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Preface

This book gives an exposition of the foundations of modern measure the-
ory and offers three levels of presentation: a standard university graduate
course, an advanced study containing some complements to the basic course
(the material of this level corresponds to a variety of special courses), and, fi-
nally, more specialized topics partly covered by more than 850 exercises. The
target readership includes graduate students interested in deeper knowledge
of measure theory, instructors of courses in measure and integration theory,
and researchers in all fields of mathematics. The book may serve as a source
for many advanced courses or as a reference.

Volume 1 (Chapters 1-5) is devoted to the classical theory of measure
and integral, created chiefly by H. Lebesgue and developed by many other
mathematicians, in particular, by E. Borel, G. Vitali, W. Young, F. Riesz,
D. Egoroff, N. Lusin, J. Radon, M. Fréchet, H. Hahn, C. Carathéodory, and
O. Nikodym, whose results are presented in these chapters. Almost all the
results in Chapters 1-5 were already known in the first third of the 20th
century, but the methods of presentation, certainly, take into account later
developments. The basic material designed for graduate students and oriented
towards beginners covers approximately 100 pages in the first five chapters
(i.e., less than 1/4 of those chapters) and includes the following sections: §1.1—
1.7, §2.1-2.11, §3.2-3.4, §3.9, §4.1, §4.3, and some fragments of §5.1-5.4. It
corresponds to a one-semester university course of real analysis (measure and
integration theory) taught by the author at the Department of Mechanics and
Mathematics at the Lomonosov Moscow University. The curriculum of this
course is found at the end of the Bibliographical and Historical Comments.
The required background includes only the basics of calculus (convergence of
sequences and series, continuity of functions, open and closed sets in the real
line, the Riemann integral) and linear algebra. Although knowledge of the
Riemann integral is not formally assumed, I am convinced that the Riemann
approach should be a starting point of the study of integration; acquaintance
with the basics of the Riemann theory enables one to appreciate the depth
and beauty of Lebesgue’s creation. Some additional notions needed in partic-
ular sections are explained in the appropriate places. Naturally, the classical
basic material of the first five chapters (without supplements) does not differ
much from what is contained in many well-known textbooks on measure and
integration or probability theory, e.g., Bauer [70], Halmos [404], Kolmogorov,
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Fomin [536], Loeve [617], Natanson [707], Neveu [713], Parthasarathy [739],
Royden [829], Shiryaev [868], and other books. An important feature of our
exposition is that the listed sections contain only minimal material covered
in real lectures. In particular, less attention than usual is given to measures
on semirings etc. In general, the technical set-theoretic ingredients are con-
siderably shortened. However, the corresponding material is not completely
excluded: it is just transferred to supplements and exercises. In this way, one
can substantially ease the first acquaintance with the subject when the abun-
dance of definitions and set-theoretical constructions often make obstacles for
understanding the principal ideas. Other sections of the main body of the
book, supplements and exercises contain many things that are very useful in
applications but seldom included in textbooks. There are two reasons why
the standard course is included in full detail (rather than just mentioned in
prerequisites): it makes the book completely self-contained and available to
a much broader audience, in addition, many topics in the advanced material
continue our discussion started in the basic course; it would be unnatural to
give a continuation of a discussion without its beginning and origins. It should
be noted that brevity of exposition has not been my priority; moreover, due
to the described structure of the book, certain results are first presented in
more special cases and only later are given in more general form. For ex-
ample, our discussion of measures and integrals starts from finite measures,
since the consideration of infinite values does not require new ideas, but for
the beginner may overshadow the essence by rather artificial troubles with
infinities. The organization of the book does not suggest reading from cover
to cover; in particular, almost all sections in the supplements are independent
of each other and are directly linked only to specific sections of the main part.
A detailed table of contents is given. Here are brief comments on the structure
of chapters.

In Chapter 1, the principal objects are countably additive measures on
algebras and g-algebras, and the main theorems are concerned with construc-
tions and extensions of measures.

Chapter 2 is devoted to the construction of the Lebesgue integral, for
which measurable functions are introduced first. The main theorems in this
chapter are concerned with passage to the limit under the integral sign. The
Lebesgue integral — one of the basic objects in this book — is not the most
general type of integral. Apparently, its role in modern mathematics is ex-
plained by two factors: it possesses a sufficient and reasonable generality
combined with aesthetic attractiveness.

In Chapter 3, we consider the most important operations on measures
and functions: the Hahn—Jordan decomposition of signed measures, product
measures, multiplication of measures by functions, convolutions of functions
and measures, transformations of measures and change of variables. We dis-
cuss in detail finite and infinite products of measures. Fundamental theorems
due to Radon&Nikodym and Fubini are presented.



