction succeeds. Moreover, as all the
distances di tend to 0 each Pi tends toward Ai, so it follows that
the maximum of the distances AiPi can be made as small as desired
by choosing di sufficiently small. On the other hand, when n > 6
the center O of the n-gon is at a distance greater than 1 from each
vertex, so if the Pi are sufficiently close to the Ai then we will also
have OPi > 1 for each i. Thus we can add the point O to our set,
showing that m(n) ≥ n for n > 6.

It now remains to show that we cannot have more than n− 1 points
at mutual distances greater than 1 for n = 4, 5, 6. As before let the
vertices of the polygon be A1, etc. and the center O; suppose we have
n points P1, . . . , Pn with PiPj > 1 for i not equal to j. Since n ≤ 6
it follows that the circumradius of the polygon is not greater than
1, so certainly no Pi can be equal to O. Let the ray from O through
Pi intersect the polygon at Qi and assume WLOG our numbering is
such that Q1, Q2, . . . , Qn occur in that order around the polygon, in
the same orientation as the vertices were numbered. LetQ1 be on the
side AkAk+1. A rotation by angle 2π/n brings Ak into Ak+1; let it
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also bring Q1 into Q′1, so triangles Q1Q
′
1O and AkAk+1O are similar.

We claim P2 cannot lie inside or on the boundary of quadrilateral
OQ1Ak+1Q

′
1. To see this, note that P1Q1Ak+1 and P1Ak+1Q

′
1 are

triangles with an acute angle at P1, so the maximum distance from
P1 to any point on or inside either of these triangles is attained
when that point is some vertex; however P1Q1 ≤ OQ1 ≤ 1, and
P1Ak+1 ≤ O1Ak+1 ≤ 1 (e.g. by a trigonometric argument similar
to that mentioned earlier), and as for P1Q

′
1, it is subsumed in the

following case: we can show that P1P ≤ 1 for any P on or inside
OQ1Q

′
1, because n ≤ 6 implies that ∠Q1OQ

′
1 = 2π/n ≥ π/3, and so

we can erect an equilateral triangle on Q1Q
′
1 which contains O, and

the side of this triangle is less than AkAk+1 = 1 (by similar triangles
OAkAk+1 and OQ1Q

′
1) so we can apply the lemma now to show that

two points inside this triangle are at a distance at most 1. The result
of all this is that P2 is not inside the quadrilateral OQ1Ak+1Q

′
1, so

that ∠P1OP2 = ∠Q1OP2 > 2π/n. On the other hand, the label P1

is not germane to this argument; we can show in the same way that
∠PiOPi+1 > 2π/n for any i (where Pn+1 = P1). But then adding
these n inequalities gives 2π > 2π, a contradiction, so our points Pi
cannot all exist. Thus m(n) ≤ n − 1 for n = 4, 5, 6, completing the
proof.

12. Find all natural numbers a, b, c such that the roots of the equations

x2 − 2ax+ b = 0
x2 − 2bx+ c = 0
x2 − 2cx+ a = 0

are natural numbers.

Solution: We have that a2 − b, b2 − c, c2 − a are perfect squares.
Since a2 − b ≤ (a− 1)2, we have b ≥ 2a− 1; likewise c ≥ 2b− 1, a ≥
2c − 1. Putting these together gives a ≥ 8a − 7, or a ≤ 1. Thus
(a, b, c) = (1, 1, 1) is the only solution.

13. Given a cyclic convex quadrilateral ABCD, let F be the intersection
of AC and BD, and E the intersection of AD and BC. Let M,N
be the midpoints of AB,CD. Prove that

MN

EF
=

1
2

∣∣∣∣ABCD − CD

AB

∣∣∣∣ .
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Solution: Since ABCD is a cyclic quadrilateral, AB and CD
are antiparallel with respect to the point E, so a reflection through
the bisector of ∠AEB followed by a homothety about E with ratio
AB/CD takes C,D into A,B respectively. Let G be the image of
F under this transformation. Similarly, reflection through the bisec-
tor of ∠AEB followed by homothety about E with ratio CD/AB
takes A,B into C,D; let H be the image of F under this trans-
formation. G,H both lie on the reflection of line EF across the
bisector of ∠AEB, so GH = |EG−EH| = EF |AB/CD−CD/AB|.
On the other hand, the fact that ABCD is cyclic implies (e.g. by
power of a point) that triangles ABF and DCF are similar with
ratio AB/CD. But by virtue of the way the points A,B,G were
shown to be obtainable from C,D,F , we have that BAG is also
similar to DCF with ratio AB/CD, so ABF and BAG are con-
gruent. Hence AG = BF,AF = BG and AGBF is a parallelo-
gram. So the midpoints of the diagonals of AGBF coincide, i.e.
M is the midpoint of GF . Analogously (using the parallelogram
CHDF ) we can show that N is the midpoint of HF . But then
MN is the image of GH under a homothety about F with ratio 1/2,
so MN = GH/2 = (EF/2)|AB/CD − CD/AB| which is what we
wanted to prove.

14. Prove that the equation

x2 + y2 + z2 + 3(x+ y + z) + 5 = 0

has no solutions in rational numbers.

Solution: Let u = 2x + 3, v = 2y + 3, w = 2z + 3. Then the
given equation is equivalent to

u2 + v2 + w2 = 7.

It is equivalent to ask that the equation

x2 + y2 + z2 = 7w2

has no nonzero solutions in integers; assume on the contrary that
(x, y, z, w) is a nonzero solution with |w| + |x| + |y| + |z| minimal.
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Modulo 4, we have x2 + y2 + z2 ≡ 7w2, but every perfect square is
congruent to 0 or 1 modulo 4. Thus we must have x, y, z, w even,
and (x/2, y/2, z/2, w/2) is a smaller solution, contradiction.

15. Find all continuous functions f : R→ R such that for all x ∈ R,

f(x) = f

(
x2 +

1
4

)
.

Solution: Put g(x) = x2 +1/4. Note that if −1/2 ≤ x ≤ 1/2, then
x ≤ g(x) ≤ 1/2. Thus if −1/2 ≤ x0 ≤ 1/2 and xn+1 = g(xn) for
n ≥ 0, the sequence xn tends to a limit L > 0 with g(L) = L; the
only such L is L = 1/2. By continuity, the constant sequence f(xn)
tends to f(1/2). In short, f is constant over [−1/2, 1/2].

Similarly, if x ≥ 1/2, then 1/2 ≤ g(x) ≤ x, so analogously f is
constant on this range. Moreover, the functional equation implies
f(x) = f(−x). We conclude f must be constant.

16. Two unit squares K1,K2 with centers M,N are situated in the plane
so that MN = 4. Two sides of K1 are parallel to the line MN , and
one of the diagonals of K2 lies on MN . Find the locus of the mid-
point of XY as X,Y vary over the interior of K1,K2, respectively.

Solution: Introduce complex numbers with M = −2, N = 2.
Then the locus is the set of points of the form −(w+ xi) + (y + zi),
where |w|, |x| < 1/2 and |x + y|, |x − y| <

√
2/2. The result is an

octagon with vertices (1+
√

2)/2+ i/2, 1/2+(1+
√

2)i/2, and so on.

17. Find the number of nonempty subsets of {1, 2, . . . , n} which do not
contain two consecutive numbers.

Solution: If Fn is this number, then Fn = Fn−1 + Fn−2: such
a subset either contains n, in which case its remainder is a subset of
{1, . . . , n−2}, or it is a subset of {1, . . . , n−1}. From F1 = 1, F2 = 2,
we see that Fn is the n-th Fibonacci number.

18. For any natural number n ≥ 2, consider the polynomial

Pn(x) =
(
n

2

)
+
(
n

5

)
x+

(
n

8

)
x2 + · · ·+

(
n

3k + 2

)
xk,
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where k = bn−2
3 c.

(a) Prove that Pn+3(x) = 3Pn+2(x)− 3Pn+1(x) + (x+ 1)Pn(x).

(b) Find all integers a such that 3b(n−1)/2c divides Pn(a3) for all
n ≥ 3.

Solution:

(a) This is equivalent to the identity (for 0 ≤ m ≤ (n+ 1)/3)(
n+ 3

3m+ 2

)
= 3
(
n+ 2

3m+ 2

)
−3
(
n+ 1

3m+ 2

)
+
(

n

3m+ 2

)
+
(

n

3m− 1

)
,

which follows from repeated use of the identity
(
a+1
b

)
=
(
a
b

)
+(

a
b−1

)
.

(b) If a has the required property, then P5(a3) = 10+a3 is divisible
by 9, so a ≡ −1 (mod 3). Conversely, if a ≡ −1 (mod 3),
then a3 + 1 ≡ 0 (mod 9). Since P2(a3) = 1, P3(a3) = 3,
P4(a3) = 6, it follows from (a) that 3b(n−1)/2c divides Pn(a3)
for all n ≥ 3.

19. Let M be the centroid of triangle ABC.

(a) Prove that if the line AB is tangent to the circumcircle of the
triangle AMC, then

sin∠CAM + sin∠CBM ≤ 2√
3
.

(b) Prove the same inequality for an arbitrary triangle ABC.

Solution:

(a) Let G be the midpoint of AB, a, b, c the lengths of sides BC,
CA, AB, andma,mb,mc the lengths of the medians fromA,B,C,
respectively. We have( c

2

)2

= GA2 = GM ·GC =
1
3
m2
c =

1
12

(2a2 + 2b2 − c2),
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whence a2 + b2 = 2c2 and ma =
√

3b/2,mb =
√

3a/2. Thus

sin∠CAM + sin∠CBM = K
1
bma

+K
1

amb
=

(a2 + b2) sinC√
3ab

,

where K is the area of the triangle. By the law of cosines,
a2 + b2 = 4ab cosC, so the right side is 2 sin 2C/

√
3 ≤ 2/

√
3.

(b) There are two circles through C and M touching AB; let A1, B1

be the points of tangency, with A1 closer to A. Since G is the
midpoint of A1B1 and CM/MG = 2, M is also the centroid of
triangle A1B1C. Moreover, ∠CAM ≤ ∠CA1M and ∠CBM ≤
∠CB1M . If the angles ∠CA1M and ∠CB1M are acute, we are
thus reduced to (a).
It now suffices to suppose ∠CA1M > 90◦, ∠CB1M ≤ 90◦.
Then CM2 > CA2

1 +A1M
2, that is,

1
9

(2b21 + 2a2
1 − c21) > b21 +

1
9

(2b21 + 2c21 − a2
1),

where a1, b1, c1 are the side lengths of A1B1C. From (a), we
have a2

1 + b21 = c21 and the above inequality is equivalent to
a2

1 > 7b21. As in (a), we obtain

sin∠CB1M =
b1 sin∠B1CA1

a1

√
3

=
b1

a1

√
3

√
1−

(
a2

1 + b21
4a1b1

)2

.

Setting b21/a
2
1 = x, we get

sin∠CB1M =
1

4
√

3

√
14x− x2 − 1 <

1
4
√

3

√
2− 1

49
− 1 =

1
7
,

since x < 1/7. Therefore

sin∠CAM + sin∠CBM < 1 + sin∠CB1M < 1 +
1
7
<

2√
3
.

20. Let m,n be natural numbers and m + i = aib
2
i for i = 1, 2, . . . , n,

where ai and bi are natural numbers and ai is squarefree. Find all
values of n for which there exists m such that a1 +a2 + · · ·+an = 12.
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Solution: Clearly n ≤ 12. That means at most three of the
m + i are perfect squares, and for the others, ai ≥ 2, so actually
n ≤ 7.

We claim ai 6= aj for i = j. Otherwise, we’d have m + i = ab2i and
m + j = ab2j , so 6 ≥ n − 1 ≥ (m + j) − (m + i) = a(b2j − b2i ). This
leaves the possibilities (bi, bj , a) = (1, 2, 2) or (2, 3, 1), but both of
those force a1 + · · ·+ an > 12.

Thus the a’s are a subset of {1, 2, 3, 5, 6, 7, 10, 11}. Thus n ≤ 4, with
equality only if {a1, a2, a3, a4} = {1, 2, 3, 6}. But in that case,

(6b1b2b3b4)2 = (m+ 1)(m+ 2)(m+ 3)(m+ 4) = (m2 + 5m+ 5)2− 1,

which is impossible. Hence n = 2 or n = 3. One checks that the
only solutions are then

(m,n) = (98, 2), (3, 3).

21. Let a, b, c be positive numbers such that abc = 1. Prove that

1
1 + a+ b

+
1

1 + b+ c
+

1
1 + c+ a

≤ 1
2 + a

+
1

2 + b
+

1
2 + c

.

Solution: Brute force! Put x = a + b + c and y = ab + bc + ca.
Then the given inequality can be rewritten

3 + 4x+ y + x2

2x+ y + x2 + xy
≤ 12 + 4x+ y

9 + 4x+ 2y
,

or
3x2y + xy2 + 6xy − 5x2 − y2 − 24x− 3y − 27 ≥ 0,

or

(3x2y − 5x2 − 12x) + (xy2 − y2 − 3x− 3y) + (6xy − 9x− 27) ≥ 0,

which is true because x, y ≥ 3.

22. Let ABC be a triangle and M,N the feet of the angle bisectors of
B,C, respectively. Let D be the intersection of the ray MN with
the circumcircle of ABC. Prove that

1
BD

=
1
AD

+
1
CD

.
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Solution: Let A1, B1, C1 be the orthogonal projections of D onto
BC,CA,AB, respectively. Then

DB1 = DA sin∠DAB1 = DA sin∠DAC =
DA ·DC

2R
,

where R is the circumradius of ABC. Likewise DA1 = DB ·DC/2R
and DC1 = DA ·DB/2R. Thus it suffices to prove DB1 = DA1 +
DC1.

Let m be the distance from M to AB or BC, and n the distance
from N to AC or BC. Also put x = DM/MN (x > 1). Then

DB1

n
= x,

DC1

m
= x− 1,

DA1 −m
n−m

= x.

Hence DB1 = nx, DC1 = m(x − 1), DA1 = nx − m(x − 1) =
DB1 −DC1, as desired.

23. Let X be a set of cardinality n + 1 (n ≥ 2). The ordered n-
tuples (a1, a2, . . . , an) and (b1, b2, . . . , bn) of distinct elements of X
are called separated if there exist indices i 6= j such that ai = bj .
Find the maximal number of n-tuples such that any two of them are
separated.

Solution: If An+1 is the maximum number of pairwise separated
n-tuples, we have An+1 ≤ (n+1)An for n ≥ 4, since among pairwise
separated n-tuples, those tuples with a fixed first element are also
pairwise separated. Thus An ≤ n!/2. To see that this is optimal,
take all n-tuples (a1, . . . , an) such that adding the missing member
at the end gives an even permutation of {1, . . . , n− 1}.
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1.3 Canada

1. How many pairs (x, y) of positive integers with x ≤ y satisfy gcd(x, y) =
5! and lcm(x, y) = 50!?

Solution: First, note that there are 15 primes from 1 to 50:

(2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47).

To make this easier, let’s define f(a, b) to be the greatest power of b
dividing a. (Note g(50!, b) > g(5!, b) for all b < 50.)

Therefore, for each prime p, we have either f(x, p) = f(5!, p) and
f(y, p) = f(50!, p) OR f(y, p) = f(5!, p) and f(x, p) = f(50!, p).
Since we have 15 primes, this gives 215 pairs, and clearly x 6= y in
any such pair (since the gcd and lcm are different), so there are 214

pairs with x ≤ y.

2. Given a finite number of closed intervals of length 1, whose union
is the closed interval [0, 50], prove that there exists a subset of the
intervals, any two of whose members are disjoint, whose union has
total length at least 25. (Two intervals with a common endpoint are
not disjoint.)

Solution: Consider

I1 = [1 + e, 2 + e], I2 = [3 + 2e, 4 + 2e], . . . I24 = [47 + 24e, 48 + 24e]

where e is small enough that 48+24e < 50. To have the union of the
intervals include 2k + ke, we must have an interval whose smallest
element is in Ik. However, the difference between an element in Ik
and Ik + 1 is always greater than 1, so these do not overlap.

Taking these intervals and [0, 1] (which must exist for the union to be
[0, 50]) we have 25 disjoint intervals, whose total length is, of course,
25.

3. Prove that
1

1999
<

1
2
· 3

4
· · · · · 1997

1998
<

1
44
.
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Solution: Let p = 1/2 · 3/4 · . . . · 1997/1998 and q = 2/3 · 4/5 · . . . ·
1998/1999. Note p < q, so p2 < pq = 1/2 · 2/3 · . . . · 1998/1999 =
1/1999. Therefore, p < 1/19991/2 < 1/44. Also,

p =
1998!

(999! · 2999)2
= 2−1998

(
1998
999

)
,

while

21998 =
(

1998
0

)
+ · · ·+

(
1998
1998

)
< 1999

(
1998
999

)
.

Thus p > 1/1999.

4. Let O be a point inside a parallelogram ABCD such that ∠AOB +
∠COD = π. Prove that ∠OBC = ∠ODC.

Solution: Translate ABCD along vector AD so A′ and D are
the same, and so that B′ and C are the same

Now, ∠COD + ∠CO′D = ∠COD + ∠A′O′D′ = 180, so OCO′D is
cyclic. Therefore, ∠OO′C = ∠ODC

Also, vector BC and vector OO′ both equal vector AD so OBCO′

is a parallelogram. Therefore, ∠OBC = ∠OO′C = ∠ODC.

5. Express the sum

n∑
k=0

(−1)k

k3 + 9k2 + 26k + 24

(
n

k

)
in the form p(n)/q(n), where p, q are polynomials with integer coef-
ficients.

Solution: We have
n∑
k=0

(−1)k

k3 + 9k2 + 26k + 24

(
n

k

)

=
n∑
k=0

(−1)k

(k + 2)(k + 3)(k + 4)

(
n

k

)
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=
n∑
k=0

(−1)k
k + 1

(n+ 1)(n+ 2)(n+ 3)(n+ 4)

(
n+ 4
k + 4

)

=
1

(n+ 1)(n+ 2)(n+ 3)(n+ 4)

n+4∑
k=4

(−1)k(k − 3)
(
n+ 4
k

)
and

n+4∑
k=0

(−1)k(k − 3)
(
n+ 4
k

)

=
n+4∑
k=0

(−1)kk
(
n+ 4
k

)
− 3

n+4∑
k=0

(−1)k
(
n+ 4
k

)

=
n+4∑
k=1

(−1)kk
(
n+ 4
k

)
− 3(1− 1)n+4

=
1

n+ 4

n+4∑
k=1

(−1)k
(
n+ 3
k − 1

)
=

1
n+ 4

(1− 1)n+3 = 0.

Therefore

n+4∑
k=4

(−1)k(k − 3)
(
n+ 4
k

)

= −
3∑
k=0

(−1)k(k − 3)
(
n+ 4
k

)
= 3

(
n+ 4

0

)
− 2
(
n+ 4

1

)
+
(
n+ 4

2

)
=

(n+ 1)(n+ 2)
2

and the given sum equals 1
2(n+3)(n+4) .
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1.4 China

1. Let x1, x2, . . . , x1997 be real numbers satisfying the following condi-
tions:

(a) − 1√
3
≤ xi ≤

√
3 for i = 1, 2, . . . , 1997;

(b) x1 + x2 + · · ·+ x1997 = −318
√

3.

Determine the maximum value of x12
1 + x12

2 + · · ·+ x12
1997.

Solution: Since x12 is a convex function of x, the sum of the
twelfth powers of the xi is maximized by having all but perhaps one
of the xi at the endpoints of the prescribed interval. Suppose n of
the xi equal − 1√

3
, 1996− n equal

√
3 and the last one equals

−318
√

3 +
n√
3
− (1996− n)

√
3.

This number must be in the range as well, so

−1 ≤ −318× 3 + n− 3(1996− n) ≤ 3.

Equivalently −1 ≤ 4n−6942 ≤ 3. The only such integer is n = 1736,
the last value is 2/

√
3, and the maximum is 1736× 3−6 + 260× 36 +

(4/3)6.

2. Let A1B1C1D1 be a convex quadrilateral and P a point in its in-
terior. Assume that the angles PA1B1 and PA1D1 are acute, and
similarly for the other three vertices. Define Ak, Bk, Ck, Dk as the
reflections of P across the lines Ak−1Bk−1, Bk−1Ck−1, Ck−1Dk−1,
Dk−1Ak−1.

(a) Of the quadrilaterals AkBkCkDk for k = 1, . . . , 12, which ones
are necessarily similar to the 1997th quadrilateral?

(b) Assume that the 1997th quadrilateral is cyclic. Which of the
first 12 quadrilaterals must then be cyclic?

Solution: We may equivalently define Ak as the foot of the perpen-
dicular from P to Ak−1Bk−1 and so on. Then cyclic quadrilaterals
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with diameters PAk, PBk, PCk, PDk give that

∠PAkBk = ∠PDk+1Ak+1 = ∠PCk+2Dk+2

= ∠PBk+3Ck+3 = ∠PAk+4Bk+4.

Likewise, in the other direction we have ∠PBkAk = PBk+1Ak+1

and so on. Thus quadrilaterals 1, 5, 9 are similar to quadrilateral
1997, but the others need not be. However, if quadrilateral 1997 is
cyclic (that is, has supplementary opposite angles), quadrilaterals 3,
7, and 11 are as well.

3. Show that there exist infinitely many positive integers n such that
the numbers 1, 2, . . . , 3n can be labeled

a1, . . . , an, b1, . . . , bn, c1, . . . , cn

in some order so that the following conditions hold:

(a) a1 + b1 + c1 = · · · = an + bn + cn is a multiple of 6;

(b) a1 + · · · + an = b1 + · · · + bn = c1 + · · · + cn is also a multiple
of 6.

Solution: The sum of the integers from 1 to 3n is 3n(3n + 1)/2,
which we require to be a multiple both of 6n and of 9. Thus n
must be a multiple of 3 congruent to 1 modulo 4. We will show
that the desired arrangement exists for n = 9m. For n = 9, use the
arrangement

8 1 6 17 10 15 26 19 24
21 23 25 3 5 7 12 14 16
13 18 11 22 27 20 4 9 2

(in which the first row is a1, a2, . . . and so on). It suffices to produce
from arrangements for m (without primes) and n (with primes) an
arrangement for mn (with double primes):

a′′i+(j−1)m = ai + (m− 1)a′j (1 ≤ i ≤ m, 1 ≤ j ≤ n)

and likewise for the bi and ci.
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4. Let ABCD be a cyclic quadrilateral. The lines AB and CD meet at
P , and the lines AD and BC meet at Q. Let E and F be the points
where the tangents from Q meet the circumcircle of ABCD. Prove
that points P,E, F are collinear.

Solution: Let X ′ denote the tangent of the circle at a point X
on the circle. Now take the polar map through the circumcircle
of ABCD. To show P,E, F are collinear, we show their poles are
concurrent. E and F map to E′ and F ′ which meet at Q. Since
P = AB∩CD, the pole of P is the line through A′∩B′ and C ′∩D′,
so we must show these points are collinear with Q.

However, by Pascal’s theorem for the degenerate hexagonAADBBC,
the former is collinear with Q and the intersection of AC and BD,
and by Pascal’s theorem for the degenerate hexagon ADDBCC, the
latter is as well.

5. [Corrected] Let A = {1, 2, . . . , 17} and for a function f : A → A,
denote f [1](x) = f(x) and f [k+1](x) = f(f [k](x)) for k ∈ N. Find
the largest natural number M such that there exists a bijection f :
A→ A satisfying the following conditions:

(a) If m < M and 1 ≤ i ≤ 17, then

f [m](i+ 1)− f [m](i) 6≡ ±1 (mod 17).

(b) For 1 ≤ i ≤ 17,

f [M ](i+ 1)− f [M ](i) ≡ ±1 (mod 17).

(Here f [k](18) is defined to equal f [k](1).)

Solution: The map f(x) = 3x (mod 17) satisfies the required
condition for M = 8, and we will show this is the maximum. Note
that by composing with a cyclic shift, we may assume that f(17) =
17. Then M is the first integer such that f [M ](1) equals 1 or 16, and
likewise for 16. If 1 and 16 are in the same orbit of the permutation
f , this orbit has length at most 16, and so either 1 or 16 must map
to the other after 8 steps, so M ≤ 8. If they are in different orbits,
one (and thus both) orbits have length at most 8, so again M ≤ 8.
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6. [Corrected] Let a1, a2, . . . , be nonnegative numbers satisfying

an+m ≤ an + am (m,n ∈ N).

Prove that
an ≤ ma1 +

( n
m
− 1
)
am

for all n ≥ m.

Solution: By induction on k, an ≤ kam + an−mk for k < m/n. Put
n = mk + r with r ∈ {1, . . . ,m}; then

an ≤ kam + ar =
n− r
m

am + ar ≤
n−m
m

am +ma1

since am ≤ ma1 and ar ≤ ra1.
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1.5 Colombia

1. We are given an m× n grid and three colors. We wish to color each
segment of the grid with one of the three colors so that each unit
square has two sides of one color and two sides of a second color.
How many such colorings are possible?

Solution: Call the colors A,B,C, and let Now let an be the
number of such colorings of a horizontal 1 × n board given the col-
ors of the top grid segments. For n = 1, assume WLOG the top
grid segment is colored A. Then there are three ways to choose the
other A-colored segment, and two ways to choose the colors of the
remaining two segments for a total of a1 = 6 colorings.

We now find an+1 in terms of an. Given any coloring of a 1 × n
board, assume WLOG that its rightmost segment is colored A. Now
imagine adding a unit square onto the right side of the board to
make a 1 × (n + 1) board, where the top color of the new square is
known. If the new top segment is colored A, then there are two ways
to choose the colors of the remaining two segments; otherwise, there
are two ways to choose which of the remaining segments is colored
A. So, an+1 = 2an, so an = 3 · 2n.

As for the original problem, there are 3n ways to color the top edges
and 3 · 2n ways to color each successive row, for a total of 3m+n2mn

colorings.

2. We play the following game with an equilaterial triangle of n(n+1)/2
pennies (with n pennies on each side). Initially, all of the pennies
are turned heads up. On each turn, we may turn over three pennies
which are mutually adjacent; the goal is to make all of the pennies
show tails. For which values of n can this be achieved?

Solution: This can be achieved for all n ≡ 0, 2 (mod 3); we
show the positive assertion first. Clearly this is true for n = 2 and
n = 3 (flip each of the four possible triangles once). For larger n, flip
each possible set of three pennies once; the corners have been flipped
once, and the pennies along the sides of the triangle have each been
flipped three times, so all of them become tails. Meanwhile, the
interior pennies have each been flipped six times, and they form a
triangle of side length n− 3; thus by induction, all such n work.
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Now suppose n ≡ 1 (mod 3). Color the pennies yellow, red and
blue so that any three adjacent pennies are different colors; also any
three pennies in a row will be different colors. If we make the corners
all yellow, then there will be one more yellow penny than red or blue.
Thus the parity of the number of yellow heads starts out different
than the parity of the number of red heads. Since each move changes
the parity of the number of heads of each color, we cannot end up
with the parity of yellow heads equal to that of red heads, which
would be the case if all coins showed tails. Thus the pennies cannot
all be inverted.

3. Let ABCD be a fixed square, and consider all squares PQRS such
that P and R lie on different sides of ABCD and Q lies on a diagonal
of ABCD. Determine all possible positions of the point S.

Solution: The possible positions form another square, rotated 45
degrees and dilated by a factor of 2 through the center of the square.
To see this, introduce complex numbers such that A = 0, B = 1, C =
1 + i,D = i.

First suppose P and R lie on adjacent sides of ABCD; without loss
of generality, suppose P lies on AB and R on BC, in which case
Q must lie on AC. (For any point on BD other than the center
of the square, the 90-degree rotation of AB about the point does
not meet DA.) If P = x,Q = y + yi, then R = (2y − x)i and
S = (x− y) + (y − x)i, which varies along the specified square.

Now suppose P and R lie on opposite sides of ABCD; again without
loss of generality, we assume P lies on AB, R on CD and Q on AC.
Moreover, we may assume Q = y + yi with 1/2 ≤ y ≤ 1. The 90-
degree rotation of AB about Q meets CD at a unique point, and so
P = 2y−1, R = i, and S = y−1 + (1−y)i, which again varies along
the specified square.

4. Prove that the set of positive integers can be partitioned into an in-
finite number of (disjoint) infinite sets A1, A2, . . . so that if x, y, z, w
belong to Ak for some k, then x − y and z − w belong to the
same set Ai (where i need not equal k) if and only if x/y = z/w.
Solution: Let Ak consist of the numbers of the form (2k− 1)(2n);
then this partition meets the desired conditions. To see this, assume
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x, y, z, w ∈ Ak with x > y and z > w. Write

x = (2k−1)(2a+b), y = (2k−1)(2a), z = (2k−1)(2c+d), w = (2k−1)(2c).

Then

x− y = (2k − 1)(2b − 1)(2a), z − w = (2k − 1)(2d − 1)(2c).

Also x/y = 2b, z/w = 2d. Now x/y = z/w if and only if b = d if and
only if x− y and z − w have the same largest odd divisor.
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1.6 Czech and Slovak Republics

1. Let ABC be a triangle with sides a, b, c and corresponding angles
α, β, γ. Prove that the equality α = 3β implies the inequality (a2 −
b2)(a− b) = bc2, and determine whether the converse also holds.

Solution: By the extended law of sines, a = 2R sinα, b = 2R sinβ,
c = 2R sin γ, where R is the circumradius of ABC. Thus,

(a2 − b2)(a− b) = 8R3(sin2 α− sin2 β)(sinα− sinβ)
= 8R3(sin2 3β − sin2 β)(sin 3β − sinβ)
= 8R3(sin 3β − sinβ)2(sin 3β + sinβ)
= 8R3(8 cos2 2β sin2 β sin2 β cosβ)
= 8R3(sin2(180◦ − 4β))(sinβ)
= 8R3(sin2 γ)(sinβ)
= bc2.

The converse is false in general; we can also have α = 3β−360◦, e.g.
for α = 15◦, β = 125◦, γ = 40◦.

2. Each side and diagonal of a regular n-gon (n ≥ 3) is colored red
or blue. One may choose a vertex and change the color of all of
the segments emanating from that vertex, from red to blue and vice
versa. Prove that no matter how the edges were colored initially, it
is possible to make the number of blue segments at each vertex even.
Prove also that the resulting coloring is uniquely determined by the
initial coloring.

Solution: All congruences are taken modulo 2.

First, changing the order in which we choose the vertices does not
affect the end coloring. Also, choosing a vertex twice has no net
effect on the coloring. Then choosing one set of vertices has the
same effect as choosing its “complement”: the latter procedure is
equivalent to choosing the first set, then choosing all the vertices.
(Here, in a procedure’s complement, vertices originally chosen an
odd number of times are instead chosen an even number of times,
and vice versa.)
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Label the vertices 1, . . . , 2n + 1. Let ai be the number of blue seg-
ments at each vertex, bi be the number of times the vertex is chosen,
and B be the sum of all bi. When vertex k is chosen, ak becomes
2n− ak ≡ ak; on the other hand, the segment from vertex k to each
other vertex changes color, so the other ai change parity.

Summing the ai gives twice the total number of blue segments; so,
there are an even number of vertices with odd ai — say, 2x vertices.
Choose these vertices. The parity of these ai alternates 2x− 1 times
to become even. The parity of the other ai alternates 2x times to
remain even. Thus, all the vertices end up with an even number of
blue segments. We now prove the end coloring is unique.

Consider a procedure with the desired results. At the end, ai be-
comes ai +B− bi (mod 2). All the ai equal each other at the end,
so bj ≡ bk if and only if aj ≡ ak originally. Thus, either bi ≡ 1 if
and only if ai ≡ 1 — the presented procedure — or bi ≡ 1 if and
only if ai ≡ 0 – resuluting in an equivalent coloring from the first
pargraph’s conclusions. Thus, the resulting coloring is unique.

This completes the proof.

Note: For a regular 2n-gon, n ≥ 2, choosing a vertex reverses the
parities of all of the ai, so it is impossible to have all even ai unless
the ai have equal parities to start with. And even if it is possible to
have all even ai, the resulting coloring is not unique.

3. The tetrahedron ABCD is divided into five convex polyhedra so that
each face of ABCD is a face of one of the polyhedra (no faces are di-
vided), and the intersection of any two of the five polyhedra is either
a common vertex, a common edge, or a common face. What is the
smallest possible sum of the number of faces of the five polyhedra?

Solution: The smallest sum is 22. No polyhedron shares two faces
with ABCD; otherwise, its convexity would imply that it is ABCD.
Then exactly one polyhedron P must not share a face with ABCD,
and has its faces in ABCD’s interior. Each of P ’s faces must then be
shared with another polyhedron, implying that P shares at least 3
vertices with each of the other polyhedra. Also, any polyhedron face
not shared with ABCD must be shared with another polyhedron.
This implies that the sum of the number of faces is even. Each poly-
hedron must have at least four faces for a sum of at least 20. Assume
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this is the sum. Then each polyhedron is a four-vertex tetrahedron,
and P shares at most 2 vertices with ABCD. Even if it did share
2 vertices with ABCD, say A and B, it would then share at most
2 vertices with the tetrahedron containing ACD, a contradiction.
Therefore, the sum of the faces must be at least 22. This sum can
indeed be obtained. Let P and Q be very close to A and B, respec-
tively; then the five polyhedra APCD,PQCD,BQCD,ABDPQ,
and ABCPQ satisfy the requirements.

4. Show that there exists an increasing sequence {an}∞n=1 of natural
numbers such that for any k ≥ 0, the sequence {k + an} contains
only finitely many primes.

Solution: Let pk be the k-th prime number, k ≥ 1. Set a1 = 2.
For n ≥ 1, let an+1 be the least integer greater than an that is con-
gruent to −k modulo pk+1 for all k ≤ n. Such an integer exists by
the Chinese Remainder Theorem. Thus, for all k ≥ 0, k + an ≡ 0
(mod pk+1) for n ≥ k+1. Then at most k+1 values in the sequence
{k+an} can be prime; from the k+2-th term onward, the values are
nontrivial multiples of pk+1 and must be composite. This completes
the proof.

5. For each natural number n ≥ 2, determine the largest possible value
of the expression

Vn = sinx1 cosx2 + sinx2 cosx3 + · · ·+ sinxn cosx1,

where x1, x2, . . . , xn are arbitrary real numbers.

Solution: By the inequality 2ab ≤ a2 + b2, we get

Vn ≤
sin2 x1 + cos2 x2

2
+ · · ·+ sin2 xn + cos2 x1

2
=
n

2
,

with equality for x1 = · · · = xn = π/4.

6. A parallelogram ABCD is given such that triangle ABD is acute
and ∠BAD = π/4. In the interior of the sides of the parallelogram,
points K on AB, L on BC, M on CD, N on DA can be chosen
in various ways so that KLMN is a cyclic quadrilateral whose cir-
cumradius equals those of the triangles ANK and CLM . Find the
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locus of the intersection of the diagonals of all such quadrilaterals
KLMN .

Solution: Since the arcs subtended by the angles ∠KLN , ∠KMN ,
∠LKM , ∠LNM on the circumcircle of KLMN and the arcs sub-
tended by ∠KAN and ∠LCM on the circumcircles of triangles
AKN and CLM , respectively, are all congruent, these angles must
all be equal to each other, and hence have measure 45◦. The trian-
gles SKL and SMN , where S is the intersection of KM and NL,
are thus right isosceles triangles homothetic through S. Under the
homothety taking K to M and L to N , AB is sent to CD and BC
to DA, so S must lie on the segment BD.
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1.7 France

1. Each vertex of a regular 1997-gon is labeled with an integer, such
that the sum of the integers is 1. Starting at some vertex, we write
down the labels of the vertices reading counterclockwise around the
polygon. Can we always choose the starting vertex so that the sum
of the first k integers written down is positive for k = 1, . . . , 1997?

Solution: Yes. Let bk be the sum of the first k integers; then
b1997 = 1. Let x be the minimum of the bk, and find the largest
k such that bk−1 = x; if we start there, the sums will be positive.
(Compare Spain 6.)

2. Find the maximum volume of a cylinder contained in the intersection
of a sphere with center O and radius R and a cone with vertex O
meeting the sphere in a circle of radius r, having the same axis as
the cone.

Solution: Such a cylinder meets the sphere in a circle of some
radius s < r. The distance from that circle to the center of the
sphere is

√
R2 − s2. The cylinder also meets the cone in a circle of

radius s, whose distance to the center of the sphere is s
√
R2/r2 − 1

(since the distance from the circle of radius r to the center of the
sphere is

√
R2 − r2). Thus the volume of the cylinder is

πs2(
√
R2 − s2 − s

√
R2/r2 − 1.

We maximize this by setting its derivative in s to zero:

0 = 2s
√
R2 − s2 − s3

√
R2 − s2

− 3s2
√
R2/r2 − 1)

or rearranging and squaring,

s4 − 4R2s2 + 4R4

R2 − s2
=

9s2R2 − s2r2

r2
.

Solving,

s2 =
3R2 + r2 +

√
(9R2 − r2)(R2 − r2)

6
and one can now plug s2 into the volume formula given above to get
the minimum volume.
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3. Find the maximum area of the orthogonal projection of a unit cube
onto a plane.

Solution: This projection consists of the projections of three mu-
tually orthogonal faces onto the plane. The area of the projection
of a face onto the plane equals the absolute value of the dot product
of the unit vectors perpendicular to the face and the plane. If x, y, z
are these dot products, then the maximum area is the maximum of
x+y+z under the condition x2 +y2 +z2 = 1. However, by Cauchy-
Schwarz,

√
x2 + y2 + z2 ≥ 3(x+ y + z) with equality iff x = y = z.

Thus the maximum is
√

3.

4. Given a triangle ABC, let a, b, c denote the lengths of its sides and
m,n, p the lengths of its medians. For every positive real α, let λ(α)
be the real number satisfying

aα + bα + cα = λ(α)α(mα + nα + pα).

(a) Compute λ(2).

(b) Determine the limit of λ(α) as α tends to 0.

(c) For which triangles ABC is λ(α) independent of α?

Solution: Say m,n, p are opposite a, b, c, respectively, and as-
sume a ≤ b ≤ c. It is easily computed (e.g., using vectors) that
m2 = (2b2 + 2c2−a2)/4 and so on, so λ(2) = 2√

3
. If x ≤ y ≤ z, then

as α→ 0, then

x ≤ (xα + yα + zα)1/α ≤ 31/αx

and so the term in the middle tends to x. We conclude that the limit
of λ(α) as α → 0 is a/p. For λ(α) to be independent of α, we first
need a2/p2 = 4/3, which reduces to a2 + c2 = 2b2. But under that
condition, we have

m = c
√

3/2, n = b
√

3/2, p = a
√

3/2

and so λ(α) is clearly constant for such triangles.
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1.8 Germany

1. Determine all primes p for which the system

p+ 1 = 2x2

p2 + 1 = 2y2

has a solution in integers x, y.

Solution: The only such prime is p = 7. Assume without loss
of generality that x, y ≥ 0. Note that p+ 1 = 2x2 is even, so p 6= 2.
Also, 2x2 ≡ 1 ≡ 2y2 (mod p) which implies x ≡ ±y (mod p) since
p is odd. Since x < y < p, we have x+ y = p. Then

p2 + 1 = 2(p− x)2 = 2p2 − 4px+ p+ 1,

so p = 4x− 1, 2x2 = 4x, x is 0 or 2 and p is −1 or 7. Of course −1
is not prime, but for p = 7, (x, y) = (2, 5) is a solution.

2. A square Sa is inscribed in an acute triangle ABC by placing two
vertices on side BC and one on each of AB and AC. Squares Sb and
Sc are inscribed similarly. For which triangles ABC will Sa, Sb, Sc
all be congruent?

Solution: This occurs for ABC equilateral (obvious) and in no
other cases. Let R be the circumradius of ABC and let xa, xb, xc be
the side lengths of Sa, Sb, Sc. Finally, let α, β, γ denote the angles
∠BAC,∠CBA,∠ACB.

Suppose Sa has vertices P and Q on BC, with P closer to B. Then

2R sinα = BC = BP + PQ+QC

= xa cotβ + xa + xa cot γ

xa =
2R sinα

1 + cotβ + cot γ

=
2R sinα sinβ sin γ

sinβ sin γ + cosβ sin γ + cos γ + sinβ

=
2R sinα sinβ sin γ
sinβ sin γ + sinα
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and similarly for xb and xc. Now xa = xb implies

sinβ sin γ + sinα = sin γ sinα+ sinβ
0 = (sinβ − sinα)(sin γ − 1).

Since ABC is acute, we have sinβ = sinα, which implies α = β
(the alternative is that α+β = π, which cannot occur in a triangle).
Likewise β = γ, so ABC is equilateral.

3. In a park, 10000 trees have been placed in a square lattice. Deter-
mine the maximum number of trees that can be cut down so that
from any stump, you cannot see any other stump. (Assume the trees
have negligible radius compared to the distance between adjacent
trees.)

Solution: The maximum is 2500 trees. In any square of four
adjacent trees, at most one can be cut down. Since the 100 × 100
grid can be divided into 2500 such squares, at most 2500 trees can
be cut down.

Identifying the trees with the lattice points (x, y) with 0 ≤ x, y ≤ 99,
we may cut down all trees with even coordinates. To see this, note
that if a, b, c, d are all even, and p/q is the expression of (d−b)/(c−a)
in lowest terms (where p, q have the same signs as d− b, c− a), then
one of a + p and b + q is odd, so the tree (a + p, b + q) blocks the
view from (a, b) to (c, d).

4. In the circular segment AMB, the central angle ∠AMB is less than
90◦. FRom an arbitrary point on the arc AB one constructs the
perpendiculars PC and PD onto MA and MB (C ∈ MA, D ∈
MB). Prove that the length of the segment CD does not depend on
the position of P on the arc AB.

Solution: Since ∠PCM = ∠PDM = π/2, quadrilateral PCMD
is cyclic. By the Extended Law of Sines, CD = PM sinCMD, which
is constant.