Preface vii

Chapter 4 is devoted to spaces of integrable functions and spaces of mea-
sures. We discuss the geometric properties of the space LP, study the uni-
form integrability, and prove several important theorems on convergence and
boundedness of sequences of measures. Considerable attention is given to
weak convergence and the weak topology in L!. Finally, the structure prop-
erties of spaces of functions and measures are discussed.

In Chapter 5, we investigate connections between integration and dif-
ferentiation and prove the classical theorems on the differentiability of func-
tions of bounded variation and absolutely continuous functions and integra-
tion by parts. Covering theorems and the maximal function are discussed.
The Henstock—Kurzweil integral is introduced and briefly studied.

Whereas the first volume presents the ideas that go back mainly to Lebes-
gue, the second volume (Chapters 6-10) is to a large extent the result of the
development of ideas generated in 1930-1960 by a number of mathematicians,
among which primarily one should mention A.N. Kolmogorov, J. von Neu-
mann, and A.D. Alexandroff; other chief contributors are mentioned in the
comments. The central subjects in Volume 2 are: transformations of mea-
sures, conditional measures, and weak convergence of measures. These three
themes are closely interwoven and form the heart of modern measure theory.
Typical measure spaces here are infinite dimensional: e.g., it is often conve-
nient to consider a measure on the interval as a measure on the space {0,1}>°
of all sequences of zeros and ones. The point is that in spite of the fact that
any reasonable measure space is isomorphic to an interval, a significant role is
played by diverse additional structures on measure spaces: algebraic, topolog-
ical, and differential. This is partly explained by the fact that many problems
of modern measure theory grew under the influence of probability theory, the
theory of dynamical systems, information theory, the theory of representa-
tions of groups, nonlinear analysis, and mathematical physics. All these fields
brought into measure theory not only problems, methods, and terminology,
but also inherent ways of thinking. Note also that the most fruitful directions
in measure theory now border with other branches of mathematics.

Unlike the first volume, a considerable portion of material in Chapters
6-10 has not been presented in such detail in textbooks. Chapters 6-10 re-
quire also a deeper background. In addition to knowledge of the basic course,
it is necessary to be familiar with the standard university course of func-
tional analysis including elements of general topology (e.g., the textbook by
Kolmogorov and Fomin covers the prerequisites). In some sections it is desir-
able to be familiar with fundamentals of probability theory (for this purpose,
a concise book, Lamperti [566], can be recommended). In the second volume
many themes touched on in the first volume find their natural development
(for example, transformations of measures, convergence of measures, Souslin
sets, connections between measure and topology).

Chapter 6 plays an important technical role: here we study various prop-
erties of Borel and Souslin sets in topological spaces and Borel mappings of
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Souslin sets, in particular, several measurable selection and implicit function
theorems are proved here. The birth of this direction is due to a great extent
to the works of N. Lusin and M. Souslin. The exposition in this chapter has
a clear set-theoretic and topological character with almost no measures. The
principal results are very elegant, but are difficult in parts in the technical
sense, and I decided not to hide these difficulties in exercises. However, this
chapter can be viewed as a compendium of results to which one should resort
in case of need in the subsequent chapters.

In Chapter 7, we discuss measures on topological spaces, their regularity
properties, and extensions of measures, and examine the connections between
measures and the associated functionals on function spaces. The branch of
measure theory discussed here grew from the classical works of J. Radon
and A.D. Alexandroff, and was strongly influenced (and still is) by general
topology and descriptive set theory. The central object of the chapter is Radon
measures. We also study in detail perfect and 7-additive measures. A separate
section is devoted to the Daniell-Stone method. This method could have been
explained already in Chapter 2, but it is more natural to place it close to the
Riesz representation theorem in the topological framework. There is also a
brief discussion of measures on locally convex spaces and their characteristic
functionals (Fourier transforms).

In Chapter 8, directly linked only to Chapter 7, the theory of weak con-
vergence of measures is presented. We prove several fundamental results due
to A.D. Alexandroff, Yu.V. Prohorov and A.V. Skorohod, study the weak
topology on spaces of measures and consider weak compactness. The topolog-
ical properties of spaces of measures on topological spaces equipped with the
weak topology are discussed. The concept of weak convergence of measures
plays an important role in many applications, including stochastic analysis,
mathematical statistics, and mathematical physics. Among many comple-
mentary results in this chapter one can mention a thorough discussion of con-
vergence of measures on open sets and a proof of the Fichtenholz—Dieudonné—
Grothendieck theorem.