5. In a square ABCD one constructs the four quarter circles having
their respective centers at A, B, C and D and containing the two
adjacent vertices. Inside ABCD lie the four intersection points E,
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F , G and H, of these quarter circles, which form a smaller square
S. Let C be the circle tangent to all four quarter circles. Compare
the areas of S and C.

Solution: Circle C has larger area. Let [C] denotes its area and [S]
that of square S. Without loss of generality, let E be the intersection
of the circes closest to AB, and G the intersection closest to CD.
Drop perpendiculars EE′ to AB and GG′ to CD. By symmetry,
E′, E,G,G′ are collinear.

Now since AB = BG = AG, ABG is equilateral and E′G is the
altitude

√
3AB/2. Likewise G′E =

√
3AB/2. Then

√
3AB = E′G+

G′E = AB + GE, so GE = (
√

3 − 1)AB and [S] = EG2/2 =
(2−

√
3)AB2.

Let I and K be the points of tangency of C with the circles cen-
tered at C and A, respectively. By symmetry again, A, I,K,C are
collinear. Then 2AB = AK + CI = AC + IK =

√
2AB + IK, and

IK = (2−
√

2)AB. Thus

[C] =
π

4
IK2 =

(3− 2
√

2)π
2

AB2 > (2−
√

3)AB2.

6. Denote by u(k) the largest odd number that divides the natural
number k. Prove that

1
2n
·

2n∑
k=1

u(k)
k
≥ 2

3
.

Solution: Let v(k) be the greatest power of 2 dividing k, so
u(k)v(k) = k. Among {1, . . . , 2n}, there are 2n−i−1 values of k
such that v(k) = 2i for i ≤ n−1, and one value such that v(k) = 2n.
Thus the left side equals

1
2n

2n∑
k=1

1
v(k)

=
1
4n

+
n−1∑
i=0

2n−1−i

2n+i
.

Summing the geometric series gives

4−n +
2
3

(1− 4−n) ≥ 2
3
.
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7. Find all real solutions of the system of equations

x3 = 2y − 1
y3 = 2z − 1
z3 = 2x− 1

Solution: The solutions are

x = y = z = t, t ∈

{
1,
−1 +

√
5

2
,
−1−

√
5

2

}
.

Clearly these are all solutions with x = y = z. Assume on the
contrary that x 6= y. If x > y, then y = (x3 + 1)/2 > (y3 + 1)/2 = z,
so y > z, and likewise z > x, contradiction. Similarly if x < y, then
y < z and z < x, contradiction.

8. Define the functions

f(x) = x5 + 5x4 + 5x3 + 5x2 + 1
g(x) = x5 + 5x4 + 3x3 − 5x2 − 1.

Find all prime numbers p for which there exists a natural number 0 ≤
x < p, such that both f(x) and g(x) are divisible by p, and for each
such p, find all such x.
Solution: The only such primes are p = 5, 17. Note that

f(x) + g(x) = 2x3(x+ 1)(x+ 4).

Thus if p divides f(x) and g(x), it divides either 2, x, x+ 1 or x+ 4
as well. Since f(0) = 1 and f(1) = 17, we can’t have p = 2. If
p divides x then f(x) ≡ 1 (mod p), also impossible. If p divides
x+ 1 then f(x) ≡ 5 (mod p), so p divides 5, and x = 4 works. If p
divides x+ 4 then f(x) ≡ 17 (mod p), so p divides 17, and x = 13
works.
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1.9 Greece

1. Let P be a point inside or on the sides of a square ABCD. Determine
the minimum and maximum possible values of

f(P ) = ∠ABP + ∠BCP + ∠CDP + ∠DAP.

Solution: Put the corners of the square at 1, i,−1,−i of the com-
plex plane and put P at z; then f(P ) is the argument of

z − 1
i+ 1

z − i
−1− i

z + 1
−i+ 1

z + i

1 + i
=
z4 − 1

4
.

Since |P | ≤ 1, (z4− 1)/4 runs over a compact subset of the complex
plane bounded by a circle of radius 1/4 centered at −1/4. Hence
the extreme angles must occur at the boundary of the region, and
it suffices to consider P on a side of the square. By symmetry any
side, say AB, will do. As P moves from A to B, ∠CDP decreases
from π/2 to π/4, ∠BCP decreases from π/4 to 0, and the other two
remain fixed at π/2 and 0. Hence the supremum and infimum of
f(P ) are 5π/4 and 3π/4 respectively.

2. Let f : (0,∞)→ R be a function such that

(a) f is strictly increasing;
(b) f(x) > −1/x for all x > 0;
(c) f(x)f(f(x) + 1/x) = 1 for all x > 0.

Find f(1).

Solution: Let k = f(x) + 1/x. Then k > 0, so

f(k)f(f(k) + 1/k) = 1.

But also f(x)f(k) = 1, hence

f(x) = f(f(k) + 1/k) = f(1/f(x) + 1/(f(x) + 1/x)).

Since f is strictly increasing, f is injective, so x = 1/f(x)+1/(f(x)+
1/x). Solving for f(x)we get f(x) = (1+−

√
(5))/(2x), and it’s easy

to check that only (1 −
√

(5))/(2x) satisfies all three conditions.
Hence f(1) = (1−

√
(5))/2.
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3. Find all integer solutions of

13
x2

+
1996
y2

=
z

1997
.

Solution: Let d = gcd(x, y) so that x = dx1, y = dy1. Then
the equation is equivalent to 1997(13)y2

1 + 1997(1996)x2
1 = d2zx2

1y
2
1 .

Since x1 and y1 are coprime we must have

x2
1|1997× 13, y2

1 |1997× 1996.

It’s easy to check that 1997 is square-free, and clearly is coprime to
13 and to 1996. Moreover, 1996 = 22 · 499, and it’s easy to check
that 499 is square-free. Therefore (x1, y1) = (1, 1) or (1, 2). Consider
them as separate cases:

Case 1: (x1, y1) = (1, 1). Then d2z = (13+1996)1997 = 1997 ·72 ·41.
Since 1997 is coprime to 7 and 41, d = 1, 7. These give respectively
the solutions

(x, y, z) = (1, 1, 4011973), (7, 7, 81877).

Case 2: (x1, y1) = (1, 2). Then d2z = (13 + 499)1997 = 1997 · 29. So
d = 1, 2, 4, 8, 16. These give respectively the solutions

(x, y, z) = (1, 2, 1022464), (2, 4, 255616), (4, 8, 63904),
(8, 16, 15976), (16, 32, 3994).

There are also solutions obtained from these by negating x and y.

4. Let P be a polynomial with integer coefficients having at least 13
distinct integer roots. Show that if n ∈ Z is not a root of P , then
|P (n)| ≥ 7(6!)2, and give an example where equality is achieved.

Solution: If we factor out a linear factor from a polynomial
with integer coefficients, then by the division algorithm the remain-
ing depressed polynomial also has integer coefficients. Hence P (x)
can be written as (x − r1)(x − r2)...(x − r13)Q(x), where the r’s
are 13 of its distinct integer roots. Therefore for all integers x,
P (x) is the product of 13 distinct integers times another integer.
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Clearly the minimum nonzero absolute value of such a product is
|(1)(−1)(2)(−2)...(6)(−6)(7)(1)| = 7(6!)2, as desired. Equality is
satisfied, for example, when x = 0 and P (x) = (x + 1)(x − 1)(x +
2)(x− 2)...(x+ 7).
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1.10 Hungary

1. Each member of a committee ranks applicants A,B,C in some order.
It is given that the majority of the committee ranks A higher than
B, and also that the majority of the commitee ranks B higher than
C. Does it follow that the majority of the committee ranks A higher
than C?

Solution: No. Suppose the committee has three members, one
who ranks A > B > C, one who ranks B > C > A, and one who
ranks C > A > B. Then the first and third both prefer A to B, and
the first and second both prefer B to C, but only the first prefers A
to C.

2. Let a, b, c be the sides, ma,mb,mc the lengths of the altitudes, and
da, db, dc the distances from the vertices to the orthocenter in an
acute triangle. Prove that

mada +mbdb +mcdc =
a2 + b2 + c2

2
.

Solution: Let D, E, F be the feet of the altitudes from A, B,
C respectively, and let H be the orthocenter of triangle ABC. Then
triangle ACD is similar to triangle AHE, so mada = AD · AH =
AC · AE = AE · b. Similarly triangle ABD is similar to triangle
AHF , so mada = AD ·AH = AB ·AF = AB · c. Therefore

mada =
AE · b+AF · c

2
.

Similarly

mbdb =
BF · c+BD · a

2
and mcdc =

CD · a+ CE · b
2

.

Therefore

mada +mbdb +mcdc

=
1
2

(AE · b+AF · c+BF · c+BD · a+ CD · a+ CE · b)

=
1
2
(
(BD + CD) · a+ (CE +AE) · b+ (AF +BF ) · c

)
=

a2 + b2 + c2

2
.
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3. Let R be the circumradius of triangle ABC, and let G and H be
its centroid and orthocenter, respectively. Let F be the midpoint of
GH. Show that AF 2 +BF 2 + CF 2 = 3R2.

Solution: We use vectors with the origin at the circumcenter of tri-
angle ABC. Then we have the well-known formulas H = A+B+C
and G = H/3, so F = (G+H)/2 = 2H/3, and 2(A+B +C) = 3F .
Therefore

AF 2 +BF 2 + CF 2

= (A− F ) · (A− F ) + (B − F ) · (B − F ) + (C − F ) · (C − F )
= A ·A+B ·B + C · C − 2(A+B + C) · F + 3F · F
= 3R2 − F · (2(A+B + C)− 3F ) = 3R2.

4. A box contains 4 white balls and 4 red balls, which we draw from
the box in some order without replacement. Before each draw, we
guess the color of the ball being drawn, always guessing the color
more likely to occur (if one is more likely than the other). What is
the expected number of correct guesses?

Solution: The expected number of correct guesses is 373/70. For
i, j ≥ 0, let aij denote the expected number of correct guesses when
there are i white balls and j red balls. Suppose i > j ≥ 1; then our
guess is correct with probability i/(i+j), giving an expected number
of correct guesses of 1+ai−1,j , and wrong with probability j/(i+ j),
giving an expected number of ai,j−1; so

aij =
i

i+ j
(1 + ai−1,j) +

j

i+ j
ai,j−1 if i > j.

Also, we clearly have aij = aji for i, j ≥ 0. If i = j ≥ 1, then our
guess is correct with probability 1/2, and

aii =
1
2

(1 + ai−1,i) +
1
2
ai,i−1 =

1
2

+ ai,i−1

as ai,i−1 = ai−1,i. Finally, the initial conditions are

ai0 = a0i = i for i ≥ 0.

We can use these equations to compute a4,4 = 373/70.
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5. Find all solutions in integers of the equation

x3 + (x+ 1)3 + (x+ 2)3 + · · ·+ (x+ 7)3 = y3.

Solution: The solutions are (−2, 6), (−3, 4), (−4,−4), (−5,−6).

Let P (x) = x3 + (x+ 1)3 + (x+ 2)3 + · · ·+ (x+ 7)3 = 8x3 + 84x2 +
420x+ 784. If x ≥ 0, then

(2x+ 7)3 = 8x3 + 84x2 + 294x+ 343
< P (x) < 8x3 + 120x2 + 600x+ 1000 = (2x+ 10)3,

so 2x+ 7 < y < 2x+ 10; therefore y is 2x+ 8 or 2x+ 9. But neither
of the equations

P (x)− (2x+ 8)3 = −12x2 + 36x+ 272 = 0
P (x)− (2x+ 9)3 = −24x2 − 66x+ 55 = 0

have any integer roots, so there are no solutions with x ≥ 0. Next,
note that P satisfies P (−x − 7) = −P (x), so (x, y) is a solution iff
(−x − 7,−y) is a solution. Therefore there are no solutions with
x ≤ −7. So for (x, y) to be a solution, we must have −6 ≤ x ≤ −1.
For −3 ≤ x ≤ −1, we have P (−1) = 440, not a cube, P (−2) =
216 = 63, and P (−3) = 64 = 43, so (−2, 6) and (−3, 4) are the only
solutions with −3 ≤ x ≤ −1. Therefore (−4,−4) and (−5,−6) are
the only solutions with −6 ≤ x ≤ −4. So the only solutions are
(−2, 6), (−3, 4), (−4,−4), and (−5,−6).

6. We are given 1997 distinct positive integers, any 10 of which have the
same least common multiple. Find the maximum possible number
of pairwise coprime numbers among them.

Solution: The maximum number of pairwise coprime numbers
in this set is 9.

First, suppose there were 10 pairwise coprime numbers n1, n2, . . . ,
n10. Then the least common multiple of any 10 members of this set
is lcm(n1, n2, . . . , n10) = n1n2 · · ·n10. In particular, for any other N
in this set, lcm(N,n2, · · · , n10) = n1n2 · · ·n10 is divisible by n1; as n1

is relatively prime to nj for 2 ≤ j ≤ 10, n1 divides N . Similarly ni
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divides N for each i ∈ {2, . . . , 10}, so as the ni are relatively prime,
n1n2 · · ·n10 divides N . But N ≤ lcm(N,n2, · · · , n10) = n1n2 · · ·n10,
so we must have N = n1n2 · · ·n10. Since this holds for every ele-
ment of our set other than n1, . . . , n10, our set can only contain 11
elements, a contradiction.

Now we construct an example where there are 9 pairwise coprime
numbers. Let pn denote the nth prime, and let

S =
{
p1p2 · · · p1988

pj

∣∣∣∣ 1 ≤ j ≤ 1988
}
∪ {n1, n2, . . . , n9}

where
ni = pi for 1 ≤ i ≤ 8, n9 = p9p10 · · · p1988.

Clearly any two elements of {n1, . . . , n9} are coprime, so it suffices
to show that any 10 elements of S have the same least common
multiple. Let K = p1p2 · · · p1988; then n divides K for every n ∈ S,
so the least common multiple of any 10 elements of S is at most K.
Also note that each prime pi (1 ≤ i ≤ 1988) divides all but 9 of
the elements of S, so any collection of 10 members of S contains at
least one element divisible by each prime pi. So the least common
multiple of any 10 members is divisible by pi for every 1 ≤ i ≤ 1988.
Therefore the least common multiple of any 10 members of S is K.

7. [Corrected] Let AB and CD be nonintersecting chords of a circle,
and let K be a point on CD. Construct (with straightedge and
compass) a point P on the circle such that K is the midpoint of the
part of segment CD lying inside triangle ABP .

Solution: Construct A′ on line AK so that AK = KA′, and con-
struct the point E such that triangles ABC and A′BE are directly
similar. Construct the circumcircle ω of A′BE; it intersects the seg-
ment CD at a pointN such that ∠BNA′ = π−∠A′EB = π−∠ACB.
Let P be the second intersection of BN with the original circle, and
let M = AP ∩ CD. Then ∠PNA′ = 180 − ∠BNA′ = ∠ACB =
∠APB = ∠APN , so AP is parallel to NA′. Therefore triangles
AKM and A′KN are similar; but AK = KA′, so MK = KN .
Thus P has the desired property.
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8. We are given 111 unit vectors in the plane whose sum is zero. Show
that there exist 55 of the vectors whose sum has length less than 1.

Solution: We will first show that given a collection of k vectors
whose sum has length at most 1, we can find either k+ 1 or k+ 2 of
the vectors whose sum also has length at most 1. Let v be the sum of
the k given vectors. If v = 0, we can add any vector and the length
will become 1. If v 6= 0, assume without loss of generality that v
points horizontally to the right. If any of the remaining vectors has
horizontal component at least −1/2, then we can add that vector to
our collection and the total length will still be at most 1. So suppose
no such vector exists. Since the sum of the vectors is 0, but v points
strictly to the right, there must be at least one vector with a leftward
horizontal component. Let w be the vector with the maximum left-
ward component, which is greater than −1/2 by assumption. Draw
the line on which w lies; since v lies on the right of this line, there
must be a vector x which points to the left. Then w + x lies on the
arc of the circle of radius 1 centered at w which lies below the x-axis.
This arc is contained in the circle around (−1/2, 0) of radius 1/2, as
the horizontal component of w is greater than −1/2. So w + x lies
in this circle; therefore v+w+x has length at most 1, and the claim
is proven.

Now starting with the empty collection, which has sum 0, we repeat-
edly apply this argument, and we end up with either 55 or 56 vectors
whose sum has length less than 1. If 55, take those; if 56, take the
remaining vectors.
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1.11 Iran

1. Suppose w1, . . . , wk are distinct real numbers with nonzero sum.
Prove that there exist integers n1, . . . , nk such that n1w1 + · · · +
nkwk > 0 and that for any permutation π of {1, . . . , k} not equal to
the identity, we have n1wπ(1) + · · ·+ nkwπ(k) < 0.

Solution: First recall the following “rearrangement” inequality:
if a1 < · · · < an, b1 < · · · < bn are real numbers,

α = min{ai+1 − ai}, β = min{bi+1 − bi},

then for any nontrivial permutation π of {1, . . . , n},∑
biaπ(i) ≤

∑
biai − αβ.

This holds because if i < j but π(i) > π(j), then replacing π by its
composition with the transposition of i and j increases the sum by
(aj − ai)(bj − bi).
Assume that w1 < · · · < wk, and let s = |

∑
wi|. Let α = min{wi+1−

wi} and pick a natural number N > s/α. Now set

(n1, n2, . . . , nk) = (N, 2N, · · · , kN) + p(1, . . . , 1),

where p is the unique integer such that
∑
niwi ∈ (0, s]. Now the

theorem implies that for π 6= 1,∑
niwπ(i) ≤

∑
niwi −Nα ≤ s−Nα < 0.

2. Suppose the point P varies along the arc BC of the circumcircle
of triangle ABC, and let I1, I2 be the respective incenters of the
triangles PAB,PAC. Prove that

(a) the circumcircle of PI1I2 passes through a fixed point;
(b) the circle with diameter I1I2 passes through a fixed point;
(c) the midpoint of I1I2 lies on a fixed circle.

Solution: Let B1, C1 be the midpoint of the arcs AC,AB. Since
I1, I2 are the incenters of the triangles ABP,ACP , we have

C1A = C1B = C1I2, B1A = B1C = B1I2.
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Let O be the circumcenter of ABC, and let Q be the second inter-
section of the circumcircles of ABC and PI1I2. Since C1I1 and B1I2
pass through P , the triangles QI1C1 and QI2B1 are similar, so

QC1

QB1
=
C1I1
B1I2

=
C1A

B1A

which is constant. Hence Q is the intersection of the circumcircle
of ABC with a fixed circle of Apollonius, so is constant and (a) is
complete.

Since
∠I1QI2 = I1PI2 = C1PB1 = (B + C)/2,

the triangles QI1I2 for various P are all similar. Thus if M is the
midpoint of I1I2, the triangles QI1M are also all similar. If k =
QM/QI1, α = ∠MQI1, this means M is the image of I1 under a
spiral similarity about Q with angle α and ratio k. Since C1I1 = C1A
is constant, I1 moves on an arc of a circle and M is the image of said
arc under the spiral similarity, and (c) is complete.

To finish, we compute that ∠I1II2 = π/2. Thus the circle with
diameter I1I2 passes through I, and (b) is complete.

3. Suppose f : R+ → R
+ is a decreasing continuous function such that

for all x, y ∈ R+,

f(x+ y) + f(f(x) + f(y)) = f(f(x+ f(y))) + f(y + f(x)).

Prove that f(f(x)) = x.

Solution: Putting y = x gives

f(2x) + f(2f(x)) = f(2f(x+ f(x))).

Replacing x with f(x) gives

f(2f(x)) + f(2f(f(x))) = f(2f(f(x) + f(f(x)))).

Subtracting these two equations gives

f(2f(f(x)))− f(2x) = f(2f(f(x) + f(f(x))))− f(2f(x+ f(x))).
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If f(f(x)) > x, the left side of this equation is negative, so

f(f(x) + f(f(x)) > f(x+ f(x))

and f(x)+f(f(x)) < x+f(x), a contradiction. A similar contradic-
tion occurs if f(f(x)) < x. Thus f(f(x)) = x as desired. (Continuity
is not needed.)

4. Let A be a matrix of zeroes and ones which is symmetric (Aij = Aji
for all i, j) such that Aii = 1 for all i. Show that there exists a subset
of the rows whose sum is a vector all of whose components are odd.

Solution: If the claim does not hold, there exists a vector (v1, . . . , vn)
such that

∑
i viwi = 0 for any row (w1, . . . , wn) but

∑
vi 6= 0. (All

arithmetic here is modulo 2.) Summing over all of the rows, we get∑
j

∑
i

viAijvj = 0.

By symmetry, this reduces to
∑
i v

2
iAii = 0, or

∑
i vi = 0 (since

vi ∈ {0, 1}), a contradiction.
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1.12 Ireland

1. Find all pairs (x, y) of integers such that 1 + 1996x+ 1998y = xy.

Solution: We have

(x− 1998)(y − 1996) = xy − 1998y − 1996x+ 1996 · 1998 = 19972.

Since 1997 is prime, we have x−1998 = ±1,±1997,±19972, yielding
the six solutions

(x, y) = (1999, 19972 + 1996), (1997,−19972 + 1996), (3995, 3993),
(1,−1), (19972 + 1998, 1997), (−19972 + 1998, 1995).

2. Let ABC be an equilateral triangle. For M inside the triangle, let
D,E, F be the feet of the perpendiculars from M to BC,CA,AB,
respectively. Find the locus of points M such that ∠FDE = π/2.

Solution: From the cyclic quadrilaterals MDBF and MDCE,
∠MDE = ∠MCE and ∠MDF = ∠MBF . Thus ∠FDE = π/2 if
and only if ∠MCB + ∠MBC = π/6, or equivalently, if ∠BMC =
5π/6. This holds for M on an arc of the circle through B and C.

3. [Corrected] Find all polynomials p(x) such that for all x,

(x− 16)p(2x) = 16(x− 1)p(x).

Solution: If d = degP and a is the leading coefficient of p(x),
then the leading coefficient of the left side is 2da, which must equal
16a. Thus d = 4. Now the right side is divisible by x − 1, as must
be the left side. But in that case, the right side is divisible by x− 2,
and likewise by x − 4 and x − 8. Thus P must be a multiple of
(x − 1)(x − 2)(x − 4)(x − 8), and all such polynomials satisfy the
equation.

4. Let a, b, c be nonnegative real numbers such that a + b + c ≥ abc.
Prove that a2 + b2 + c2 ≥ abc.
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Solution: We may assume a, b, c > 0. Suppose by way of con-
tradiction that a2 + b2 + c2 < abc; then abc > a2 and so a < bc, and
likewise b < ca, c < ab. Then

abc ≥ a2 + b2 + c2 ≥ ab+ bc+ ca

by AM-GM, and the right side exceeds a+ b+ c, contradiction.

5. Let S = {3, 5, 7, . . .}. For x ∈ S, let δ(x) be the unique integer such
that 2δ(x) < x < 2δ(x)+1. For a, b ∈ S, define

a ∗ b = 2δ(a)−1(b− 3) + a.

(a) Prove that if a, b ∈ S, then a ∗ b ∈ S.

(b) Prove that if a, b, c ∈ S, then (a ∗ b) ∗ c = a ∗ (b ∗ c).

Solution: (a) is obvious, so we focus on (b). If 2m < a < 2m+1,
2n < b < 2n+1, then

a ∗ b = 2m−1(b− 3) + a ≥ 2m−1(2n − 2) + 2m + 1 = 2m+n−1 + 1

and
a ∗ b ≤ 2m−1(2n+1 − 4) + 2m+1 − 1 = 2m+n − 1

so δ(a ∗ b) = m+ n− 1. If also 2p < c < 2p+1, then

(a ∗ b) ∗ c = (2m−1(b− 3) + a) ∗ c = 2m+n−2(c− 3) + 2m−1(b− 3) + a

and

a∗(b∗c) = a∗(2n−1(c−3)+b) = 2m−1(2n−1(c−3)+b−3)+a = (a∗b)∗c.

6. Let ABCD be a convex quadrilateral with an inscribed circle. If
∠A = ∠B = 2π/3, ∠D = π/2 and BC = 1, find the length of AD.

Solution: Let I be the center of the inscribed circle. Then ABI is
an equilateral triangle, ∠BIC = 105◦, ∠ICB = 15◦, ∠AID = 75◦,
∠IDA = 45◦, so

AD =
BI

BC

AD

AI
=

sin 15◦

sin 105◦
sin 75◦

sin 45◦
=
√

2 sin 15◦.
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7. Let A be a subset of {0, 1, . . . , 1997} containing more than 1000
elements. Prove that A contains either a power of 2, or two distinct
integers whose sum is a power of 2.

Solution: Suppose A did not verify the conclusion. Then A would
contain at most half of the integers from 51 to 1997, since they can
be divided into pairs whose sum is 2048 (with 1024 left over); like-
wise, A contains at most half of the integers from 14 to 50, at most
half of the integers from 3 to 13, and possibly 0, for a total of

973 + 18 + 5 + 1 = 997

integers.

8. Determine the number of natural numbers n satisfying the following
conditions:

(a) The decimal expansion of n contains 1000 digits.
(b) All of the digits of n are odd.
(c) The absolute value of the difference between any two adjacent

digits of n is 2.

Solution: Let an, bn, cn, dn, en be the number of n-digit numbers
whose digits are odd, any two consecutive digits differing by 2, and
ending in 1,3,5,7,9,respectively. Then

0 1 0 0 0
1 0 1 0 0
0 1 0 1 0
0 0 1 0 1
0 0 0 1 0




an
bn
cn
dn
en

 =


an+1

bn+1

cn+1

dn+1

en+1

 .

Let A be the square matrix in this expression. We wish to compute
the eigenvalues of A, so suppose Av = λv for some vector v =
(v1, v2, v3, v4, v5). Then

v2 = λv1

v3 = λv2 − v1 = (λ2 − 1)v1

v4 = λv3 − v2 = (λ3 − 2λ)v1

v5 = λv4 − v3 = (λ4 − 3λ2 + 1)v1
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and v4 = λv5, so λ5−3λ3+λ = λ3−2λ. Solving this polynomial gives
λ = 0,±1,±

√
3. The corresponding eigenvectors x1, x2, x3, x4, x5 are

are

(1, 0,−1, 0, 1), (1, 1, 0,−1,−1), (1,−1, 0, 1,−1), (1,±
√

3, 2,±
√

3, 1)

and

(1, 1, 1, 1, 1) =
1
3
x1

2 +
√

3
6

x4 +
2−
√

3
6

x5,

so

(a1000, b1000, c1000, d1000, e1000)

= 3999/2 2 +
√

3
6

(1,
√

3, 2,
√

3, 1)− 2−
√

3
6

(1,−
√

3, 2,−
√

3, 1)

= (3499, 2 · 3499, 2 · 3499, 2 · 3499, 3499).

Thus the answer is 8 · 3499.
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1.13 Italy

1. [Corrected] A rectangular strip of paper 3 centimeters wide and of
infinite length is folded exactly once. What is the least possible area
of the region where the paper covers itself?

Solution: Label the vertices of the triangle which covers itself
A,B,C, where AB is the folding axis and ∠BAC is acute. Drop
altitudes from A and B and label the points across the strip from
them A′ and B′, respectively. Note that ∠BAB′ folds onto ∠BAC,
so these angles have the same measure, which we call x. We consider
two cases.

First, suppose 0 < x ≤ π/4. Then C is between A′ and B, ∠ACA′ =
2x and ∠ABA′ = x. Then

[ABC] = [ABA′]− [ACA′]

=
1
2

(3)(3 cotx)− 1
2

(3)(3 cot 2x)

=
9
2

(cotx− cot 2x) =
9
2

csc 2x.

Second, suppose π/4 ≤ x < π/2. Then A′ is between B and C,
∠ACA′ = π − 2x and ∠ABA′ = x. Then again

[ABC] = [ABA′] + [ACA′]

=
1
2

(3)(3 cotx) +
1
2

(3)(3 cotπ − 2x)

=
9
2

(cotx− cot 2x) =
9
2

csc 2x.

The minimum value of csc 2x is of course 1 (for x = π/4), so the
minimum area is 9/2.

2. Let f be a real-valued function such that for any real x,

(a) f(10 + x) = f(10− x);

(b) f(20 + x) = −f(20− x).

Prove that f is odd (f(−x) = −f(x)) and periodic (there exists
T > 0 such that f(x+ T ) = f(x)).
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Solution: Putting x = n − 10 in (a), we get f(n) = f(20 − n);
putting x = n in (b), we get f(20 − n) = −f(n + 20). We con-
clude f(n) = −f(n + 20), and likewise f(n + 20) = −f(n + 40).
Thus f(n + 40) = f(n), so f is periodic with period 40. Also
−f(n) = f(20 + n) = −f(20− n) = −f(n), so f is odd.

3. The positive quadrant of a coordinate plane is divided into unit
squares by lattice lines. Is it possible to color some of the unit
squares so as to satisfy the following conditions:

(a) each square with one vertex at the origin and sides parallel to
the axes contains more colored than uncolored squares;

(b) each line parallel to the angle bisector of the quadrant at the
origin passes through only finitely many colored squares?

Solution: It is possible as follows: on each diagonal line y = x+D,
color the |D|+ 1 squares closest to the axes.

Consider the line y = x+D, where D ≥ 0. Along this line, the first
colored square is in the first column and the (D + 1)-st row, while
the last is in the (D + 1)-st column and the (2D + 1)-st row. Since
the squares to the right of this square (and above the line y = x) are
part of diagonals which start lower and have fewer colored squares,
none of them is colored. If we write (i, j) for the square in row i and
column j, then (i, j) is colored if and only if

j ≥ i, i ≤ D + 1⇒ i ≤ (j − i+ 1)⇒ i ≤ (j + 1)/2

or j ≤ (i + 1)/2. The total number of colored squares in an n × n
square is then

Cn = 2

(
n∑
k=1

bk + 1
2
c

)
− 1.

When n is even, we find Cn = 1
2n

2 + n − 1; when n is odd, Cn =
1
2n

2+n− 1
2 . Thus Cn > 1

2n
2 for all n and the conditions are satisfied.

4. Let ABCD be a tetrahedron. Let a be the length of AB and let
S be the area of the projection of the tetrahedron onto a plane
perpendicular to AB. Determine the volume of the tetrahedron in
terms of a and S.
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Solution: Assign coordinates as follows:

A = (0, 0, 0), B = (0, 0, n), C = (0, b, c), D = (i, j, k).

The plane z = 0 is perpendicular to AB, and the projection of the
tetrahedron onto this plane is a triangle with vertices A′ = B′ =
(0, 0, 0), C ′ = (0, b, 0), D′ = (i, j, 0). This triangle has base b and
altitutde i, so S = bi/2 and a = AB = n.

To find the desired volume, consider the tetrahedron as a pyramid
with base ABC. The plane of the base is x = 0, and the altitude
from D has length i. The area of triangle ABC is bn/2, so the
tetrahedron has volume bin/6 = Sa/3.

5. Let X be the set of natural numbers whose decimal representations
have no repeated digits. For n ∈ X, let An be the set of numbers
whose digits are a permutation of the digits of n, and let dn be the
greatest common divisor of the numbers in An. Find the largest
possible value of dn.

Solution: Suppose n has 3 or more digits; let AB be the last
two digits. If these digits are transposed, the resulting number ends
in BA and also belongs to An; if both numbers are multiples of dn,
so is their difference |AB −BA| = 9|A−B| ≤ 81.

If n has two digits, both nonzero, the above reasoning again applies;
however, if the second digit is zero, An only contains n itself, and
so dn = n. The largest such number is 90, which is greater than 81
and so is the largest possible dn.
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1.14 Japan

1. Prove that among any ten points located in a circle of diameter 5,
there exist two at distance less than 2 from each other.

Solution: Divide the circle into nine pieces: a circle of radius
1 concentric with the given circle, and the intersection of the re-
mainder with each of eight equal sectors. Then one checks that two
points within one piece have distance at most 2.

2. Let a, b, c be positive real numbers. Prove the inequality

(b+ c− a)2

(b+ c)2 + a2
+

(c+ a− b)2

(c+ a)2 + b2
+

(a+ b− c)2

(a+ b)2 + c2
≥ 3

5
,

and determine when equality holds.

Solution: When all else fails, try brute force! First simplify
slightly: ∑

cyclic

2ab+ 2ac
a2 + b2 + c2 + 2bc

≤ 12
5
.

Writing s = a2 + b2 + c2, and clearing denominators, this becomes

5s2
∑
sym

ab+ 10s
∑
sym

a2bc+ 20
∑
sym

a3b2c

≤ 6s3 + 6s2
∑
sym

ab+ 12s
∑
sym

a2bc+ 48a2b2c2

which simplifies a bit to

6s3 + s2
∑
sym

ab+ 2s
∑
sym

a2bc+ 8
∑
sym

a2b2c2

≥ 10s
∑
sym

a2bc+ 20
∑
sym

a3b2c.

Now we multiply out the powers of s:∑
sym

3a6 + 2a5b− 2a4b2 + 3a4bc+ 2a3b3 − 12a3b2c+ 4a2b2c2 ≥ 0.
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The trouble with proving this is the a2b2c2 with a positive coefficient,
since it is the term with the most evenly distributed exponents. We
save face using Schur’s inequality (multiplied by 4abc:)∑

sym
4a4bc− 8a3b2c+ 4a2b2c2 ≥ 0,

which reduces our claim to∑
sym

3a6 + 2a5b− 2a4b2 − a4bc+ 2a3b3 − 4a3b2c ≥ 0.

Fortunately, this is a sum of four expressions which are nonnegative
by weighted AM-GM:

0 ≤ 2
∑
sym

(2a6 + b6)/3− a4b2

0 ≤
∑
sym

(4a6 + b6 + c6)/6− a4bc

0 ≤ 2
∑
sym

(2a3b3 + c3a3)/3− a3b2c

0 ≤ 2
∑
sym

(2a5b+ a5c+ ab5 + ac5)/6− a3b2c.

Equality holds in each case if and only if a = b = c.

3. Let G be a graph with 9 vertices. Suppose given any five points of
G, there exist at least 2 edges with both endpoints among the five
points. What is the minimum possible number of edges in G?

Solution: The minimum is 9, achieved by three disjoint 3-cycles.
Let an be the minimum number of edges in a graph on n vertices
satisfying the given condition. We show that an+1 ≥ n+1

n−1an. Indeed,
given such a graph on n + 1 vertices, let li be the number of edges
of the graph obtained by removing vertex i and all edges incident to
it. Then li ≥ an; on the other hand, l1 + · · · + ln+1 = (n − 1)an+1

since every edge is counted for every vertex except its endpoints.
The desired inequality follows.

Since a5 = 2, we get a6 ≥ 3, a7 ≥ 5, a8 ≥ 7, a9 ≥ 9.
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4. Let A,B,C,D be four points in space not lying in a plane. Suppose
AX + BX + CX + DX is minimized at a point X = X0 distinct
from A,B,C,D. Prove that ∠AX0B = ∠CX0D.

Solution: Let A,B,C,D and P have coordinates (x1, y1, z1), . . .,
(x4, y4, z4) and (x, y, z). Then the function being minimized is

f(P ) =
∑
i

√
(x− xi)2 + (y − yi)2 + (z − zi)2.

At its minimum, its three partial derivatives are zero, but these are
precisely the three coordinates of ua + ub + uc + ud, where ua is the
unit vector (P −A)/||P −A|| and so on. Thus this sum is zero, and
so ua · ub = uc · ud for P = X0, which proves the claim.

5. Let n be a positive integer. Show that one can assign to each vertex
of a 2n-gon one of the letters A or B such that the sequences of n
letters obtained by starting at a vertex and reading counterclockwise
are all distinct.

Solution: Draw a directed graph whose vertices are the sequences
of length n− 1, with an edge between two sequences if the last n− 2
letters of the first vertex match the first n− 2 letters of the second.
(Note: this is actually a graph with two loops, one from each of
the words of all A’s or all B’s to themselves.) This graph has two
edges into and out of each vertex, so there exists a (directed) path
traversing each edge exactly once. We convert this into a cycle of the
desired form by starting at any vertex, writing down the sequence
corresponding to it, then appending in turn the last letter of each
sequence we encounter along the path.
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1.15 Korea

1. Show that among any four points contained in a unit circle, there
exist two whose distance is at most

√
2.

Solution: If one of the four points lies at the center O of the circle,
the statement is trivial. Otherwise, label the points P1, P2, P3, P4

so that quadrilateral Q1Q2Q3Q4 is convex, where Qi is the intersec-
tion of the circle with OPi. Then ∠P1OP2 + ∠P2OP3 + ∠P3OP4 +
∠P4OP1 ≤ 2π, so ∠PiOPi+1 ≤ π/2 for some i. Now segment PiPi+1

is contained in triangle OQiQi+1, so

PiPi+1 ≤ max(OQi, QiQi+1, Qi+1O)

= max(1, 2 sin∠QiOQi+1) ≤
√

2.

2. Let f : N→ N be a function satisfying

(a) For every n ∈ N, f(n+ f(n)) = f(n).
(b) For some n0 ∈ N, f(n0) = 1.

Show that f(n) = 1 for all n ∈ N.

Solution: First, note that if n ∈ N and f(n) = 1, then f(n+ 1) =
f(n+ f(n)) = f(n) = 1; so as f(n0) = 1, f(n) = 1 for all n ≥ n0 by
induction. Let S = {n ∈ N | f(n) 6= 1 }; then S has finitely many
elements. If S 6= ∅, let N = maxS; then f(N + f(N)) = f(N) 6= 1,
so N + f(N) ∈ S, but N + f(N) > N , a contradiction. So S = ∅
and f(n) = 1 for every n ∈ N.

3. Express
∑n
k=1b
√
kc in terms of n and a = b

√
nc.

Solution: The closed form is (n+ 1)a− a(a+ 1)(2a+ 1)/6.

We will use Iverson’s bracket convention: if P is a statement, [P ] is 1
if P is true, 0 if P is false. Note that b

√
kc is equal to the number of

positive integers whose squares are at most k, so b
√
kc =

∑a
j=1[j2 ≤

k] if a ≥ b
√
kc. Therefore

n∑
k=1

b
√
kc =

n∑
k=1

a∑
j=1

[j2 ≤ k] =
a∑
j=1

n∑
k=1

[j2 ≤ k].
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Now
∑n
k=1[j2 ≤ k] counts the number of k ∈ {1, . . . , n} such that

k ≥ j2; when j ≤ a, j2 ≤ n, so this number is n+ 1− j2. So

n∑
k=1

b
√
kc =

a∑
j=1

n+ 1− j2 = (n+ 1)a− a(a+ 1)(2a+ 1)/6.

4. [Corrected] Let C be a circle touching the edges of an angle ∠XOY ,
and let C1 be a circle touching the same edges and passing through
the center of C. Let A be the second endpoint of the diameter of
C1 passing through the center of C, and let B be the intersection of
this diameter with C. Prove that the circle centered at A passing
through B touches the edges of ∠XOY .

Solution: Let T and T1 be the centers of C and C1, and let r
and r1 be their radii. Drop perpendiculars TT ′, T1T

′
1, and AA′ to

OX; then TT ′ = r and T1T
′
1 = r1. But T1 is the midpoint of AT ,

so T1T
′
1 = (AA′ + TT ′)/2; therefore AA′ = 2T1T

′
1 − TT ′ = 2r1 − r.

Also AB = AT − BT = 2r1 − r, so the circle centered at A with
radius AB touches OX at A′. Similarly, this circle touches OY .

5. Find all integers x, y, z satisfying x2 + y2 + z2 − 2xyz = 0.

Solution: The only solution of this equation is x = y = z = 0.

First, note that x, y, and z cannot all be odd, as then x2 + y2 + z2−
2xyz would be odd and therefore non-zero. Therefore 2 divides xyz.
But then x2 +y2 +z2 = 2xyz is divisible by 4; since all squares are 0
or 1 (mod 4), x, y, and z must all be even. Write x = 2x1, y = 2y1,
z = 2z1; then we have 4x2

1 + 4y2
1 + 4z2

1 = 16x1y1z1, or x2
1 + y2

1 + z2
1 =

4x1y1z1. Since the right-hand side is divisible by 4, x1, y1, and z1

must again be even, so we can write x1 = 2x2, y1 = 2y2, z1 = 2z2;
plugging this in and manipulating we obtain x2

2 +y2
2 +z2

2 = 8x2y2z2.
In general, if n ≥ 1, x2

n + y2
n + z2

n = 2n+1xnynzn implies that xn, yn,
zn are all even, so we can write xn = 2xn+1, yn = 2yn+1, zn = 2zn+1,
which satisfy x2

n+1 + y2
n+1 + z2

n+1 = 2n+2xn+1yn+1zn+1; repeating
this argument gives us an infinite sequence of integers (x1, x2, . . .)
in which xi = 2xi+1. But then x = 2nxn, so 2n divides x for every
n ≥ 1; therefore we must have x = 0. Similarly y = z = 0.
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Note: The substitution x = yz−w reduces this problem to USAMO
76/3.

6. Find the smallest integer k such that there exist two sequences {ai},
{bi} (i = 1, . . . , k) such that

(a) For i = 1, . . . , k, ai, bi ∈ {1, 1996, 19962, . . .}.
(b) For i = 1, . . . , k, ai 6= bi.

(c) For i = 1, . . . , k − 1, ai ≤ ai+1 and bi ≤ bi+1.

(d)
∑k
i=1 ai =

∑k
i=1 bi.

Solution: The smallest such integer is 1997.

Suppose {ai}, {bi} are two sequences satisfying these four conditions
with k ≤ 1996. The second condition tells us that a1 6= b1, so
assume without loss of generality that a1 < b1. By the first condition,
there are 0 ≤ m < n such that a1 = 1996m, b1 = 1996n. Since
bi ≥ b1 for all 1 ≤ i ≤ k (by the third condition) and each bi is a
power of 1996,

∑k
i=1 bi is divisible by 1996n. Therefore by the fourth

condition
∑k
i=1 ai is divisible by 1996n; letting t denote the number

of j’s for which aj = 1996m, we have t · 1996m ≡
∑k
i=1 ai ≡ 0

(mod 1996m+1), so 1996 divides t and t ≥ 1996. But t ≤ k ≤
1996, so we must have t = k = 1996. Then 1996m+1 =

∑k
i=1 ai =∑k

i=1 bi ≥
∑k
i=1 b1 = 1996 · 1996n = 1996n+1, a contradiction as

m < n. So we must have k ≥ 1997. For k = 1997, we have the
example

a1 = · · · = a1996 = 1, a1997 = 19962, b1 = · · · = b1997 = 1996.