Chapter 9 is devoted to transformations of measures. We discuss the
properties of images of measures under mappings, the existence of preim-
ages, various types of isomorphisms of measure spaces (for example, point,
metric, topological), the absolute continuity of transformed measures, in par-
ticular, Lusin’s (N)-property, transformations of measures by flows generated
by vector fields, Haar measures on locally compact groups, the existence of
invariant measures of transformations, and many other questions important
for applications. The “nonlinear measure theory” discussed here originated
in the 1930s in the works of G.D. Birkhoff, J. von Neumann, N.N. Bogol-
ubov, N.M. Krylov, E. Hopf and other researchers in the theory of dynamical
systems, and was also considerably influenced by other fields such as the in-
tegration on topological groups developed by A. Haar, A. Weil, and others.
A separate section is devoted to the theory of Lebesgue spaces elaborated by
V. Rohlin (such spaces are called here Lebesgue-Rohlin spaces).
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Chapter 10 is close to Chapter 9 in its spirit. The principal ideas of this
chapter go back to the works of A.N. Kolmogorov, J. von Neumann, J. Doob,
and P. Lévy. It is concerned with conditional measures — the object that
plays an exceptional role in measure theory as well as in numerous applica-
tions. We describe in detail connections between conditional measures and
conditional expectations, prove the main theorems on convergence of con-
ditional expectations, establish the existence of conditional measures under
broad assumptions and clarify their relation to liftings. In addition, a con-
cise introduction to the theory of martingales is given with views towards
applications in measure theory. A separate section is devoted to ergodic the-
ory — a fruitful field at the border of measure theory, probability theory,
and mathematical physics. Finally, in this chapter we continue our study of
Lebesgue-Rohlin spaces, and in particular, discuss measurable partitions.

Extensive complementary material is presented in the final sections of
all chapters, where there are also a lot of exercises supplied with complete
solutions or hints and references. Some exercises are merely theorems from
the cited sources printed in a smaller font and are placed there to save space
(so that the absence of hints means that I have no solutions different from the
ones found in the cited works). The symbol ° marks exercises recommendable
for graduate courses or self-study. Note also that many solutions have been
borrowed from the cited works, but sometimes solutions simpler than the
original ones are presented (this fact, however, is not indicated). It should
be emphasized that many exercises given without references are either taken
from the textbooks listed in the bibliographical comments or belong to the
mathematical folklore. In such exercises, I omitted the sources (which appear
in hints, though), since they are mostly secondary. It is possible that some
exercises are new, but this is never claimed for the obvious reason that a
seemingly new assertion could have been read in one of hundreds papers from
the list of references or even heard from colleagues and later recalled.

The book contains an extensive bibliography and the bibliographical and
historical comments. The comments are made separately on each volume, the
bibliography in Volume 1 contains the works cited only in that volume, and
Volume 2 contains the cumulative bibliography, where the works cited only in
Volume 1 are marked with an asterisk. For each item in the list of references
we indicate all pages where it is cited. The comments, in addition to remarks
of a historical or bibliographical character, give references to works on many
special aspects of measure theory, which could not be covered in a book of
this size, but the information about which may be useful for the reader. A
detailed subject index completes the book (Volume 1 contains only the index
for that volume, and Volume 2 contains the cumulative index).

For all assertions and formulas we use the triple enumeration: the chapter
number, section number, and assertion number (all assertions are numbered
independently of their type within each section); numbers of formulas are
given in brackets.
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This book is intended as a complement to the existing large literature of
advanced graduate-text type and provides the reader with a lot of material
from many parts of measure theory which does not belong to the standard
course but is necessary in order to read research literature in many areas.
Modern measure theory is so vast that it cannot be adequately presented in
one book. Moreover, even if one attempts to cover all the directions in a uni-
versal treatise, possibly in many volumes, due depth of presentation will not be
achieved because of the excessive amount of required information from other
fields. It appears that for an in-depth study not so voluminous expositions
of specialized directions are more suitable. Such expositions already exist in
a several directions (for example, the geometric measure theory, Hausdorff
measures, probability distributions on Banach spaces, measures on groups,
ergodic theory, Gaussian measures). Here a discussion of such directions is
reduced to a minimum, in many cases just to mentioning their existence.

This book grew from my lectures at the Lomonosov Moscow Univer-
sity, and many related problems have been discussed in lectures, semi-
nar talks and conversations with colleagues at many other universities and
mathematical institutes in Moscow, St.-Petersburg, Kiev, Berlin, Bielefeld,
Bonn, Oberwolfach, Paris, Strasburg, Cambridge, Warwick, Rome, Pisa,
Vienna, Stockholm, Copenhagen, Ziirich, Barcelona, Lisbon, Athens, Ed-
monton, Berkeley, Boston, Minneapolis, Santiago, Haifa, Kyoto, Beijing,
Sydney, and many other places. Opportunities to work in the libraries
of these institutions have been especially valuable. Through the years of
work on this book I received from many individuals the considerable help in
the form of remarks, corrections, additional references, historical comments
etc. Not being able to mention here all those to whom I owe gratitude,
I particularly thank H. Airault, E.A. Alekhno, E. Behrends, P.A. Borodin,
G. Da Prato, D. Elworthy, V.V. Fedorchuk, M.I. Gordin, M.M. Gordina,
V.P. Havin, N.V. Krylov, P. Lescot, G. Letta, A.A. Lodkin, E. Mayer-
Wolf, P. Malliavin, P.-A. Meyer, L. Mejlbro, E. Priola, V.I. Ponomarev,
Yu.V. Prohorov, M. Réckner, V.V. Sazonov, B. Schmuland, A.N. Shiryaev,
A.V. Skorohod, O.G. Smolyanov, A.M. Stepin, V.N. Sudakov, V.I. Tarieladze,
S.A. Telyakovskii, A.N. Tikhomirov, F. Topsge, V.V. Ulyanov, H. von
Weizsdcker, and M. Zakai. The character of presentation was consider-
ably influenced by discussions with my colleagues at the chair of theory
of functions and functional analysis at the Department of Mechanics and
Mathematics of the Lomonosov Moscow University headed by the mem-
ber of the Russian Academy of Science P.L. Ulyanov. For checking sev-
eral preliminary versions of the book, numerous corrections, improvements
and other related help I am very grateful to A.V. Kolesnikov, E.P. Kru-
gova, K.V. Medvedev, O.V. Pugachev, T.S. Rybnikova, N.A. Tolmachev,
R.A. Troupianskii, Yu.A. Zhereb’ev, and V.S. Zhuravlev. The book took its
final form after Z. Lipecki read the manuscript and sent his corrections, com-
ments, and certain materials that were not available to me. I thank J. Boys for
careful copyediting and the editorial staff at Springer-Verlag for cooperation.

Moscow, August 2006 Vladimir Bogachev
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CHAPTER 1

Constructions and extensions of measures

I compiled these lectures not assuming from the reader any
knowledge other than is found in the under-graduate pro-
gramme of all departments; I can even say that not assuming
anything except for acquaintance with the definition and the
most elementary properties of integrals of continuous functions.
But even if there is no necessity to know much before read-
ing these lectures, it is yet necessary to have some practice of
thinking in such matters.

H. Lebesgue. Intégration et la récherche des fonctions primi-

tives.

1.1. Measurement of length: introductory remarks

Many problems discussed in this book grew from the following question:
which sets have length? This question clear at the first glance leads to two
other questions: what is a “set” and what is a “number” (since one speaks of a
qualitative measure of length)? We suppose throughout that some answers to
these questions have been given and do not raise them further, although even
the first constructions of measure theory lead to situations requiring greater
certainty. We assume that the reader is familiar with the standard facts about
real numbers, which are given in textbooks of calculus, and for “set theory”
we take the basic assumptions of the “naive set theory” also presented in
textbooks of calculus; sometimes the axiom of choice is employed. In the last
section the reader will find a brief discussion of major set-theoretic problems
related to measure theory. We use throughout the following set-theoretic
relations and operations (in their usual sense): A C B (the inclusion of a set
A to aset B), a € A (the inclusion of an element a in a set A), AU B (the
union of sets A and B), AN B (the intersection of sets A and B), A\B (the
complement of B in A, i.e., the set of all points from A not belonging to B).
Finally, let A A B denote the symmetric difference of two sets A and B, i.e.,
AAB = (AUB)\(ANB). We write A,, | Aif A, C App1and A=J,~, Ay;
we write A, | Aif A,y C A, and A=(_, A,.

The restriction of a function f to a set A is denoted by f|a.

The standard symbols IN = {1,2,...}, Z, Q, and IR" denote, respectively,
the sets of all natural, integer, rational numbers, and the n-dimensional Eu-
clidean space. The term “positive” means “strictly positive” with the ex-
ception of some special situations with the established terminology (e.g., the
positive part of a function may be zero); similarly with “negative”.
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The following facts about the set IR of real numbers are assumed to be
known.

1) The sets U C IR! such that every point x from U belongs to U with
some interval of the form (z — e,z + ¢), where € > 0, are called open; every
open set is the union of a finite or countable collection of pairwise disjoint
intervals or rays. The empty set is open by definition.