7. Let An be the set of all real numbers of the form 1+ α1√
2

+ α2

(
√

2)2 +· · ·+
αn

(
√

2)n
, where αj ∈ {−1, 1} for each j. Find the number of elements

of An, and find the sum of all products of two distinct elements of
An.

Solution: First we prove a lemma: for any n ≥ 1,{
β1

2
+
β2

4
+ · · ·+ βn

2n

∣∣∣∣ βi ∈ {−1, 1}
}

=
{
j

2n

∣∣∣∣ j odd, |j| < 2n
}
.
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The proof is by induction on n; if n = 1, both sides are the set{
− 1

2 ,
1
2

}
. If n ≥ 1, βi ∈ {−1, 1}, let j = 2n−1β1 + · · ·+ 20βn; then j

is odd and β1/2 + β2/4 + · · ·+ βn/2n = j/2n, and since∣∣∣∣β1

2
+
β2

4
+· · ·+ βn

2n

∣∣∣∣ ≤ ∣∣∣∣β1

2

∣∣∣∣+∣∣∣∣β2

4

∣∣∣∣+· · ·+∣∣∣∣βn2n

∣∣∣∣ =
1
2

+
1
4

+· · ·+ 1
2n

< 1,

we must have |j| < 2n. Therefore the set on the left is contained in
the set on the right. Now if j is odd and |j| < 2n, either (j− 1)/2 or
(j + 1)/2 is odd, since these are consecutive integers; let j0 denote
the odd one. Then |j0| ≤ (|j|+ 1)/2 ≤ 2n−1, as |j| ≤ 2n− 1; since j0
is odd, |j0| < 2n−1. So by the inductive hypothesis, there exist β1,
. . . , βn−1 such that

β1

2
+
β2

4
+ · · ·+ βn−1

2n−1
=

j0
2n−1

.

Let βn = j − 2j0 ∈ {−1, 1}; then

β1

2
+
β2

4
+ · · ·+ βn−1

2n−1
+
βn
2n

=
j0

2n−1
+
j − 2j0

2n
=

j

2n

and the proof of the lemma is complete.

We can now conclude from this lemma that

An =
{

1 +
j

2bn/2c
+

k
√

2
2dn/2e

∣∣∣∣ j, k odd, |j| < 2bn/2c, |k| < 2dn/2e
}
,

so An contains 2bn/2c2dn/2e = 2n elements. To compute the sum of
all products of two distinct elements of An, we use the formula

∑
a,b∈An
a<b

ab =
1
2

(( ∑
a∈An

a
)2

−
∑
a∈An

a2
)
.

Now we can pair off the elements 1 + j/2bn/2c + k
√

2/(2dn/2e) and
1 − j/2bn/2c − k

√
2/2dn/2e, so the average of An’s elements is 1;

therefore
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∑
a∈An

a = |An| = 2n.

Now if X, Y are any finite sets of real numbers with
∑
x∈X x =∑

y∈Y y = 0, we have
∑
x∈X

∑
y∈Y (1 + x + y)2 = |X| · |Y | + |Y | ·∑

x∈X x
2 + |X| ·

∑
y∈Y y

2 since the other three terms are all 0 by
assumption. Also the formula∑

j odd
|j|<2m

j2 =
1
3

2m
(
(2m)2 − 1

)

can easily be proven by induction on m. So

∑
a∈An

a2 =
∑
j odd

|j|<2bn/2c

∑
k odd

|k|<2dn/2e

(
1 +

j

2bn/2c
+

k
√

2
2dn/2e

)2

= 2bn/2c+dn/2e +
∑
j odd

|j|<2bn/2c

j22dn/2e

22bn/2c +
∑
k odd

|k|<2dn/2e

2k22bn/2c

22dn/2e

= 2n +
1
3

(
2dn/2e

2bn/2c(22bn/2c − 1)
22bn/2c +

2bn/2c
2dn/2e(22dn/2e − 1)

22dn/2e−1

)
= 2n +

1
3

2n
(

3− 1
22bn/2c −

1
22dn/2e−1

)
= 2n+1 − 1

3

(
2n−2bn/2c + 2n−2dn/2e+1

)
= 2n+1 − 1

by considering even n and odd n separately in the last step. So∑
a,b∈An
a<b

ab =
1
2

(( ∑
a∈An

a
)2

−
∑
a∈An

a2
)

=
1
2
(
22n − 2n+1 + 1

)
.
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8. In an acute triangle ABC with AB 6= AC, let V be the intersection
of the angle bisector of A with BC, and let D be the foot of the
perpendicular from A to BC. If E and F are the intersections of the
circumcircle of AVD with CA and AB, respectively, show that the
lines AD,BE,CF concur.

Solution: Since ∠ADV = π/2 and A, D, V , E, F are concyclic,
∠BFV = ∠CEV = π/2. Therefore triangles BFV and BDA are
similar and triangles CEV and CDA are similar, so BD/BF =
AB/V B and CD/CE = AC/V C. But AB/V B = AC/V C by
the Angle Bisector theorem, so BD/BF = CD/CE. Also, since
∠FAV = ∠V AE, AE = AF . Therefore

BD

DC

CE

EA

AF

FB
=
BD

BF

/
CD

CE
= 1

and AD, BE, CF concur by Ceva’s Theorem.

9. [Corrected] A word is a sequence of 8 digits, each equal to 0 or 1.
Let x and y be two words differing in exactly three places. Show
that the number of words differing from each of x and y in at least
five places is 38.

Solution: Assume without loss of generality that x = 00000000,
y = 00000111. Then a word z differs from each of x and y in at
least five places if and only if a + b ≥ 5 and a + (3 − b) ≥ 5, where
a is the number of 1’s among the first five digits of z and b is the
number of 1’s among the last three digits of z. Adding these in-
equalities gives 2a ≥ 7, so we must have a ≥ 4; the solutions are
(4, 1), (4, 2), and (5, b) for b ∈ {0, 1, 2, 3} . The first two solutions
give

(
5
4

) ((
3
1

)
+
(

3
2

))
= 30 words for z, and the others give 23 = 8,

so there are 38 words differing from each of x and y in at least five
places.

10. Find all pairs of functions f, g : R→ R such that

(a) if x < y, then f(x) < f(y);

(b) for all x, y ∈ R, f(xy) = g(y)f(x) + f(y).
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Solution: The pairs (f, g) given by

f(x) = t(1− g(x)), g(x) =
{
xm, x ≥ 0
−|x|m, x < 0 ,

where t < 0, m > 0 are the only solutions.

Letting x = 0 in item (b) gives f(0) = f(0)g(y) + f(y), so f(y) =
f(0)(1 − g(y)). Let t = f(0); then f(y) = t(1 − g(y)). Since f is
increasing, we cannot have t = 0. Substituting this formula for f in
item (b) gives t(1−g(xy)) = g(y)t(1−g(x))+t(1−g(y)); rearranging
we get 1− g(xy) = g(y)(1− g(x)) + 1− g(y) = 1− g(x)g(y), or

g(xy) = g(x)g(y) for all x, y ∈ R.

Since g = 1 − f/t, g is strictly monotone, so g(1) 6= 0; but g(1) =
g(1)2, so we must have g(1) = 1. Therefore g is increasing, so
as f is increasing, we must have t < 0. So g(x) > 0 for x >
0; define h : R → R by h = log ◦ g ◦ exp. Then h(x + y) =
log g(ex+y) = log(g(ex)g(ey)) = log g(ex) + log g(ey) = h(x) + h(y),
h(0) = log g(e0) = 0, and h is strictly increasing. Also h(x + y) =
h(x) + h(y) implies h(nx) = nh(x) for n ∈ N and h(−x) = −h(x),
so h(αx) = αh(x) for α ∈ Q. Taking sequences of rationals xi ap-
proaching x from below and yi approaching x from above, and using
monotonicity, shows that h(x) = xh(1) for all x; let m = h(1). Then
we must have m > 0, as h is increasing. So g(x) = xm for all x > 0.
Now g(−1) < 0, but (g(−1))2 = g(1) = 1, so g(−1) = −1; therefore
g(−x) = −g(x), so

g(x) =
{
xm, x ≥ 0
−|x|m, x < 0 .

Also we have f(x) = t(1 − g(x)). It is easy to check that this pair
(f, g) is a solution for any m > 0 > t.

11. [Corrected] Let a1, . . . , an be positive numbers, and define

A =
a1 + · · ·+ an

n

G = (a1 · · · an)1/n

H =
n

a−1
1 + · · ·+ a−1

n

.
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(a) If n is even, show that A
H ≤ −1 + 2(AG )n.

(b) If n is odd, show that A
H ≤ −

n−2
n + 2(n−1)

n (AG )n.

Solution: Note that

Gn

H
=

a1 · · · an(a−1
1 + · · · a−1

n )
n

=
1
n

n∑
j=1

a1 · · · an
aj

≤

 1
n

n∑
j=1

aj

n−1

= An−1

by Maclaurin’s inequality, so A
H ≤ (AG )n. Since A ≥ G,

(
A
G

)n ≥ 1,
so A

H ≤ (AG )n ≤ −1 + 2(AG )n, proving part (a). For part (b), A
H ≤

(AG )n ≤ (AG )n + n−2
n ((AG )n − 1) = −n−2

n + 2(n−1)
n (AG )n.
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1.16 Poland

1. The positive integers x1, . . . , x7 satisfy the conditions

x6 = 144, xn+3 = xn+2(xn+1 + xn) n = 1, 2, 3, 4.

Compute x7.

Solution: Multiplying the given equation for n = 1, 2, 3 and can-
celing terms we get:

144 = x3(x1 + x2)(x2 + x3)(x3 + x4). [1]

Also from the given equality we get the following inequalities:

x4 = x3(x2 + x1) ≥ 2x3

x5 = x4(x3 + x2) ≥ 2x2
3

144 = x6 ≥ x5(x4 + x3) ≥ 2x2
3(3x3)⇒ 144 ≥ 6x3

3 ⇒ x3 = 1, 2.

Case 1: x3 = 1.

By [1] , 144 = (x1 +x2)(x2 + 1)(x1 +x2 + 1). The pairs of factors of
144 that are consecutive integers are (1,2) (2, 3), (3, 4), and (8, 9).
Since x1 +x2 and x1 +x2 + 1 are factors of 144 that are consecutive
integers and since x1 + x2 ≥ 2, we have 3 subcases:

Subcase 1a) x1 +x2 = 2 implies 6(x2 +1) = 144 and so x2 = 23;
x1 = −21; however, this is not a valid solution since the xi are
positive integers.

Subcase 1b) x1 +x2 = 3 implies 12(x2 +1) = 144;x2 = 11;x1 =
−8; again, this is invalid.

Subcase 1c) x1 + x2 = 8 implies 72(x2 + 1) = 144;x2 = 1;x1 =
7. Testing this possible solution:x4 = 8, x5 = 16, x6 = 144, so
(x1, x2, x3) = (7, 1, 1) works. The value of x7 = 3456.

Case2: x3 = 2

144 = 2(x1 + x2)(x2 + 2)(2x1 + 2x2 + 2) implies 36 = (x1 + x2)(x2 +
2)(x1+x2+1). The pairs of factors of 36 that are consecutive integers
are (1, 2), (2, 3), (3, 4). We then analyze as above:

Subcase 2a) x1 + x2 = 2 implies x2 = 4;x1 = −2; invalid solu-
tion.
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Subcase 2b) x1 + x2 = 3 implies x2 = 1, x1 = 2. Testing this
solution:

x4 = 6, x5 = 18, x6 = 144, so (x1, x2, x3) = (2, 1, 2) also works. The
value of x7 = 3456.

The value of x7 is thus 3456.

2. Solve the following system of equations in real numbers x, y, z:

3(x2 + y2 + z2) = 1
x2y2 + y2z2 + z2x2 = xyz(x+ y + z)3.

Solution: First note that none of x, y, z,or (x + y + z) can equal
0, for otherwise, by the second equation, x = y = z = 0, which
does not satisfy the first equation. Also note that xyz(x+ y + z) =
x2y2+y2z2+z2x2

(x+y+z)2 ≥ 0.

For three real numbers a, b, c, we have (a−b)2+(a−c)2+(b−c)2 ≥ 0,
or equivalently a2 + b2 + c2 ≥ ab+ ac+ bc, with equality if and only
if a = b = c. So

1 = 3(x2 + y2 + z2) ≥ (x+ y + z)2 =
x2y2 + y2z2 + z2x2

xyx(x+ y + z)

≥ xy2z + x2yz + xyz2

xyz(x+ y + z)
= 1.

Hence all the inequalities in the above expression must be equalitites,
so we must have x = y = z. So from the first equation we find
that the possible triples (x, y, z) are ( 1

3 ,
1
3 ,

1
3 ) and (−1

3 ,
−1
3 ,
−1
3 ). Both

satisfy the given equations, so they are the solutions.

3. [Corrected] In a tetrahedron ABCD, the medians of the faces ABD,
ACD, BCD from D make equal angles with the corresponding edges
AB,AC,BC. Prove that each of these faces has area less than or
equal to the sum of the areas of the other two faces.

Solution: Let α ≤ 90◦ be the common angle; first suppose
α 6= 90◦. If a, b, c are the lengths of BC,CA,AB and ma,mb,mc

are the lengths of the medians from BC,CA,AB, respectively, then
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the area of triangle DAB is 1
2mcc sinα. Note that the absolute value

of the dot product between the vectors (D− (A+B)/2) and A−B
is mcc cosα = 2 cotα[DAB], but also equals |DA2 − DB2|. Thus
the three areas [ABD], [ACD], [BCD] are proportional to |DA2 −
DB2|, |DA2 −DC2|, |DB2 −DC2|, and the desired inequality is ev-
ident in this case.

Now suppose α = 90◦. Let x = ∠ADB, y = ∠BDC, z = ∠ADC
(0 < x, y, z < 180). Note that since x, y, z are the angles of a trihedral
angle, we have x+ y > z, x+ y > y, y + z > x and x+ y + z ≤ 360.
Since the area of triangle ADB is (AD)(BD)(sinx)/2 (and similar
relations hold for the areas of BDC and ADC) and AD = BD = CD
(since α = 90), we need to prove that sinx + sin y > sin z (and the
analogous inequalities).

Using trigonometric identities, we have

sinx+ sin y = 2 sin(
x+ y

2
) cos(

x− y
2

), sin z = 2 sin
z

2
cos

z

2
,

so we need to prove

sin(
x+ y

2
) cos(

x− y
2

) > sin
z

2
cos

z

2
.

Since x + y + z ≤ 360 =⇒ x+y
2 ≤ 180 − z

2 . Note that since 0 <
z
2 ≤

x+y
2 ≤ 180 − z

2 , we have sin(x+y
2 ) > sin z

2 . Also, since x−y
2 <

z
2 , we have cos(x−y2 ) > cos z2 since the cosine function is strictly
decreasing on [0, 180] . Multiplying the two inequalities together
(which is legal since the expressions involved are positive), we get
sin(x+y

2 ) cos(x−y2 ) > sin z
2 cos z2 , as desired.

4. The sequence a1, a2, . . . is defined by

a1 = 0, an = abn/2c + (−1)n(n+1)/2 n > 1.

For every integer k ≥ 0, find the number of n such that

2k ≤ n < 2k+1 and an = 0.

Solution: Let Bndenote the base 2 representation of n.

First, we will prove by induction that an is the number of 00 or 11
strings in Bn minus the number of 01 or 10 strings in the Bn. For
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the base case n=1, we have B1 = 1 so a1 = 0− 0 = 0.Assume that
for k = 1, 2, ...n−1, ak is the number of 00 or 11 strings in Bk minus
the number of 01 or 10 strings in the Bk. First consider the cases
when n ≡ 0, 3 (mod 4). Then Bn ends in 00 or 11, so an equals
one plus the number of 00 or 11 strings in all but the digit of Bn
minus the number of 01 or 10 strings in the all but the last digit of
Bn. This latter number is given by abn2 c. Thus

an = abn2 c + 1 = abn2 c + (−1)n(n+1)/2,

as desired. Similarly, for n ≡ 1, 2 (mod 4), we get (since Bn ends
in 01 or 10 and we are subtracting these)

abn2 c − 1 = abn2 c + (−1)n(n+1)/2,

completing the induction.

So for a given integer k, we need to find the number of integers n
such that 2k ≤ n < 2k+1 and the number of 00 and 11 strings equals
the number of 01 and 10 strings. Note that Bn has k + 1 digits.
For each Bn, we construct a new sequence Cn of 0’s and 1’s as
follows: starting at the leftmost digit of Bn and working our way to
the penultimate digit of Bn, we add to our sequence Cn the absolute
value of the difference between that digit and the digit to its right.
For example, B11=1011 and C11=110. Since a 00 or 11 string in Bn
yields a 0 in Cn and a 01 or 10 string in Bn yields a 1 in Cn, we
need to find the number of integers n such that 2k ≤ n < 2k+1 and
the number of zeroes in Cn equals the number of ones. Since Cn has
k digits (one less than Bn), an equal number of zeroes and ones is
impossible if k is odd. If k is even, then we can select k

2 of the k
digits equal to one; the rest of the k

2 places we can set equal to zero.
From this sequence Cn, we can reconstruct Bn; it is easy to see that
each sequence Cn corresponds to a unique value of Bn and hence a
unique value of n. There are

(
k
k
2

)
ways to select the placement of the

ones. So the answer is 0 if k is odd,
(
k
k
2

)
otherwise.

5. Given a convex pentagon ABCDE with DC = DE and ∠BCD =
∠DEA = π/2, let F be the point on segmentAB such thatAF/BF =
AE/BC. Show that

∠FCE = ∠FDE and ∠FEC = ∠BDC.
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Solution: Let P be the intersection of AE and BC, and note
that C,D,E, P are concyclic. Let Q and R denote the intersections
of DA and DB, respectively, with the circumcircle of CDEP . Let
G = QC ∩ RE. We have ∠GCE = ∠ADE and ∠GEC = ∠BDC.
Also, by Pascal’s Theorem for the hexagon PCQDRE, A,G,B are
collinear. So all we must do is show AG/GB = AE/BC and then
we conclude F = G. We do this via the law of sines:

AG

GB
=

sin∠DCQ
sin∠ERD

QC

RG

sin∠RBG
sin∠GAQ

=
CD

DE

sin∠QRG
sin∠GQR

sin∠DBA
sin∠BAD

=
sin∠ADE
sin∠CDB

AD

BD
=
AE

BC
,

where the last step follows from the fact that ADE and BDC are
right triangles.

6. Consider n points (n ≥ 2) on a unit circle. Show that at most n2/3 of
the segments with endpoints among the n chosen points have length
greater than

√
2.

Solution: Construct a graph on the given vertices by connect-
ing every pair of points whose distance is greater than

√
2. We will

show that no K4 (the complete graph on 4 vertices) exists. Suppose
a K4 exists; call its vertices (in cyclic order) ABCD.

Edges of length greater than
√

2 subtend a minor arc of greater
than π/2 radians. So AB,BC,CD,DA each subtend minor arcs of
greater than π/2 radians, and together they subtend more than 2π
radians. This is a contradiction, since there are only 2π radians in
a circle. That the graph has at most n2

3 edges now follows from
Turan’s theorem.
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1.17 Romania

1. In the plane are given a line ∆ and three circles tangent to ∆ and
externally tangent to each other. Prove that the triangle formed by
the centers of the circles is obtuse, and find all possible measures of
the obtuse angle.

Solution: Let a, b, c be the radii of the circles, A,B,C the centers
of the circles and A′, B′, C ′ the projections of A,B,C, respectively,
onto ∆. Assume that c ≤ a, b. Then

A′B′ =
√

(a+ b)2 − (a− b)2 = 2
√
ab,B′C ′ = 2

√
bc, C ′A′ = 2

√
ca.

Thus
√
ab =

√
ac+

√
bc, and

c =
ab

(
√
a+
√
b)2

.

Put x =
√
c/a, y =

√
c/b, so that x + y = 1. By the law of cosines

in triangle ABC, we have

cosC = 1− 2ab
(a+ c)(b+ c)

, sin2 C

2
=

ab

(a+ c)(b+ c)
=

1
(1 + x2)(1 + y2)

.

We see that C is obtuse because (1 + x2)(1 + y2) ≤ 2, or more
precisely,

(2x2 + 2xy + y2)(x2 + 2xy + 2y2) ≤ 2(x+ y)4,

which follows by expanding and applying AM-GM.

To find the possible measures of C, we must maximize sin2 C/2.
Given x+ y = 1, we need to minimize (1 + x2)(1 + y2) = 2− 2xy +
(xy)2. Now xy ≤ (x+y)2/4 = 1/4 and the function f(z) = z2−2z+2
is decreasing on [0, 1/4]. Thus the C is maximized for x = y = 1/2,
in which case C = 2 arcsin 16/25.

2. Determine all sets A of nine positive integers such that for any n ≥
500, there exists a subset B of A, the sum of whose elements is n.

Solution: Note that if A contains x, y, z with x + y = z, then
the sets C ∪ {x, y} and C ∪ {z} give the same sum for any C ⊆
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A − {x, y, z}, giving at most 511 − 26 = 447 nonzero sums. There-
fore no such x, y, z can exist. Similarly there do not exist x, y, z, w
in A with x+ y + z = w.

In order for 1 and 2 to occur as sums, 1 and 2 must belong to A.
Since then 3 does not belong, 4 must belong. Now 5,6,7 are excluded,
so 8 belongs, which in turn excludes the numbers from 9 to 15, which
in turn forces 16 to belong, which excludes the numbers from 17 to
30.

If we write the next element of A as 32− a, with 0 ≤ a ≤ 1, we can
now write the numbers from 1 to 63 − a as subset sums. Thus the
next number must be 64 − a − b for some b ≥ 0. Likewise, we find
that

A = {1, 2, 4, 8, 16, 32−a, 64−a−b, 128−2a−b−c, 256−4a−2b−c−d}

for some a, b, c, d ≥ 0, as long as the maximum sum 511− 8a− 4b−
2c− d is at least 500, that is, 8a+ 4b+ 2c+ d ≤ 11. One now easily
enumerates the 74 possible solutions.

3. Let n ≥ 4 be an integer and M a set of n points in the plane, no three
collinear and not all lying on a circle. Find all functions f : M → R

such that for any circle C containing at least three points of M ,∑
P∈M∩C

f(P ) = 0.

Solution: For each two points A,B, the number k of distinct
circles through A,B and another point of M is at least 2. Summing
the given condition over these circles, we get

0 =
∑
P∈M

f(P ) + (k − 1)(f(A) + f(B)).

Thus if
∑
f(P ) is nonzero, it has the opposite sign as f(A)+f(B) for

any A,B, but the sum of f(A)+f(B) over all A,B is (n−1)
∑
f(P ),

a contradiction Thus
∑
f(P ) = 0, and also f(A) = −f(B) for any

two points A,B. Since n ≥ 3, we conclude f(P ) = 0 for all P ∈M .

4. Let ABC be a triangle, D a point on side BC and ω the circum-
circle of ABC. Show that the circles tangent to ω,AD,BD and
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to ω,AD,DC, respectively, are tangent to each other if and only if
∠BAD = ∠CAD.

Solution: We focus first on the circle ω1 tangent to ω,AD,BD.
Let this circle touch AD at M , BD at N , let r be its radius and let K
be its center. Also let O be the center of ω and R its radius; since ω1

is tangent to ω, OK = R − r. If we put ∠ADB = 2α, ∠KDO = β,
and x = DN , this becomes OK = R− x tanα. Applying the law of
cosines to triangle ODK, one extracts that

x2 + 2λx+DO2 −R2 = 0, λ =
R sinα−DO cosβ

cosα
.

Likewise, if y is the length of the tangent from D to the other circle,
we get that

y2 + 2µy +DO2 −R2 = 0, µ =
R cosα−DO sinβ

sinα
.

The circles are tangent if and only if these circles have a common
root, which occurs if and only if λ = µ. This in turn is equivalent to
R cos 2α = DO sin(β − α) = DO sin∠ADO. By the Law of Sines in
triangle ADO, this in turn is equivalent to R cos 2α = R sinDAO.
Now let H be the foot of the altitude from A to BC; then the con-
dition becomes cos 2α = sinHAD, which is equivalent to ∠HAD =
∠DAO. Since H and O are isogonal conjugates, this occurs if and
only if AD is the angle bisector of A.

5. Let V A1 · · ·An be a pyramid with n ≥ 4. A plane Π intersects the
edges V A1, . . . , V An at B1, . . . , Bn, respectively. Suppose that the
polygons A1 · · ·An and B1 · · ·Bn are similar. Prove that Π is parallel
to the base of the pyramid.

Solution: By projecting to a pyramid with perpendicular lat-
eral edges, one sees that if A′, B′, C ′ are points on the lateral edges
of triangular pyramid V ABC (with vertex V ), then

[V A′B′C ′]
[V ABC]

=
V A′

V A

V B′

V B

V C ′

V C
.

Now let x = V Bi/V Ai, and let S be the constant of similitude from
A1 · · ·An to B1 · · ·Bn. On the one hand, by the previous assertion,
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[V BiBjBk]/[V AiAjAk] = xixjxk. On the other hand, if h and H
are the lengths of the altitudes from V to B1 · · ·Bn and A1 · · ·An,
respectively, then the ratio of volumes is also S2h/H. We deduce
from this (using that n ≥ 4) that x1 = · · · = xn = S2/3(h/H)1/3.

6. Let A be the set of positive integers representable in the form a2+2b2

for integers a, b with b 6= 0. Show that if p2 ∈ A for a prime p, then
p ∈ A.

Solution: The case p = 2 is easy, so assume p > 2. Note that if
p2 = a2 + 2b2, then 2b2 = (p− a)(p+ a). In particular, a is odd, and
since a cannot be divisible by p, gcd(p−a, p+a) = gcd(p−a, 2p) = 2.
By changing the sign of a, we may assume p − a is not divisible by
4, and so

|p+ a| = m2, |p− a| = 2n2

Since |a| < |p|, both p+a and p−a are actually positive, so we have
2p = m2 + 2n2, so p = n2 + 2(m/2)2.

7. Let p ≥ 5 be a prime and choose k ∈ {0, . . . , p− 1}. Find the max-
imum length of an arithmetic progression, none of whose elements
contain the digit k when written in base p.

Solution: We show that the maximum length is p− 1 if k 6= 0 and
p if k = 0. In a p-term arithmetic progression, the lowest noncon-
stant digit takes all values from 0 to p − 1. This proves the upper
bound for k 6= 0, which is also a lower bound because of the se-
quence 1, . . . , p − 1. However, for k = 0, it is possible that when 0
occurs, it is not actually a digit in the expansion but rather a leading
zero. This can only occur for the first term in the progression, so
extending the progression to p+ 1 terms would cause an honest zero
to appear. Thus the upper bound for k = 0 is p, and the sequence
1, p+1, . . . , (p−1)p+1 shows that it is also a lower bound. (Compare
with USAMO 1995/1.)

8. Let p, q, r be distinct prime numbers and let A be the set

A = {paqbrc : 0 ≤ a, b, c ≤ 5}.

Find the smallest integer n such that any n-element subset of A
contains two distinct elements x, y such that x divides y.
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Solution: Of course n is one more than the size of the largest
subset of A no two of whose elements divide one another. The set
of paqbrc has this property and contains 27 elements. On the other
hand, we can partition A into 27 sequences such that each element
of a sequence divides the next element. To see this, identify A with
the points (a, b, c) in 3-space. We partition the points in the plane
c = 0 into six chains, running from (a, 0, 0) to (a, 5, 0), and we might
as well continue to (a, 5, 5). This leaves a 5×6 rectangle in the plane
c = 1, which we split into five chains which continue upward. Now
c = 2 is left with a 5× 5 rectangle which splits into five chains, and
so on. We end up with 6 + 5 + 5 + 4 + 4 + 3 = 27 chains, as desired.
Thus n = 28.

9. Let ABCDEF be a convex hexagon. Let P,Q,R be the intersections
of the lines AB and EF , EF and CD, CD and AB, respectively.
Let S, T, U be the intersections of the lines BC and DE, DE and
FA, FA and BC, respectively. Show that if AB/PR = CD/RQ =
EF/QP , then BC/US = DE/ST = FA/TU .

Solution: Both sets of equalities are equivalent to the vector equal-
ity

A−B + C −D + E − F = 0.

10. Let P be the set of points in the plane and D the set of lines in
the plane. Determine whether there exists a bijective function f :
P → D such that for any three collinear points A,B,C, the lines
f(A), f(B), f(C) are either parallel or concurrent.

Solution: No such function exists. We first note that the inverse
images A,B,C of three concurrent or parallel lines l1, l2, l3 must be
collinear; otherwise, any point on the lines AB,BC,CA would map
to a line concurrent with or parallel to these, as then would any
point on a line through two such points, i.e. any point in the plane,
a contradiction.

In particular, given two pencils P1, P2 of parallel lines, the inverse
images of the lines in Pi are the points on a line li. Note that l1 and
l2 must be parallel, since no line lies in both P1 and P2. In other
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words, the lines li for pencils Pi of parallel lines are all parallel to
each other.

Pick a pencil Q of concurrent lines, which corresponds to a line m
necessarily not parallel to l1. Any line m′ parallel to m also cor-
responds to a pencil of lines through a different point (if m′ cor-
responded to parallel lines, so would m). However, there is a line
through the points corresponding to m and m′, whose inverse image
would be a point on both m and m′, a contradiction.

11. [Corrected] Find all continuous functions f : R → [0,∞) such that
for all x, y ∈ R,

f(x2 + y2) = f(x2 − y2) + f(2xy).

Solution: From x = y = 0 we get f(0) = 0; then putting x = 0
we get f(t) = f(−t) for all t ∈ R. Note that for any a, b > 0, the
equations x2 − y2 = a and 2xy = b have a real solution, and so

f(a) + f(b) = f(
√
a2 + b2).

Putting g(x) = f(
√
x), we find that g(a + b) = g(a) + g(b) for all

a, b ≥ 0. Since g is continuous, a standard argument shows that
g(a) = ca for some constant c ≥ 0, so f(x) = cx2

12. Let n ≥ 2 be an integer and P (x) = xn+an−1x
n−1 + · · ·+a1x+1 be

a polynomial with positive integer coefficients. Suppose that ak =
an−k for k = 1, 2, . . . , n − 1. Prove that there exist infinitely many
pairs x, y of positive integers such that x|P (y) and y|P (x).

Solution: There exists at least one such pair, namely (1, P (1)).
If there were only finitely many such pairs, we could choose a pair
(x, y) with y maximal. However, we claim that for any pair (x, y)
with x|P (y) and y|P (x), the pair (y, P (y)/x) also has this property,
or equivalently, that y|P (P (y)/x). Indeed, the given conditions im-
ply P (P (y)/x) = (x/P (y))nP (x/P (y)). Since P (y) ≡ 1 (mod y),
we conclude that P (P (y)/x) ≡ xnP (x) ≡ 0 (mod y).

Moreover, P (y)/x > y2/x > y, so the pair (y, P (y)/x) has larger
second member than does (x, y), a contradiction. Thus infinitely
many pairs exist.
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13. Let P (x), Q(x) be monic irreducible polynomials over the rational
numbers. Suppose P and Q have respective roots α and β such that
α + β is rational. Prove that the polynomial P (x)2 − Q(x)2 has a
rational root.

Solution: Let α+ β = q. Then P (x) and Q(q − x) are irreducible
polynomials with rational coefficients sharing a root; it follows that
P (x) = cQ(q − x) for some constant c, and it is evident that in fact
c = (−1)degQ. In particular, P (x)2 = Q(q−x)2, and so q/2 is a root
of P (x)2 −Q(x)2.

14. Let a > 1 be an integer. Show that the set

{a2 + a− 1, a3 + a2 − 1, . . .}

contains an infinite subset, any two members of which are relatively
prime.

Solution: We show that any set of n elements of the set which
are pairwise coprime can be extended to a set of n + 1 elements.
For n = 1, note that any two consecutive terms in the sequence are
relatively prime. For n > 1, let N be the product of the numbers in
the set so far; then aφ(N)+1 + aφ(N)− 1 ≡ a (mod N), and so can
be added (since every element of the sequence is coprime to a, N is
as well).

15. Find the number of ways to color the vertices of a regular dodecagon
in two colors so that no set of vertices of a single color form a regular
polygon.

Solution: Call the colors red and blue. Obviously we need only
keep track of equilateral triangles and squares. The vertices of the
dodecagon form four triangles, each of which can be colored in 6
nonmonochromatic ways. Thus we have 64 = 1296 colorings with no
monochromatic triangles.

We now consider how many of these colorings have one, two or
three monochromatic squares . The number with a given square
monochromatic is 2 × 34 = 162, since if the square is colored red,
the other two vertices in each triangles can be red-blue, blue-red, or
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blue-blue. For two given squares, we have one choice in each triangle
if the squares are the same color, and two otherwise, for a total of
2 + 2 × 24 = 34. For all three squares, we need that the squares
themselves are not all the same color, for a total of 6 colorings.

By inclusion-exclusion, the number of colorings with no monochro-
matic triangles or squares is

1296− 3× 162 + 3× 34− 6 = 906.

16. Let Γ be a circle and AB a line not meeting Γ. For any point P ∈ Γ,
let P ′ be the second intersection of the line AP with Γ and let f(P )
be the second intersection of the line BP ′ with Γ. Given a point P0,
define the sequence Pn+1 = f(Pn) for n ≥ 0. Show that if a positive
integer k satisfies P0 = Pk for a single choice of P0, then P0 = Pk
for all choices of P0.

Solution: Perform a projective transformation taking AB to infin-
ity. This takes Γ to an ellipse, and a suitable affine transformation
takes this ellipse to a circle while keeping AB at infinity. Now the
map P → P ′ is a reflection across the diameter through the point
A (at infinity), while P ′ → f(P ) is a reflection across the diameter
through B. Thus P → f(P ) is a rotation, so if P0 = Pk holds for a
single P0, it holds for all P0.
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1.18 Russia

1. Show that the numbers from 1 to 16 can be written in a line, but
not in a circle, so that the sum of any two adjacent numbers is a
perfect square.

Solution: If the numbers were in a circle with 16 next to x and y,
then 16 + 1 ≤ 16 +x, 16 + y ≤ 16 + 15, forcing 16 +x = 16 + y = 25,
a contradiction. They may be arranged in a line as follows:

16, 9, 7, 2, 14, 11, 5, 4, 12, 13, 3, 6, 10, 15, 1, 8.

2. On equal sides AB and BC of an equilateral triangle ABC are chosen
points D and K, and on side AC are chosen points E and M , so
that DA + AE = KC + CM = AB. Show that the angle between
the lines DM and KE equals π/3.

Solution: We have CE = AC − AE = AD and likewise CK =
AM . Thus a 2π/3 rotation about the center of the triangle takes K
to M and E to D, proving the claim.

3. A company has 50000 employees. For each employee, the sum of the
numbers of his immediate superiors and of his immediate inferiors is
7. On Monday, each worker issues an order and gives copies of it to
each of his immediate inferiors (if he has any). Each day thereafter,
each worker takes all of the orders he received on the previous day
and either gives copies of them to all of his immediate inferiors if he
has any, or otherwise carries them out himself. It turns out that on
Friday, no orders are given. Show that there are at least 97 employees
who have no immediate superiors.

Solution: Let k be the number of “top” employees, those with
no superiors. Their orders reach at most 7k employees on Monday,
at most 6 · 7k on Tuesday, and at most 36 · 7k on Wednesday. On
Thursday, each employee receiving an order has no inferiors, so each
has 7 superiors, each giving at most 6 orders, and so there are at
most 216 · 7k/7 employees receiving orders. We conclude that

50000 ≤ k + 7k + 42k + 252k + 216k = 518k

and k ≥ 97.
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4. The sides of the acute triangle ABC are diagonals of the squares
K1,K2,K3. Prove that the area of ABC is covered by the three
squares.

Solution: Let I be the incenter of ABC. Since the triangle is
acute, ∠IAB,∠IBA < 45◦, so the triangle IAB is covered by the
square with diagonal AB, and likewise for IBC and ICA.

5. The numbers from 1 to 37 are written in a line so that each number
divides the sum of the previous numbers. If the first number is 37
and the second number is 1, what is the third number?

Solution: The last number x must divide the sum of all of the
numbers, which is 37× 19; thus x = 19 and the third number, being
a divisor of 38 other than 1 or 19, must be 2.

6. Find all pairs of prime numbers p, q such that p3 − q5 = (p+ q)2.

Solution: The only solution is (7, 3). First suppose neither p
nor q equals 3. If they are congruent modulo 3, the left side is divis-
ible by 3 while the right is not; if they are not congruent modulo 3,
the right side is divisible by 3 while the left side is not, so there are
no such solutions. If p = 3, we have q5 < 27, which is impossible.
Thus q = 3 and p3−243 = (p+3)2, whose only integer root is p = 7.

7. (a) In Mexico City, to restrict traffic flow, for each private car are
designated two days of the week on which that car cannot be
driven on the streets of the city. A family needs to have use of
at least 10 cars each day. What is the smallest number of cars
they must possess, if they may choose the restricted days for
each car?

(b) [Corrected] The law is changed to restrict each car only one day
per week, but the police get to choose the days. The family
bribes the police so that the family names two days for each
car in succession, and the police immediately restrict the car
for one of those days. Now what is the smallest number of cars
the family needs to have access to 10 cars each day?

Solution:
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(a) If n cars are used, the number 5n of free days per car must be
at least 7×10, so n ≥ 14. In fact 14 cars suffice: restrict four on
Monday and Tuesday, four on Wednesday and Thursday, two
on Friday and Saturday, two on Saturday and Sunday, and two
on Friday and Sunday.

(b) 12 cars are needed. First let us show n ≤ 11 cars do not suffice.
As there are n restricted days, on some day at most 6n/7 cars
will be available, but for n ≤ 11, 6n/7 < 10. For n = 12, the
family simply needs to offer for each car in succession two days
which have not yet been restricted for two cars, which they can
certainly do. (I don’t know whether 12 still works if the family
must offer their options all at once.)

8. A regular 1997-gon is divided by nonintersecting diagonals into tri-
angles. Prove that at least one of the triangles is acute.

Solution: The circumcircle of the 1997-gon is also the circum-
circle of each triangle; since the center of the circle does not lie on
any of the diagonals, it must lie inside one of the triangles, which
then must be acute.

9. On a chalkboard are written the numbers from 1 to 1000. Two
players take turns erasing a number from the board. The game ends
when two numbers remain: the first player wins if the sum of these
numbers is divisible by 3, the second player wins otherwise. Which
player has a winning strategy?

Solution: The second player has a winning strategy: if the first
player erases x, the second erases 1001− x. Thus the last two num-
bers will add up to 1001.

10. 300 apples are given, no one of which weighs more than 3 times any
other. Show that the apples may be divided into groups of 4 such
that no group weighs more than 11/2 times any other group.

Solution: Sort the apples into increasing order by weight, and
pair off the heaviest and lightest apples, then the next heaviest and
next lightest, and so on. Note that no pair weighs more than twice
any other; if a, d and b, c are two groups with a ≤ b ≤ c ≤ d,
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then a + d ≤ 4a ≤ 2b + 2c, b + c ≤ 3a + d ≤ 2a + 2d. Now pair-
ing the heaviest and lightest pairs gives foursomes, none weighing
more than 3/2 times any other; if e ≤ f ≤ g ≤ h are pairs, then
e+ h ≤ 3e ≤ (3/2)(f + g), f + g ≤ 2e+ h ≤ (3/2)(e+ h).

11. In Robotland, a finite number of (finite) sequences of digits are for-
bidden. It is known that there exists an infinite decimal fraction,
not containing any forbidden sequences. Show that there exists an
infinite periodic decimal fraction, not containing any forbidden se-
quences.

Solution: Let N be the maximum length of a forbidden sequence.
We are given an infinite decimal containing no forbidden sequence;
it must contain two identical copies of some subsequence of length
N + 1. Repeating the part of the decimal from the digit after the
first copy to the end of the second copy gives an infinite periodic
decimal containing no forbidden sequences.

12. (a) [Corrected] A collection of 1997 distinct numbers has the prop-
erty that if each number is subtracted from the sum of all of
the numbers, the same collection of numbers is obtained. Prove
that the product of the numbers is 0.

(b) A collection of 100 distinct numbers has the same property.
Prove that the product of the numbers is positive.

Solution:

(a) Let M be the sum of the numbers. Replacing each number a
by M − a preserves the collection, so

∑
a =

∑
(M − a), so

2M = 1997M and so M = 0. Thus the numbers must divide
into pairs a,−a, and so there must be a 0 left over.

(b) None of the numbers can be 0, since otherwise two would be
and the numbers are assumed distinct. Thus the product is of
50 positive numbers and 50 negative numbers, which is positive.

13. Given triangle ABC, let A1, B1, C1 be the midpoints of the broken
lines CAB,ABC,BCA, respectively. Let lA, lB , lC be the respective
lines through A1, B1, C1 parallel to the angle bisectors of A,B,C.
Show that lA, lB , lC are concurrent.
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Solution: Let BC meet the bisector of ∠A at A2 and lA at A3.
Define B2, B3, C2, C3 similarly. If A1 is on CA (the other case is
similar), then

A3B = CB − CA3 = CA2 +BA2 − CA3 = CA2

(
1 +

AB

AC

)
− CA3

by the angle bisector theorem. Now

A3B = CA3

(
CA2

CA3

(
1 +

AB

AC

)
− 1
)

= CA3

(
AC

CA1

(
1 +

AB

AC

)
− 1
)

= CA3,

since AC + AB = 2CA1 by assumption. Thus A3, B3, C3 are the
midpoints of the sides of ABC, and so the given lines are concurrent
(at the image of the incenter of ABC under the homothety taking
A to A3, B to B3, C to C3).