2) The closed sets are the complements to open sets; a set A is closed
precisely when it contains all its limit points. We recall that a is called a limit
point for A if every interval centered at a contains a point b # a from A. It is
clear that any unions and finite intersections of open sets are open. Thus, the
real line is a topological space (more detailed information about topological
spaces is given in Chapter 6).

It is clear that any intersections and finite unions of closed sets are closed.
An important property of IR! is that the intersection of any decreasing se-
quence of nonempty bounded closed sets is nonempty. Depending on the way
in which the real numbers have been introduced, this claim is either an axiom
or is derived from other axioms. The principal concepts related to convergence
of sequences and series are assumed to be known.

Let us now consider the problem of measurement of length. Let us aim
at defining the length X of subsets of the interval I = [0, 1]. For an interval .J
of the form (a,b), [a,b), [a,b] or (a,b], we set A(J) = |b—a|. For a finite union
of disjoint intervals Jy,...,Jn, we set A(Ul; J;) = >i_; A(J;). The sets of
the indicated form are called elementary. We now have to make a non-trivial
step and extend measure to non-elementary sets. A natural way of doing this,
which goes back to antiquity, consists of approximating non-elementary sets by
elementary ones. But how to approximate? The construction that leads to the
so-called Jordan measure (which should be more precisely called the Peano—
Jordan measure following the works Peano [741], Jordan [472]), is this: a set
A C I is Jordan measurable if for any € > 0, there exist elementary sets A, and
B. such that A, C A C B, and A\(B:\A.) < e. It is clear that when ¢ — 0, the
lengths of A, and B, have a common limit, which one takes for A(4). Are all
the sets assigned lengths after this procedure? No, not at all. For example, the
set QNI of rational numbers in the interval is not Jordan measurable. Indeed,
it contains no elementary set of positive measure. On the other hand, any
elementary set containing Q NI has measure 1. The question arises naturally
about extensions of A to larger domains. It is desirable to preserve the nice
properties of length, which it possesses on the class of Jordan measurable sets.
The most important of these properties are the additivity (i.e., A(AU B) =
A(A) + A(B) for any disjoint sets A and B in the domain) and the invariance
with respect to translations. The first property is even fulfilled in the following
stronger form of countable additivity: if disjoint sets A,, together with their
union A = (J77, A, are Jordan measurable, then A(4) = >"°°  A(A4,). As
we shall see later, this problem admits solutions. The most important of them
suggested by Lebesgue a century ago and leading to Lebesgue measurability
consists of changing the way of approximating by elementary sets. Namely,
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by analogy with the ancient construction one introduces the outer measure
A* for every set A C I as the infimum of sums of measures of elementary sets
forming countable covers of A. Then a set A is called Lebesgue measurable
if the equality A*(A) + A\*(I\A) = A(J) holds, which can also be expressed
in the form of the equality A\*(A4) = A.(A), where the inner measure A, is
defined not by means of inscribed sets as in the case of the Jordan measure,
but by the equality A\.(A) = A(I) — A*(I\A). An equivalent description of the
Lebesgue measurability in terms of approximations by elementary sets is this:
for any € > 0 there exists an elementary set A, such that \*(A A A.) < e.
Now, unlike the Jordan measure, no inclusion of sets is required, i.e., “skew
approximations” are admissible. This minor nuance leads to a substantial
enlargement of the class of measurable sets. The enlargement is so great that
the question of the existence of sets to which no measure is assigned becomes
dependent on accepting or not accepting certain special set-theoretic axioms.
We shall soon verify that the collection of Lebesgue measurable sets is closed
with respect to countable unions, countable intersections, and complements.
In addition, if we define the measure of a set A as the limit of measures
of elementary sets approximating it in the above sense, then the extended
measure turns out to be countably additive. All these claims will be derived
from more general results. The role of the countable additivity is obvious
from the very beginning: if one approximates a disc by unions of rectangles
or triangles, then countable unions arise with necessity.

It follows from what has been said above that in the discussion of measures
the key role is played by issues related to domains of definition and extensions.
So the next section is devoted to principal classes of sets connected with
domains of measures. It turns out in this discussion that the specifics of
length on subsets of the real line play no role and it is reasonable from the very
beginning to speak of measures of an arbitrary nature. Moreover, this point
of view becomes necessary for considering measures on general spaces, e.g.,
manifolds or functional spaces, which is very important for many branches of
mathematics and theoretical physics.

1.2. Algebras and o-algebras
One of the principal concepts of measure theory is an algebra of sets.

1.2.1. Definition. An algebra of sets A is a class of subsets of some
fized set X (called the space) such that

(i) X and the empty set belong to A;

(ii) if A, Be A, then AnNBe A, AUB € A, A\B € A.

In place of the condition A\B € A one could only require that X\B € A
whenever B € A, since A\B = AN(X\B) and AUB = X\ ((X\4)N(X\B)).
It is sufficient as well to require in (ii) only that A\B € A for all A, B € A,
since AN B = A\(A\B).

Sometimes in the definition of an algebra the inclusion X € A is replaced
by the following wider assumption: there exists a set E € A called the unit
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of the algebra such that ANE = A for all A € A. It is clear that replacing X
by E we arrive at our definition on a smaller space. It should be noted that
not all of the results below extend to this wider concept.

1.2.2. Definition. An algebra of sets A is called a o-algebra if for any
sequence of sets A, in A one has |J,—; A, € A.

1.2.3. Definition. A pair (X, A) consisting of a set X and a o-algebra
A of its subsets is called a measurable space.

The basic set (space) on which a o-algebra or measure are given is most
often denoted in this book by X; other frequent symbols are E, M, S (from
“ensemble”, “Menge”, “set”), and €, a generally accepted symbol in prob-
ability theory. For denoting a og-algebra it is traditional to use script Latin
capitals (e.g., A, B, &, F, L, M, S), Gothic capitals 2, B, §, £, M, S (ie.,
A, B, F; L, M and S) and Greek letters (e.g., X', A, I', Z), although when
necessary other symbols are used as well.

In the subsequent remarks and exercises some other classes of sets are
mentioned such as semialgebras, rings, semirings, o-rings, etc. These classes
slightly differ in the operations they admit. It is clear that in the definition of
a g-algebra in place of stability with respect to countable unions one could re-
quire stability with respect to countable intersections. Indeed, by the formula
Uo—i A = X\N,—,(X\A4,) and the stability of any algebra with respect to
complementation it is seen that both properties are equivalent.

1.2.4. Example. The collection of finite unions of all intervals of the
form [a,b], [a,b), (a,b], (a,b) in the interval [0,1] is an algebra, but not a
o-algebra.

Clearly, the collection 2% of all subsets of a fixed set X is a o-algebra.
The smallest o-algebra is (X, ). Any other o-algebra of subsets of X is
contained between these two trivial examples.

1.2.5. Definition. Let F be a family of subsets of a space X. The small-
est o-algebra of subsets of X containing F is called the o-algebra generated by
F and is denoted by the symbol o(F). The algebra generated by F is defined
as the smallest algebra containing F.

The smallest o-algebra and algebra mentioned in the definition exist in-
deed.

1.2.6. Proposition. Let X be a set. For any family F of subsets of
X there exists a unique o-algebra generated by F. In addition, there exists a
unique algebra generated by F.

PROOF. Set o(F) = (-4 A, where the intersection is taken over all o-
algebras of subsets of the space X containing all sets from F. Such o-algebras
exist: for example, 2%; their intersection by definition is the collection of all
sets that belong to each of such o-algebras. By construction, F C o(F). If
we are given a sequence of sets A,, € o(F), then their intersection, union and
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complements belong to any o-algebra A containing F, hence belong to o(F),
i.e., o(F) is a o-algebra. The uniqueness is obvious from the fact that the
existence of a o-algebra B containing F but not containing o(F) contradicts
the definition of o(F), since BNo(F) contains F and is a o-algebra. The case
of an algebra is similar. |

Note that it follows from the definition that the class of sets formed by the
complements of sets in F generates the same o-algebra as F. It is also clear
that a countable class may generate an uncountable o-algebra. For example,
the intervals with rational endpoints generate the o-algebra containing all
single-point sets.

The algebra generated by a family of sets F can be easily described ex-
plicitly. To this end, let us add to F the empty set and denote by F; the
collection of all sets of this enlarged collection together with their comple-
ments. Then we denote by F5 the class of all finite intersections of sets in Fj.
The class F3 of all finite unions of sets in Fs is the algebra generated by F.
Indeed, it is clear that F C Fy; C Fo C F3 and that @ € F3. The class F3
admits any finite intersections, since if A = (JI'; 4;, B = Ule Bj, where
Ai,Bj € fQ, then we have AN B = Ui§7l,j§k A; N Bj and A; N Bj € Fo.
In addition, F3 is stable under complements. Indeed, if £ = E; U ---U E,,
where E; € Fy, then X\E = _,(X\E;). Since E; = E;1 N -+ N E; 1,
where E; ; € F1, one has X\E; = U?;1(X\Ei,j)7 where D; ; := X\FE; ; € Fi.