14. The MK-97 calculator can perform the following three operations on
numbers in its memory:

(a) Determine whether two chosen numbers are equal.

(b) Add two chosen numbers together.

(c) For chosen numbers a and b, find the real roots of x2 + ax+ b,
or announce that no real roots exist.

The results of each operation are accumulated in memory. Initially
the memory contains a single number x. How can one determine,
using the MK-97, whether x is equal to 1?

Solution: First compute 2x and compare it to x. If they are
different and x 6= 1, the roots of the polynomial y2 +2xy+x = 0 are
−x±

√
x2 − x, which are either distinct or not real. Thus comparing

these roots if they exist tells us whether x = 1.

15. The circles S1 and S2 intersect at M and N . Show that if vertices
A and C of a rectangle ABCD lie on S1 while vertices B and D lie
on S2, then the intersection of the diagonals of the rectangle lies on
the line MN .
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Solution: By the radical axis theorem, the radical axes of S1, S2

and the circumcircle of ABCD intersect. But these lines are none
other than AC,BD,MN , respectively.

16. [Corrected] For natural numbers m,n, show that 2n − 1 is divisible
by (2m − 1)2 if and only if n is divisible by m(2m − 1).

Solution: Since

2kn+d − 1 ≡ 2d − 1 (mod 2n − 1),

we have 2m − 1 divides 2n − 1 if and only if m divides n. Thus in
either case, we must have n = km, in which case

2km − 1
2m − 1

= 1 + 2m + · · ·+ 2m(k−1) ≡ k (mod 2m − 1).

The two conditions are now that k is divisible by 2m − 1 and that n
is divisible by m(2m − 1), which are equivalent.

17. [Corrected] Can three mutually adjacent faces of a cube of side length
4 be covered with 16 1× 3 rectangles?

Solution: No. Color each face black and white as below, with the
isolated black square on the unit cube adjacent to all three faces.
Then of the 27 black unit squares, an even number are covered by
each rectangle, so they cannot be exactly covered by the rectangles.

B B W B
W W W W
B B W B
B B W B

18. The vertices of triangle ABC lie inside a square K. Show that if
the triangle is rotated 180◦ about its centroid, at least one vertex
remains inside the square.

Solution: Suppose the square has vertices as (0, 0), (0, 1), (1, 1),
(1, 0), and without loss of generality suppose the centroid is at (x, y)
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with x, y ≤ 1/2. There must be at least one vertex of the triangle
on the same side as (0, 0) of the line through (2x, 0) and (0, 2y); the
rotation of this vertex remains inside the square.

19. Let S(N) denote the sum of the digits of the natural number N .
Show that there exist infinitely many natural numbers n such that
S(3n) ≥ S(3n+1).

Solution: If S(3n) < S(3n+1) for large n, we have (since powers
of 3 are divisible by 9, as are their digit sums) S(3n) ≤ S(3n+1)− 9.
Thus S(3n) ≥ 9(n−c) for some c, which is eventually a contradiction
since for large n, 3n < 10n−c.

20. The members of Congress form various overlapping factions such
that given any two (not necessarily distinct) factions A and B, the
complement of A∪B is also a faction. Show that for any two factions
A and B, A ∪B is also a faction.

Solution: By putting A = B, we see the complement of any
faction is a faction. Thus for any factions A and B, the complement
of A ∪B is a faction, so A ∪B is also.

21. Show that if 1 < a < b < c, then

loga(loga b) + logb(logb c) + logc(logc a) > 0.

Solution: Since loga b > 1, loga loga b > logb loga b. Since logc a <
1, logc logc a > logb logc a. Thus the left side of the given inequality
exceeds

logb(loga b logb c logc a) = 0.

22. Do there exist pyramids, one with a triangular base and one with
a convex n-sided base (n ≥ 4), such that the solid angles of the
triangular pyramid are congruent to four of the solid angles of the
n-sided pyramid?

Solution: The pyramids do not exist. Suppose ABCD and
SA1A2 · · ·An are triangular and n-sided pyramids, such that the
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solid angles at A,B,C,D are congruent to those at Ai, Aj , Ak, Al.
The face angles at the latter vertices must then add up to 4 · 180◦ =
720◦. By the spherical triangle inequality,

∠Am−1AmAm+1 < ∠Am−1AmS + ∠Am+1AmS,

so

∠Ai−1AiAi+1+∠Aj−1AjAj+1+∠Ak−1AkAk+1+∠Al−1AlAl+1 < 360◦.

But the sum of the angles of the polygon A1A2 · · ·An is 180◦(n−2),
so the sum of the remaining angles is at least 180◦(n − 4), contra-
dicting convexity of the base.

23. For which α does there exist a nonconstant function f : R→ R such
that

f(α(x+ y)) = f(x) + f(y)?

Solution: For α = 1, we may set f(x) = x. For any other α,
putting y = αx/(1−α) gives f(y) = f(x) + f(y), so f(x) = 0 for all
x, which is not allowed. So only α = 1 works.

24. Let P (x) be a quadratic polynomial with nonnegative coefficients.
Show that for any real numbers x and y, we have the inequality

P (xy)2 ≤ P (x2)P (y2).

Solution: This actually holds for any polynomial with nonneg-
ative coefficients. If P (x) = a0x

n + · · ·+ anx
0, then

(a0x
2n + · · ·+ a0)(a0y

2n + · · ·+ a0) ≥ (a0x
nyn + · · ·+ a0)2

by the Cauchy-Schwarz inequality.

25. Given a convex polygon M invariant under a 90◦ rotation, show that
there exist two circles, the ratio of whose radii is

√
2, one containing

M and the other contained in M .

Solution: Let O be the center of the rotation and A1 a vertex
at maximum distance R from O. If A1 goes to A2 under the rota-
tion, A2 to A3, A3 to A4, and A4 to A1, then A1A2A3A4 is a square
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with center O contained entirely in M . Thus the circle with radius
R/
√

2 is contained in the square and thus in M , and the circle with
radius R contains M .

26. (a) The Judgment of the Council of Sages proceeds as follows: the
king arranges the sages in a line and places either a white hat
or a black hat on each sage’s head. Each sage can see the color
of the hats of the sages in front of him, but not of his own hat
or of the hats of the sages behind him. Then one by one (in an
order of their choosing), each sage guesses a color. Afterward,
the king executes those sages who did not correctly guess the
color of their own hat.
The day before, the Council meets and decides to minimize the
number of executions. What is the smallest number of sages
guaranteed to survive in this case?

(b) The king decides to use three colors of hats: white, black and
red. Now what is the smallest number of sages guaranteed to
survive?

Solution: All but one sage can be saved, for any number n of
hat colors. Represent each hat color by a different integer among
{1, . . . , n}. If the rearmost sage goes first and announces the hat
color congruent modulo n to the sum of the colors of the other hats,
and the remaining sages answer from back to front, each can deduce
his hat color by subtracting the hats he sees and the (correct) guesses
before him from the total.

27. [Corrected] The lateral sides of a box with base a × b and height c
(where a, b, c are natural numbers) are completely covered without
overlap by rectangles whose edges are parallel to the edges of the
box, each containing an even number of unit squares. (Rectangles
may cross the lateral edges of the box.) Prove that if c is odd, then
the number of possible coverings is even.

Solution: We may replace the box by a cylinder of circumfer-
ence 2(a + b) and height c. Select a 1 × c rectangle consisting of c
unit squares, and draw a plane through the axis of symmetry bisect-
ing this column. In any covering, there must be a rectangle covering
this column and not symmetric across the plane (any symmetric
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rectangle has odd width and thus even height, and the height of
the column is odd). Thus reflecting across this plane pairs off the
possible coverings, and their total number is even.

28. Do there exist real numbers b and c such that each of the equations
x2 +bx+c = 0 and 2x2 +(b+1)x+c+1 = 0 have two integer roots?

Solution: No. Suppose they exist. Then b + 1 and c + 1 are
even integers, so b and c are odd and b2 − 4c ≡ 5 (mod 8) is not a
square, a contradiction.

29. A class consists of 33 students. Each student is asked how many
other students in the class have his first name, and how many have
his last name. It turns out that each number from 0 to 10 occurs
among the answers. Show that there are two students in the class
with the same first and last name.

Solution: Consider groups of students with the same first name,
and groups of students with the same last name. Each student be-
longs to two groups, and by assumption there are groups of size
1, . . . , 11; but these numbers add up to 66 = 2 · 33, so there is one
group of each size from 1 to 11 and no other groups.

Suppose the group of 11 is a group of students with the same first
name. There are at most 10 groups by last name, so two students in
the group of 11 must also have the same last name.

30. The incircle of triangle ABC touches sides AB,BC,CA at M,N,K,
respectively. The line through A parallel to NK meets MN at D.
The line through A parallel to MN meets NK at E. Show that the
line DE bisects sides AB and AC of triangle ABC.

Solution: Let the lines AD and AE meet BC at F and H, re-
spectively. It suffices to show that D and E are the midpoints of
AF and AH, respectively. Since BN = BM and MN ||AH, the
trapezoid AMNH is isosceles, so NH = AM . Likewise NF = AK.
Since AK = AM , N is the midpoint of FH. Since NE is parallel
to AF , E is the midpoint of AH, and likewise D is the midpoint of
AF .
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31. [Corrected] The numbers from 1 to 100 are arranged in a 10 × 10
table so that no two adjacent numbers have sum less than S. Find
the smallest value of S for which this is possible.

Solution: The minimum is S = 106. Suppose the numbers from
100 to 1 (in decreasing order) are placed in the grid so as to en-
sure S ≤ 105. Divide the grid into 5 2 × 10 horizontal strips and 5
10× 2 vertical strips, and let n0 be the number whose insertion first
causes there to be at least one number in each horizontal strip, or
in each vertical strip. If n0 < 68, then the 33 numbers 68, . . . , 100
fit into 64 squares (in the 16 intersections of strips) which can be
divided into 1 × 2 rectangles; thus two numbers must be adjacent,
but 68 + 69 > 105, so this is impossible. Hence n0 ≥ 68.

We next note that at the moment after n0 is inserted, no strip con-
tains 10 numbers. Suppose on the contrary that some horizontal
strip contains 10 numbers. Before n0 was inserted, the strip con-
tained at least 9 numbers, none next to another, and so each of its
intersections with the vertical strips contains a number, contradict-
ing the choice of n0.

Now we observe that n ≤ 9 nonadjacent squares in a strip always
have at least n + 1 distinct neighbors in the strip. Indeed, if the
strip is horizontal, each square is adjacent to the other square in its
vertical 1× 2 rectangle, making n neighbors. Also, there is at least
one empty vertical 1× 2 rectangle in the strip, and there is at least
one more neighbor in an empty rectangle.

We conclude that the 101−n0 numbers from n0 to 100 are adjacent
to at least (101− n0) + 5 = 106− n0 others. So some number from
n0 to 100 is adjacent to a number at least as big as 106−n0, so two
adjacent numbers sum to at least 106, contradiction.

Hence S ≥ 106, and the following example shows that S = 106 is
possible.

100 1 99 2 98 3 · · ·
6 95 7 94 8 93 · · ·
90 11 89 12 88 13 · · ·
...

...
. . .
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32. Find all integer solutions of the equation

(x2 − y2)2 = 1 + 16y.

Solution: The solutions are

(±1, 0), (±4, 3), (±4, 5).

We must have y ≥ 0. As the right side is nonzero, so then must
be the left side, hence |x| ≥ |y| + 1 or |x| ≤ |y| − 1. In either case,
(x2 − y2)2 ≥ (2y − 1)2, so (2y − 1)2 ≤ 1 + 16y, and hence y ≤ 5.
Trying all such values of y yields the above solutions.

33. An n × n square grid (n ≥ 3) is rolled into a cylinder. Some of the
cells are then colored black. Show that there exist two parallel lines
(horizontal, vertical or diagonal) of cells containing the same number
of black cells.

Solution: We may as well join the edges of the cylinder to form
a torus. Assume the contrary. Then one horizontal line contains
either 0 or n black cells; without loss of generality (by interchanging
black with nonblack) we may assume the latter. Then no vertical or
diagonal line contains 0 black cells so one line of each type contains n
black cells, and no horizontal line contains 0 black cells either. Thus
the lines of each type contain 1, 2, . . . , n black cells.

Number the rows and columns 1, . . . , n in order, where in each case
1 is the row/column containing n black cells. Then every diagonal
except the two passing through (1, 1) contains 2 black cells, so those
two diagonals must contain no other black cells. If n is odd, this
precludes any row from containing n− 1 black cells, a contradiction.
If n is even, the diagonals passing through (1, 1) meet again at (n/2+
1, n/2 + 1), so all of the other cells in row and column n/2 + 1 must
be black. But now no row or column can contain one black cell, a
contradiction.

34. Two circles intersect at A and B. A line through A meets the first
circle again at C and the second circle again at D. Let M and N
be the midpoints of the arcs BC and BD not containing A, and let
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K be the midpoint of the segment CD. Show that ∠MKN = π/2.
(You may assume that C and D lie on opposite sides of A.)

Solution: Let N1 be the reflection of N about K. Then triangles
KCN1 and KDN are congruent, so CN1 = ND and ∠N1CK =
∠NDK = π − ∠ABN . From this we note that

∠MCN1 = (π − ∠ABN) + (π − ∠ABM) = ∠MBN.

Also, CN1 = DN = BN and CM = BM . Hence the triangles
MCN1 and MBN are congruent, so MN = MN1 and the median
MK is also an altitude. Thus ∠MKN = π/2.

35. A polygon can be divided into 100 rectangles, but not into 99. Prove
that it cannot be divided into 100 triangles.

Solution: We first prove by induction on k that a 2k-gon which can
be divided into rectangles can always be divided into at most k − 1
rectangles. First note that such a polygon has all angles equal to 90◦

or 270◦. If all angles equal 90◦, we have a rectangle, which certainly
satisfies the claim. Otherwise, pick a 270◦ angle, and extend one of
its sides to meet the polygon again. This divides the polygon into a
2m-gon and a (2k − 2m + 2)-gon, which can be divided into m − 1
and k −m rectangles, respectively.

From the lemma, we find our given polygon has more than 200 ver-
tices. If the polygon is divided into m triangles, these triangles have
total angular measure m · 180◦. However, each angle of the polygon
must be filled with angles of the triangles whose measures add up
to 90◦ (a 270◦ angle can be reduced to two angles adding up to 90◦

if the side of a triangle passes through it). Thus m · 180 > 200 · 90,
whence m > 100.

36. Do there exist two quadratic trinomials ax2 + bx+ c and (a+ 1)x2 +
(b + 1)x + (c + 1) with integer coefficients, both of which have two
integer roots?

Solution: No. Without loss of generality, assume a is even (or
else replace a by −1 − a). If ax2 + bx + c has integer roots, then a
must divide b and c, so b and c are even. But now the polynomial
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(a+1)x2 +(b+1)x+(c+1) has odd coefficients, and so cannot have
integer roots, since (b+ 1)2 − 4(a+ 1)(c+ 1) ≡ 5 (mod 8).

37. A circle centered at O and inscribed in triangle ABC meets sides
AC,AB,BC at K,M,N , respectively. The median BB1 of the tri-
angle meets MN at D. Show that O,D,K are collinear.

Solution: Let L be the intersection of KO and MN , and let
A1 and C1 be the intersections of AB and BC, respectively, with
the line through L parallel to AC; we will show A1L = LC1, which
implies that L lies on the median BB1 and so L = D.

The quadrilateral MA1OL is cyclic since ∠A1MO and ∠A1LO are
right angles, so ∠MLA1 = ∠MOA1; likewise ∠C1LN = ∠C1ON .
We conclude ∠MOA1 = ∠C1ON (since ∠MLA1 and ∠C1LN are
verticle angles) and the triangles OMA1 and ONC1 are congruent,
so OA1 = OC1 from which we conclude A1L = LC1.

38. Find all triples m,n, l of natural numbers such that

m+ n = gcd(m,n)2,m+ l = gcd(m, l)2, n+ l = gcd(n, l)2.

Solution: The only solution is l = m = n = 2. Let d =
gcd(l,m, n), and put l = dl1,m = dm1, n = dn1. Then d(m1 +n1) =
d2d2

mn, where dmn = gcd(m1, n1), so m1 + n1 = dd2
mn. Defining dln

and dlm likewise, we get

2(l1 +m1 + n1) = d(d2
lm + d2

ln + d2
mn).

Since d/ gcd(d, 2) divides l1 +m1 + n1 as well as m1 + n1, it divides
l1 and likewise m1 and n1. As these three numbers are relatively
prime, we have d/ gcd(d, 2) = 1 and so d ≤ 2.

Note that dlm, dln, dmn are pairwise relatively prime; therefore we
can write l1 = l2dlmdln, m1 = m2dlmdmn, n1 = n2dlndmn. Then we
have

dlmdmnm2 + dlndmnn2 = dd2
mn

and so m2dlm + n2dln = ddmn and so forth. Assuming WLOG that
dmn is no larger than dlm, dln, we get

2dmn ≥ ddmn = dlmm2 + dlnn2 ≥ dlm + dln ≥ 2dmn.
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Thus we have equality throughout: d = 2, m2 = n2 = 1 and dlm =
dln = dmn. But these three numbers are relatively prime, so they
equal 1. Then m1 = n1 = 1 and from l1 +m1 = dd2

lm, l1 = 1 as well.
Therefore l = m = n = 2.

39. [Corrected] On an infinite (in both directions) strip of squares, in-
dexed by the integers, are placed several stones (more than one may
be placed on a single square). We perform a sequence of moves of
one of the following types:

(a) Remove one stone from each of the squares n − 1 and n and
place one stone on square n+ 1.

(b) Remove two stones from square n and place one stone on each
of the squares n+ 1, n− 2.

Prove that any sequence of such moves will lead to a position in which
no further moves can be made, and moreover that this position is
independent of the sequence of moves.

Solution: Let α be the root of the polynomial x2 − x − 1 = 0
greater than 1; then the sum

∑
aiα

i, where ai is the number of
stones on square i, is invariant. That’s because

αn+1 − αn − αn−1 = αn−1(α2 − α− 1) = 0

and

αn+1 − 2αn + αn−2 = αn−2(α− 1)(α2 − α− 1) = 0.

Also, there is some N such that squares N,N + 1, . . . always remain
empty (since αN >

∑
aiα

i for suitably large N). From this we
deduce that no square has stones removed from it infinitely often: if
such a square existed, there would be a largest such square, but then
the squares above this one would eventually end up with arbitrarily
many stones, contradicting our assumption that the number of stones
is finite. Thus a stone in a large enough square cannot move ever
again; by induction, we find that the number of moves must be finite.

In a final position, no two stones lie on the same square or adjacent
squares. We claim thus that

∑
aiα

i 6=
∑
a′iαi for two different final
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positions. In fact, if the positions have their rightmost difference at
j, with aj = 0 and a′j = 1, then

∑
i<j

ai < αj−1 + αj−3 + · · · = αj−1 1
1− α−2

= αj ,

so
∑
aiα

i <
∑
a′iαi. We conclude the final position is uniquely

determined by the initial position.

40. An n× n× n cube is divided into unit cubes. We are given a closed
non-self-intersecting polygon (in space), each of whose sides joins
the centers of two unit cubes sharing a common face. The faces of
unit cubes which intersect the polygon are said to be distinguished.
Prove that the edges of the unit cubes may be colored in two colors
so that each distinguished face has an odd number of edges of each
color, while each nondistinguished face has an even number of edges
of each color.

Solution: For each nonvertical edge PQ, let CPQ denote the rect-
angle whose bottom edge is PQ and whose top edge lies on the
boundary of the large cube, and let nPQ be the number of intersec-
tions of CPQ with the polygon. Color PQ white if nPQ is even, color
PQ black if nPQ odd, and color the vertical edges white; we claim
this coloring satisfies the given condition.

We first check the condition for nonhorizontal faces, which is easy:
the lateral edges are both white, and the top and bottom edges differ
in color if and only if their numbers of intersection differ, that is, if
the polygon passes through the face.

Now suppose PQRS is a horizontal face. Consider the box whose
bottom face is PQRS and whose top face lies on the boundary. Then
nPQ + nQR + nRS + nSP is even by the principle “what comes in
must go out”, unless the polygon passes through PQRS, in which
case the sum is odd. This clearly implies the desired condition.

41. Of the quadratic trinomials x2 + px + q where p, q are integers and
1 ≤ p, q ≤ 1997, which are there more of: those having integer roots
or those not having real roots?
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Solution: There are more not having real roots. If m ≤ n are
integer roots of x2 + ax+ b = 0, then m+ n = −a and mn = b. As-
suming 1 ≤ a, b ≤ 1997, we must have −1997 ≤ m,n < 0. But now
the polynomial x2 − nx+mn also has integer coefficients between 1
and 1997, and n2 − 4mn = n(n − 4m) < 0, so it has no real roots.
Since one can also write down a polynomial having no real roots not
of this form (e.g. x2 − 3x + 5), there are strictly more polynomials
with no real roots.

42. [Corrected] We are given a polygon, a line l and a point P on l in
general position: all lines containing a side of the polygon meet l at
distinct points differing from P . We mark each vertex of the polygon
the sides meeting which, extended away from the vertex, meet the
line l on opposite sides of P . Show that P lies inside the polygon
if and only if on each side of l there are an odd number of marked
vertices.

Solution: For each vertex of the polygon lying on one side of
l, consider the segment between the points where the sides through
that vertex meet l. Then the problem asserts that P lies inside the
polygon if and only if it lies on an odd number of these segments.

Note that each intersection of l with a side of the polygon is the end-
point of one segment, while each intersection of l with an extension
of a side is the endpoint of two segments. Thus as we vary P along l,
the parity of the number of segments P lies on changes exactly when
P crosses a side of the polygon, which implies the desired result.

43. A sphere inscribed in a tetrahedron touches one face at the inter-
section of its angle bisectors, a second face at the intersection of its
altitudes, and a third face at the intersection of its medians. Show
that the tetrahedron is regular.

Solution: Let A,B,C,D be the vertices of the tetrahedron, and
assume the sphere touches ABC at its incenter I, BCD at its or-
thocenter H and ACD at its centroid G. Let

α = ∠OAB = ∠OAC, β = ∠OBC = ∠OBA, γ = ∠OCA = ∠OCB.

As the triangles OAC and MAC are congruent, as are OBC and
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HBC (by equal tangents), we also have

α = ∠MAC, β = ∠HBC, γ = ∠MCA = ∠HCB

and by similar triangles within BCD and the fact that α+ β + γ =
π/2,

α = ∠HBD = ∠HCD, β = ∠HDC, γ = ∠HDB.

As the triangles MCD and HCD are congruent, we get

α = ∠MCD,β = ∠MDC.

Let P be the foot of the median from D to AC; we now have
that ∠DPC = π/2, so DP is a median and AD = DC; more-
over, ∠MAC = ∠MCA, that is, α = γ. Now the line CH is an
angle bisector in BCD, so BC = CD; also, ABC is isosceles with
AB = BC. Therefore triangle ACD is equilateral and β equals π/6,
as then do α and γ. This shows that triangles ACB and BCD are
also equilateral, which proves that all six edges have equal length,
and the tetrahedron must be regular.

44. In an m×n rectangular grid, where m and n are odd integers, 1× 2
dominoes are initially placed so as to exactly cover all but one of
the 1 × 1 squares at one corner of the grid. It is permitted to slide
a domino towards the empty square, thus exposing another square.
Show that by a sequence of such moves, we can move the empty
square to any corner of the rectangle.

Solution: Number the squares by their row and column, labeling
one corner (1, 1), and color squares with two odd numbers red. In
particular, the corners are all red, and the empty square will always
be red.

Consider a graph whose vertices are the red squares, with an edge
between squares A and B if they are adjacent to a common square
C and there is a domino covering C and one of A or B; note that the
graph does not change as the empty square moves (since the empty
square is always red, a domino on AC can only move to CB).

It suffices to show that the four corners are all connected in this
graph, as a path from the empty corner to any square gives a method
for moving the empty square to that location. In fact, if the corners
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can be separated into two groups which are not connected to each
other, we can draw a path through the non-red squares separating
the two groups; this path consists of an odd number of squares,
since the displacement between one end and the other is either even
in both directions (if the ends lie on parallel sides) or odd in both
directions (if not).

Initially, every square on the path is covered. In particular, the first
square is covered, and because there is no edge between the two
red squares adjacent to it, there is a domino between the first and
second squares. Likewise, the third square is covered, but not by a
domino covering either red square adjacent to it or the second square
on the path, which is already accounted for. Hence the third and
fourth squares are covered by a single domino, and so on, leaving a
contradiction when we get to the last square on the path.
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1.19 South Africa

1. From an initial triangle A0B0C0 a sequence A1B1C1, A2B2C2, . . .
is formed such that at each stage, Ak+1, Bk+1, Ck+1 are the points
where the incircle of AkBkCk touches the sides BkCk, CkAk, AkBk,
respectively.

(a) Express ∠Ak+1Bk+1Ck+1 in terms of ∠AkBkCk.

(b) Deduce that as k →∞, ∠AkBkCk → 60◦.

Solution:

(a) We have AkBk+1 = AkCk+1 by equal tangents so triangle
AkBk+1Ck+1 is isosceles with ∠AkBk+1Ck+1 = 90−Ak/2. Sim-
ilarly, ∠CkBk+1Ak+1 = 90−Ck/2. Adding up angles at Bk+1,
Bk+1 = (Ak + Ck)/2 = 90−Bk/2.

(b) We have Bk+1 − 60 = 90 − Bk/2 − 60 = (Bk − 60)/(−2) so
Bk − 60 = (B0 − 60)/(−2)k, and obviously limk→∞Bk = 60.

2. Find all natural numbers with the property that, when the first digit
is moved to the end, the resulting number is 3 1

2 times the original
one.

Solution: Such numbers are those of the form

153846153846153846 . . . 153846.

Obviously, since the number has the same number of digits when
multiplied by 3.5, it must begin with either 1 or 2.

Case 1: The number is of the form 10N + A,A < 10N . So 7/2 ∗
(10N + A) = 10A + 1 → A = (7 ∗ 10N − 2)/13. The powers of
10 repeat with a period of 6 mod 13 (10,9,12,3,4,1) so A will be an
integer iff N ≡ 5 (mod 6). This gives the family of solutions above.

Case 2: The number is of the form 2 ∗ 10N + A,A < 10N . Then,
as before, A = (14 ∗ 10N − 4)/13. But as A < 10N , this implies
10N < 4, which is impossible.

3. Find all functions f : Z→ Z which satisfy f(m+ f(n)) = f(m) + n
for all m,n ∈ Z.
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Solution: Clearly f(n) = kn works for k = 1,−1, and we’ll
show these are the only solutions. Plugging in n = 0, we get
f(m+ f(0)) = f(m). We consider two cases:

Case 1: f(0) = 0. Then plugging in m = 0 gives f(f(n)) = n.
Plugging in f(n) for n, we get f(m+ f(f(n)) = f(m+n) = f(m) +
f(n) so f(n) = nf(1) and then n = f(f(n)) = nf(1)2, so f(1) = ±1.
This is the solution above.

Case 2: f(0) 6= 0. Then f(n) is periodic and hence bounded. Let
f(M) ≥ f(n)∀n. But f(M + f(1)) = f(M) + 1, a contradiction.

4. A circle and a point P above the circle lie in a vertical plane. A
particle moves along a straight line from P to a point Q on the circle
under the influence of gravity. That is, the distance traveled from P
in time t equals 1

2gt
2 sinα, where g is a constant and α is the angle

between PQ and the horizontal. Describe (geometrically) the point
Q for which the time taken to move from P to Q is minimized.

Solution: Ignoring the physics of the problem, the question is
to minimize PQ/ sinα or maximize sinα/PQ. Perform an inver-
sion about P which maps the circle to itself; the maximal point on
the old diagram (call it Q) will map to a point Q′ which maximizes
PQ′ sinα, which is just the height differnece between P and Q′. As
P is above the circle, Q′ is the bottom of the circle. To find Q, just
note that P,Q,Q′ are collinear. Therefore, the construction is:

(a) find the bottom of the circle, call this Q′;

(b) find the intersection of PQ′ with the circle, this is the desired
point.

5. Six points are joined pairwise by red or blue segments. Must there
exist a closed path consisting of four of the segments, all of the same
color?

Solution: Label the points A,B,C,D,E, F . It is a well known
result that in such a configuration there is a monochromatic cycle of
length three (Proof: consider any vertex, there are five edges coming
from it so at least three of them are the same color. Say that color
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is red and the edges run to A,B,C. If any of the edges between
A,B,C are red, we are done, and if none are we are done as well.)

So without loss of generality, let edges AB,BC,CA be red. If any
of the other vertices has red edges running to two of A,B,C, we are
done. Also, if two of D,E, F have blue edges running to the same
two vertices of A,B,C, we are done. The only case this doesn’t cover
is if each of D,E, F has a red edge running to a different member of
A,B,C; without loss of generality AD,BE,CF are red. The only
edges we haven’t yet specified are DE,EF, FD. If any of them are
red, this would form a cycle (for example, if DE is red, DABE would
be red). If all of them are blue, DCEF is all blue. We have now
covered all cases.
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1.20 Spain

1. Calculate the sum of the squares of the first 100 terms of an arith-
metic progression, given that the sum of the first 100 terms is −1 and
that the sum of the second, fourth, . . . , and the hundredth terms is
1.

Solution: Let the arithmetic progression be x1, x2, . . . , x100, hav-
ing term difference d. The first of the two given conditions is

x1 + x2 + · · ·+ x100 =
1
2

(x1 + x100) · 100 = −1⇒ x1 + x100 = − 1
50
.

The second is

x2 +x4 +· · ·+x100 =
1
2

((x1 +d)+x100)·50 = 1⇒ x1 +x100 +d =
1
25
.

These imply d = 3/50 and x1 + x100 = x1 + (x1 + 99d) = −1/50, or
x1 = −149/50. We wish to find

x2
1 + x2

2 + · · ·+ x2
100 = 100x2

1 + 2dx1(1 + · · ·+ 99) + (12 + · · ·+ 992)

which simplifies to 14999/50.

2. Let A be a set of 16 lattice points forming a square with 4 points on
a side. Find the maximum number of points of A no three of which
form an isosceles right triangle.

Solution: The maximum is 6, obtained (for example) by taking
the points of two adjacent sides, but omitting their common corner.

First suppose none of the 4 interior points is chosen. The remaining
points form 3 squares, so at most two vertices from each square can
be chosen. Thus we may assume one of the interior points is chosen,
which we label O in the following diagram:

D A1 A2 A3

C Z1 O Z2

E B1 B2 B3

C D C E

No two points with the same label A,B,C,D,E can be chosen, so if
neither Z1 nor Z2 is chosen, again at most 6 points can be chosen. If
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Z1 but not Z2 is chosen, then A1, A2, B1, B2 cannot be chosen, and
A3 and B3 cannot both be chosen, so one of the A and B sets must
be omitted, again putting the maximum at 6; likewise if Z2 but not
Z1 is chosen. Finally, if Z1 and Z2 are chosen, none of the Ai or Bi
can be chosen, so again the maximum is 6.

3. For each parabola y = x2 + px + q meeting the coordinate axes in
three distinct points, a circle through these points is drawn. Show
that all of the circles pass through a single point.

Solution: All such circles pass through the point (0, 1). If (0, q),
(r1, 0), (r2, 0) are the three points, then r1 + r2 = −p. If (x− a)2 +
(y − b)2 = r2 is the circle, we then have a = −p/2, and

1
4
p2 + (q − b)2 = (r1 − p/2)2 + b2 =

1
4

(r1 − r2)2 + b2

or
q2 − 2qb = −q

which gives b = (q + 1)/2, and so the reflection of (0, q) across the
horizontal diameter is (0, 1).

4. Let p be a prime number. Find all k ∈ Z such that
√
k2 − pk is a

positive integer.

Solution: The values are k = (p ± 1)2/4 for p odd (and none
for p = 2).

We first consider p = 2, in which case we need k2−2k = (k−1)2−1
to be a positive square, which is impossible, as the only consecutive
squares are 0 and 1.

Now assume p is odd. We first rule out the case where k is divisible
by p: if k = np, then k2 − pk = p2n(n − 1), and n and n − 1 are
relatively prime, so they cannot both be squares.

We thus assume k and p are coprime, in which case k and k − p are
coprime. Thus k2−pk is a square if and only if k and k−p are squares,
say k = m2 and k − p = n2. Then p = m2 − n2 = (m+ n)(m− n),
which implies m+ n = p,m− n = 1 and k = (p+ 1)2/4, or m+ n =
1,m− n = −p and k = (p− 1)2/4.
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5. Show that in any convex quadrilateral of area 1, the sum of the
lengths of the sides and diagonals is at least 2(2 +

√
2).

Solution: In fact we show that the sides have total length at
least 4, and the diagonals have total length at least 2

√
2. For the

diagonals, we use the area formula A = 1
2d1d2 sin θ, where θ is the

angle between the diagonals. This gives d1d2 ≥ 2, and AM-GM then
gives d1 + d2 ≥ 2

√
2, with equality if the diagonals are equal and

perpendicular.

For the sides, we use the area formula

A2 = (s− a)(s− b)(s− c)(s− d)− abcd cos2 B +D

2
,

where s = (a + b + c + d)/2 and B and D are opposite sides. This
implies (s− a)(s− b)(s− c)(s− d) ≥ 1, so again by AM-GM,

4 ≤ (s− a) + (s− b) + (s− c) + (s− d) = a+ b+ c+ d,

as claimed, with equality if a = b = c = d.

We conclude that the desired inequality holds with equality if and
only if the quadrilateral is a square.

6. The exact quantity of gas needed for a car to complete a single loop
around a track is distributed among n containers placed along the
track. Prove that there exists a position starting at which the car,
beginning with an empty tank of gas, can complete a single loop
around the track without running out of gas. (Assume the car can
hold unlimited quantities of gas.)

Solution: We induct on the number n of containers, the case n = 1
being obvious. Given n+ 1 containers, there must be a container A
from which the car can reach the next container B (otherwise the
tanks do not have gas for a full lap). If we empty B into A and re-
move B, the induction hypothesis implies there is a starting position
from which the car can complete the loop; the same starting position
allows the car to complete the loop with the original distribution of
containers.
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1.21 Taiwan

1. Let a be a rational number, b, c, d be real numbers, and f : R →
[−1, 1] a function satisfying

f(x+ a+ b)− f(x+ b) = cbx+ 2a+ bxc − 2bx+ ac − bbcc+ d

for each x ∈ R. Show that f is periodic, that is, there exists p > 0
such that f(x+ p) = f(x) for all x ∈ R.

Solution: Note that for any integer n,

f(x+ n+ a)− f(x+ n)
= cbx− b+ nc+ 2a+ bx− b+ nc − 2bx− b+ n) + ac − bbcc+ d

= cb(x− b) + n+ 2a+ bx− bc+ n− 2bx− b+ ac − 2n− bbcc+ d

= cbx− b) + 2a+ bx− bc − 2bx− b) + ac − bbcc+ d

= f(x+ a)− f(x).

Let m be a positive integer such that am is an integer. Then for all
natural number k,

f(x+ kam)− f(x)

=
x∑
j=1

m∑
i=1

(f(x+ jam+ ai)− f(x+ jam+ a(i− 1)))

= k
m∑
i=1

(f(x+ ai)− f(x+ a(i− 1)))

= k(f(x+ am)− f(x)).

Since f(x) ∈ [−1, 1], f(x+ kam)− f(x) is bounded, so f(x+ am)−
f(x) must be 0. This implies f(x+ am) = f(x), so f(x) is periodic.

2. Let AB be a given line segment. Find all possible points C in the
plane such that in the triangle ABC, the altitude from A and the
median from B have the same length.

Solution: Let D be the foot of the altitude from A and E be
the foot of the median from B. Let F be the foot of the perpen-
dicular from E to line BC. Then EF ‖ AD and E is the midpoint
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of AC, so EF = 1/2(AD) = 1/2(BE) and ∠EBC = ±π/6. (All
angles will be directed mod π unless otherwise specified.) Now, let
P be the point such that B is the midpoint of AP . Then BE ‖ PC,
so ∠PCB = ∠EBC is constant. The locus of all points C such that
∠PCB is constant is a circle. Hence the locus of C here consists of
two congruent circles through BP (one corresponding to π/6 and the
other to −π/6). Using the the particular case of ABC an equilateral
triangle, we find that each circle has radius AB and center located
so that ABQ = 2π/3 (undirected).

3. [Corrected] Let n ≥ 3 be an integer, and suppose that the sequence
a1, a2, . . . , an of positive real numbers satisfies ai−1 +ai+1 = kiai for
some sequence k1, k2, . . . , kn of positive integers. (Here a0 = an and
an+1 = a1.) Show that

2n ≤ k1 + k2 + · · ·+ kn ≤ 3n.

Solution: The left inequality follows from AM-GM once we note
that

k1 + · · ·+ kn =
n∑
i=1

ai
ai+1

+
ai+1

ai
.

On the other side, we will actually show that k1 + · · ·+ kn ≤ 3n− 2
for n ≥ 2, by induction on n. For n = 2, if a1 ≥ a2, then 2a2 = k1a1,
so either a1 = a2 and k1 + k2 = 4 = 3× 2− 2, or a1 = 2a2 and again
k1 +k2 = 4 = 3×2−2. For n > 2, we may assume the ai are not all
equal; then there exists some i such that ai ≥ ai−1, ai+1 with strict
inequality in at least one of the two cases. Then ai−1 + ai+1 < 2ai
and so ki = 1. We conclude that the sequence with ai removed also
satisfies the given condition with ki−1 and ki+1 decreased by 1 and ki
dropped. Since the sum of the resulting ki is at most 3(n−1)−2 by
assumption, the sum of the original ki is at most 3n− 2, as desired.

4. Let k = 22n + 1 for some positive integer n. Show that k is a prime
if and only if k is a factor of 3(k−1)/2 + 1.

Solution: Suppose k is a factor of 3(k−1)/2 + 1. This is equiv-
alent to 3(k−1)/2 ≡ −1 (mod k). Hence 3k−1 ≡ 1 (mod k). Let
d be the order of 3 mod k. Then d 6 |(k − 1)/2 but d|(k − 1), hence
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(k − 1)|d, so d = k − 1 (since d must be smaller than k). Therefore
k is prime.

Conversely, suppose k is prime. By quadratic reciprocity,(
3
k

)
=
(
k

3

)
=
(

2
3

)
= −1.

By Euler’s criterion, 3(k−1)/2 ≡
(

3
k

)
≡ −1 (mod k), as claimed.

5. Let ABCD be a tetrahedron. Show that

(a) If AB = CD, AD = BC, AC = BD, then the triangles
ABC,ACD,ABD,BCD are acute;

(b) If ABC,ACD,ABD,BCD have the same area, then AB =
CD,AD = BC,AC = BD.

Solution:

(a) It follows from the hypothesis that the four faces are congruent
and that the trihedral angle at each vertex is made up of the
three distinct angles of a face. Now, let M be the midpoint
of BC. By the triangle inequality,AM + MD > AD = BC =
2MC. Triangles ABC and DCB are congruent, so AM = DM .
Thus 2MD > 2MC; that is, MD is greater than the radius of
the circle in the plane of BCD with diameter BC. Therefore
D lies outside this circle and angle BDC is acute. The same
argument applies to every face angle. (This problem is USAMO
1972/2; see Klamkin’s USAMO book for other solutions.)

(b) Since AB and CD are not parallel (or the tetrahedron is pla-
nar), we can uniquely choose two parallel planes, one (call this
P ) containing AB, and one (call this Q) containing CD. Let
the distance between P and Q be d. Also let A′ and B′ be the
projections of A and B (respectively) onto Q, and let C ′ and
D′ be the projections of C and D onto P . Now, since trian-
gles ACD and BCD have the same area, and they have the
same base CD, they have the same altitude; call this h. Now
construct the (infinite) cylinder with axis CD and radius h; ob-
viously A and B are on this cylinder. They are also on plane P ,
which intersects the cylinder in one or two lines parallel to CD.
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Now, A and B cannot be on the same one of these lines (or
the tetrahedron is planar), so there are two intersection lines
between the cylinder and plane P , one containing A and one
containing B. They are also parallel to and equidistant from
line C ′D′, the distance being (h2−d2)1/2. Therefore, line C ′D′

bisects line segment AB.
Analogous reasoning shows that line A′B′ bisects line segment
CD, or, transferring everything from plane Q to plane P via
projection, line AB bisects line segment C ′D′. The fact that
segments AB and C ′D′ bisect each other implies that AC ′BD′

is a parallelogram, so AC ′ = BD′ (call this distance x) and
BC ′ = AD′ (call this distance y). Then we have that

AC = (AC ′2 + C ′C2)1/2 = (x2 + d2)1/2

= (BD′2 +D′D2)1/2 = BD

BC = (BC ′2 + C ′C2)1/2 = (y2 + d2)1/2

= (AD′2 +D′D2)1/2 = AD.

Using a different pair of edges at the outset, we also get AB =
CD.

6. [Corrected] Let X be the set of integers of the form

a2k102k + a2k−2102k−2 + · · ·+ a2102 + a0,

where k is a nonnegative integer and a2i ∈ {1, 2, . . . , 9} for i =
0, 1, . . . , k. Show that every integer of the form 2p3q, for p and q
nonnegative integers, divides some element of X.

Solution: In fact, every integer that isn’t divisible by 10 divides
some element of X. We first note that there exists a multiple of 4p

in X with 2p− 1 digits for all nonnegative integer p. This follows by
induction on p: it’s obvious for p = 0, 1, and if x is such a multiple for
p = k, then we can choose a2k so that x+ a2k102k ≡ 0 (mod 4k+1)
since 102k ≡ 1 (mod 4k).

Now we proceed to show that any integer n that isn’t divisible by
10 divides some element of X. Let n = 2pk, where k is odd. Then
by the lemma above one can find a multiple of 2p in X. Let m be
the multiple, d be the number of digits of m, and f = 10d+1 − 1.

114



By Euler’s extension of Fermat’s theorem, 10φfk ≡ 1 (mod fk).
Therefore m(10(d+1)φ(fk)−1)/(10d+1−1) is divisible by 2pk and lies
in X (since it is the concatenation of m’s).

7. Determine all positive integers k for which there exists a function
f : N→ Z such that

(a) f(1997) = 1998;

(b) for all a, b ∈ N, f(ab) = f(a) + f(b) + kf(gcd(a, b)).

Solution: Such f exists for k = 0 and k = −1. First take a = b in
(b) to get f(a2) = (k + 2)f(a). Applying this twice, we get

f(a4) = (k + 2)f(a2) = (k + 2)2f(a).

On the other hand,

f(a4) = f(a) + f(a3) + kf(a) = (k + 1)f(a) + f(a3)
= (k + 1)f(a) + f(a) + f(a2) + kf(a)
= (2k + 2)f(a) + f(a2) = (3k + 4)f(a).

Setting a = 1997 so that f(a) 6= 0, we deduce (k + 2)2 = 3k + 4,
which has roots k = 0,−1. For k = 0, an example is given by

f(pe11 · · · penn ) = e1g(p1) + · · ·+ eng(pn),

where m is a prime factor of 1997, g(m) = 1998 and g(p) = 0 for all
primes p 6= m. For k = 1, an example is given by

f(pe11 · · · penn ) = g(p1) + · · ·+ g(pn).

8. Let ABC be an acute triangle with circumcenter O and circumradius
R. Let AO meet the circumcircle of OBC again at D, BO meet the
circumcircle of OCA again at E, and CO meet the circumcircle of
OAB again at F . Show that OD ·OE ·OF ≥ 8R3.

Solution: Let D′, E′, F ′ be AO∩BC, BO∩CA, CO∩AB respec-
tively. Then they are images of D,E, F respectively under an inver-
sion through the circumcircle of ABC, since the inversion maps each
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of the three circles through the sides of the triangle into the lines con-
taining the sides. Therefore OD′ ·OD = OE′ ·OE = OF ′ ·OF = R2.
Hence the inequality in the problem is equivalent to:

AO

OD′
BO

OE′
CO

OF ′
≥ 8.

Now, let h1, h2, h3 denote the length of the perpendiculars from O
to AB,BC,CA, respectively. Then AO/OD′ = [AOB]/[BOD′] =
(ABh1)/(BD′h2), and similarly BO/OE′ = (BCh2)/(CE′h3) and
CO/OF ′ = (CAh3)/(AF ′h1). Hence their product is

AB ·BC · CA
AF ′ ·BD′ · CE′

=
(AF ′ + F ′B)(BD′ +D′C)(CE′ + E′A)

AF ′ ·BD′ · CE′

≥ 8

√
AF ′ · F ′B ·BD′ ·D′C · CE′ · E′A)

AF ′ ·BD′ · CE′

= 8

√
F ′B

AF ′
D′C

BD′
E′A

CE′
= 8,

as desired. Equality holds iff AF ′ = F ′B,BD′ = D′C,CE′ = E′A,
i.e., ABC is an equilateral triangle.

9. For n ≥ k ≥ 3, let X = {1, 2, . . . , n} and let Fk be a family of k-
element subsets of X such that any two subsets in Fk have at most
k − 2 common elements. Show that there exists a subset Mk of X
with at least blog2 nc+ 1 elements containing no subset in Fk.

Solution: If k ≥ log2 n then we have nothing to prove, so as-
sume k < log2 n. Let m = blog2 nc + 1. Since each (k − 1)-element
subset of X lies in at most one subset of Fk, and each element of Fk
contains k (k − 1)-element subsets, we have

#(Fk) ≤ 1
k

(
n

k − 1

)
=

1
n− k + 1

(
n

k

)
.

On the other hand, for a randomly chosen m-element subset of X,
the expected number of elements of Fk that it contains is(

m

k

)
#(Fk)(

n
k

) ≤ 1
n− k + 1

(
m

k

)
.
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It suffices to prove that the latter is less than 1, for then some m-
element subset must contain no element of Fk.

Of course
(
m
k

)
≤
∑
i

(
m
i

)
= 2m, but this estimate is not quite suffi-

cient for our purposes. Fortunately, one can easily prove the better
estimate

(
m
k

)
≤ 3 · 2m−3 for m ≥ k ≥ 3, by induction on m. This

gives
1

n− k + 1

(
m

k

)
≤ 3n

4(n− k + 1)
< 1

for n ≥ 3, completing the proof.
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1.22 Turkey

1. In a triangle ABC with a right angle at A, let H denote the foot of
the altitude from A. Show that the sum of the inradii of the triangles
ABC,ABH,ACH equals AH.

Solution: Let a = BC, b = CA, c = AB, and s = (a+ b+ c)/2 The
trianglesABH andACH are similar toABC with ratios a/c and b/c,
respectively. By the formula that area is radius times semiperimeter,
the three inradii in question are

ab

a+ b+ c
,
a

c

ab

a+ b+ c
,
b

c

ab

a+ b+ c

and the sum of these is ab/c = AH.

2. The sequences {an}∞n=1, {bn}∞n=1 are defined as follows: a1 = α,
b1 = β, an+1 = αan − βbn, bn+1 = βan + αbn for all n ≥ 1. How
many pairs (α, β) of real numbers are there such that a1997 = b1 and
b1997 = a1?

Solution: Note that a2
n+1 + b2n+1 = (α2 + β2)(a2

n + b2n), so unless
α = β = 0, we need α2+β2 = 1. Thus we can put α = cos θ, β = sin θ
from which it follows by induction that an = cosnθ, bn = sinnθ.
Thus there are 1998 pairs: (0, 0) and (cos θ, sin θ) for θ = πk/3998
for k = 1, 3, . . . , 3997.

3. In a soccer league, when a player moves from a team X with x players
to a team Y with y players, the federation receives y − x million
dollars from Y if y ≥ x, but pays x− y million dollars to X if x > y.
A player may move as often as he wishes during a season. The league
consists of 18 teams, each of which begins a certain season with 20
players. At the end of the season, 12 teams end up with 20 players,
while the other 6 end up with 16, 16, 21, 22, 22, 23 players. What is
the maximum amount the federation could have earned during the
season?

Solution: We claim the maximum is earned by never allowing
a player to move to a smaller team. We may keep records in a dif-
ferent way: a team with x players writes down −x before trading a
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player or x before receiving a player, and the federation’s earnings
are the sum of these numbers. Now consider the numbers written by
a team which ends up with n > 20 players. If the maximum size of
the team during the process is k > n, then the numbers k−1 and −k
appear consecutively, and erasing those two increases the sum. Thus
the sum of the numbers for this team is at least 20+21+ · · ·+n−1.
Similarly, the sum of the numbers for a team ending up with n < 20
players is at least −20−19−· · ·− (n+1). As these numbers are pre-
cisely those written by always trading from a team ending up with
fewer than 20 players to one ending up with more, this arrangement
gives the maximum earnings. In this case, that sum is

(20 + 20 + 21 + 20 + 21 + 20 + 21 + 22)− 2(20 + 19 + 18 + 17) = 17.

4. The edge AE of a convex pentagon ABCDE with vertices on a unit
circle passes through the center of the circle. If AB = a, BC = b,
CD = c, DE = d and ab = cd = 1/4, compute AC + CE in terms
of a, b, c, d.

Solution: I’m not sure what the question is asking for, since if
2α, 2β, 2γ, 2δ be the arcs subtended by a, b, c, d, respectively, then

AC = 2 sin(α+ β) = a/2
√

1− b2/4 + b/2
√

1− a2/4.

and likewise for CD. My best guess is that the word “unit” was
extraneous, and that you’re suppose to solve for the circumradius
in terms of a, b, c, d. Indeed, if R is the circumradius, then AC2 +
BD2 = 1, but

AC = a
√
R2 − b2 + b

√
R2 − a2,

so this eventually gives a large polynomial of which R2 is a root.

5. Prove that for each prime p ≥ 7, there exists a positive integer n and
integers x1, . . . , xn, y1, . . . , yn not divisible by p such that

x2
1 + y2

1 ≡ x2
2 (mod p)

x2
2 + y2

2 ≡ x2
3 (mod p)

...
x2
n + y2

n ≡ x2
1 (mod p).
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Solution: Let n be the order of 5/3 mod p, and put xi = 3n+1−i5i−1,
yi = 43n−i5i−1. Then all of the congruences are actually equalities
except the last, which is the congruence 52n ≡ 32n (mod p), which
holds by assumption.

6. Given an integer n ≥ 2, find the minimal value of

x5
1

x2 + x3 + · · ·+ xn
+

x5
2

x3 + · · ·+ xn + x1
+ · · ·+ x5

n

x1 + · · ·+ xn−1

for positive real numbers x1, . . . , xn subject to the condition x2
1 +

· · ·+ x2
n = 1.

Solution: Let S = x1 + · · · + xn. By Chebyshev’s inequality,
the average of x5

i /(S − xi) is at least the average of x4
1 times the

average of xi/(S − xi) (since both are increasing functions of xi).
The latter function is convex, so its average is at least 1/(n − 1).
We apply the power mean inequality to the former, which gives
(
∑
x4
i /n)1/2 ≥

∑
x2
i /n = 1/n. We conclude

∑ x5
i

S − xi
≥ n 1

n2

1
n− 1

=
1

n(n− 1)
,

with equality if x1 = · · · = xn = 1/
√
n.
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1.23 Ukraine

1. A rectangular grid is colored in checkerboard fashion, and each cell
contains an integer. It is given that the sum of the numbers in each
row and the sum of the numbers in each column is even. Prove that
the sum of all numbers in black cells is even.

Solution: Say the colors are red and black, with the top left
square being red. (Since the sum of all of the numbers is even, it
suffices to show the sum of the numbers in the red squares is even.)
The sum of the first (from the top), third, etc., rows and the first
(from the left), third, etc., columns equals the sum of all of the black
squares plus twice the sum of some of the red squares. Since this
sum is even, the sum of the numbers in the black squares is even.

2. [Corrected] Find all solutions in real numbers to the following system
of equations:

x1 + x2 + · · ·+ x1997 = 1997
x4

1 + x4
2 + · · ·+ x4

1997 = x3
1 + x3

2 + · · ·+ x3
1997.

Solution: We show the only solution is x1 = · · · = x1997 = 1.
Put Sn = xn1 + · · ·+ xn1997. By the power mean inequality,

(S4/1997)1/4 ≥ S1/1997 = 1

and
(S4/1997)1/4 ≥ (S3/1997)1/3 = (S4/1997)1/3

and so S4/1997 ≤ 1 as well. Thus equality holds in the power mean
inequality, which implies x1 = · · · = x1997.

3. Let d(n) denote the greatest odd divisor of the natural number n. We
define the function f : N→ N such that f(2n− 1) = 2n and f(2n) =
n+ 2n

d(n) for all n ∈ N. Find all k such that f(f(· · · f(1) · · ·)) = 1997,
where f is iterated k times.

Solution: The only such k is 499499.

For an even number (2a)b, where b is odd and a ≥ 1, f((2a)b) =
(2a−1)b + ((2a)b)/b = (2a−1)b + 2a = (2a−1)(b + 2). So the largest
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power of two dividing f((2a)b) is half the largest power of two divid-
ing (2a)b. Thus, it takes a iterations of f on (2a)b to obtain an odd
number.

Furthermore, the largest odd divisor of f((2a)b) is (b+ 2), two more
than the largest odd divisor of (2a)b. Thus, after a iterations of f on
(2a)b, the largest odd divisor will be b+ 2a. Since after a iterations
we obtain an odd number, f (a)(2a)b) must equal b+ 2a.

After one iteration of f on 2n−1, where n ≥ 1, we obtain 2n. Letting
a = n and b = 1, we see that it takes n more iterations to obtain an
odd number, namely, b+ 2a = 2n+ 1. Thus, it takes n+ 1 iterations
of f on 2n− 1 to obtain the next odd number, 2n+ 1.

Immediately we see that no odd number is obtained twice by it-
erating f on 1, because the sequence odd numbers obtained from
iterating f on any positive integer is strictly increasing. Specifically,
if there exists a value of k such that f (k)(1) = 1997, then it is unique.

We now prove by induction that fn(n+1)/2−1(1) = 2n−1. It is clearly
true for n = 1. Then assuming it is true for n = k,

f (k+1)(k+2)/2−1(1) = fk+1(fk(k+1)/2−1(1)) = fk+1(2k − 1) = 2k + 1

Since 1997 = 2(999) − 1, we have f999(1000)/2−1(1) = f499499(1) =
1997, so k = 499499, as claimed, and as noted above, k is unique.

4. Two regular pentagons ABCDE and AEKPL are situated in space
so that ∠DAK = 60◦. Prove that the planes ACK and BAL are
perpendicular.

Solution: If we rotate AEKPL around the axis AE, starting
in a position coinciding with ABCDE, the angle ∠DAK increases
until AEKPL again lies in the plane of ABCDE. (One can see
this by computing that the dot product of the vectors AD and AK
increases in this range.) Thus there is a unique angle between the
planes which makes ∠DAK = 60◦. In fact, this occurs when the
pentagons are two of the faces of a regular dodecahedron (by sym-
metry, the triangle DAK is equilateral in this case). In particular,
the plane BAL is the plane of the third face of the dodecahedron at
A; call that face BALTO.
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Let primes denote the projections of points into the plane ofABCDE.
Then K ′ lies on the angle bisector of ∠DEA. Set up a tempo-
rary coordinate system where ABCDE is clockwise in the xy-plane,
but where K ′E runs in the same direction as the positive x-axis.
Consider the two vectors EK and EA. The first vector has no y-
component, and the second vector has no z-component. Therefore
their dot product is equal to the product of their x-components.
Since AE and K ′E make an angle of 54, EA has an x-component of
AE(cos 54◦) = cos 54◦. EK has an x-component of −K ′E. There-
fore, their dot product is equal to −K ′E(cos 54◦). However, EK ·
EA = EK ·EA cos∠KEA = (1)(1)(cos 108◦) = − cos 72◦. Equating
these two, we find that K ′E = (cos 72◦)/(cos 54◦).

An vector computation now reveals that K ′A and AC are perpen-
dicular:

(K ′ −A) · (A− C) = (K ′ − E + E −A) · (A− C)
= K ′E ·AC cos 54◦ − CA ·AC cos 72◦

=
cos 72◦

cos 54◦
cos 54◦ − cos 72◦ = 0.

Since BO′ is visibly perpendicular to AC and BO is parallel to
AT , also AT ′ is perpendicular to AC. Thus the points K ′, A, T ′

are collinear. Since K,A, T are not collinear, this shows that the
plane AKT is perpendicular to that of ABCDE. Rotating around
A, we conclude that the plane ACK is perpendicular to the plane
of BALTO, as desired.

5. The equation ax3 + bx2 + cx+ d = 0 is known to have three distinct
real roots. How many real roots are there of the equation

4(ax3 + bx2 + cx+ d)(3ax+ b) = (3ax2 + 2bx+ c)2?

Solution: Let P (x) = ax3+bx2+cx+d and Q(x) = 2P (x)P ′′(x)−
P ′(x)2, so we are counting the real roots of Q(x) = 0. We may make
some reductions without changing the number of real roots of Q(x).
First, we scale P so that a = 1. Second, we translate x so that the
middle real root of P is 0, that is, d = 0 and c < 0. Then

Q(x) = 3x4 + 4bx3 + 6cx2 − c2.
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We now apply Descartes’ Rule of Signs to count the roots of Q(x).
The signs of Q(x) are +, s,−,− and of Q(−x) are +,−s,−,−, where
s represents the sign of b. In any case, we get exactly one sign change
in each sequence. Thus Q has one positive and one negative root, or
two in all.

6. Let Q+ denote the set of positive rational numbers. Find all func-
tions f : Q+ → Q

+ such that for all x ∈ Q+:

(a) f(x+ 1) = f(x) + 1;

(b) f(x2) = f(x)2.

Solution: The only such function is f(x) = x. By (a), f(x+ n) =
f(x) + n for all positive integers n. Now put x = p/q with p, q
positive integers. On one hand,

f

(
p+ q2

q

)2

=
(
q + f

(
p

q

))2

= q2 + 2qf
(
p

q

)
+ f

(
p

q

)2

.

On the other hand,

f

(
p+ q2

q

)2

= f

(
(p+ q2)2

q2

)
= f

(
q2 + 2p+

p2

q2

)
= q2 + 2p+ f

(
p

q

)2

.

Putting these two equations together yields 2qf(p/q) = 2p, so f(p/q) =
p/q.

7. Find the smallest integer n such that among any n integers, there
exist 18 integers whose sum is divisible by 18.

Solution: The minimum is n = 35; the 34-element set of 17 zeroes
and 17 ones shows that n ≥ 35, so it remains to show that among
35 integers, there are 18 whose sum is divisible by 18. In fact, one
can show that for any n, among 2n − 1 integers there are n whose
sum is divisible by n.

We show this claim by induction on n; it’s clear for n = 1. If n is
composite, say n = pq, we can assemble sets of p integers whose sum
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is divisible by p as long as at least 2p− 1 numbers remain; this gives
2q − 1 sets, and again by the induction hypothesis, some q of these
have sum divisible by q.

Now suppose n = p is prime. The number x is divisible by p if
and only if xp−1 6≡ 1 (mod p). Thus if the claim is false, then the
sum of (a1 + · · · + ap)p−1 over all subsets {a1, . . . , ap} of the given
numbers is congruent to

(
2p−1
p−1

)
≡ 1 (mod p). On the other hand,

the sum of ae11 · · · a
ep
p for e1 + · · ·+ ep ≤ p− 1 is always divisible by

p: if k ≤ p− 1 of the ei are nonzero, then each product is repeated(
2p−1−k
p−k

)
times, and the latter is a multiple of p. This contradiction

shows that the claim holds in this case. (Note: to solve the original
problem, of course it suffices to prove the cases p = 2, 3 directly.)

8. Points K,L,M,N lie on the edges AB,BC,CD,DA of a (not nec-
essarily right) parallelepiped ABCDA1B1C1D1. Prove that the
centers of the circumscribed spheres of the tetrahedra A1AKN ,
B1BKL, C1CLM , D1DMN are the vertices of a parallelogram.

Solution: Introduce coordinates with ABCD parallel to z =
0. Let E,F,G,H be the circumcenters of triangles AKN , BKL,
CLM , DMN and let W,X, Y, Z be the circumcenters of tetrahedra
A1AKN , B1BKL, C1CLM , D1DMN . Also for each point Q we
have labeled, let Q1, Q2, Q3 denote the x, y, z-coordinates of Q.

We first show that EFGH is a parallelogram, by showing that the
midpoints of EG and FH coincide. It suffices to show this for the
projections of the segments in two different directions (e.g., introduce
coordinates along those directions). But this is evident for the pro-
jections onto AB, as E and F project onto the midpoints of AK and
BK, respectively, so the segment between them has length AB/2,
as does the corresponding segment on CD. Likewise, the claim is
evident for the projections onto CD.

We now have E1 + G1 = F1 + H1 and E2 + G2 = F2 + H2. Also,
since W and E are equidistant from AKN , WE is perpendicular to
AKN and thus to the plane z = 0. ThusW1 = E1 andW2 = E2, and
likewise for X,Y, Z. Thus W1+Y1 = X1+Z1 and W2+Y2 = X2+Z2.

All that remains is to show W3 + Y3 = X3 + Z3. Notice that W
and X both lie on the plane perpendicular to ABB1A1 and passing
through the midpoints of AA1 and BB1. Thus W3 = aW1 + bW2 + c
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and X3 = aX1 + bX2 + c for some constants a, b, c. Similarly, Y
and Z both lie on the plane perpendicular to CDD1C1 and passing
through the midpoints of CC1 and DD1. Since DCC1D1 is parallel
and congruent to ABB1A1, we have Y3 = aY1 + bY2 + d and Z3 =
aZ1 +bZ2 +d for d another constant, but a and b the same constants
as above. Therefore W3 + Y3 = X3 + Z3, completing the proof that
WXY Z is a parallelogram.
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1.24 United Kingdom

1. (a) Let M and N be two 9-digit positive integers with the property
that if any one digit of M is replaced by the digit of N in the
corresponding place, the resulting integer is a multiple of 7.
Prove that any number obtained by replacing a digit of N with
the corresponding digit of M is also a multiple of 7.

(b) Find an integer d > 9 such that the above result remains true
when M and N are two d-digit positive integers.

Solution: The result holds for any d ≡ 2 (mod 7). Write
M =

∑
mk10k, N =

∑
nk10k, where mk, nk are digits. Then for

any k, 10k(nk −mk) ≡ 0 −M (mod 7). Summing over k, we get
M −N ≡ dM ≡ 2M (mod 7), and so N ≡ −M (mod 7), whence
10k(mk − nk) ≡ −N (mod 7) . Thus replacing any digit in N by
the corresponding digit in M gives an integer divisible by 7.

2. In acute triangle ABC, CF is an altitude, with F on AB, and BM
is a median, with M on CA. Given that BM = CF and ∠MBC =
∠FCA, prove that the triangle ABC is equilateral.

Solution: Let ∠ACF = ∠CBM = A, and let CM = AM = m.
Then MB = CF = 2m cosA. By the Law of Sines,

CM

sin∠CBM
=

MB

sin∠MCB
,

and so sin∠MCB = 2 cosA sinA = sin 2A.

This leaves two possibilities. If ∠MCB+2A = 180◦, then ∠CMB =
A = ∠MBC. Then CB = MC and MB = 2MC sinA. Also MB =
CF = AC cosA = 2MC cosA. Therefore sinA = cosA so A ≥
45◦ ≥ ∠MCB ≥ 90◦, a contradiction.

Thus we conclude ∠MCB = 2A, so ∠ACF = ∠BCF . Therefore
triangle ACF is congruent to BCF and AC = BC. Now triangle
ACF is congruent to CBM , so ∠CAF = ∠BCM Therefore BC =
AB, so ABC is equilateral.

3. Find the number of polynomials of degree 5 with distinct coefficients
from the set {1, 2, . . . , 9} that are divisible by x2 − x+ 1.
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Solution: Let the 5th degree equation be ax5 + bx4 + cx3 + dx2 +
ex+ f = 0. The roots of x2 − x+ 1 are the non-real roots of x3 + 1,
namely eπi/3 and e5πi/3. Therefore the 5th degree equation is divis-
ible by x2 − x+ 1 iff

ae5πi/3 + be4πi/3 + ceπi + de2πi/3 + eeπi/3 + f = 0.

In other words, so i sin 60(−a− b+ d+ e) = 0, or a− d = e− b; and
a/2− b/2− c−d/2 + e/2 +f = 0, on e+ 2f +a = b+ 2c+d or (since
a − d = e − b) a − d = c − f = e − b. It follows that exactly 1/12
of the polynomials will have coefficients p+ k, q, r + k, p, q + k, r for
k > 0 and p ≤ q ≤ r.
For a given k, there are

(
9−k

3

)
values of p, q, r such that r + k ≤ 9.

However, the coefficients must be distinct, so we must subtract those
with 2 of p, q, r differing by k. There are 9 − 2k ways to select
two numbers differing by k, and 7− k ways to select the remaining
number. However, we have counted those of the form x, x+d, x+2d
twice, and there are 9− 3k of these.

Therefore, for a given k, there are(
9− k

3

)
− (9− 2k)(7− k) + 9− 3k

polynomials. Adding, we have (1 + 4 + 10 + 20 + 35 + 56) − (42 +
25 + 12 + 3) + (3 + 6) = 53 polynomials of the prescribed form, and
53 · 12 = 636 polynomials in total.

4. The set S = {1/r : r = 1, 2, 3, . . .} of reciprocals of the positive
integers contains arithmetic progressions of various lengths. For in-
stance, 1/20, 1/8, 1/5 is such a progression, of length 3 and common
difference 3/40. Moreover, this is a maximal progression in S of
length 3 since it cannot be extended to the left or right within S
(−1/40 and 11/40 not being members of S).

(a) Find a maximal progression in S of length 1996.
(b) Is there a maximal progression in S of length 1997?

Solution: There is a maximal progression of length n, for all
n > 1. Dirichlet’s theorem implies that there is a prime number p
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of the form 1 + dn for some positive integer d. Now consider the
progression

1
(p− 1)!

,
1 + d

(p− 1)!
, · · · , 1 + (n− 1)d

(p− 1)!
.

Since the numerators divide the denominators, each fraction is the
reciprocal of an integer, but this is not the case for (1+nd)/(p−1)! =
p/(p − 1)! since p is prime. Therefore this sequence is a maximal
progression. (To solve (a), simply take p = 1997.)
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1.25 United States of America

1. Let p1, p2, p3, . . . be the prime numbers listed in increasing order,
and let x0 be a real number between 0 and 1. For positive integer
k, define

xk = 0 if xk−1 = 0,
{

pk
xk−1

}
if xk−1 6= 0,

where {x} = x − bxc denotes the fractional part of x. Find, with
proof, all x0 satisfying 0 < x0 < 1 for which the sequence x0, x1, x2, . . .
eventually becomes 0.

Solution: The sequence eventually becomes 0 if and only if x0

is a rational number.

First we prove that, for k ≥ 1, every rational term xk has a rational
predecessor xk−1. Suppose xk is rational. If xk = 0 then either
xk−1 = 0 or pk/xk−1 is a positive integer; either way, xk−1 is rational.
If xk is rational and nonzero, then the relation

xk =
{

pk
xk−1

}
=

pk
xk−1

−
⌊
pk
xk−1

⌋
yields

xk−1 =
pk

xk +
⌊
pk
xk−1

⌋ ,
which shows that xk−1 is rational. Since every rational term xk with
k ≥ 1 has a rational predecessor, it follows by induction that, if xk is
rational for some k, then x0 is rational. In particular, if the sequence
eventually becomes 0, then x0 is rational.

To prove the converse, observe that if xk−1 = m/n with 0 < m < n,
then xk = r/m, where r is the remainder that results from dividing
npk by m. Hence the denominator of each nonzero term is strictly
less than the denominator of the term before. In particular, the num-
ber of nonzero terms in the sequence cannot exceed the denominator
of x0.

Note that the above argument applies to any sequence {pk} of posi-
tive integers, not just the sequence of primes.
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2. LetABC be a triangle, and draw isosceles trianglesBCD,CAE,ABF
externally toABC, withBC,CA,AB as their respective bases. Prove
that the lines throughA,B,C perpendicular to the lines EF,FD,DE,
respectively, are concurrent.

First Solution: We first show that for any four points W,X, Y, Z
in the plane, the lines WX and Y Z are perpendicular if and only if

WY 2 −WZ2 = XY 2 −XZ2. (∗)

To prove this, introduce Cartesian coordinates such that W = (0, 0),
X = (1, 0), Y = (x1, y1), and Z = (x2, y2). Then (∗) becomes

x2
1 + y2

1 − x2
2 − y2

2 = (x1 − 1)2 + y2
1 − (x2 − 1)2 − y2

2 ,

which upon cancellation yields x1 = x2. This is true if and only if
line Y Z is perpendicular to the x-axis WX.

If P is the intersection of the perpendiculars from B and C to lines
FD and DE, respectively, then the fact noted above yields

PF 2 − PD2 = BF 2 −BD2,

and
PD2 − PE2 = CD2 − CE2.

From the given isosceles triangles, we have BF = AF, BD = CD,
and CE = AE. Therefore

PF 2 − PE2 = AF 2 −AE2.

Hence line PA is also perpendicular to line EF , which completes the
proof.

Second Solution: Let C1 be the circle with center D and radius
BD, C2 the circle with center E and radius CE, and C3 the circle of
center F and radius AF . The line through A and perpendicular to
EF is the radical axis of circles C2 and C3, the line through B and
perpendicular to DF is the radical axis of circles C1 and C3, and the
line through C and perpendicular to DE is the radical axis of circles
C1 and C2. The result follows because these three radical axes meet
at the radical center of the three circles.
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Third Solution: Let A′, B′, C ′ be points on EF , DF , DE, respec-
tively, with AA′ ⊥ EF , BB′ ⊥ DF , and CC ′ ⊥ DE. In addition, let
D′, E′, F ′ be points on BC, AC, AB, respectively, with DD′ ⊥ BC,
EE′ ⊥ AC, and FF ′ ⊥ AB. Because DD′, EE′, and FF ′ are the
perpendicular bisectors of the sides of triangle ABC, these three
lines are concurrent, meeting at the circumcenter of triangle ABC.
Thus, by the trigonometric form of Ceva’s Theorem applied in tri-
angle DEF ,

sin∠E′EF
sin∠DEE′

sin∠F ′FD
sin∠EFF ′

sin∠D′DE
sin∠FDD′

= 1. (∗)

Because ∠FDD′ and ∠CBB′ have orthogonal sides, the two angles
are congruent. Similarly, ∠EDD′ is congruent to ∠BCC ′, ∠DEE′

is congruent to ∠ACC ′, ∠FEE′ is congruent to ∠CAA′, ∠EFF ′ is
congruent to ∠BAA′, and ∠DFF ′ is congruent to ∠ABB′. Using
these congurences in in (∗) results in

sin∠BCC ′

sin∠C ′CA
sin∠CAA′

sin∠A′AB
sin∠ABB′

sin∠B′BC
= 1.

By the trigonometric form of Ceva’s Theorem applied in triangle
ABC, it follows that AA′, BB′, and CC ′ are concurrent.

3. Prove that for any integer n, there exists a unique polynomial Q
with coefficients in {0, 1, . . . , 9} such that Q(−2) = Q(−5) = n.

Solution: First suppose there exists a polynomial Q with coeffi-
cients in {0, 1, . . . , 9} such that Q(−2) = Q(−5) = n. We shall prove
that this polynomial is unique. By the Factor Theorem, we can write
Q(x) = P (x)R(x) + n where P (x) = (x + 2)(x + 5) = x2 + 7x + 10
and R(x) = r0 + r1x+ r2x

2 + · · · is a polynomial. Then r0, r1, r2, . . .
are integers such that

10r0 + n, 10rk + 7rk−1 + rk−2 ∈ {0, 1, . . . , 9}, k ≥ 1 (1)

(with the understanding that r−1 = 0). For each k, 1 uniquely
determines rk once rj is known for all j < k. Uniqueness of R, and
therefore of Q, follows.

Existence will follow from the fact that for the unique sequence {rk}
satisfying 1, there exists some N such that rk = 0 for all k ≥ N .
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First note that {rk} is bounded, since |r0|, |r1| ≤ B and B ≥ 9 imply
|rk| ≤ B for all k. This follows by induction, using 10|rk| ≤ 7|rk−1|+
|rk−2| + 9 ≤ 10B. More specifically, if ri ≤ M for i = k − 1, k − 2,
then

rk ≥ −
7rk−1

10
− rk−2

10
≥ −4M

5
,

while if ri ≥ L for i = k − 1, k − 2, then

rk ≤ −
7rk−1

10
− rk−2

10
+

9
10
≤ −4L

10
+

9
10
.

Since the sequence {rk} is bounded, we can define

Lk = min{rk, rk−1, . . .}, Mk = max{rk, rk+1, . . .}.

Clearly Lk ≤ Lk+1 and Mk ≥Mk+1 for all k.

Since Lk ≤Mk for all k, the non-decreasing sequence {Lk}must stop
increasing eventually, and, similarly, the non-increasing sequence
{Mk} must stop decreasing. In other words, there exist L, M, N
such that Lk = L and Mk = M for all k ≥ N . Certainly L ≤M , and
M ≥ 0, since no three consecutive terms in {rk} can be negative, but
the above arguments also imply L ≥ −4M/5 andM ≤ −4L/5+9/10.
A quick sketch shows that the set of real pairs (L, M) satisfying these
conditions is a closed triangular region containing no lattice points
other than (0, 0). It follows that rk = 0 for all k ≥ N , proving
existence.

4. To clip a convex n-gon means to choose a pair of consecutive sides
AB,BC and to replace them by the three segments AM,MN , and
NC, where M is the midpoint of AB and N is the midpoint of BC.
In other words, one cuts off the triangle MBN to obtain a convex
(n + 1)-gon. A regular hexagon P6 of area 1 is clipped to obtain a
heptagon P7. Then P7 is clipped (in one of the seven possible ways)
to obtain an octagon P8, and so on. Prove that no matter how the
clippings are done, the area of Pn is greater than 1/3, for all n ≥ 6.

Solution: The key observation is that for any side S of of P6,
there is some sub-segment of S that is a side of Pn. (This is easily
proved by induction on n.) Thus Pn has a vertex on each side of
P6. Since Pn is convex, it contains a hexagon Q with (at least) one
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vertex on each side of P6. (The hexagon may be degenerate, as some
of its vertices may coincide.)

Let P6 = A1A2A3A4A5A6, and letQ = B1B2B3B4B5B6, with Bi on
AiAi+1 (indices are considered modulo 6). The side BiBi+1 of Q is
entirely contained in triangle AiAi+1Ai+2, so Q encloses the smaller
regular hexagon R (shaded in the diagram below) whose sides are
the central thirds of the segments AiAi+2, 1 ≤ i ≤ 6. The area of
R is 1/3, as can be seen from the fact that its side length is 1/

√
3

times the side length of P6, or from a dissection argument (count the
small equilateral triangles and halves thereof in the diagram below).
Thus Area(Pn) ≥ Area(Q) ≥ Area(R) = 1/3. We obtain strict
inequality by observing that Pn is strictly larger that Q: if n = 6,
this is obvious; if n > 6, then Pn cannot equal Q because Pn has
more sides.

Note. With a little more work, one could improve 1/3 to 1/2. The
minimal area of a hexagon Q with one vertex on each side of P6 is in
fact 1/2, attained when the vertices of Q coincide in pairs at every
other vertex of P6, so the hexagon Q degenerates into an equilateral
triangle. If the conditions of the problem were changed so that the
“cut-points” could be anywhere within adjacent segments instead of
just at the midpoints, then the best possible bound would be 1/2.

5. Prove that, for all positive real numbers a, b, c,

(a3 + b3 + abc)−1 + (b3 + c3 + abc)−1 + (c3 + a3 + abc)−1 ≤ (abc)−1.

Solution: The inequality (a − b)(a2 − b2) ≥ 0 implies a3 + b3 ≥
ab(a+ b), so

1
a3 + b3 + abc

≤ 1
ab(a+ b) + abc

=
c

abc(a+ b+ c)
.

Similarly

1
b3 + c3 + abc

≤ 1
bc(b+ c) + abc

=
a

abc(a+ b+ c)
,

and
1

c3 + a3 + abc
≤ 1
ca(c+ a) + abc

=
b

abc(a+ b+ c)
.
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Thus

1
a3 + b3 + abc

+
1

b3 + c3 + abc
+

1
c3 + a3 + abc

≤ a+ b+ c

abc(a+ b+ c)
=

1
abc

.

6. Suppose the sequence of nonnegative integers a1, a2, . . . , a1997 satis-
fies

ai + aj ≤ ai+j ≤ ai + aj + 1

for all i, j ≥ 1 with i + j ≤ 1997. Show that there exists a real
number x such that an = bnxc for all 1 ≤ n ≤ 1997.

Solution: Any x that lies in all of the half-open intervals

In =
[
an
n
,
an + 1
n

)
, n = 1, 2, . . . , 1997

will have the desired property. Let

L = max
1≤n≤1997

an
n

=
ap
p

and U = min
1≤n≤1997

an + 1
n

=
aq + 1
q

.

We shall prove that
an
n
<
am + 1
m

,

or, equivalently,
man < n(am + 1) (∗)

for all m, n ranging from 1 to 1997. Then L < U , since L ≥ U
implies that (∗) is violated when n = p and m = q. Any point x in
[L, U) has the desired property.

We prove (∗) for all m, n ranging from 1 to 1997 by strong induction.
The base case m = n = 1 is trivial. The induction step splits into
three cases. If m = n, then (∗) certainly holds. If m > n, then the
induction hypothesis gives (m − n)an < n(am−n + 1), and adding
n(am−n + an) ≤ nam yields (∗). If m < n, then the induction
hypothesis yields man−m < (n − m)(am + 1), and adding man ≤
m(am + an−m + 1) gives (∗).
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1.26 Vietnam

1. Determine the smallest integer k for which there exists a graph on
25 vertices such that every vertex is adjacent to exactly k others,
and any two nonadjacent vertices are both adjacent to some third
vertex.

Solution: The following list includes all of the vertices: some given
vertex v, every neighbor of v, and every neighbor of those neighbors
other than v itself. The length of this list is 1 + k + k(k − 1), so
k2 + 1 ≥ 25, or k ≥ 5.

Let us prove that k = 5 is impossible, by counting the number of
4-cycles in such a graph. In the list we made above, there must be
exactly one repetition; by construction, it cannot be v that appears
more than once. Moreover, if two neighbors of v are adjacent, then
each appears twice on the list, which cannot happen. Thus two
nonneighbors of v must coincide, and so v belongs to exactly one
four-cycle. The same reasoning applies to each vertex; however, 25
vertices cannot be partitioned into 4-cycles, a contradiction.

We now exhibit a graph of the desired form with k = 6. Construct
five 5-cycles, and between any two 5-cycles, draw five edges joining
each vertex on one cycle to one on the other, so that adjacent vertices
on one cycle are joined to nonadjacent vertices on the other. (That
is, make each pair of cycles into a Petersen graph.) Then any two
vertices lie in a copy of the Petersen graph, and so are adjacent or
have a common neighbor.

2. Find the largest real number α for which there exists an infinite
sequence a1, a2, . . . of positive integers satisfying the following prop-
erties.

(a) For each n ∈ N, an > 1997n.

(b) For every n ≥ 2, aαn does not exceed the greatest common
divisor of the set {ai + aj : i+ j = n}.

Solution: The largest possible value of α is 1/2.

First, suppose (an)∞n=1 is a sequence such that conditions (a) and
(b) hold.
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Lemma 1 For every ε > 0, there are infinitely many values of n ∈ N
for which a2n ≥ a2−ε

n .

Proof. Let ε > 0, and suppose there exists N ∈ N such that for all
n > N , a2n < a2−ε

n . Taking logs and dividing by 2n gives

log a2n

2n
<

2− ε
2
· log an

n
,

so
log a2kn

2kn
<

(
2− ε

2

)k log an
n
→ 0 as k →∞,

impossible as an ≥ 1997n so (log an)/n ≥ log 1997 for all n. 2

Now let n be one of the values given by the Lemma, so that a2−ε
n ≤

a2n. Then

a(2−ε)α
n ≤ aα2n ≤ gcd { ai + aj | i+ j = 2n } ≤ 2an,

so 2 ≥ a
1−(2−ε)α
n ≥ 1997n(1−(2−ε)α); since this is true for infinitely

many values of n ∈ N, we must have α ≤ 1/(2− ε). Since ε > 0 was
arbitrary, we must in fact have α ≤ 1/2.

Now we give a sequence satisfying conditions a and b with α = 1/2.
Denote the nth Fibonacci number by Fn. Let t be an even integer
such that F2tn > 1997n for all n ∈ N, and define the sequence
(an)∞n=1 by an = 3F2tn. Then condition (a) clearly holds. I claim
that Ftn | F2ti + F2tj when i+ j = n, so gcd{ ai + aj | i+ j = n } ≥
3Ftn. In fact,

F2ti = Ft(i+j)Ft(i−j)+1 + Ft(i+j)−1Ft(i−j)

F2tj = Ft(i+j)Ft(j−i)+1 + Ft(i+j)+1Ft(j−1)

so

F2ti + F2tj = 2Ft(i+j)Ft(i−j)+1 + (Ft(i+j)+1 − Ft(i+j)−1)Ft(j−i)
= Ft(i+j)(2Ft(i−j)+1 − Ft(i−j))

and the claim holds. Now,

an = 3F2tn = 3Ftn(Ftn+1+Ftn−1) ≤ 9F 2
tn ≤ (gcd{ ai+aj | i+j = n })2,

so a1/2
n ≤ gcd{ ai+aj | i+ j = n } and the sequence (an)∞n=1 satisfies

the conditions of the problem with α = 1/2.
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3. [Corrected] Let f : N→ Z be the function defined by

f(0) = 2, f(1) = 503, f(n+ 2) = 503f(n+ 1)− 1996f(n).

For k ∈ N, let s1, . . . , sk be integers not less than k, and let pi be a
prime divisor of f(2si) for i = 1, . . . , k. Prove that for t = 1, . . . , k,

2t |
k∑
i=1

pi if and only if 2t | k.

Solution: First, one can easily prove by induction that f(n) =
4n + 499n for n ≥ 0.

Lemma 2 If p is an odd prime, m, n ∈ N not divisible by p, s ≥ 0,
and p | m2s + n2s , then p ≡ 1 (mod 2s+1).

Proof: Let g be a primitive root mod p, and take k such that gk ≡
mn−1 (mod p). As p divides m2s + n2s , m2s ≡ −n2s (mod p)
so (mn−1)2s ≡ −1 (mod p); therefore g2sk ≡ −1 (mod p) and
2sk ≡ (p− 1)/2 (mod p− 1), so 2sk = l(p− 1)/2 with l odd. Thus
2s divides (p− 1)/2 and 2s+1 divides p− 1. 2

Now let k ∈ N, s1, . . . , sk integers not less than k, and pi a prime
divisor of f(2si) = 42si + 4992si for each i. Then pi is not 2 or 499,
so by the Lemma 2si+1 | pi − 1; in particular pi ≡ 1 (mod 2k).
Therefore

k∑
i=1

pi ≡ k (mod 2k) so 2t |
k∑
i=1

pi if and only if 2t | k.

4. Find all pairs (a, b) of positive reals such that for every n ∈ N and
every real number x satisfying

4n2x = log2(2n2x+ 1),

we have ax + bx ≥ 2 + 3x.