Hence X\E = N, Ule D; ;, which belongs to F3 by the stability of F3
with respect to finite unions and intersections. On the other hand, it is clear
that F3 belongs to the algebra generated by F.

One should not attempt to imagine the elements of the o-algebra gen-
erated by the class F in a constructive form by means of countable unions,
intersections or complements of the elements in F. The point is that the
above-mentioned operations can be repeated in an unlimited number of steps
in any order. For example, one can form the class F, of countable unions
of closed sets in the interval, then the class F,s of countable intersections
of sets in F,, and continue this process inductively. One will be obtaining
new classes all the time, but even their union does not exhaust the o-algebra
generated by the closed sets (the proof of this fact is not trivial; see Exer-
cises 6.10.30, 6.10.31, 6.10.32 in Chapter 6). In §1.10 we study the so-called
A-operation, which gives all sets in the o-algebra generated by intervals, but
produces also other sets. Let us give an example where one can explicitly
describe the o-algebra generated by a class of sets.

1.2.7. Example. Let Aj be a o-algebra of subsets in a space X. Suppose
that a set S C X does not belong to Ag. Then the o-algebra o (Ay U {S}),
generated by Ay and the set S coincides with the collection of all sets of the
form

E=(ANnS)U(BN(X\S)), where A, B e A. (1.2.1)
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PROOF. All sets of the form (1.2.1) belong to the o-algebra o (AgU{S}).
On the other hand, the sets of the indicated type form a o-algebra. Indeed,

X\E = ((X\A) nS)u((X\B) N (X\9)),

since  does not belong to E precisely when either = belongs to .S but not
to A, or x belongs neither to S, nor to B. In addition, if the sets E, are
represented in the form (1.2.1) with some A,, B, € Ay, then (2, E,, and

U~ B also have the form (1.2.1). For example, (.-, E, has the form

n=1

(1.2.1) with A = ()2, A, and B = (,_, B,. Finally, all sets in A, are

obtained in the form (1.2.1) with A = B, and for obtaining S we take A = X
and B = @. O

In considerations involving o-algebras the following simple properties of
the set-theoretic operations are often useful.

1.2.8. Lemma. Let (An)aca be a family of subsets of a set X and let
f: E— X be an arbitrary mapping of a set E to X. Then

X\ 4e = (X\A), X\ [] 4a = [ (X\40), (1.2.2)

aEA a€A acA acA
f_l(U Aa) = U f_l(Aa)v f_1<ﬂ Aa) = n f_l(Aoz)' (123)
a€A acA acA a€A

PrOOF. Let x € X\ U,cp Aa; i€, z & A, for all a € A. The latter is
equivalent to the inclusion x € [ ¢ (X\Aq). Other relationships are proved
in a similar manner. O

1.2.9. Corollary. Let A be a o-algebra of subsets of a set X and f an
arbitrary mapping from a set E to X. Then the class f~1(A) of all sets of
the form f~1(A), where A € A, is a o-algebra in E.

In addition, for an arbitrary o-algebra B of subsets of E, the class of sets
{AC X: f~1(A) € B} is a o-algebra. Furthermore, for any class of sets F
in X, one has o (f~H(F)) = [~ (o(F)).

PrOOF. The first two assertions are clear from the lemma. Since the
class f’l(a(}")) is a o-algebra by the first assertion, we obtain the inclu-
sion o(f~*(F)) C f~'(c(F)). Finally, by the second assertion, we have
[0 (F)) Co(f~H(F)) because f~H(F) C o(f~1(F)). O

Simple examples show that the class f(B) of all sets of the form f(B),
where B € B, is not always an algebra.

1.2.10. Definition. The Borel o-algebra of R™ is the o-algebra B(IR™)
generated by all open sets. The sets in B(IR™) are called Borel sets. For any
set E C R", let B(E) denote the class of all sets of the form E N B, where
B e B(R").
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The class B(E) can also be defined as the o-algebra generated by the
intersections of F with open sets in IR"™. This is clear from the following: if
the latter o-algebra is denoted by &, then the family of all sets B € B(IR")
such that BN E € £ is a o-algebra containing all open sets, i.e., it coincides
with B(IR™). The sets in B(E) are called Borel sets of the space F and B(F)
is called the Borel o-algebra of the space E. One should keep in mind that
such sets may not be Borel in IR™ unless, of course, E itself is Borel in IR".
For example, one always has E € B(E), since ENTR" = E.

Tt is clear that B(IR") is also generated by the class of all closed sets.