Solution: The pairs satisfying this condition are { (a, b) | ab ≤ e3 }.
Let S = {x ∈ R | ∃n ∈ N : 4n2x = log2(2n2x+ 1) }; since

4n2x = log2(2n2x+1) ⇐⇒ 42n2x = 2n2x+1 ⇐⇒ 2n2x =
−1
2

or 0,
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S = {−1/4n2 | n ∈ N }∪{0}. We want to show that ax+bx ≥ 2+3x
for all x ∈ S if and only if ab ≤ e3.

First, suppose ab ≤ e3. Then a0 + b0 = 2 = 2 + 3 · 0; suppose x ∈ S,
x < 0. By the power mean inequality(

ax + bx

2

)1/x

≤
√
ab ≤ e3/2

so (as x < 0)

ax + bx ≥ 2e3x/4 ≥ 2(1 +
3x
2

) = 2 + 3x.

Now suppose ax + bx ≥ 2 + 3x for all x ∈ S. Note that

lim
x→0

ax − 1
x

= log a, lim
x→0

bx − 1
x

= log b,

so
lim
x→0

ax + bx − 2
x

= log ab,

but for x ∈ S, x 6= 0,
ax + bx − 2

x
≥ 3.

Since 0 is an accumulation point of S \{0}, we must have log ab ≥ 3,
so ab ≥ e3. Therefore ax + bx ≥ 2 + 3x for all x ∈ S if and only if
ab ≥ e3.

5. [Corrected] Let n, k, p be positive integers such that k ≥ 2 and k(p+
1) ≤ n. Determine the number of ways to color n labeled points on
a circle in blue or red, so that exactly k points are colored blue, and
any arc whose endpoints are blue but contains no blue points in its
interior contains at least p red points.

Solution: We may fix the location of one blue point as long as
we multiply our final answer by n/k. (By symmetry, the number
of arrangements in which a given point is blue is the same for each
point.) We are distributing n− k red points into the k arcs formed
by the blue points so that each arc receives at least p points. Equiv-
alently, we are distributing n− (k + 1)p points into the k arcs with
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no restrictions. Remembering to multiply by n/k as noted earlier,
our answer becomes

n

k

(
n− (k + 1)p+ k − 1

k − 1

)
.
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2 1997 Regional Contests: Solutions

2.1 Asian Pacific Mathematics Olympiad

1. Let

S = 1 +
1

1 + 1
3

+
1

1 + 1
3 + 1

6

+ · · ·+ 1
1 + 1

3 + 1
6 + · · ·+ 1

1993006

,

where the denominators contain partial sums of the sequence of re-
ciprocals of triangular numbers. Prove that S > 1001.

Solution: Note that
n∑
i=1

2
i(i+ 1)

= 2
n∑
i=1

1
i
− 1
i+ 1

= 2− 2
n+ 1

=
2n
n+ 1

.

Therefore,

S =
1996∑
i=1

i+ 1
2i

= 998 +
1
2

1996∑
i=1

1
i

> 998 +
1
2

(
1
2

+
2
4

+ · · ·+ 32
64

)
= 1001.

2. Find an integer n with 100 ≤ n ≤ 1997 such that n divides 2n + 2.

Solution: Note that 2 divides 2n + 2 for all n. Also, 11 divides
2n + 2 if and only if n ≡ 6 (mod 10), and 43 divides 2n + 2 if and
only if n ≡ 8 (mod 14). Since n = 946 = 2 · 11 · 43 satisfies both
congruences, n divides 2n + 2.

3. Let ABC be a triangle and let

la =
ma

Ma
, lb =

mb

Mb
, lc =

mc

Mc
,

where ma,mb,mc are the lengths of the internal angle bisectors and
Ma,Mb,Mc are the lengths of the extensions of the internal angle
bisectors to the circumcircle. Prove that

la

sin2A
+

lb

sin2B
+

lc

sin2 C
≥ 3,
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with equality if and only if ABC is equilateral.

Solution: Let the bisector of A intersect BC at P and the circle
at Q. Then

AP

AB
=

sinB
sin 180◦ −B −A/2

,
AB

AQ
=

sinC
sinB +A/2

.

Therefore
la =

AP

AQ
=

sinB sinC
(sinB +A/2)2

.

We compute lb and lc similarly, and deduce that

la

sin2A
+

lb

sin2B
+

lc

sin2 C
≥ sinB sinC

sin2A
+

sinC sinA
sin2B

+
sinA sinB

sin2 C
≥ 3

by AM-GM. (Equality only occurs if sin(B+A/2) = 1 and so forth,
which forces A = B = C = 60◦.)

4. The triangle A1A2A3 has a right angle at A3. For n ≥ 3, let An+1

be the foot of the perpendicular from An to An−1An−2.

(a) Show that there is a unique point P in the plane interior to the
triangles An−2An−1An for all n ≥ 3.

(b) For fixed A1 and A3, determine the locus of P as A2 varies.

Solution:

(a) First, notice each triangle is contained in the previous triangle.
Therefore, any point contained in one triangle is contained in
the previous ones. Thus such a point P must exist. Moreover,
each triangle is similar to the previous one with the same ratio
of similarity; hence the maximum distance between two points
in the triangle also decreases by this ratio, and so two points
inside all of the triangles cannot lie at any positive distance.
Thus P is unique.

(b) Let the first five points be A,B,C,D,E. Then triangle CDE
is similar to triangle ABC. Also, the points are in the same
order, so we’ll be dropping perpendiculars in the same order
for both. Therefore, P is in the same position relative to ABC
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as CDE. In particular, triangles APC and CPE are similar,
so

∠APC = ∠CPE, ∠PAC = ∠PCE.

However, ∠PAC +∠PCA = ∠PCE +∠PCA = 90. Therefore
∠APC = 90 and ∠CPE = ∠APC = 90, so APE is a straight
line.
Let ∠CAB = A; then

CE = CD cosA = CA cosA sinA = CA/2 sin 2A,

so 0 ≤ CE ≤ CA/2 and both bounds are optimal. Now the lo-
cus of the projection of C on AE (which is P ) is an arc of the cir-
cle with diameter AC with endpoint C and angle 2 arctan(1/2)
(since the maximal value of tan∠CAE is 1/2 and the central
angle is twice ∠CAE).

5. Persons A1, . . . , An (n ≥ 3) are seated in a circle in that order, and
each person Ai holds a number ai of objects, such that (a1 + · · · +
an)/n is an integer. It is desired to redistribute the objects so that
each person holds the same number; objects may only be passed
from one person to either of her two neighbors. How should the
redistribution take place so as to minimize the number of passes?

Solution: Note that allowing negative numbers of objects does
not matter, since we can rearrange the moves to avoid the negative
numbers.

First suppose we make no moves between A1 and An. Consider the
quantity

x = |b1|+ |b1 + b2|+ · · ·+ |b1 + b2 + · · ·+ bn|,

where bi = ai minus the number of objects Ai ends up with. This
quantity equals 0 if and only if we have finished. Moreover, a move
between ai and ai+1 changes |b1 + . . .+ bi| by 1 and does not change
the other terms. Hence at least x moves are needed.

Finally, note that there always exists a move decreasing x by 1:
move between ai and ai+1, where i is the smallest integer such that
|b1 + b2 + · · · + bi| is nonzero. Hence a redistribution exists using
only x moves.
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Now we allow moves between A1 and An, as in the original problem.
Clearly the optimal strategy is to move between A1 and An if such
a move decreases x by 2 or more, and otherwise move to decrease x
by 1 as above.
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2.2 Austrian-Polish Mathematical Competition

1. Let P be the intersection of lines l1 and l2. Let S1 and S2 be two
circles externally tangent at P and both tangent to l1, and let T1

and T2 be two circles externally tangent at P and both tangent to l2.
Let A be the second intersection of S1 and T1, B that of S1 and T2,
C that of S2 and T1, and D that of S2 and T2. Show that the points
A,B,C,D are concyclic if and only if l1 and l2 are perpendicular.

Solution: Invert around P ; S1, l1, S2 become parallel lines, as
do T1, l2, T2. Thus ABCD inverts to a parallelogram and we need
that a parallelogram is cyclic iff it is a rectangle, which is obvious.

2. Letm,n, p, q be positive integers, and consider anm×n checkerboard
with a checker on each of its mn squares. A piece can be moved from
(x, y) to (x′, y′) if and only if |x−x′| = p and |y−y′| = q. How many
ways can all of the pieces be moved simultaneously so that one piece
ends up on each square?

Solution: Answer: 1 if 2p |m and 2q |n, else 0.

It will be convenient to first prove this in the case p = q = 1. Color
the grid in a checkerboard pattern, with black in the upper left hand
corner. If m is odd, there will be more black squares in the top row
than the second, and the move will be impossible; similarly if n is
odd. Finally, if both m and n are even, all markers in the top row
must go to the second and all the markers in the second are needed
to fill the top. This can happen in exactly one way (divide the top
two rows into two by two blocks, each marker switches with the one
diagonally opposite it). This now reduces to the m× (n− 2) case.

Now we tackle the general case, with p and q arbitrary. The key
observation is that the squares can be divided into pq categories,
based on their x coordinate mod p and y coordinate mod q. The
movements on each grid are independent, and each one acts like a
grid with p = q = 1. The horizontal side of these grids is either
bm/pc or bm/pc+1 and similarly for the vertical size. The only way
all of these can have even size is if 2p |m and 2q |n.

3. [Corrected] On a blackboard are written the numbers 49/k with
k = 1, 2, . . . , 97. At each step, two numbers a, b are erased and
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2ab − a − b + 1 is written in their place. After 96 steps, a single
number remains on the blackboard. Determine all possible such
numbers.

Solution: The only such number is 1. Note that

2(2ab− a− b+ 1)− 1 = (2a− 1)(2b− 1),

so the product of 2a − 1 over the numbers a on the board never
changes. Thus the final number N must satisfy

2N−1 = (2·49/1−1) · · · (2·49/97−1) = (97/1)·(96/2) · · · (1/97) = 1

and so N = 1.

4. In a convex quadrilateral ABCD, the sides AB and CD are parallel,
the diagonals AC and BD intersect at E, and the triangles EBC
and EAD have respective orthocenters F and G. Prove that the
midpoint of GF lies on the line through E perpendicular to AB.

Solution: Let H be the orthocenter of ABE and I the ortho-
center of CDE; we must show the midpoint of FG is on HI. We
will show the stronger result that FHGI is a parallelogram. Now F
is on the perpendicular from B to CE and H is on the perpendicular
from B to AE. But A,E,C are collinear so FH is perpendicular to
AE and GI is similarly perpendicular. Hence they are parallel; a
similar argument applies to HG and IF .

5. Let p1, p2, p3, p4 be distinct primes. Prove there does not exist a
cubic polynomial Q(x) with integer coefficients such that

|Q(p1)| = |Q(p2)| = |Q(p3)| = |Q(p4)| = 3.

Solution: WLOG, we can consider two cases.

Case 1: Q(p1) = Q(p2) = Q(p3) = −3. Then Q(x) = a(x− p1)(x−
p2)(x− p3)− 3 and we have (p4 − p1)(p4 − p2)(p4 − p3)|6. If p4 > 2,
there are at least two even factors on the left and this is impossible;
if p4 = 2 the left has absolute value at least (3−2)(5−2)(7−2) = 15,
which is also impossible.
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Case 2: Q(p1) = Q(p2) = −3, Q(p3) = Q(p4) = 3 and p1, p2 and p3

aren’t 2. Then as before, (p3− p1)(p3− p2)|6, but the left hand side
has two even factors.

6. Prove there does not exist f : Z→ Z such that f(x+f(y)) = f(x)−y
for all integers x, y.

Solution: First note that f(x + nf(y)) = f(x) − ny. (Proof:
this is obvious for n = 0, and the functional equation gives f(x +
(n + 1)f(y)) = f(x + nf(y)) − y from which we can induct in both
directions.) Therefore, f(1+f(1)·f(1)) = 0. Put k = 1+f(1)·f(1)k
and note k > 0. Then f(x) = f(x+ f(k)) = f(x)− k, contradiction.

7. (a) Prove that for all p, q ∈ R, p2 + q2 + 1 > p(q + 1).

(b) Determine the largest real number b such that p2 + q2 + 1 ≥
bp(q + 1) for all p, q ∈ R.

(c) Determine the largest real number b such that p2 + q2 + 1 ≥
bp(q + 1) for all p, q ∈ Z.

Solution:

(a) See below.

(b) Answer: b =
√

2. WLOG, assume p, q ≥ 0. Now just observe

p2 +q2 +1 ≥ p2 +2((q+1)/2)2 ≥ 2
√
p2(q + 1)2/2 =

√
2p(q+1).

Equality is obtained for p =
√

2, q = 1, proving the maximality.

(c) Answer: 3/2. Note this is achieved by p = q = 1, so 3/2 gives an
upper bound for the maximum b. To see that 3/2 works, again
assume p, q ≥ 0. If q ≥ 3, then p(3 − q) − 2 < 0 ≤ 2(p − q)2,
so p2 + q2 + 1 > 3

2p(q + 1). If q = 0, we need p2 + 1 ≥ 3
2p for

all real p. If q = 1, we need p2 + 2 ≥ 3p or (p− 1)(p− 2) ≥ 0,
which holds for p ∈ Z. If q = 2, we need p2 + 5 ≥ 9

2p, or
(p− 2)(p− 5/2) ≥ 0, which again holds for all p ∈ Z.

8. Let n be a natural number and M a set with n elements. Find
the biggest integer k such that there exists a k-element family of
three-element subsets of M , no two of which are disjoint.
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Solution: For n ≤ 5, we take all three-element subsets and get
k =

(
n
3

)
. We will prove that k =

(
n−1

2

)
for n ≥ 6; this bound is

achieved by taking all sets containing some fixed element x of M .
The base case n = 6 holds because we can pair each set with its
complement, and only one of each pair can occur.

Let {1, 2, 3} be one of the sets in the family. If every other set
contained two of 1, 2, 3, there would be at most 1+3(n−3) <

(
n−1

2

)
+1

sets in the family, so assume there exists some set containing only
one of 1, 2, 3; suppose it is {1, 4, 5}. We win by induction if 7 belongs
to n − 2 or fewer sets (there are at most

(
n−2

2

)
sets not containing

7), so assume it belongs to n − 1 sets. In particular, 7 belongs to a
set not containing 1, say {2, 4, 7}. Likewise, we win unless 6 belongs
to n− 1 ≥ 6 sets; in fact, 6 can only belong to the 6 sets

{1, 2, 6}, {1, 4, 6}, {2, 4, 6}, {1, 6, 7}, {3, 4, 6}, {2, 5, 6}.

We are done unless n = 7 and 6 belongs to all six of the above
sets; in that case, note that 7 can now only belong to the sets
{1, 6, 7}, {2, 4, 7}, {3, 5, 7}, so we win again.

9. Let P be a parallelepiped with volume V and surface area S, and
let L be the sum of the lengths of the edges of P . For t ≥ 0, let Pt
be the set of points which lie at distance at most t from some point
of P . Prove that the volume of Pt is

V + St+
π

4
Lt2 +

4π
3
t3.

Solution: At each edge, raise a plane containing that edge and
perpendicular to each face containing that edge. These divide Pt
into four types of pieces: the original parallelepiped, six rectangu-
lar prisms, twelve sections of cylinders and eight pieces of spheres.
The volume of the parallelepiped is V and the combined volume of
the rectangular prisms is St. For any four parallel edges, the angles
of the cylinders add up to 360 so the volume of those four cylin-
ders adds to πt2 times the length of the edge; all cylinders together
give πt2L/4. Finally, the spherical pieces fit together exactly, giving
4πt3/3.
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2.3 Czech-Slovak Match

1. An equilateral triangle ABC is given. Points K and L are chosen
on its sides AB and AC, respectively, such that |BK| = |AL|. Let
P be the intersection of the segments BL and CK. Determine the
ratio |AK| : |KB| if it is known that the segments AP and CK are
perpendicular.

Solution: Let M be the point on BC with BK = AL = CM ,
and put P = BL ∩ CK, Q = CK ∩ AM , R = AM ∩ BL. Then
the rotation about the center of the triangle taking A to B to C to
A takes P to Q to R to P , so PQR is equilateral. By assumption,
∠APQ = 90◦, so ∠PAR = 30◦ = ∠RPA. Hence QR = RA, and
likewise BP = PR. By two applications of Menelaos’ theorem,

QA

AR

RB

BP

PK

KQ
=
AB

BK

KP

PQ

QR

RA
= −1

we find PQ/KP = 3 and AK/KB = 2.

2. In a community of more than six people, each member exchanges
letters with precisely three other members of the community. Prove
that the community can be divided into two nonempty groups so
that each member exchanges letters with at least two members of
the group he belongs to.

Solution: Let n be the number of people. Consider a graph
whose vertices correspond to the people, with edges between people
who exchange letters. Since each vertex has degree greater than 1,
a cycle must exist. Find a cycle of minimal length and let it have
x people. Put the people in the cycle into group A and the others
into group B. Note that each person in A corresponds with at least
2 other people in A.

If x ≥ 5, then A and B satisfy the condition of the problem. If a
member of B exchanged letters with two people in A, he and at most
x/2 + 1 people in A would form a cycle, contradicting our choice of
the shortest cycle.

If x ≤ (n + 1)/2, which in particular holds for x ≤ 4, the following
algorithm produces satisfactory groups: as long as there exists a
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person in B corresponding with at least two people in A, transfer
him into A. It is clear that this gives what we need provided that
B does not end up empty. However, in the original groups, there
were at most x edges between A and B, and each transfer reduces
this number by at least 1. So B ends up with at least n − 2x > 0
members, and the proof is complete.

3. Find all functions f : R→ R such that the equality

f(f(x) + y) = f(x2 − y) + 4f(x)y

holds for all pairs of real numbers x, y.

Solution: Clearly, f(x) = x2 satisfies the functional equation.
Now assume that there is a nonzero value a such that f(a) 6= a2.
Let y = (x2 − f(x))/2 in the functional equation to find that

f(f(x)/2 + x2/2) = f(f(x)/2 + x2/2) + 2f(x)(x2 − f(x))

or 0 = 2f(x)(x2 − f(x)). Thus, for each x either f(x) = 0 or
f(x) = x2. In both cases, f(0) = 0.

Setting x = a from above, either f(a) = 0 or f(a) = 0 or f(a) = a2.
The latter is false, so f(a) = 0. Now, let x = 0 and then x = a in
the functional equation to find that

f(y) = f(−y), f(y) = f(a2 − y)

and so f(y) = f(−y) = f(a2 + y); that is, the function is peri-
odic with nonzero period a2. Let y = a2 in the original functional
equation to obtain

f(f(x)) = f(f(x) + a2) = f(x2 − a2) + 4a2f(x) = f(x2) + 4a2f(x).

However, putting y = 0 in the functional equation gives f(f(x)) =
f(x2) for all x. Thus, 4a2f(x) = 0 for all x. Since a is nonzero,
f(x) = 0 for all x. Therefore, either f(x) = x2 or f(x) = 0.

4. Is it possible to place 100 solid balls in space so that no two of them
have a common interior point, and each of them touches at least
one-third of the others?
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Solution: Find a sphere S with minimum radius r, and form
the sphere X with the same center but with three times the radius.
Any sphere with radius r and touching S is enclosed within X, so the
intersection of X and any such sphere is (4/3)πr3. Any sphere with
a radius larger than r and touching S completely encloses a sphere
with radius r touching S at the same point; thus, the intersection of
X and any sphere touching S is at least (4/3)πr3. Since the volume
of X is 27 times this volume, at most 26 spheres can touch S, which
is less than 33, one-third of the other spheres. Therefore, it is not
possible to have such an arrangement.

5. Several integers are given (some of them may be equal) whose sum
is equal to 1492. Decide whether the sum of their seventh powers
can equal

(a) 1996;

(b) 1998.

Solution:

(a) Consider a set of 1492 1’s, 4 2’s, and 8 -1’s. Their sum is
1492, and the sum of their seventh powers is 1492(1)+4(128)+
8(−1) = 1996.

(b) By Fermat’s Little Theorem, x7 ≡ x (mod 7). Thus, the sum
of the numbers’ seventh powers must be congruent to the sum
of the numbers, modulo 7. But 1998 6≡ 1492 (mod 7), so the
numbers’ seventh powers cannot add up to 1998.

6. In a certain language there are only two letters, A and B. The words
of this language obey the following rules:

(a) The only word of length 1 is A.

(b) A sequence of letters X1X2 · · ·XnXn+1, where Xi ∈ {A,B} for
each i, is a word if and only if it contains at least one A but is
not of the form X1X2 · · ·XnA where X1X2 · · ·Xn is a word.

Show that there are precisely
(

3995
1997

)
− 1 words which do not begin

with AA and which are composed of 1998 A’s and 1998 B’s.
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Solution: Any word with at least two A’s is either a sequence
ending with a B or a word followed by two A’s (and any such is a
word). Call these type-one words and type-two words, respectively.

Let f(x) be the number of x-letter words containing 1998 B’s and
not starting with two A’s. Then f(1998) = 0 because any such
words would have 0 A’s, violating condition (b). We find a formula
for f(x + 2) for x ≥ 1998. Note that there are at least two A’s in
the word.

TYPE-ONE WORDS: Of the first x + 1 letters, 1997 are B’s. So,
there are

(
x+1
1997

)
type-one words with 1998 B’s. If the first two letters

are A, then of the next x− 1 letters, 1997 are B’s. So, f(x+ 2) only
counts

(
x+1
1997

)
−
(
x−1
1997

)
type-one words.

TYPE-TWO WORDS: A type-two word is counted by f(x + 2) if
and only if the first x letters form a word counted by f(x). So, there
are f(x) type-two words counted by f(x+ 2).

Therefore, for x ≥ 1998,

f(x+ 2) =
(
x+ 1
1997

)
−
(
x− 1
1997

)
+ f(x).

Then

f(3996) =
(

3995
1997

)
−
(

3993
1997

)
+ · · ·+

(
1999
1997

)
−
(

1997
1997

)
+ f(1998).

Since
(

1997
1997

)
= 1 and f(1998) = 0, the sum telescopes to give

f(3996) =
(

3995
1997

)
− 1.
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2.4 Hungary-Israel Mathematics Competition

1. Is there an integer N such that

(
√

1997−
√

1996)1998 =
√
N −

√
N − 1?

Solution: Yes. Expanding the left side, we notice that each term is
either an integer or an integer times

√
1996 · 1997. Thus the left side

can be written as a− b
√

1996 · 1997 for some integers a, b. Likewise,
(
√

1997+
√

1996)1998 can be written as a+ b
√

1996 · 1997, where no-
tably a, b are the same as before. (Changing the sign of

√
1996 does

not change the sign of the integer terms in the expansion, but does
change the sign of every multiple of

√
1996 · 1997.)

Now

a2 − 1996 · 1997b2 = (
√

1997−
√

1996)1998(
√

1997 +
√

1996)1998 = 1,

so the desired equation holds with N = a2.

2. Find all real numbers α with the following property: for any positive
integer n, there exists an integer m such that∣∣∣α− m

n

∣∣∣ < 1
3n
.

Solution: The only such α are the integers; by shifting m, we
reduce to the case α ∈ [−1/2, 1/2).

The inequality for n = 1 implies that −1/3 < α < 1/3. Combined
with the inequality for n = 2, we have −1/6 < α < 1/6. We show
by induction on n that in fact −1/3n < α < 1/3n.

Assume the claim holds for n−1 and that the given inequality holds
for n. In fact we must have m = 0 since 1/n − 1/3n > 1/3(n − 1)
for n > 1, so m cannot be positive (nor likewise negative). Thus the
claim also holds for n.

3. The acute triangle ABC has circumcenter O. Let A1, B1, C1 be the
points where the diameters of the circumcircle through A,B,C meet
the sides BC,CA,AB, respectively. Suppose the circumradius of
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ABC is 2p for some prime number p, and the lengths OA1, OB1, OC1

are integers. What are the lengths of the sides of the triangle?

Solution: Let x = OA1, y = OB1, z = OC1. Then [OBC]/[ABC] =
x/(x + p) and likewise for the other two triangles formed by O.
Adding these gives

1 =
x

x+ p
+

y

y + p
+

z

z + p

or p3 − p(xy + yz + zx) = 2xyz. Thus p | 2xyz, but since x, y, z < p,
we must have p = 2 and x, y, z = 1. Thus ABC is equilateral with
side 2

√
3.

4. How many distinct sequences of length 1997 can be formed using
each of the letters A,B,C an odd number of times (and no others)?

Solution: Let Xn be the number of such sequences of length n.
Given such a sequence of length n+ 2, removing its last two letters
either yields such a sequence of length n, if the letters are the same,
or a sequence not of this form, if the letters are different. In the
latter case, one of the three letters occurs an odd number of times
in the shorter sequence, and the last two letters must be the other
two in some order. In other words,

Xn+2 = 3Xn + 2(3n −Xn) = Xn + 2 · 3n.

Since X3 = 6, we show by induction that Xn = 3
4 (3n−1 − 1). In

particular, X1997 = 3
4 (31996 − 1).

5. The three squares ACC1A
′′, ABB′1A

′, BCDE are constructed exter-
nally on the sides of a triangle ABC. Let P be the center of BCDE.
Prove that the lines A′C,A′′B,PA are concurrent.

Solution: Note that rotating 90◦ about A takes C to A′′ and
A′ to B. Thus triangles CAA′ and A′′AB are congruent, and the
segments A′C and A′′B are equal and perpendicular. Let O be their
intersection.

From above, we have ∠AA′C = ∠A′′BA. Thus the quadrilat-
eral AOBA′ is cyclic, whence ∠AOB = 135◦ and ∠AOA′′ = 45◦.
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Now angles ∠COB and ∠BPC are supplementary, so quadrilateral
OBPC is cyclic and so ∠POB = ∠PCB = 45◦ and ∠POC =
∠PBC = 45◦. We now conclude that A,O, P are collinear, which
proves the desired result.

155



2.5 Iberoamerican Mathematical Olympiad

1. Let r ≥ 1 be a real number such that for all m,n such that m divides
n, bmrc divides bnrc. Prove that r is an integer.

Solution: Suppose r is not an integer; we exhibit m,n such that
m divides n but bmrc does not divide bnrc. Let ar be a nonintegral
multiple of r such that ar is an integer greater than 1 (possible since
r is not an integer); let k be the unique positive integer such that

1
k + 1

≤ ar − barc < 1
k
.

Now

b(k + 1)arc = b(k + 1)barc+ (k + 1)(ar − barc)c
= (k + 1)barc+ b(k + 1)(ar − barc)c.

Now since 1/(k + 1) ≤ ar − barc < 1/k, we have

1 ≤ (k + 1)(ar − barc) < k + 1
k
≤ 2

so b(k+1)(ar−barc)c = 1, and therefore b(k+1)arc = (k+1)barc+1.

If barc divided b(k+1)arc, we would also have barc|1 (since barc|(k+
1)barc), so barc = 1, contrary to our initial assumption. Thus we
may take m = a, n = (k + 1)a as our example.

2. Let ABC be a triangle with incenter I. A circle centered at I meets
the segment BC at D and P (with D closer to B), CA at E and
Q (with E closer to C), and AB at F and R (with F closer to A).
Let S, T, U be the intersections of the diagonals of the quadrilaterals
EQFR, FRDP,DPEQ, respectively. Show that the circumcircles
of the triangles FRT,DPU,EQS pass through a common point.

Solution: Let the points of contact of the incircle of ABC to
BC,CA,AB be K,L,M respectively, and draw IF, IM, IR, ID, IK,
IP , IE, IL, IQ, ST, TU,US. Because BC,CA,AB are tangent to
the incircle, we have IK ⊥ DP , IL ⊥ EQ, IM ⊥ FR. Also
IK = IL = IM and ID = IP = IE = IQ = IF = IR. Therefore
the triangles

DKI, PKI,ELI,QLI, FMI,RMI
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are congruent and so

DK = KP = EL = LQ = FM = MR.

In particular, DP = EQ = FR and so these segments subtend equal
arcs. Adding these in pairs, we get

∠ESQ+ ∠FSR = ∠FTR+ ∠DTP ) = ∠DUP + ∠EUQ

so the angles

∠ESQ = ∠FSR = ∠FTR = ∠DTP = ∠DUP = ∠EUQ

are equal, the quadrilaterals FSTR,DTUP,EUSQ are cyclic, and
the circumcircles of triangles FRT,DPU,EQS are also the circum-
circles of triangles FST,DTU,EUS. However, the points S, T, U are
on the sides of triangle EFD (S on EF , T on FD, U on DE) so
these circles are concurrent by the Pivot theorem.

3. Let n ≥ 2 be an integer and Dn the set of points (x, y) in the plane
such that x, y are integers with |x|, |y| ≤ n.

(a) Prove that if each of the points in Dn is colored in one of three
colors, there exist two points of Dn in the same color such that
the line through them passes through no other point of Dn.

(b) Show that the points of Dn can be colored in four colors so that
if a line contains exactly two points of Dn, those two points have
different colors.

Solution:

(a) Suppose that it is possible to color the points in the set with
three colors as you can with four colors in part (b). Then, if
two points (a, b) and (c, d) are on the border of the set, it is
sufficient to show that |d− b| (the vertical displacement of the
points) and |c− a| (the horizontal displacement) are relatively
prime to show that the line through the two points does not
contain any other point in the set.
This is the case for the point pairs (−n+ 1,−n) and (−n,−n+
1); (−n,−n+ 1) and (n, n); and (n, n) and (−n+ 1,−n), so all
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three of these points must be different colors. Say (−n+ 1,−n)
is orange, (−n,−n + 1) is green and (n, n) is purple. Now,
the point (−n+ 2, n) must also be purple as its horizontal and
vertical displacements from the green point (−n,−n+ 1) are 2
and 2n− 1, and its horizontal and vertical displacements from
the orange point (−n+1,−n) are 1 and 2n. Likewise, (n,−n+2)
is purple. Therefore, (−n + 3,−n) is orange (this point is in
the set because n > 1), since its displacements from the green
point (−n,−n+ 1) are 3 and 1, and its displacements from the
purple point (−n+2, n) are 1 and 2n. Likewise, (−n,−n+3) is
green. Now look at the point (−n+ 1,−n+ 1). Although it is
not on the border, the line from the purple point (−n+ 2, n) to
it does not contain any other point in the set (the next lattice
point on this line is (−n,−3n+ 2), which is not in the set since
n > 1), and neither does the line to it from either the green
point (−n,−n+3) or the orange point (−n+3,−n). The point
(−n+ 1,−n+ 1) then cannot be any of the three colors, which
is a contradiction.

(b) Color all the points that have even x and even y one color, all
those with even x and odd y another color, all those with odd
x and even y another color, and all those with odd x and odd
y the other color. Then if two points are the same color, the
point halfway between them will also be in the set.

4. Let n be a positive integer. Let On be the number of 2n-tuples
(x1, . . . , xn, y1, . . . , yn) with values in 0 or 1 for which the sum x1y1+
· · ·+ xnyn is odd, and let En be the number of 2n-tuples for which
the sum is even. Prove that

On
En

=
2n − 1
2n + 1

.

Solution: We prove by induction that On = 22n−1 − 2n−1 and
En = 22n−1 + 2n−1, which will give the desired ratio.

The base case is n = 1. This case works because O1 = 1 = 21 − 20,
and E1 = 3 = 21 + 20.

For the inductive step, we assume this is true for n = k; then x1y1 +
· · ·+xkyk is even for 22k−1 +2k−1 2k-tuples and odd for 22k−1−2k−1
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2k-tuples. Now, x1y1 + · · · + xk+1yk+1 is odd if and only if either
x1y1 + · · · + xkyk is odd and is even or x1y1 + · · · + xkyk is even
and xk+1yk+1 is odd. xk+1yk+1 can be odd one way and even three
ways, so

Ok+1 = 3(22k−1 − 2k−1) + 22k−1 + 2k−1 = 22(k+1)−1 − 2(k + 1)− 1

and Ek+1 = 22(k+1) −Ok+1, which completes the induction.

5. Let AE and BF be altitudes, and H the orthocenter, of acute trian-
gle ABC. The reflection of AE across the interior angle bisector of
A meets the reflection of BF across the interior angle bisector of B
in a point O. The lines AE and AO meet the circumcircle of ABC
again at M and N , respectively. Let P,R, S be the intersection of
BC with HN , BC with OM , HR with OP , respectively. Show that
AHSO is a parallelogram.

Solution: Let the measures of angles CAB,ABC,BCA be x, y, z,
respectively, and let O′ be the circumcenter of triangle ABC.Note
that O is the isogonal conjugate of H and so is the circumcenter of
ABC. Also

∠BHC = ∠BHE + ∠EHC = z + y = π − x,

so the reflection of H across BC is on the circumcircle. Since it
also lies on line AH (perpendicular to BC), it must be M , and so
triangles REH and REM are congruent. Because of this, ∠RHE =
∠RME = ∠OMA = ∠OAM (triangle AOM is isosceles because O
is the circumcenter), so the lines SH = RH and OA are parallel.

Now, since ∠NAC = (π/2) − y = ∠MAB, arcs NC and MB are
equal, so NC = MB. Since MB = HB also, NC = HB. Also,

∠NCP = ∠NCB = ∠NAB = ∠CAB − ∠CAO
= x− ((π/2)− y) = x+ y − (π/2) = y − ((π/2)− x)
= ∠CBA− ∠FBA = ∠CBF = ∠HBP,

and also ∠HPB = ∠NPC, so triangles HPB and NPC are congru-
ent and CP = BP . Since O is the circumcenter of triangle ABC, we
know that triangle COB is isosceles, which means that, since OP is
the median to the base, it is also an altitude and OP is perpendicular
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to CB. Line AE is also perpendicular to CB, so OP ‖ AE; that is,
OS ‖ AH. Since SH ‖ OA also, AHSO is a parallelogram.

6. Let P = {P1, P2, . . . , P1997} be a set of 1997 points in the interior
of a circle of radius 1, with P1 the center of the circle. For k =
1, . . . , 1997, let xk be the distance from Pk to the point of P closest
to Pk. Prove that

x2
1 + x2

2 + · · ·+ x2
1997 ≤ 9.

Solution: Around each point Pj in P , draw the circle with radius
xj/2. If any two of these circles intersected, say the ones around xj1 and
xj2 , the distance between their centers Pj1 and Pj2 would be less than
xj1/2 + xj2/2, which is impossible since it is not less than xj1 or xj2 .
Hence no two of these circles intersect. Also, since P1 is the center of the
given circle, each xj is at most 1 (the radius of the given circle), and so
each additional radius is at most 1/2. Now, let Aj be a point in the new
circle centered at Pj . We know that AjPj ≤ 1/2, and PjP1 ≤ 1, so by the
triangle inequality, AjP1 ≤ 3/2. Therefore all the points in all the new
circles are inside a circle centered at P1 with radius 3/2. Since the new
circles do not overlap, they all fit inside this circle together as well. In
terms of area, this implies that

π(x1/2)2 + · · ·+ π(x1997/2)2 ≤ π(3/2)2,

which implies the desired result.
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2.6 Nordic Mathematical Contest

1. For any set A of positive integers, let nA denote the number of triples
(x, y, z) of elements of A such that x < y and x + y = z. Find the
maximum value of nA given that A contains seven distinct elements.

Solution: The maximum of 9 is achieved by A = 1, 2, 3, 4, 5, 6, 7.
To see that 9 is a maximum, consider any 7 numbers a < b <
c < d < e < f < g how many times each can serve as the mid-
dle term; i.e., for each y ∈ A how many x, z ∈ A are there such
that x < y < z, x + y = z. The answer is 0, 1, 2, 3, 2, 1, 0 times for
a, b, c, d, e, f, g, respectively, giving n(A) ≤ 9.

2. Let ABCD be a convex quadrilateral. Assume that there exists
an internal point P of ABCD such that the areas of the triangles
ABP,BCP,CDP,DAP are all equal. Prove that at least one of the
diagonals of the quadrilateral bisects the other.

Solution: As [ABP ] = [DAP ], D must lie on the image of PA
under a homothety of ratio 2 about B; similarly D is on the image
of PC under the same homothety. There are two cases:

Case 1: A,P,C are collinear. As the altitudes from B and D to AP
are equal, AP bisects BD.

Case 2: A,P,C are not collinear. Then the images of AP and PC
under the homothety intersect at one point, namely the image of P ,
so the image of P is D. In this case, B,P,D are collinear and the
solution proceeds as above.

3. Assume that A,B,C,D are four distinct points in the plane. Three
of the segments AB,AC,AD,BC,BD,CD have length a. The other
three have length b > a. Find all possible values of the ratio b/a.

Solution: The possible ratios are
√

3, 1/
√

3, (1 +
√

5)/2, 2/(1 +
√

5).

Up to interchanging a and b, we consider three cases (one of which
we will show cannot occur).
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Case 1: AD = BD = CD = a,AB = BC = CA = b. Then
ABC is an equilateral triangle of side b and a is the circumradius,
so b/a =

√
3.

Case 2: AB = BC = CD = a,CA = AD = DB = b, AC intersects
DB. In this case, ABCD is an isosceles trapezoid. Set ∠DAC =
∠ADB = 2θ; then from the isosceles triangles ADB and DAC,

∠ADC = ∠DCA = ∠DAB = ∠ABD = 90− θ

so ∠BDC = ∠BAC = 90−3θ, and from the isosceles triangles ABC
and BCD, ∠ABC = ∠BCD = 6θ. As ∠ABC + ∠DAB = 180, we
find θ = 18 and an easy computation gives b/a = (1 +

√
5)/2. (The

figure is a regular pentagon with one corner removed.)

Case 3: AB = BD = DC = a,BC = CA = AD = b, AC inter-
sects BD. Then ABCD has opposite sides equal and is therefore a
parallelogram, so without loss of generality ∠ABC ≥ 90. But then
AC > BC, a contradiction.

4. Let f be a function defined on {0, 1, 2, . . .} such that

f(2x) = 2f(x), f(4x+ 1) = 4f(x) + 3, f(4x− 1) = 2f(2x− 1)− 1.

Prove that f is injective (if f(x) = f(y), then x = y).

Solution: Note f(2n) ≡ 0 (mod 2) and f(2n+ 1) ≡ 1 (mod 2),
or more precisely in the latter case, f(4n − 1) ≡ 1 (mod 4) and
f(4n + 1) ≡ −1 (mod 4). Then if f(x) = f(y), either x and y
are both even or x ≡ y (mod 4). Moreover, f(2n) = f(2m) or
f(4n + 1) = f(4m + 1) imply f(n) = f(m), while f(4n − 1) =
f(4m − 1) implies f(2n − 1) = f(2m − 1) so any counterexample
would produce an infinite descending chain of counterexamples, a
contradiction.
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2.7 Rio Plata Mathematical Olympiad

1. Around a circle are written 1996 zeroes and and one 1. The only
permitted operation is to choose a number and change its two neigh-
bors, from 0 to 1 and vice versa. Is it possible to change all of the
numbers to 1? And what if we started with 1997 zeroes?

Solution: This is possible with 1996 zeroes, but not with 1997
zeroes. For 1996 zeroes, group them into 499 groups of 4, then select
the second and third zeroes in each group. As for 1997 zeroes, note
that the parity of the sum of the numbers does not change under
the operation, so it cannot go from even (the initial position) to odd
(the desired final position).

2. Show that one cannot draw two triangles of area 1 inside a circle of
radius 1 so that the triangles have no common point.

Solution: Consider the problem of drawing a triangle of maxi-
mum area in a semicircle of radius 1. We may assume this triangle
has its base along the diameter of the semicircle (translate it towards
the diameter until one vertex hits the diameter, then rotate around
that point until a second vertex hits the diameter), so its base is at
most 2 and its height at most 1. In other words, the triangle has
area at most 1, with equality only for the isosceles right triangle with
base along the diameter.

We conclude that two triangles of area 1 are drawn in a circle of
radius 1, they each contain the center of the circle, and so have a
common point.

3. A benefit concert is attended by 1997 people from Peru, Bolivia,
Paraguay and Venezuela. Each person paid for his ticket an integer
number of dollars between 1 and 499, inclusive.

(a) Prove that at least two people of the same nationality paid the
same price.

(b) It is known that each possible price was paid at least once, that
the maximum number of times a price was repeated was 10, and
that subject to these conditions, the smallest amount of money
was collected. How many tickets were sold at each price?

163



Solution:

(a) At least d1997/4e = 500 people from one country attended, so
two paid the same price by the pigeonhole principle.

(b) We allocate one ticket at each price, then allocate each remain-
ing ticket at the lowest price consistent with the maximum num-
ber of tickets at a given price. That is, we allocate 9 tickets at
prices 1, 2, . . . , 166 and 4 at price 167. Thus the minimal cost
is

10(1 + · · ·+ 166) + 5 · 167 + (168 + · · ·+ 499) = 250167.

4. A 4 × 4 square is divided into 1 × 1 squares. A secret number is
written into each small square. All that is known is that the sum
of the numbers in each row, each column, and each of the diagonals
equals 1. Is it possible to determine from this information the sum
of the numbers in the four corners, and the sum of the numbers in
the four central squares? And if so, what are these sums?

Solution: Let x be the sum of the numbers in the four central
squares, y the sum of the numbers in the four corners, and z the
sum of the eight remaining squares. Since the diagonals contain the
four central squares and the four corners, we have x+y = 2. Adding
the second and third rows and columns gives 2x+ z = 4; adding the
first and fourth rows and columns gives 2y+z = 4. Hence x = y = 1.

5. What is the smallest multiple of 99 whose digits sum to 99 and which
begins and ends with 97?

Solution: We refer to the digits of the number besides the two
97s as interior digits; the sum of these digits is 99 − 2(9 + 7) = 67.
Since each digit is at most 9, there are at least 8 such digits.

Note that the sum of digits being 99 forces the number to be divisible
by 9; thus it suffices to ensure that the number be divisible by 11,
which is to say, the alternating sum of its digits must be divisible by
11.

Suppose the number has exactly 8 interior digits. If a is the sum of
the odd interior places and b the sum of the even places, we have
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a+ b = 67 and a− b ≡ −4 (mod 11). Since a− b must also be odd,
we have a − b ≥ 7 or a − b ≤ −15, and so either a ≥ 37 or b ≥ 41,
contradicting the fact that a and b are each the sum of four digits.

Now suppose the number has 9 interior digits. In this case, a−b ≡ 0
(mod 11), so a − b ≥ 11 or a − b ≤ −11. In the latter case, b ≥ 39,
again a contradiction, but in the former case, we have a ≥ 39, which
is possible because a is now the sum of five digits. To minimize the
original number, we take the odd digits to be 3, 9, 9, 9, 9 and the even
digits to be 1, 9, 9, 9, making the minimal number 9731999999997.

6. A tourist takes a trip through a city in stages. Each stage consists of
three segments of length 100 meters separated by right turns of 60◦.
Between the last segment of one stage and the first segment of the
next stage, the tourist makes a left turn of 60◦. At what distance
will the tourist be from his initial position after 1997 stages?

Solution: In one stage, the tourist traverses the complex num-
ber

x = 100 + 100 · e−πi/3 + 100 · e−2πi/3 = 100− 100i
√

3.

Thus in 1997 stages, the tourist traverses the complex number

z = x+x·eπi/3+x·e2πi/3+· · ·+x·e1996πi/3 = x
e1997πi/3 − 1
eπi/3 − 1

= xe2πi/3.

Thus the tourist ends up |xe2πi/3| = 200 meters from his starting
position.
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2.8 St. Petersburg City Mathematical Olympiad (Rus-
sia)

1. The incircle of a triangle is projected onto each of the sides. Prove
that the six endpoints of the projections are concyclic.

Solution: Each endpoint has distance r
√

2 from the incenter,
where r is the inradius. So they are concyclic.

2. [Corrected] Let a 6= ±b be integers. Prove that∣∣∣∣a+ b

a− b

∣∣∣∣ab ≥ 1.

Solution: If a, b are of the same sign, then the fraction has abso-
lute value greater than 1 and the exponent is positive, so the result
is greater than 1. If a, b are of opposite sign, then the fraction has
absolute value less than 1 but the exponent is negative, so again the
result is greater than 1.

3. Prove that every positive integer has at least as many (positive)
divisors whose last decimal digit is 1 or 9 as divisors whose last digit
is 3 or 7.

Solution: Let d1(m), d3(m), d7(m), d9(m) be the number of di-
visors of m ending in 1,3,7,9, respectively. We prove the claim by
induction on m; it holds obviously for m a prime power, and if m is
composite, write m = pq with p, q coprime, and note that

d1(m)− d3(m)− d7(m) + d9(m)
= (d1(p)− d3(p)− d7(p) + d9(p))(d1(q)− d3(q)− d7(q) + d9(q)).

For instance, d3(m) = d1(p)d3(q)+d3(p)d1(q)+d7(p)d9(q)+d9(p)d7(q).

4. Prove that opposite vertices of a 142 × 857 rectangle with vertices
at lattice points cannot be joined by a five-edge broken line with
vertices at lattice points such that the ratio of the lengths of the
edges is 2 : 3 : 4 : 5 : 6.
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Solution: Assume otherwise, by way of contradiction. Let (xi, yi)
be the displacement of edge i of the broken line, 2 ≤ i ≤ b. Then
(x2
i + y2

i ) = ci2 for some constant c. Since the left side is an integer
for all i, 4c and 9c are integers, so c is also an integer.

Now c cannot be even, else xi + yi would be even for all i, but the
sum of these five numbers is 142 + 857. So c is odd, and xi + yi is
even for i = 2, 4, 6 and odd for i = 3, 5. But again these five numbers
have even sum, a contradiction.

5. [Corrected] Find all sets of 100 positive integers such that the sum
of the fourth powers of every four of the integers is divisible by the
product of the four numbers.

Solution: Such sets must be n, n, . . . , n or 3n, n, n, . . . , n for some
integer n. Without loss of generality, we assume the numbers do not
have a common factor. If u, v, w, x, y are five of the numbers, then
uvw divides u4 + v4 +w4 + x4 and u4 + v4 +w4 + y4, and so divides
x4−y4. Likewise, v4 ≡ w4 ≡ x4 (mod u), and from above, 3v4 ≡ 0
(mod u). If u has a prime divisor not equal to 3, we conclude that
every other integer is divisible by the same prime, contrary to as-
sumption. Likewise, if u is divisible by 9, then every other integer
is divisible by 3. Thus all of the numbers equal 1 or 3. Moreover, if
one number is 3, the others are all congruent modulo 3, so are all 3
(contrary to assumption) or 1. This completes the proof.

6. [Corrected] Let B′ be the antipode of B on the circumcircle of tri-
angle ABC, let I be the incenter of ABC, and let M be the point
where the incircle touches AC. The points K and L are chosen on
the rays BA and BC, respectively, so that KB = MC, LB = AM .
Prove that the lines B′I and KL are perpendicular.

Solution: Let α, β, γ be the measures of the angles A,B,C of
triangle ABC, and let a, b, c be the corresponding side lengths and
s the semiperimeter. Also let D be the second intersection of BI
with the circumcircle. It is easily seen that the circle through A
and C centered at D also passes through I: note that ∠AIC =
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π/2 + 1/2β = π − 1/2∠CDA. This means

tan∠B′ID =
B′D

DI
=
B′D

DA
=

sin(α− γ)/2
sinβ/2

.

Note that the angle should be directed modulo π, so that both sides
may be taken as signed quantities.

Likewise, we wish to study the directed angle from KL to BI. To
do this, introduce coordinates with origin at B and positive x-axis
along BI. For the above equality to have matching signs, C must
now lie above the x-axis, so its coordinates are ((s− a) cosβ/2, (s−
a) sinβ/2). Likewise the coordinates of A are ((s− c) cosβ/2,−(s−
c) sinβ/2) and so

tan∠(KL,BI) =
b sinβ/2

(c− a) cosβ/2

=
2 sin2 β/2 cosβ/2

2 cos(γ + α)/2 sin(γ − α)/2 cosβ/2
.

Now note that the product of the two aforementioned lines is -1.
Thus lines B′I and KL are perpendicular.

7. Can a 1997×1997 square be dissected into squares whose side lengths
are integers greater than 30?

Solution: Let us try making two a×na rectangles and two b×mb
rectangles along the perimeter of the square. To fit together per-
fectly, we need na+b = a+mb = 1997, so (mn−1)a = (m−1)1997.
Put m = 37, n = 54 so a = 36,m = 53. What’s left over is a
1891×1925 rectangle. Note that 1891 = 31×61 and 1925 = 35×55.
Now we lay 7 rows of 31 × 31 squares along a side of length 1891,
reducing to a 1891 × 1708 rectangle. Since 1708 = 28 × 61, we can
tile this rectangle with 61× 61 squares.

8. At each vertex of a regular 1997-gon is written a positive integer.
One may add 2 to any of the numbers and subtract 1 from the num-
bers k away from it in either direction, for some k ∈ {1, 2, . . . , 1998};
the number k is then written on a blackboard. After some number
of operations, the original numbers reappear at all of the vertices.
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Prove that at this time, the sum of the squares of the numbers writ-
ten on the blackboard is divisible by 1997.

Solution: We can replace one operation with k = n with n2

operations with k = 1 with the same effect: perform the k = 1 op-
erations n times at the center of the original move, n − 1 times at
the two neighbors of that vertex, n−2 at the two outer neighbors of
those vertices, and so on. Furthermore, writing n on the blackboard
contributes the same total as writing n2 1’s. Thus we may assume
k = 1 always. But in this case, if d moves are made adding to a given
vertex, then 2d moves must be made at its two neighbors combined.
This implies the same number of moves were made at each vertex:
otherwise, some vertex would have more moves made there than at
one neighbor, and at leas as many as at the other, so fewer than 2d
moves would have been made at its neighbors,. contradicting what
we just said. In particular, the sum of the 1’s is divisible by 1997,
and this sum equals the sum of the squares of the original numbers
written.

9. [Corrected] The positive integers x, y, z satisfy the equation 2xx =
yy + zz. Prove that x = y = z.

Solution: We note that (x+1)x+1 ≥ xx+1 +(x+1)xx ≥ 2xx. Thus
we cannot have y > x or z > x, else the right side of the equation
will exceed the left. But then 2xx ≥ yy + zz, with equality if and
only if x = y = z.

10. The number N is the product of k diferent primes (k ≥ 3). Two
players play the following game. In turn, they write composite divi-
sors of N on a blackboard. One may not write N . Also, there may
never appear two coprime numbers or two numbers, one of which
divides the other. The first player unable to move loses. Does the
first player or the second player have a winning strategy?

Solution: The first player has a winning strategy: first write
pq for p, q distinct primes. Every subsequent number must be of the
form pn or qn for some n > 1 relatively prime to pq. If the second
player writes pn, the first player then writes qn, and vice versa.
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11. Let K,L,M,N be the midpoints of sides AB,BC,CD,DA, respec-
tively, of a cyclic quadrilateral ABCD. Prove that the orthocenters
of triangles AKN,BKL,CLM,DMN are the vertices of a parallel-
ogram.

Solution: In terms of vectors with origin at the circumcenter
of ABCD, the orthocenter of ABD is A+B +D, and AKN is the
image of ABD through a homothety through A with ratio 1/2, then
the orthocenter of AKN is A+(B+D)/2. Then it is clear that these
four orthocenters form a parallelogram: the midpoint of the segment
joining the orthocenters of AKN and CLM is (A+B + C +D)/2,
and likewise for the other orthocenters.

12. A 100×100 square grid is folded several times along grid lines. Two
straight cuts are also made along grid lines. What is the maximum
number of pieces the square can be cut into?

Solution: If we number the grid lines in each direction, a line
can only be folded onto a parallel line of the same parity. Thus
each cut breaks at most 50 edges in one direction. Having these be
parallel would create at most 2 × 50 + 1 pieces, but making them
perpendicular allows at most 512 pieces. This is in fact realized, by
folding the sheet into a 2 × n rectangle, then a 2 × 2 square, and
cutting along the central grid lines of the square.

13. The sides of a convex polyhedron are all triangles. At least 5 edges
meet at each vertex, and no two vertices of degree 5 are connected
by an edge. Prove that this polyhedron has a side whose vertices
have degrees 5, 6, 6, respectively.

Solution: We begin by proving that the average degree of a vertex
is less than 6. Let V , F , and E be the number of vertices, faces, and
edges in our polyhedron. Let D be the sum of all the degrees of all
vertices in the polyhedron.
Observe that we can relate E, F , and D. We know that 2E = D,
where D is the sum of all the degrees of all the vertices. We also
know that 3F = D (each face is a triangle). Thus, 2E = D = 3F .
However, we also know another relationship. Recall that if V , F ,
and E are the number of vertices, faces, and edges on a polyhedron,
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respectively, then V − E + F = 2 by Euler’s formula. Therefore,

V − E + F = 2
V − (1/2)D + (1/3)D = 2

V − (1/6)D = 2
6V − 12 = D

D/V = 6− 12/V
< 6

Now we introduce more definitions. Let xi, where i ∈ Z+ represent
the number of vertices with degree i. Also, let us arbitrarily number
each of the vertices; let Ai represent the vertex numbered i. Now,
we define two functions.

Suppose the vertex Ai has degree five; let us further suppose that
the number of vertices with degree greater than six, adjacent to Ai,
is v. Let us refer to v as f(Ai). If Ai does not have degree 5, let
f(Ai) = 0.

Similarly, suppose that vertex Ai has degree greater than six. If v
is the number of vertices with degree five, adjacent to Ai, then let
g(Ai) be v. If has degree 6 or less, let g(Ai) = 0.

Let e be the number of edges that connect a vertex of degree five to
a vertex with degree greater than six. Then, if n is the number of
vertices in our polygon,

n∑
i=1

f(Ai) = e =
n∑
i=1

g(Ai) (2)

Now we proceed indirectly to complete our problem. Assume that
no 5-6-6 triangles exist on our polyhedron. Since the average degree
of a vertex is less than six, there must be at least one vertex with
degree five. Our assumption implies that there must be at least three
vertices, with degree greater than six, adjacent to every vertex with
degree five. Therefore,

∑n
i=1 f(Ai) ≥ 3x5.

However, recall that no two vertices of degree five may be adjacent.
Let Ai be a vertex with degree d > 6. Then, the maximum number
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of vertices Aj of degree five, adjacent to Ai is bd/2c. Therefore,

n∑
i=1

g(Ai) ≤
n∑
i=1

⌊
degree of Ai

2

⌋
=
∞∑
i=7

xibi/2c

Thus,

3x5 ≤
n∑
i=1

f(Ai) =
n∑
i=1

g(Ai) ≤
∞∑
i=7

xibi/2c (3)

Isolating x5,

x5 ≤
∞∑
i=7

(xi/3)bi/2c.

Since bi/2c/3 ≤ i− 6 for i ≥ 7,

x5 ≤
∞∑
i=7

xi(i− 6)

6x5 + 6x6 + 6
∞∑
i=7

xi ≤
∞∑
i=7

xi(i− 6) + 5x5 + 6x6 + 6
∞∑
i=7

xi

6
∞∑
i=5

xi ≤ 5x5 + 6x6 +
∞∑
i=7

ixi

6V ≤ D

D/V ≥ 6

We have a contradiction; therefore, our assumption was false and we
are done.

14. Given 2n+ 1 lines in the plane, prove that there are at most n(n+
1)(2n+ 1)/6 acute triangles with sides on the lines.

Solution: Number the lines from 1 to 2n + 1, fix a reference
line `, and for line j, if tj is the angle between ` and line j, plot the
point e2itj . Then three (nonconcurrent) lines form an acute triangle
if and only if their corresponding points do not lie on a semicircle of
the unit circle, i.e., if they form an acute triangle.

Fix a point, and suppose there are d points on one side of the di-
ameter through that point and 2n − d on the other. Then there
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are
(
d
2

)
+
(

2n−d
2

)
≥ 2
(
n
2

)
triangles with one vertex at the given point

which are obtuse but have an acute angle at the given point. Sum-
ming over the points, and noting each obtuse triangle is counted
twice this way, we get at least n(n − 1)(2n + 1)/2 obtuse triangles
and so at most

(2n+ 1)(2n)(2n− 1)
6

− n(n− 1)(2n+ 1)
2

=
n(n+ 1)(2n+ 1)

6
acute triangles.

15. Prove that the set of all 12-digit numbers cannot be divided into
groups of 4 numbers so that the numbers in each group have the
same digits in 11 places and four consecutive digits in the remaining
place.

Solution: We begin with a very useful lemma.

Lemma 3 We have a n-dimensional hyper-rectangular-prism, com-
posed of unit hypercubes, with dimensions d1 × d2 × d3 × · · · × dn,
where all di ∈ Z+. Under a standard coloring of this object, with c
colors, there will be an equal number of unit-hypercubes of each color
only if c|di for some i.

This lemma can be proven with generating functions. We suppose
that there is an equal number, p, of unit-hypercubes of each color.
Then we will show that c|di for some i.

We introduce a generating function:

f(x) =
∏
i

(1 + x+ x2 + x3 + · · ·xdi−1).

Let us multiply out f(x); let αi be the coefficient of the xi term.
Then,

∞∑
k=0

αm+ck

represents the number of unit-hypercubes with color m, when 0 ≤
m ≤ c− 1 and m ∈ Z+. But we can rewrite f(x):

f(x) =
n∏
j=1

xdj − 1
x− 1

(4)

173



Let γ = cos 2π/c + i sin 2π/c. Observe that if x = γ, then xm =
xm+ck for all nonnegative integers m, k. Therefore,

f(γ) =
n−1∑
m=0

( ∞∑
k=0

αm+ck

)
γm

=
c−1∑
m=0

pγm = 0.

But if f(γ) = 0, then from equation (4), γdj must equal one for some
j. But γdj = cos 2πdj/c + i sin 2πdj/c, so it only equals one when
dj/c ∈ Z. Thus, c|di for some i and our lemma is proven.

Now we apply our lemma to our problem. Let us represent all the
12-digit numbers by a 9×10×10×10×10×10×10×10×10×10×
10×10 hyper-rectangular-prism. In our problem, we are dividing this
hyper-rectangular-prism into smaller hyper-rectangular-prisms with
11 of its dimensions measuring one unit, and the other dimension
measuring four units. If we color our big hyper-rectangular-prism
with four colors the standard way, then each of our smaller pieces
must contain an equal number of unit-hypercubes of each color. By
our lemma, since 4 does not divide any of the dimensions of our big
object, we are done.

16. A circle is divided into equal arcs by 360 points. The points are
joined by 180 nonintersecting chords. Consider also the 180 chords
obtained from these by a rotation of 38◦ about the center of the
circle. Prove that the union of these 360 chords cannot be a closed
(self-intersecting) polygon.

Solution: Suppose that the chords form a single polygon. Color
the vertices alternately red and black; then each chord must separate
the remaining vertices into two groups of even size (since chords do
not intersect), so each chord joins a red vertex to a black vertex.
Moreover, each original chord gets traversed in the opposite direc-
tion from its corresponding rotated chord (if the original chords are
traversed from red to black, the rotated chords are traversed from
black to red, and the 38◦ rotation takes black to black and red to
red).
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Label the black vertices 1, . . . , 180 in order around the circle, and do
likewise with the red vertices. (The relative positions of the red and
black vertices with the same number are immaterial.) Now define the
permutation p on {1, . . . , 180} by letting p(n) be the number of the
black vertex joined to the red vertex n by an original chord. If r is
the permutation sending n to n+ 19 (mod 180), then rp−1r−1 is the
permutation which maps n to the number of the red vertex joined
to the black vertex n by a rotated chord. Since p and rp−1r−1 are
conjugate permutations, they have the same signature, and so their
product prp−1r−1 is an even permutation. However, this product is
the permutation taking n to the number of the next red vertex after
n on the polygon, and so is a 180-cycle, which is an odd permutation.
Contradiction.

17. Can a 75× 75 table be partitioned into dominoes (1× 2 rectangles)
and crosses (five-square figures consisting of a square and its four
neighbors)?

Solution: No. Color the table in a checkerboard pattern with the
corners red. A region tiled with dominoes has as many red squares
as black squares, but a cross covers one square of one color and four
of the other color. Thus the area not covered by crosses consists of
M + 1 − a − 4b red squares and M − b − 4a black squares, where
M = (752 − 1)/2, a is the number of dominoes, and b is the number
of crosses. If these were equal, we’d have 3(b−a) = 1, contradiction.

18. Prove that for x, y, z ≥ 2, (y3 + x)(z3 + y)(x3 + z) ≥ 125xyz.

Solution: The left side is at least (4y + x)(4z + y)(4x + y). By
weighted AM-GM, 4y + x ≥ 5y4/5x1/5; this and the two analogous
inequalities imply the claim.

19. The circles S1, S2 intersect at A and B. Let Q be a point on S1.
The lines QA and QB meet S2 at C and D, respectively, while the
tangents to S1 at A and B meet at P . Assume that Q lies outside
S2, and that C and D lie outside S1. Prove that the line QP goes
through the midpoint of CD.

Solution: If Q moves to Q′ and C to C ′, then ∠QAQ′ = ∠CAC ′,
so C moves through the same arc measure as Q, as does D. Thus
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the midpoint of CD and Q are related by a fixed homothety, so the
line through them passes through a fixed point. One such line is
obviously the line of centers of S1 and S2. As Q tends to A, C tends
to the intersection of S2 with the tangent to S1 at A, and D tends to
A. This line meets the line of centers at P , which then is the center
of the homothety.

Solution: Let O be the center of S2; then the line OP goes through
the midpoint of CD, so we need to show that O,P,Q are collinear

20. Given a convex 50-gon with vertices at lattice points, what is the
maximum number of diagonals which can lie on grid lines?

Solution: There can be at most 24 diagonals parallel to any given
line (as we move the line to pass over the vertices, diagonals corre-
spond to pairs passed over at the same time, but the first and last
vertices encountered cannot belong to diagonals). Thus the maxi-
mum is 48, which is easily obtained by making a hexagon with 4
diagonals along grid lines, then laying rectangles on top of it and
subdividing the grid as needed.

21. The number 99 · · · 99 (with 1997 nines) is written on a blackboard.
Each minute, one number written on the blackboard is factored into
two factors and erased, each factor is (independently) increased or
diminished by 2, and the resulting two numbers are written. Is it
possible that at some point all of the numbers on the blackboard
equal 9?

Solution: No, there always is a number congruent to 3 modulo 4:
factoring such a number gives one factor congruent to 1 modulo 4,
and changing that by 2 in either direction gives a number congruent
to 3 modulo 4.

22. A device consists of 4n elements, any two of which are joined by
either a red or a blue wire. The numbers of red and blue wires are
the same. The device is disabled by removing two wires of the same
color connecting four different elements. Prove that the number of
ways to disable the device by removing two blue wires is the same
as the number of ways by removing two red wires.

176



Solution: It suffices to show that the numbers of pairs of blue
or red wires which share an endpoint are the same. If there are di
red wires at element i (i = 1, . . . , 4n), this means∑
i

d2
i − di =

∑
i

(4n− di)2 − (4n− di) = 16n2 − 4n+
∑
i

d2
i − 8ndi.

Since the numbers of red and blue wires are the same,
∑
i di = 2n2,

which proves the claim.

23. An Aztec diamond of rank n is a figure consisting of those squares of
a gridded coordinate plane lying entirely inside the diamond {(x, y) :
|x|+|y| ≤ n+1}. For any covering of an Aztec diamond by dominoes
(1×2 rectangles), we may rotate by 90◦ any 2×2 square covered by
exactly two dominoes. Prove that at most n(n+ 1)(2n+ 1)/6 rota-
tions are needed to transform an arbitrary covering into the covering
consisting only of horizontal dominoes.

Solution: Let us open by introducing some new terminology. Let
the “row” and “column” of a domino be the y and x coordinates,
respectively, of its upper-left corner. We introduce the two functions
r(X), c(X) to designate the row and column of domino X, respec-
tively. Let a “square” in the Aztec diamond be a 1 × 1 square on
grid lines lying inside the diamond, and its row and column be the
y and x coordinates, respectively, of its upper-left corner.

We will need two lemmas.

Lemma 1 Let us have two vertical dominoes on the same row of
the Aztec diamond, separated by 2k squares. Suppose all of the space
between these two vertical dominoes is occupied by horizontal domi-
noes.

Then it takes only 2k + 1 moves to turn all of these dominoes hori-
zontal.

Lemma 2 If there is at least one vertical domino left on the Aztec
diamond, then it is possible to find a pair of vertical dominoes sepa-
rated only by horizontal dominoes.
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Observe that these lemmas suggest an algorithm for solving our prob-
lem; we seek out all pairs of vertical dominoes separated only by hor-
izontal dominoes, and turn them all horizontal. We keep repeating
(the second lemma proves that we can do this) until all dominoes
are horizontal. Now we must prove the lemmas.

The proof of the first lemma is simple; in k moves, we can turn
vertical all of the 2k horizontal dominoes in between. Then, in an
additional k + 1 moves, we can turn all 2k + 2 of the dominoes
horizontal. Adding, we obtain 2k + 1.

The proof of the second lemma is significantly more challenging. Let
A be the vertical domino on the greatest row. The number of squares
in the Aztec diamond with row r(A) is even, so there must be an
even number of vertical dominoes with row r(A). Since there is an
even number of such dominoes, we can select the two central ones.
Let the left one be M and the right one be N .

If M and N are separated only by horizontal dominoes, then we
are done. If there are any vertical dominoes (or portions of vertical
dominoes) between them, then the rows of any such dominoes must
be r(A)− 1. Also, since all dominoes of row r(A) that are between
M and N are horizontal, c(N) − c(M) is even and the number of
squares between M and N must also be even.

Therefore, there must be an even number of vertical dominoes with
row r(A)−1 between M and N , and we can pick the two central ones;
this is the same situation as before. But every time we move down
by a row, the distance between each new pair of vertical dominoes
is less that the distance between the previous pair by a positive
integral amount. Employing the concept of infinite descent, we find
that eventually our pair of dominoes must either be adjacent or be
separated only by horizontal dominoes. This final pair is the pair
predicted by the lemma.

Now we can return to our original problem. Applying both lemmas
at once, we find that if we use the methods outlined above, then the
worst case scenario is when all dominoes are vertical.

Let us compute the number of moves it takes our method to solve
such a case. With all dominoes vertical, our method will start by
turning horizontal all dominoes with columns of 0 and −1. Next,
since all dominoes with columns of 1 and −2 will be separated only
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by horizontal dominoes, our method will turn all dominoes of column
between −2 and 1 (inclusive) horizontal. We repeat, advancing to
the left and right corners of our diamond.

We need to define a function m(r, c1, c2). Suppose there is a vertical
domino, X with row r and column c1. Let there also be another
domino, Y , with row r and column c2. Finally, let all the dominoes
between X and Y be horizontal. Then, m(r, c1, c2) represents the
number of moves it takes to turn all of these dominoes horizontal.
Notice that m(r, c1, c2) = |c2 − c1|.
The number of moves necessary to complete the worst case scenario
is then

n∑
i=1

n−i+1∑
j=1

m(n− 2(j − 1),−i, i− 1)

=
n∑
i=1

n−i+1∑
j=1

((i− 1)− (−i))

=
n∑
i=1

(n− i+ 1)(2i− 1)

=
n∑
i=1

(i2(−2) + i(2n+ 3) + (−n− 1))

= −2
n∑
i=1

i2 + (2n+ 3)
n∑
i=1

i+ (−n− 1)
n∑
i=1

1

= −2(n)(n+ 1)(2n+ 1)/6 + (2n+ 3)(n)(n+ 1)/2 + (−n− 1)(n)
= n(n+ 1)((−2)(2n+ 1)/6 + (2n+ 3)/2− 1)
= n(n+ 1)((−4n− 2) + (6n+ 9)− 6)/6
= n(n+ 1)(2n+ 1)/6

And we are done.
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3 1998 National Contests: Problems

3.1 Bulgaria

1. Find the least natural number n (n ≥ 3) with the following property:
for any coloring in 2 colors of n distinct collinear points A1, A2, . . . ,
An such that A1A2 = A2A3 = · · · = An−1An there exist three points
Ai, Aj , A2j−1 (1 ≤ i ≤ 2j − i ≤ n) which are colored in the same
color.

2. A convex quadrilateralABCD hasAD = CD and ∠DAB = ∠ABC <
90◦. The line through D and the midpoint of BC intersects line AB
in point E. Prove that ∠BEC = ∠DAC. (Note: The problem is
valid without the assumption ∠ABC < 90◦.)

3. Let R+ be the set of positive real numbers. Prove that there does
not exist a function f : R+ → R

+ such that

(f(x))2 ≥ f(x+ y)(f(x) + y)

for any x, y ∈ R+.

4. Let f(x) = x3 − 3x + 1. Find the number of distinct real roots of
the equation f(f(x)) = 0.

5. The convex pentagon ABCDE is inscribed in a circle of radius R.
The radius of the incircle of 4XY Z is denoted by rXY Z . Prove that

(a) cos ∠CAB + cos ∠ABC + cos ∠BCA = 1 +
rABC
R

;

(b) if rABC = rAED and rABD = rAEC , then 4ABC ∼= 4AED.

6. Prove that the equation

x2y2 = z2(z2 − x2 − y2)

does not have solutions in natural numbers.

7. For n a given positive integer, find the smallest positive integer k
for which there exist k 0-1 sequences of length 2n+ 2, such that any
other 0-1 sequence of length 2n+ 2 matches one of the given ones in
at least n+ 2 positions.
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8. The polynomials Pn(x, y) for n = 1, 2, . . . are defined by P1(x, y) = 1
and

Pn+1(x, y) = (x+ y − 1)(y + 1)Pn(x, y + 2) + (y − y2)Pn(x, y).

Prove that Pn(x, y) = Pn(y, x) for all n and all x, y.

9. On the sides of an acute triangle ABC are constructed externally
a square, a regular n-gon and a regular m-gon (m,n > 5) whose
centers form an equilateral triangle. Prove that m = n = 6, and find
the angles of ABC.

10. Let a1, . . . , an be real numbers, not all zero. Prove that the equation
√

1 + a1x+ · · ·+
√

1 + anx = n

has at most one nonzero real root.

11. Let m,n be natural numbers such that A = ((m+ 3)n + 1)/(3m) is
an integer. Prove that A is odd.

12. The sides and diagonals of a regular n-gon X are colored in k colors
so that

(a) for any color a and any two vertices A,B of X, either AB is
colored in a or AC and BC are colored in a for some other
vertex C;

(b) the sides of any triangle with vertices among the vertices of X
are colored in at most two colors.

Prove that k ≤ 2.

13. Solve the following equation in natural numbers:

x2 + y2 = 1997(x− y).

14. Let A1 and B1 be two points on the base AB of an isosceles 4ABC
(∠C > 60◦) such that ∠A1CB1 = ∠ABC. A circle externally tan-
gent to the circumcircle of 4A1B1C is tangent also to the rays
CA→ and CB→ at points A2 and B2, respectively. Prove that
A2B2 = 2AB.
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15. A square table n × n (n ≥ 2) is filled with 0’s and 1’s so that any
subset of n cells, no two of which lie in the same row or column,
contains at least one 1. Prove that there exist i rows and j columns
with i+ j ≥ n+ 1 whose intersection contains only 1’s.

16. Find all finite sets A of distinct nonnegative real numbers for which:

(a) the set A contains at least 4 numbers;

(b) for all 4 distinct numbers a, b, c, d ∈ A the number ab+ cd ∈ A.

17. Let ABC be an equilateral triangle and n > 1 be a natural number.
Denote by S the set of n−1 lines, which are parallel to AB and divide
4ABC into n parts of equal areas; and by S′ the set of n− 1 lines,
which are parallel to AB and divide 4ABC into n parts of equal
perimeters. Prove that S and S′ do not share a common element.

18. Find all natural numbers n for which the polynomial xn + 64 can be
written as a product of two nonconstant polynomials with integer
coefficients.
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3.2 Canada

1. Determine the number of real solutions a of the equation

ba/2c+ ba/3c+ ba/5c = a.

2. Find all real numbers x such that

x =
(
x− 1

x

)1/2

+
(

1− 1
x

)1/2

.

3. Let n be a natural number such that n ≥ 2. Show that

1
n+ 1

(
1 +

1
3

+ · · ·+ 1
2n− 1

)
>

1
n

(
1
2

+
1
4

+ · · ·+ 1
2n

)
.

4. Let ABC be a triangle with ∠BAC = 40◦ and ∠ABC = 60◦. Let
D and E be the points lying on the sides AC and AB, respectively,
such that ∠CBD = 40◦ and ∠BCE = 70◦. Show that the line AF
is perpendicular to the line BC.

5. Let m be a positive integer. Define the sequence a0, a1, a2, . . . by
a0 = 0, a1 = m and am+1 = m2an − an−1 for n = 1, 2, 3, . . .. Prove
that an ordered pair (a, b) of nonnegative integers, with a ≤ b, is a
solution of the equation

a2 + b2

ab+ 1
= m2

if and only if (a, b) = (an, an+1) for some n ≥ 0.
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3.3 China

1. Let ABC be a non-obtuse triangle such that AB > AC and ∠B =
45◦. Let O and I denote the circumcenter and incenter of 4ABC
respectively. Suppose that

√
2OI = AB − AC. Determine all the

possible values of sinBAC.

2. Let n, n > 1, be a positive integer. Determine if there exists 2n
distinct positive integers a1, a2, · · · , an, b1, b2, · · · , bn such that

(a) a1 + a2 + · · ·+ an = b1 + b2 + · · ·+ bn;

(b) n− 1 >
∑n
i=1

ai−bi
ai+bi

> n− 1− 1
1998 .

3. For a set A, let |A| denote the number of elements in A. For a pair
of positive integers a and b, let (a, b) denote their greatest common
divisor. Let set S = {1, 2, · · · , 98}. Determine the minimum value
of positive integer n such that, for any subset T ⊂ S with |T | = n,
it always possible to find a subset T10 ⊂ T satisfies the following
properties.

(a) |T10| = 10;

(b) there is a partition of T10 = {a1, a2, a3, a4, a5}∪{b1, b2, b3, b4, b5}
such that, for i = 2, 3, 4, 5, (a1, ai) = 1 and (b1, bi) > 1.

4. Determine all the positive integers n ≥ 3, such that 1 +
(
n
1

)
+
(
n
2

)
+(

n
3

)
|22000

5. Let D be a point inside an acute 4ABC such that

DA ·DB ·AB +DB ·DC ·BC +DC ·DA · CA = AB ·BC · CA.

Determine the geometric position of D.

6. Let n, n ≥ 2, be a positive integer. Let x1, x2, · · · , xn be real numbers
such that

n∑
i=1

x2
i +

n−1∑
i=1

xixi+1 = 1.

For every positive integer k, 1 ≤ k ≤ n, determine the maximun
value of |xk|.
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3.4 Czech and Slovak Republics

1. Find all real numbers x such that

xbxbxbxccc = 88.

2. Show that from any fourteen distinct natural numbers, there ex-
ists k ∈ {1, . . . , 7} for which one can find disjoint k-element subsets
{a1, . . . , ak} and {b1, . . . , bk} of the fourteen numbers such that the
sums

A =
1
a1

+ · · ·+ 1
ak
, B =

1
b1

+ · · ·+ 1
bk

differ by less than 0.001.

3. A sphere is inscribed in a given tetrahedron ABCD. The four planes
tangent to the sphere parallel to (but distinct from) the planes of
the four faces of ABCD cut off four smaller tetrahedra. Prove that
the sum of the lengths of the edges of the four smaller tetrahedra is
twice the sum of the lengths of the edges of ABCD.

4. A point A is given outside of a circle k in the plane. Show that the
diagonals of any trapezoid inscribed in k, the extensions of whose
nonparallel sides meet at A, meet at a point independent of the
choice of trapezoid.

5. Let a, b, c be positive real numbers, Show that there exists a triangle
with sides a, b, c if and only if there exist real numbers x, y, z such
that

y

z
+
z

y
=
a

x
,
z

x
+
x

z
=
b

y
,
x

y
+
y

x
=
c

z
.
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3.5 Hungary

1. We are given a 3 × 3 table with integer entries, not all of the same
parity. We repeat the following operation: simultaneously replace
each entry by the sum of its neighbors (those entries sharing an edge
with the given entry). Regardless of the starting position, will we
always eventually obtain a table with all entries even? With all
entries odd?

2. The incircle of triangle ABC touches the corresponding sides at
A′, B′, C ′. Let the midpoint of the arc AB of the circumcircle not
containing C be C ′′, and define A′′ and B′′ similarly. Show that the
lines A′A′′, B′B′′, C ′C ′′ are concurrent.

3. Find all solutions in real numbers x, y, z to the system of equations

x+ y + (z2 − 8z + 14)
√
x+ y − 2 = 1

2x+ 5y +
√
xy + z = 3.

4. Let ABC be a triangle and P,Q,R points on AB,BC,CA, respec-
tively. The points A′, B′, C ′ on RP,PQ,QR, respectively, have the
property that AB ‖ A′B′, BC ‖ B′C ′, CA ‖ C ′A′. Show that
AB/A′B′ = [PQR]/[A′B′C ′].

5. (a) For which positive integers n do there exist positive integers
x, y such that

lcm(x, y) = n!, gcd(x, y) = 1998?

(b) For which n is the number of such pairs x, y with x ≤ y less
than 1998?

6. Let x, y, z be integers with z > 1. Show that

(x+ 1)2 + (x+ 2)2 + · · ·+ (x+ 99)2 6= yz.

7. Let ABC be an acute triangle and P a point on the side AB. Let
B′ be a point on the ray AC and A′ a point on the ray BC such
that ∠B′PA = ∠A′PB = ∠ACB. Let the circumcircles of triangles
APB′ and BPA′ meet at P and M . Find the locus of M as P varies
along the segment AB.
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8. Let ABCDEF be a centrally symmetric hexagon and P,Q,R points
on sides AB,CD,EF , respectively. Show that the area of triangle
PQR is at most half the area of ABCDEF .

9. Two players take turns drawing a card at random from a deck of
four cards labeled 1,2,3,4. The game stops as soon as the sum of the
numbers that have appeared since the start of the game is divisible
by 3, and the player who drew the last card is the winner. What is
the probability that the player who goes first wins?

10. Let ABC be a triangle and P,Q points on the side AB such that
the inradii of triangles APC and QBC are the same. Prove that the
inradii of triangles AQC and PBC are also the same.
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3.6 India

1. (a) Show that the product of two numbers of the form a2 + 3b2 is
again of that form.

(b) If an integer n is such that 7n is of the form a2 + 3b2, prove
that n is also of that form.

2. Let a, b, c be three real numbers and let

X = a+ b+ c+ 2
√
a2 + b2 + c2 − ab− bc− ca.

Show that X ≥ max{3a, 3b, 3c}, and that one of the numbers
√
X − 3a,

√
X − 3b,

√
X − 3c

is the sum of the other two.

3. Let n be a positive integer, and let X be a set of n+ 2 integers each
of absolute value at most n. Show that there exist three distinct
numbers a, b, c in X such that a+ b = c.

4. In triangle ABC, let AK,BL,CM be the altitudes and H the or-
thocenter. Let P be the midpoint of AH. If BH and MK meet at
S, and LP and AM meet at T , show that TS is perpendicular to
BC.

5. Find the number of integers x with |x| ≤ 1997 such that 1997 divides
x2 + (x+ 1)2.

6. Let ABCD be a parallelogram. A circle lying inside ABCD touches
the lines AB and AD, and intersects BD at E and F . Show that
there exists a circle passing through E and F and touching the lines
CB and CD.

7. Find all triples (x, y, n) of positive integers with gcd(x, n + 1) = 1
such that xn + 1 = yn+1.

8. Let M be a positive integer and consider the set S = {n ∈ N : M2 ≤
n < (M +1)2}. Prove that the products of the form ab with a, b ∈ S
are all distinct.
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9. Let N be a positive integer such that N + 1 is prime. Choose ai ∈
{0, 1} for i = 0, . . . , N . Suppose that the ai are not all equal, and
let f(x) be a polynomial such that f(i) = ai for i = 0, . . . , N . Prove
that the degree of f(x) is at least N .

10. Let n, p be positive integers with 3 ≤ p ≤ n/2. Consider a regular
n-gon with p vertices colered red and the rest colored blue. Show
that there are two congruent nondegenerate polygons each with at
least bp/2c + 1 vertices, such that the vertices of one polygon are
colored red and the vertices of the other polygon are colored blue.

11. Let P be a point in the interior of the convex quadrilateral ABCD.
Show that at least one of the angles ∠PAB,∠PBC,∠PCD,∠PDA
is less than or equal to π/4.

12. Let α1, α2, . . . , αn be complex numbers and put f(x) =
∏n
i=1(z−αi).

Show that there exists a complex z0 with |z0| = 1 such that

|f(z0)| ≥
∏n
j=1(1 + |αj |)

3n
.

13. Let m,n be natural numbers with m ≥ n ≥ 2. Show that the number
of polynomials of degree 2n − 1 with distinct coefficients from the
set {1, 2, . . . , 2m} which are divisible by xn−1 + · · ·+ x+ 1 is

2nn!
(

4
(
m+ 1
n+ 1

)
− 3
(
m

n

))
.
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3.7 Iran

1. Let KL and KN be lines tangent to the circle C, with L,N ∈ C.
Choose M on the extension of KN past N , and let P be the second
intersection of C with the circumcircle of KLM . Let Q be the foot of
the perpendicular from N to ML. Prove that ∠MPQ = 2∠KML.

2. Suppose an n× n table is filled with the numbers 0, 1,−1 in such a
way that every row and column contains exactly one 1 and one −1.
Prove that the rows and columns can be reordered so that in the
resulting table each number has been replaced with its negative.

3. Let x1, x2, x3, x4 be positive real numbers such that x1x2x3x4 = 1.
Prove that

4∑
i=1

x3
i ≥ max

{
4∑
i=1

xi,
4∑
i=1

1
xi

}
.

4. Let ABC be an acute triangle and let D be the foot of the altitude
from A. Let the angle bisectors of B and C meet AD at E and F ,
respectively. If BE = CF , prove that ABC is an isosceles triangle.

5. Suppose a, b are natural numbers such that

p =
b

4

√
2a− b
2a+ b

is a prime number. What is the maximum possible value of p?

6. Let x, a, b be positive integers such that xa+b = abb. Prove that a = x
and b = xx.

7. Let ABC be an acute triangle and D,E, F the feet of its altitudes
from A,B,C, respectively. The line through D parallel to EF meets
AC and AB at Q and R, respectively. Let P be the intersection of
BC and EF . Prove that the circumcircle of PQR passes through
the midpoint of BC.

8. Let S = {x0, x1, . . . , xn} ⊂ [0, 1] be a finite set of real numbers with
x0 = 0, x1 = 1, such that every distance between pairs of elements
occurs at least twice, except for the distance 1. Prove that all of the
xi are rational.
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9. Let x, y, z > 1 and 1
x + 1

y + 1
z = 2. Prove that

√
x+ y + z ≥

√
x− 1 +

√
y − 1 +

√
z − 1.

10. Let P be the set of all points in Rn with rational coordinates. For
A,B ∈ P , one can move from A to B if the distance AB is 1. Prove
that every point in P can be reached from every other point in P by
a finite sequence of moves if and only if n ≥ 5.

11. Let f1, f2, f3 : R → R be functions such that a1f1 + a2f2 + a3f3 is
monotonic for all a1, a2, a3 ∈ R. Prove that there exist c1, c2, c3 ∈ R,
not all zero, such that

c1f1(x) + c2f2(x) + c3f3(x) = 0

for all x ∈ R.

12. Let X be a finite set with |X| = n and let A1, A2, · · · , Am be three-
element subsets of X such that |Ai∩Aj | ≤ 1 for all i 6= j. Show that
there exists a subset A of X with at least

√
2n elements containing

none of the Ai.

13. The edges of a regular 2n-gon are colored red and blue in some
fashion. A step consists of recoloring each edge which is the same
color as both of its neighbors in red, and recoloring each other edge
in blue. Prove that after 2n−1 steps all of the edges will be red, and
show that this need not hold after fewer steps.

14. Let n1 < n2 < · · · be a sequence of natural numbers such that
for i < j, the decimal representation of ni does not occur as the
leftmost digits of the decimal representation of nj . (For example,
137 and 13729 cannot both occur in the sequence.) Prove that

∞∑
i=1

1
ni
≤ 1 +

1
2

+ · · ·+ 1
9
.

15. Let ABC be a triangle. Extend the side BC past C, and let D
be the point on the extension such that CD = AC. Let P be the
second intersection of the circumcircle of ACD with the circle with
diameter BC. Let BP and AC meet at E, and let CP and AB meet
at F . Prove that D,E, F are collinear.

191



16. Let K be a convex polygon in the plane. Prove that for any triangle
containing K of minimum area, the midpoints of its sides lie on K.
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3.8 Ireland

1. Show that if x is a nonzero real number, then

x8 − x5 − 1
x

+
1
x4
≥ 0.

2. The point P lies inside an equilateral triangle and its distances to
the three vertices are 3, 4, 5. Find the area of the triangle.

3. Show that no integer of the form xyxy in base 10 can be the cube
of an integer. Also find the smallest base b > 1 in which there is a
perfect cube of the form xyxy.

4. Show that a disc of radius 2 can be covered by seven (possibly over-
lapping) discs of radius 1.

5. If x is a real number such that x2 − x is an integer, and for some
n ≥ 3, xn − x is also an integer, prove that x is an integer.

6. Find all positive integers n that have exactly 16 positive integral
divisors d1, d2, . . . , d16 such that

1 = d1 < d2 < · · · < d16 = n,

d6 = 18 and d9 − d8 = 17.

7. Prove that if a, b, c are positive real numbers, then

9
a+ b+ c

≤ 2
(

1
a+ b

+
1

b+ c
+

1
c+ a

)
and

1
a+ b

+
1

b+ c
+

1
c+ a

≤ 1
2

(
1
a

+
1
b

+
1
c

)
.

8. (a) Prove that N can be written as the union of three disjoint sets
such that any m,n ∈ N with |m− n| = 2, 5 lie in different sets.

(b) Prove that N can be written as the union of four disjoint sets
such that any m,n ∈ N with |m − n| = 2, 3, 5 lie in different
sets. Also show that this cannot be done with three sets.
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9. A sequence of real numbers xn is defined recursively as follows: x0, x1

are arbitrary positive real numbers, and

xn+2 =
1 + xn+1

xn
, n = 0, 1, 2, . . . .

Find x1998.

10. A triangle ABC has positive integer sides, ∠A = 2∠B and ∠C >
90◦. Find the minimum length of the perimeter of ABC.

194



3.9 Japan

1. Let p ≥ 3 be a prime, and let p points A0, . . . , Ap−1 lie on a circle in
that order. Above the point A1+···+k−1 we write the number k for
k = 1, . . . , p (so 1 is written above A0). How many points have at
least one number written above them?

2. A country has 1998 airports connected by some direct flights. For
any three airports, some two are not connected by a direct flight.
What is the maximum number of direct flights that can be offered?

3. Let P1, . . . , Pn be the sequence of vertices of a closed polygons whose
sides may properly intersect each other at points other than the
vertices. The external angle at Pi is defined as 180◦ minus the angle
of rotation about Pi required to bring the ray PiPi−1 onto the ray
PiPi+1, taken in the range (0◦, 360◦). (Here P0 = Pn and P1 =
Pn+1). Prove that if the sum of the external angles is a multiple of
720◦, then the number of self-intersections is odd.

4. Let cn,m be the number of permutations of {1, . . . , n} which can be
written as the product of m transpositions of the form (i, i + 1) for
some i = 1, . . . , n − 1 but not of m − 1 such transpositions. Prove
that for all n ∈ N,

∞∑
m=0

cn,mt
m =

n∏
i=1

(1 + t+ · · ·+ ti−1).

5. On each of 12 points around a circle we place a disk with one white
side and one black side. We may perform the following move: select
a black disk, and reverse its two neighbors. Find all initial configura-
tions from which some sequence of such moves leads to the position
where all disks but one are white.
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3.10 Korea

1. Find all pairwise relatively prime positive integers l,m, n such that
(l +m+ n)( 1

l + 1
m + 1

n ) is an integer.

2. Let D,E, F be points on the sides BC,CA,AB, respectively, of tri-
angle ABC. Let P,Q,R be the second intersections of AD,BE,CF ,
respectively, with the circumcircle of ABC. Show that

AD

PD
+
BE

QE
+
CF

RF
≥ 9

and determine when equality occurs.

3. For a natural number n, let φ(n) denote the number of natural num-
bers less than or equal to n and relatively prime to n, and let ψ(n)
be the number of prime factors of n. Show that if φ(n) divides n− 1
and ψ(n) ≤ 3, then n is prime.

4. For positive real numbers a, b, c with a+ b+ c = abc, show that

1√
1 + a2

+
1√

1 + b2
+

1√
1 + c2

≤ 3
2
,

and determine when equality occurs.

5. Let I be the incenter of triangle ABC, O1 a circle passing through
B and tangent to the line CI, and O2 a circle passing through C
and tangent to the line BI. Show that O1, O2 and the circumcircle
of ABC pass through a single point.

6. Let Fn be the set of all bijective functions from {1, . . . , n} to {1, . . . , n}
satisfying

(a) f(k) ≤ k + 1 (k = 1, . . . , n);

(b) f(k) 6= k (k = 2, . . . , n).

Find the probability that f(1) 6= 1 for f randomly chosen from Fn.
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3.11 Poland

1. Find all integers (a, b, c, x, y, z) such that

a+ b+ c = xyz

x+ y + z = abc

and a ≥ b ≥ c ≥ 1, x ≥ y ≥ z ≥ 1.

2. The Fibonacci sequence Fn is given by

F0 = F1 = 1, Fn+2 = Fn+1 + Fn (n = 0, 1, . . .).

Determine all pairs (k,m) of integers with m > k ≥ 0, for which the
sequence xn defined by x0 = Fk/Fm and

xn+1 =
2xn − 1
1− xn

ifxn 6= 1, xn+1 = 1 ifxn = 1

contains the number 1.

3. The convex pentagonABCDE is the base of the pyramidABCDES.
A plane intersects the edges SA, SB, SC, SD, SE in points A′, B’,
C ′, D′, E′, respectively, which differ from the vertices of the pyramid.
Prove that the intersection points of the diagonals of the quadrilat-
erals ABB′A′, BCC ′B′, CDD′C ′, DEE′D′, EAA′E′ are coplanar.

4. Prove that the sequence (an) defined by a1 = 1 and

an = an−1 + abn/2c n = 2, 3, 4, . . .

contains infinitely many integers divisible by 7.

5. Points D,E lie on side AB of the triangle ABC and satisfy

AD

DB
· AE
EB

=
(
AC

CB

)2

.

Prove that ∠ACD = ∠BCE.

6. Consider unit squares in the plane whose vertices have integer co-
ordinates. Let S be the chessboard which contains all unit squares
lying entirely inside the circle x2 + y2 ≤ 19982. In each square of S
we write +1. A move consists of reversing the signs of a row, column
or diagonal of S. Can we end up with exactly one square containing
−1?
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3.12 Romania

1. Let An denote the set of words of length n formed from the letters
a, b, c which do not contain two consecutive letters both equal to a or
both equal to b. Let Bn denote the set of words of length n formed
from the letters a, b, c which do not contain three consecutive letters
which are pairwise distinct. Prove that |Bn+1| = 3|An| for all n ≥ 1.

2. The volume of a parallelepiped is 216 cubic centimeters and its sur-
face area is 216 square centimeters. Prove that the paralellepiped is
a cube.

3. Let m ≥ 2 be an integer. Find the smallest integer n > m such
that for any partition of the set {m,m+ 1, . . . , n} into two subsets,
at least one subset contains three numbers a, b, c (not necessarily
different) such that ab = c.

4. Consider a finite set of segments in the plane whose lengths have
sum less than

√
2. Prove that there exists an infinite unit square

grid whose lines do not meet any of the segments.

5. We are given an isosceles triangle ABC with BC = a and AB =
AC = b. The points M,N vary along AC,AB, respectively, so as
always to satisfy the condition

a2 ·AM ·AN = b2 ·BN · CM.

The lines BM and CN meet at P . Find the locus of P .

6. The vertices of a convex polygon are all lattice points. Prove that
the area of the pentagon is at least 5/2.

7. Find all positive integers x, n such that xn + 2n + 1 is a divisor of
xn+1 + 2n+1 + 1.

8. Let n ≥ 2 be an integer. Show that there exists a subset A of
{1, 2, . . . , n} having at most 2b

√
nc+ 1 elements such that

{|x− y| : x, y ∈ A, x 6= y} = {1, 2, . . . , n− 1}.

9. Show that for any positive integer n, the polynomial

f(x) = (x2 + x)2n + 1
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cannot be written as the product of two nonconstant polynomials
with integer coefficients.

10. Let n ≥ 3 be a prime number and a1 < a2 < · · · < an be integers.
Prove that a1, a2, . . . , an is an arithmetic progression if and only if
there exists a partition of {0, 1, 2, . . .} into classes A1, A2, . . . , An
such that

a1 +A1 = a2 +A2 = · · · = an +An.

(Note: x+ S denotes the set {x+ y : y ∈ S}.)

11. Let n be a positive integer and let Pn denote the set of integer
polynomials of the form a0 + a1x + · · · + anx

n, where |ai| ≤ 2 for
i = 0, 1, . . . , n. Find, for each positive integer k, the number of
elements of the set An(k) = {f(k) : f ∈ Pn}.

12. Find all functions u : R→ R for which there exists a strictly mono-
tonic function f : R→ R such that

f(x+ y) = f(x)u(y) + f(y) ∀x, y ∈ R.

13. On a m × n sheet of paper is drawn a grid dividing the sheet into
unit squares. The two sides of length n are taped together to form
a cylinder. Prove that it is possible to write a real number in each
square, not all zero, so that each number is the sum of the numbers
in the neighboring squares, if and only if there exist integers k, l such
that n+ 1 does not divide k and

cos
2lπ
m

+ cos
kπ

n+ 1
=

1
2
.
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3.13 Russia

1. Do there exist n-digit numbers M and N such that all of the digits
of M are even, all of the digits of N are odd, each digit from 0 to 9
occurs exactly once among M and N , and M divides N?

2. In parallelogram ABCD, the points M and N are the midpoints of
sides BC and CD, respectively. Can the lines AM and AN divide
the angle BAD into three equal parts?

3. A deck contains 52 cards of 13 different suits. Vanya picks a card
from the deck, guesses its suit, and sets it aside; he repeats until the
deck is exhausted. Show that if Vanya always guesses a suit having
no fewer remaining cards than any other suit, he will guess correctly
at least 13 times.

4. In the plane are given n ≥ 9 points. Given any 9 points, there exist
two circles such that each of the 9 points lies on one of the circles.
Prove there exist two circles such that each of the given points lies
on one of the circles.

5. The side lengths of a triangle and the diameter of its incircle are
4 consecutive integers in an arithmetic progression. Find all such
triangles.

6. Two circles meet at P and Q. A line meets the circles at the points
A,B,C,D in that order. Prove that ∠APB = ∠CQD.

7. A 10-digit number is said to be interesting if its digits are all distinct
and it is a multiple of 11111. How many interesting integers are
there?

8. We have a 102 × 102 sheet of graph paper and a connected figure
of unknown shape consisting of 101 squares. What is the smallest
number of copies of the figure which can be cut out of the square?

9. Let f(x) = x2 + ax + b cosx. Find all values of a, b for which the
equations f(x) = 0 and f(f(x)) = 0 have the same (nonempty) set
of real roots.

10. In acute triangle ABC, the circle S passes through the circumcenter
O and vertices B,C. Let OK be a diameter of S, and let D,E be
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the second intersections of S with AB,AC, respectively. Show that
ADKE is a parallelogram.

11. Show that from any finite set of points in the plane, one can remove
one point so that the reamining set can be divided into two subsets,
each with smaller diameter than the original set. (The diameter of
a finite set of points is the maximum distance between two points in
the set.)

12. In 1999 memory locations of a computer are stored the numbers
1, 2, . . . , 21998. Two programmers take turns subtracting 1 from each
of 5 different memory locations. If any location ever acquires a neg-
ative number, the computer breaks and the guilty programmer pays
for the repairs. Which programmer can ensure himself financial se-
curity, and how?

13. Two matching decks have 36 cards each; one is shuffled and put
on top of the second. For each card of the top deck, we count the
number of cards between it and the corresponding card of the second
deck. What is the sum of these numbers?

14. A circle S centered at O meets another circle S′ at A and B. Let C
be a point on the arc of S contained in S′. Let E,D be the second
intersections of S′ with AC,BC, respectively. Show that DE ⊥ OC.

15. We have an n × n table (n > 100) in which n − 1 entries are 1 and
the rest are 0. We may choose an entry, subtract 1 from it, and add
1 to the other entries in its row and column. By this process, can
we make all of the entries of the table equal?

16. Find all ways to distribute the numbers from 1 to 9 in a 3× 3 table
so that for each of the 6 squares formed by the entries of the table,
the numbers at the corners of the square have the same sum.

17. A group of shepherds have 128 sheep among them. If one of them has
at least half of the sheep, each other shepherd steals as many sheep
as he already has. If two shepherds each have 64 sheep, someone
takes a sheep from one of the two. Suppose seven rounds of theft
occur. Prove that one shepherd ends up with all of the sheep.

18. Let O be the circumcenter of acute triangle ABC. Let SA, SB , SC
be the circles centered at O tangent to BC,CA,AB, respectively.
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Show that the sum of the angle between the tangents to SA at A,
the tangents to SB at B, and the tangents to SC at C is 180◦.

19. In the City Council elections, each voter, if he chooses to participate,
votes for himself (if he is a candidate) and for each of his friends.
A pollster predicts the number of votes each candidate will receive.
Prove that the voters can conspire so that none of the pollster’s
numbers are correct.

20. The roots of two quadratic trinomials are negative integers, and they
have one root in common. Can the values of the trinomials at some
positive integer be 19 and 98?

21. On a pool table in the shape of a regular 1998-gon A1A2 · · ·A1998,
a ball is shot from the midpoint of A1A2. It bounces off sides
A2A3, . . . , A1998A1 in succession (such that the angle of approach
equals the angle of departure) and ends up where it started. Prove
tha the trajectory must be a regular 1998-gon.

22. Find all real x such that {(x + 1)3} = x3, where {x} = x − bxc is
the fractional part of x.

23. In the pentagon A1A2A3A4A5 are drawn the bisectors `1, `2, `3, `4, `5
of the angles A1, A2, A3, A4, A5, respectively. Bisectors `1 and `2
meet at B1, `2 and `3 meet at B2, and so on. Can the pentagon
B1B2B3B4B5 be convex?

24. A cube of side length n is divided into unit cubes by partitions
(each partition separates a pair of adjacent unit cubes). What is the
smallest number of partitions that can be removed so that from each
cube, one can reach the surface of the cube without passing through
a partition?

25. I choose a number from 1 to 144, inclusive. You may pick a subset
of {1, 2, . . . , 144} and ask me whether my number is in the subset.
An answer of “yes” will cost you 2 dollars, an answer of “no” only
1 dollar. What is the smallest amount of money you will need to be
sure to find my number?

26. A positive integer is written on a board. We repeatedly erase its
last digit and add 5 times that digit to what remains. Starting with
71998, can we ever end up at 19987?
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27. On an infinite chessboard, we draw a polygon with sides along the
grid lines. A unit segment along the perimeter is colored black or
white according to whether it touches a black or white square inside
the polygon. Let A,B, a, b be the numbers of black segments, white
segments, black squares inside the polygon, and white squares inside
the polygon, respectively. Show that A−B = 4(a− b).

28. A sequence {an}∞n=1 of positive integers contains each positive inte-
ger exactly once. Moreover, for any distinct positive integers m and
n,

1
1998

<
|an − am|
|n−m|

< 1998.

Show that |an − n| < 2000000 for all n.

29. The rays y = x and y = 2x (x ≥ 0) enclose two arcs of the parabola
y = x2 +px+q. These two arcs are projected onto the x axis. Prove
that the right projection has length 1 more than the left projection.

30. A convex polygon is partitioned into parallelograms. Prove that
there are at least three vertices contained in only one parallelogram.

31. Let S(x) be the sum of the digits in the decimal representation of
the number x. Do there exist three natural numbers a, b, c such that
S(a+ b) < 5, S(b+ c) < 5, S(c+ a) < 5, but S(a+ b+ c) > 50?

32. A maze is an 8 × 8 board with some adjacent squares separated by
walls, such that there is a path from any square to any other square
not passing through a wall. Given the command LEFT, RIGHT,
UP or DOWN, a pawn advances one square in the corresponding
direction if this movement is not blocked by a wall or an edge of the
board, and otherwise does nothing. God writes a program (a finite
sequence of such commands) and gives it to the Devil, who then
constructs a maze and places the pawn on one of the squares. Can
God ensure that the pawn will land on every square of the board no
matter what the Devil does?

33. I set 5 watches, then you move some of them forward so that they
show the same time, and add up the intervals through which you
moved each watch. How large can I force this sum to be, no matter
how you manipulate the watches?
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34. In triangle ABC, with AB > BC, BM is a median and BL an
angle bisector. The line through M parallel to AB meets BL at D,
and the line through L parallel to BC meets BM at E. Prove that
ED ⊥ BL.

35. A jeweller makes a chain from N > 3 numbered links for a mis-
chievous customer, who then asks the jeweller to change the order
of the links, in such a way as to maximize the number of links the
jeweller must open. How many links was this?

36. Two positive integers are written on the board. The following op-
eration is repeated: if a < b are the numbers on the board, then a
is erased and ab/(b − a) is written in its place. At some point the
numbers on the board are equal. Prove that again they are positive
integers.

37. Two lines parallel to the x-axis meet the graph y = ax3 +bx2 +cx+d
in the points A,D,E and B,C, F , respectively, in that order from
left to right. Prove that the length of the projection of the segment
CD onto the x-axis equals the sum of the lengths of the projections
of AB and EF .

38. Two polygons are given such that the distance between any two
vertices of one polygon is at most 1, but the distance between any
two vertices of different polygons is at least 1/

√
2. Prove that the

polygons have no common interior point.

39. Let D,E, F be the feet of the angle bisectors of angles A,B,C, re-
spectively, of triangle ABC, and let Ka,Kb,Kc be the points of con-
tact of the tangents to the incircle of ABC through D,E, F (that
is, the tangent lines not containing sides of the triangle). Prove
that the lines joining Ka,Kb,Kc to the midpoints of BC,CA,AB,
respectively, pass through a single point on the incircle of ABC.

40. Certain subsets of a given set are distinguished. Each distinguished
subset contains 2k elements, where k is a fixed positive integer. It is
known that given a subset of fewer than (k + 1)2 elements, either it
contains no distinguished subset, or all of its distinguished subsets
have a common element. Show that all of the distinguished subsets
have a common element.
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41. The numbers 19 and 98 are written on a board. Each minute, each
number is either incremented by 1 or squared. Is it possible for the
numbers to become identical at some time?

42. A binary operation ∗ on real numbers has the property that (a ∗ b) ∗
c = a+ b+ c. Prove that a ∗ b = a+ b.

43. A convex polygon with n > 3 vertices is given, no four vertices
lying on a circle. We call a circle circumscribed if it passes through
three vertices and contains all of the others. A circumscribed circle is
called a boundary circle if it passes through three consecutive vertices
of the polygon, and it is called an inner circle if it passes through
three pairwise nonconsecutive vertices. Prove that the number of
boundary circles is 2 more than the number of inner circles.

44. Each square of a (2n − 1) × (2n − 1) board contains either +1 or
−1. Such an arrangement is called successful if each number is the
product of its neighbors (squares sharing a common side with the
given square). Find the number of successful arrangements.

45. A family S of equilateral triangles in the plane is given, all translates
of each other, and any two having nonempty intersection. Prove that
there exist three points such that any member of S contains one of
the points.

46. There are 1998 cities in Russia, each being connected (in both di-
rections) by flights to three other cities. Any city can be reached by
any other city by a sequence of flights. The KGB plans to close off
200 cities, no two joined by a single flight. Show that this can be
done so that any open city can be reached from any other open city
by a sequence of flights only passing through open cities.

47. The sequence ω1, ω2, . . . of circles is inscribed in the parabola y = x2

so that ωn and ωn+1 are externally tangent for n ≥ 1. Moreover, ω1

has diameter 1 and touches the parabola at (0, 0). Find the diameter
of ω1998.

48. The tetrahedron ABCD has all edges of length less than 100, and
contains two nonintersecting spheres of diameter 1. Prove that it
contains a sphere of diameter 1.01.
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49. A figure composed of 1×1 squares has the property that if the squares
of a (fixed) m×n rectangle are filled with numbers the sum of all of
which is positive, the figure can be placed on the rectangle (possibly
after being rotated) so that the numbers it covers also have positive
sum. (The figure may not be placed so that any of its squares fails
to lie over the rectangle.) Prove that a number of such figures can
be put on the m× n rectangle so that each square is covered by the
same number of figures.
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3.14 Taiwan

1. Show that for positive integers m and n,

gcd(m,n) = 2
m−1∑
k=0

⌊
kn

m

⌋
+m+ n−mn.

2. Does there exist a solution to the equation

x2 + y2 + z2 + u2 + v2 = xyzuv − 65

in integers x, y, z, u, v greater than 1998?

3. Let m,n be positive integers, and let F be a collection of m-element
subsets of {1, . . . , n} any two of which have nonempty intersection.
Determine the maximum number of elements of F .

4. Let I be the incenter of triangle ABC, let D,E, F be the intersec-
tions of AI with BC, BI with CA, CI with AB, respectively, and
let X,Y, Z be points on the lines EF,FD,DE. Show that

d(X,AB) + d(Y,BC) + d(Z,CA) ≤ XY + Y Z + ZX,

where d(P,QR) denotes the distance from point P to line QR.

5. For each positive integer n, let w(n) be the number of (distinct)
positive prime divisors of n. Find the smallest positive integer k
such that for all n,

2w(n) ≤ k 4
√
n.
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3.15 Turkey

1. Squares BAXX ′ and CAY Y ′ are erected externally on the sides of
isosceles triangle ABC with equal sides AB = AC. Let E and F
be the feet of the perpendiculars from an arbitrary point K on the
segment BC to BY and CX, respectively. Let D be the midpoint
of BC.

(a) Prove that DE = DF .

(b) Find the locus of the midpoint of EF .

2. Let {an} be the sequence of real numbers defined by a1 = t and
an+1 = 4an(1− an) for n ≥ 1. For how many distinct values of t do
we have a1998 = 0?

3. Let A = {1, 2, 3, 4, 5}. Find the number of functions f from the set
of nonempty subsets of A to A for which f(B) ∈ B for any B ⊆ A
and f(B ∪ C) ∈ {f(B), f(C)} for any B,C ⊆ A.

4. To n people are to be assigned n different houses. Each person
ranks the houses in some order (with no ties). After the assignment
is made, it is observed that every other assignment assigns at least
one person to a house that person ranked lower than in the given
assignment. Prove that at least one person received his/her top
choice in the given assignment.

5. Let ABC be a triangle. Suppose that the circle through C tangent to
AB at A and the circle through B tangent to AC at A have different
radii, and let D be their second intersection. Let E be the point on
the ray AB such that AB = BE. Let F be the second intersection of
the ray CA with the circle through A,D,E. Prove that AF = AC.

6. Let f(x1, . . . , xn) be a polynomial with integer coefficients of to-
tal degree less than n. Show that the number of ordered n-tuples
(x1, . . . , xn) with 0 ≤ xi ≤ 12 such that f(x1, . . . , xn) ≡ 0 (mod 13)
is divisible by 13.
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3.16 United Kingdom

1. A 5 × 5 square is divided into 25 unit squares. In each square is
written one of 1, 2, 3, 4, 5 so that each row, column and diagonal
contains each number once. The sum of the numbers in the squares
immediately below the diagonal from top left to bottom right is
called the score. Show that the score cannot equal 20, and find the
maximum possible score.

2. Let a1 = 19, a2 = 98. For n ≥ 1, define an+2 to be the remainder of
an + an+1 when it is divided by 100. What is the remainder when

a2
1 + a2

2 + · · ·+ a2
1998

is divided by 8?

3. Let ABP be an isosceles triangle with AB = AP and ∠PAB acute.
Let PC be the line through P perpendicular to BP , with C a point
on the same side of BP as A (and not lying on AB). Let D be the
fourth vertex of parallelogram ABCD, and let PC meet DA at M .
Prove that M is the midpoint of DA.

4. Show that there is a unique sequence of positive integers (an) with
a1 = 1, a2 = 2, a4 = 12, and

an+1an−1 = a2
n ± 1 n = 2, 3, 4, . . . .

5. In triangle ABC, D is the midpoint of AB and E is the point of
trisection of BC closer to C. Given that ∠ADC = ∠BAE, find
∠BAC.

6. The ticket office at a train station sells tickets to 200 destinations.
One day, 3800 passengers buy tickets. Show that at least 6 desti-
nations receive the same number of passengers, and that there need
not be 7 such destinations.

7. A triangle ABC has ∠BAC > ∠BCA. A line AP is drawn so that
∠PAC = ∠BCA, where P is inside the triangle. A point Q outside
the triangle is constructed so that PQ is parallel to AB and BQ is
parallel to AC. Let R be the point on BC (on the side of AP away
from Q) such that ∠PRQ = ∠BCA. Prove that the circumcircles
of ABC and PQR are tangent.
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8. Let x, y, z be positive integers such that

1
x
− 1
y

=
1
z
.

Let h be the greatest common divisor of x, y, z. Prove that hxyz
and h(y − x) are perfect squares.

9. Find all solutions of the system of equations

xy + yz + zx = 12
xyz = 2 + x+ y + z

in positive real numbers x, y, z.
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3.17 United States of America

1. Suppose that the set {1, 2, · · · , 1998} has been partitioned into dis-
joint pairs {ai, bi} (1 ≤ i ≤ 999) so that for all i, |ai − bi| equals 1
or 6. Prove that the sum

|a1 − b1|+ |a2 − b2|+ · · ·+ |a999 − b999|

ends in the digit 9.

2. Let C1 and C2 be concentric circles, with C2 in the interior of C1.
From a point A on C1 one draws the tangent AB to C2 (B ∈ C2).
Let C be the second point of intersection of AB and C1, and let D
be the midpoint of AB. A line passing through A intersects C2 at E
and F in such a way that the perpendicular bisectors of DE and CF
intersect at a point M on AB. Find, with proof, the ratio AM/MC.

3. Let a0, a1, · · · , an be numbers from the interval (0, π/2) such that

tan(a0 −
π

4
) + tan(a1 −

π

4
) + · · ·+ tan(an −

π

4
) ≥ n− 1.

Prove that

tan a0 tan a1 · · · tan an ≥ nn+1.

4. A computer screen shows a 98× 98 chessboard, colored in the usual
way. One can select with a mouse any rectangle with sides on the
lines of the chessboard and click the mouse button: as a result, the
colors in the selected rectangle switch (black becomes white, white
becomes black). Find, with proof, the minimum number of mouse
clicks needed to make the chessboard all one color.

5. Prove that for each n ≥ 2, there is a set S of n integers such that
(a− b)2 divides ab for every distinct a, b ∈ S.

6. Let n ≥ 5 be an integer. Find the largest integer k (as a function
of n) such that there exists a convex n-gon A1A2 . . . An for which
exactly k of the quadrilaterals AiAi+1Ai+2Ai+3 have an inscribed
circle. (Here An+j = Aj .)
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3.18 Vietnam

1. Let a ≥ 1 be a real number, and define the sequence x1, x2, . . . by
x1 = a and

xn+1 = 1 + log
(
xn(x2

n + 3)
3x2

n + 1

)
.

Prove that this sequence has a finite limit, and determine it.

2. Let P be a point on a given sphere. Three mutually perpendicular
rays from P meet the sphere at A,B,C.

(a) Prove that for all such triples of rays, the plane of the triangle
ABC passes through a fixed point.

(b) Find the maximum area of the triangle ABC.

3. Let a, b be integers. Define a sequence a0, a1, . . . of integers by

a0 = a, a1 = b, a2 = 2b− a+ 2, an+3 = 3an+2 − 3an+1 + an.

(a) Find the general term of the sequence.
(b) Determine all a, b for which an is a perfect square for all n ≥

1998.

4. Let x1, . . . , xn (n ≥ 2) be positive numbers satisfying

1
x1 + 1998

+
1

x2 + 1998
+ · · ·+ 1

xn + 1998
=

1
1998

.

Prove that
n
√
x1x2 · · ·xn
n− 1

≥ 1998.

5. Find the minimum of the expression√
(x+ 1)2 + (y − 1)2 +

√
(x− 1)2 + (y + 1)2 +

√
(x+ 2)2 + (y + 2)2

over real numbers x, y.

6. Prove that for each positive odd integer n, there is a unique polyno-
mial P (x) of degree n with real coefficients such that

P

(
x− 1

x

)
= xn − 1

xn

for x 6= 0. Also determine whether this assertion holds for n even.
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4 1998 Regional Contests: Problems

4.1 Asian Pacific Mathematics Olympiad

1. Let F be the set of all n-tuples (A1, . . . , An) such that each Ai is a
subset of {1, 2, . . . , 1998}. Let |A| denote the number of elements of
the set A. Find ∑

(A1,...,An)∈F

|A1 ∪A2 ∪ · · · ∪An|.

2. Show that for any positive integers a and b, (36a+b)(a+36b) cannot
be a power of 2.

3. Let a, b, c be positive real numbers. Prove that(
1 +

a

b

)(
1 +

b

c

)(
1 +

c

a

)
≥ 2

(
1 +

a+ b+ c
3
√
abc

)
.

4. Let ABC be a triangle and D the foot of the altitude from A. Let E
and F lie on a line passing through D such that AE is perpendicular
to BC, AF is perpendicular to CF , and E and F are different from
D. Let M and N be the midpoints of the segments BC and EF ,
respectively. Prove that AN is perpendicular to NM .

5. Find the largest integer n such that n is divisible by all positive
integers less than 3

√
n.
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4.2 Austrian-Polish Mathematics Competition

1. Let x1, x2, y1, y2 be real numbers such that x2
1 + x2

2 ≤ 1. Prove the
inequality

(x1y1 + x2y2 − 1)2 ≥ (x2
1 + x2

2 − 1)(y2
1 + y2

2 − 1).

2. Consider n points P1, P2, . . . , Pn lying in that order on a straight
line. We color each point in white, red, green, blue or violet. A
coloring is admissible if for each two consecutive points Pi, Pi+1 (i =
1, 2, . . . , n− 1) either both points are the same color, or at least one
of them is white. How many admissible colorings are there?

3. Find all pairs of real numbers (x, y) satisfying the equations

2− x3 = y, 2− y3 = x.

4. Let m,n be positive integers. Prove that
n∑
k=1

b k
2√
kmc ≤ n+m(2m/4 − 1).

5. Find all pairs (a, b) of positive integers such that the equation

x3 − 17x2 + ax− b2 = 0

has three integer roots (not necessarily distinct).

6. Distinct points A,B,C,D,E, F lie on a circle in that order. The
tangents to the circle at the points A and D, and the lines BF and
CE, are concurrent. Prove that the lines AD,BC,EF are either
parallel or concurrent.

7. Consider all pairs (a, b) of natural numbers such that the product
aabb, written in base 10, ends with exactly 98 zeroes. Find the pair
(a, b) for which the product ab is smallest.

8. Let n > 2 be a given natural number. In each square of an infinite
grid is written a natural number. A polygon is admissible if it has
area n and its sides lie on the grid lines. The sum of the numbers
written in the squares contained in an admissible polygon is called
the value of the polygon. Prove that if the values of any two congru-
ent admissible polygons are equal, then all of the numbers written
in the squares are equal.
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9. Let K,L,M be the midpoints of sides BC,CA,AB, respectively, of
triangle ABC. Let X be the midpoint of the arc BC not containing
A, let Y be the midpoint of the arc CA not containing B, and let
Z be the midpoint of the arc AB not containing C. Let R be the
circumradius and r the inradius of ABC. Prove that

r +KX + LY +MZ = 2R.
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4.3 Balkan Mathematical Olympiad

1. Find the number of different terms of the finite sequence
[
k2

1998

]
,

where k = 1, 2, ..., 1997 and [x] denotes the integer part of x.

2. If n ≥ 2 is an integer and 0 < a1 < a2 · · · < a2n+1 are real numbers,
prove the inequality:

n
√
a1 − n

√
a2 + n

√
a3 − · · · − n

√
a2n + n

√
a2n+1

< n
√
a1 − a2 + a3 − · · · − a2n + a2n+1.

3. Let S be the set of all points inside and on the border of 4ABC
without one inside point T . Prove that S can be represented as a
union of closed segments no two of which have a point in common.
(A closed segment contains both of its ends.)

4. Prove that the equation y2 = x5 − 4 has no integer solutions.
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4.4 Czech-Slovak Match

1. A polynomial P (x) of degree n ≥ 5 with integer coefficients and
n distinct integer roots is given. Find all integer roots of P (P (x))
given that 0 is a root of P (x).

2. The lengths of the sides of a convex hexagonABCDEF satisfyAB =
BC,CD = DE,EF = FA. Show that

BC

BE
+
DE

DA
+
FA

FC
≥ 3

2
.

3. Find all functions f : N→ N− {1} such that for all n ∈ N,

f(n) + f(n+ 1) = f(n+ 2)f(n+ 3)− 168.

4. At a summer camp there are n girls D1, D2, . . . , Dn and 2n− 1 boys
C1, C2, . . . , C2n−1. GirlDi knowsn boys C1, . . . , C2i−1 and no others.
Prove that the number of ways to choose r boy-girl pairs so that each
girl in a pair knows the boy in the pair is(

n

r

)
n!

(n− r)!
.
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4.5 Iberoamerican Olympiad

1. 98 points are given on a circle. Maria and José take turns drawing
a segment between two of the points which have not yet been joined
by a segment. The game ends when each point has been used as
the endpoint of a segment at least once. The winner is the player
who draws the last segment. If José goes first, who has a winning
strategy?

2. The incircle of triangle ABC touches BC,CA,AB at D,E, F , re-
spectively. Let AD meet the incircle again at Q. Show that the line
EQ passes through the midpoint of AF if and only if AC = BC.

3. Find the smallest natural number n with the property that among
any n distinct numbers from the set {1, 2, . . . , 999}, one can find four
distinct numbers a, b, c, d with a+ 2b+ 3c = d.

4. Around a table are seated representatives of n countries (n ≥ 2),
such that if two representatives are from the same country, their
neighbors on the right are from two different countries. Determine,
for each n, the maximum number of representatives.

5. Find the largest integer n for which there exist distinct points P1,
P2, . . ., Pn in the plane and real numbers r1, r2, . . . , rn such that the
distance between Pi and Pj is ri + rj .

6. Let λ be the positive root of the equation t2− 1998t+ 1 = 0. Define
the sequence x0, x1, . . . by setting

x0 = 1, xn+1 = bλxnc(n ≥ 0).

Find the remainder when x1998 is divided by 1998.

218



4.6 Nordic Mathematical Contest

1. Find all functions f from the rational numbers to the rational num-
bers satisfying f(x + y) + f(x − y) = 2f(x) + 2f(y) for all rational
x and y.

2. Let C1 and C2 be two circles which intersect at A and B. Let M1

be the center of C1 and M2 the center of C2. Let P be a point on
the segment AB such that |AP | 6= |BP |. Let the line through P
perpendicular to M1P meet C1 at C and D, and let the line through
P perpendicular to M2P meet C2 at E and F . Prove that C,D,E, F
are the vertices of a rectangle.

3. (a) For which positive integers n does there exist a sequence x1,
. . ., xn containing each of the integers 1, 2, . . . , n exactly once,
and such that k divides x1 + x2 + · · ·+ xk for k = 1, 2, . . . , n?

(b) Does there exist an infinite sequence x1, x2, . . . containing every
positive integer exactly once, and such that for any positive
integer k, k divides x1 + x2 + · · ·+ xk?

4. Let n be a positive integer. Prove that the number of k ∈ {0, 1, . . . , n}
for which

(
n
k

)
is odd is a power of 2.
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4.7 St. Petersburg City Mathematical Olympiad (Rus-
sia)

1. In how many zeroes can the number 1n+2n+3n+4n end for n ∈ N?

2. The diagonals of parallelogram ABCD meet at O. The circumcircle
of triangle ABO meets AD at E, and the circumcircle of DOE meets
BE at F . Show that ∠BCA = ∠FCD.

3. In a 10×10 table are written the numbers from 1 to 100. From each
row we select the third largest number. Show that the sum of these
numbers is not less than the sum of the numbers in some row.

4. Show that the projections of the intersection of the diagonals of an
cyclic quadrilateral onto two opposite sides are symmetric across the
line joining the midpoints of the other two sides.

5. The set M consists of n points in the plane, no three lying on a line.
For each triangle with vertices in M , count the number of points
of M lying in its interior. Prove that the arithmetic mean of these
numbers does not exceed n/4.

6. Two piles of matches lie on a large table, one containing 2100 matches,
the other containing 3100 matches. Two players take turns removing
matches from the piles. On a turn, a player may take k matches from
one pile and m from the other, as long as |k2 − m2| ≤ 1000. The
player taking the last match loses. Which player wins with optimal
play?

7. On a train are riding 175 passengers and 2 conductors. Each pas-
senger buys a ticket only after the third time she is asked to do so.
The conductors take turns asking a passenger who does not already
have a ticket to buy one, doing so until all passengers have bought
tickets. How many tickets can the conductor who goes first be sure
to sell?

8. On each of 10 sheets of paper are written several powers of 2. The
sum of the numbers on each sheet is the same. Show that some
number appears at least 6 times among the 10 sheets.

9. A country contains 1998 cities, any two joined by a direct flight.
The ticket prices on each of these flights is different. Is it possible
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that any two trips visiting each city once and returning to the city
of origin have different total prices?

10. Show that for any natural number n, between n2 and (n + 1)2 one
can find three distinct natural numbers a, b, c such that a2 + b2 is
divisible by c.

11. On a circle are marked 999 points. How many ways are there to
assign to each point one of the letters A, B, or C, so that on the arc
between any two points marked with the same letter, there are an
even number of letters differing from these two?

12. A circle passing through vertices A and C of triangle ABC meets
side AB at its midpoint D, and meets side BC at E. The circle
through E and tangent to AC at C meets DE at F . Let K be the
intersection of AC and DE. Show that the lines CF,AE,BK are
concurrent.

13. Can one choose 64 unit cubes from an 8× 8× 8 cube (consisting of
83 unit cubes) so that any 1 × 8 × 8 layer of the cube parallel to a
face contains 8 of the chosen cubes, and so that among any 8 chosen
cubes, two must lie in a common layer?

14. Find all polynomials P (x, y) in two variables such that for any x and
y, P (x+ y, y − x) = P (x, y).

15. A 2n-gon A1A2 · · ·A2n is inscribed in a circle with center O and
radius 1. Show that

| ~A1A2 + · · ·+ ~A2n−1A2n| ≤ 2 sin
1
2

(∠A1OA2 + · · ·+ ∠A2n−1OA2n).

16. Let d(n) denote the number of divisors of the natural number n.
Prove that the sequence d(n2 + 1) does not become monotonic from
any given point onwards.

17. A regiment consists of 169 men. Each day, four of them are on duty.
Is it possible that at some point, any two men have served together
exactly once?

18. Is it possible to place one of the letters P,A, S in each square of
an 11× 11 array so that the first row reads PAPASPASPSA, the
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letter S appears nowhere else along the perimeter, and no three-
square figure shaped like an L or its 180◦ rotation contains three
different letters?

19. Around a circle are placed 20 ones and 30 twos so that no three
consecutive numbers are equal. Find the sum of the products of
every three consecutive numbers.

20. In triangle ABC, point K lies on AB, N on BC, and K is the
midpoint of AC. It is given that ∠BKM = ∠BNM . Show that the
perpendiculars to BC,CA,AB through N,M,K, respectively, are
concurrent.

21. The vertices of a connected graph are colored in 4 colors so that any
edge joins vertices of different colors, and any vertex is joined to the
same number of vertices of the other three colors. Show that the
graph remains connected if any two edges are removed.

22. Show that any number greater than n4/16 (n ∈ N) can be written
as the product of two of its divisors having difference not exceeding
n in at most one way.

23. A convex 2n-gon has its vertices at lattice points. Prove that its
area is not less than n3/100.

24. In the plane are given several vectors, the sum of whose lengths is 1.
Show that they may be divided into three groups (possibly empty)
so that the sum of the lengths of the sum of the vectors in each group
is at least 3

√
3/2π.

25. Does there exist a nonconstant polynomial P with integer coeffi-
cients and a natural number k > 1 such that the numbers P (kn) are
pairwise relatively prime?

26. The point I is the incenter of triangle ABC. A circle centered
at I meets BC at A1 and A2, CA at B1 and B2, and AB at
C1 and C2, where the points occur around the circle in the order
A1, A2, B1, B2, C1, C2. Let A3, B3, C3 be the midpoints of the arcs
A1A2, B1B2, C1C2, respectively. The lines A2A3 and B1B3 meet at
C4, B2B3 and C1C3 meet at A4, and C2C3 and A1A3 meet at B4.
Prove that the lines A3A4, B3B4, C3C4 are concurrent.
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27. Given a natural number n, prove that there exists ε > 0 such that
for any n positive real numbers a1, a2, . . . , an, there exists t > 0 such
that

ε < {ta1}, {ta2}, . . . , {tan} <
1
2
.

(Note: {x} = x− bxc denotes the fractional part of x.)

28. In the plane are given several squares with parallel sides, such that
among any n of them, there exist four having a common point. Prove
that the squares can be divided into at most n− 3 groups, such that
all of the squares in a group have a common point.
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