1.2.11. Lemma. The Borel o-algebra of the real line is generated by any
of the following classes of sets:

(i) the collection of all intervals;
ii) the collection of all intervals with rational endpoints;
iii) the collection of all rays of the form (—oo,c), where ¢ is rational,
iv) the collection of all rays of the form (—oo, c|, where c¢ is rational;
v) the collection of rays of the form (c,+00), where ¢ rational,

(vi) the collection of all rays of the form [c,+00), where ¢ is rational.
Finally, the same is true if in place of rational numbers one takes points of
any everywhere dense set.

(
(
(
(

ProOOF. It is clear that all the sets indicated above are Borel, since they
are either open or closed. Therefore, the o-algebras generated by the corre-
sponding families are contained in B(IR'). Since every open set on the real
line is the union of an at most countable collection of intervals, it suffices
to show that any interval (a,b) is contained in the o-algebras corresponding
to the classes (i)—(vi). This follows from the fact that (a,b) is the union of
intervals of the form (a,,b,), where a, and b, are rational, and also is the
union of intervals of the form [a,,b,) with rational endpoints, whereas such
intervals belong to the o-algebra generated by the rays (—oo, ¢), since they
can be written as differences of rays. In a similar manner, the differences of
the rays of the form (¢, 00) give the intervals (ay,, b,], from which by means
of unions one constructs the intervals (a, ). O

It is clear from the proof that the Borel o-algebra is generated by the
closed intervals with rational endpoints. It is seen from this, by the way, that
disjoint classes of sets may generate one and the same o-algebra.

1.2.12. Example. The collection of all single-point sets in a space X
generates the o-algebra consisting of all sets that are either at most countable
or have at most countable complements. In addition, this o-algebra is strictly
smaller than the Borel one if X = R!.

PROOF. Denote by A the family of all sets A C X such that either A is
at most countable or X\ A is at most countable. Let us verify that A is a
o-algebra. Since X is contained in A and A is closed under complementation,
it suffices to show that A :=J,—, 4, € A whenever A4, € A. If all A,, are at
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most countable, this is obvious. Suppose that among the sets A,, there is at
least one set A,, whose complement is at most countable. The complement of
A is contained in the complement of A,,,, hence is at most countable as well,
i.e., A € A. All one-point sets belong to A, hence the o-algebra Ay generated
by them is contained in A. On the other hand, it is clear that any set in A is
an element of Ay, whence it follows that Ay = A. O

Let us give definitions of several other classes of sets employed in measure
theory.

1.2.13. Definition. (i) A family R of subsets of a set X is called a ring
if it contains the empty set and the sets AN B, AU B and A\B belong to R
for all A, B € R;

(ii) A family S of subsets of a set X is called a semiring if it contains the
empty set, ANB € S for all A,B € S and, for every pair of sets A,B € §
with A C B, the set B\ A is the union of finitely many disjoint sets in S. If
X €8, then S is called a semialgebra;

(iii) A ring is called a o-ring if it is closed with respect to countable unions.
A ring is called a 0-ring if it is closed with respect to countable intersections.

As an example of a ring that is not an algebra, let us mention the collection
of all bounded sets on the real line. The family of all intervals in the interval
[a,b] gives an example of a semiring that is not a ring. According to the
following lemma, the collection of all finite unions of elements of a semiring is
a ring (called the ring generated by the given semiring). It is clear that this
is the minimal ring containing the given semiring.

1.2.14. Lemma. For any semiring S, the collection of all finite unions
of sets in S forms a Ting R. FEvery set in R is a finite union of pairwise
disjoint sets in S. If S is a semialgebra, then R is an algebra.

PROOF. It is clear that the class R admits finite unions. Suppose that
A=A U---UA,, B= DB U---UBy, where 4;,B; € §. Then we have
ANB = U<, j<x4i N Bj € R. Hence R admits finite intersections. In
addition,

n k n k
aB=J(a\U B) = U NaBy).
i=1 j=1 i=1j=1
Since the set A;\B; = A;\(A; N B;) is a finite union of sets in S, one has
A\B € R. Clearly, A can be written as a union of a finitely many disjoint
sets in S because S is closed with respect to intersections. The last claim of
the lemma is obvious. (|

Note that for any o-algebra B in a space X and any set A C X, the class
Ba:={BNA: B € B} is a g-algebra in the space A. This o-algebra is called
the trace o-algebra.
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1.3. Additivity and countable additivity of measures

Functions with values in (—o0, +00) will be called real or real-valued. In
the cases where we discuss functions with values in the extended real line
[—00, +00], this will always be specified.

1.3.1. Definition. A real-valued set function u defined on a class of sets
A is called additive (or finitely additive) if

n n
p(U4) =3 man) (1.3.1)
i=1 i=1
for all n and all disjoint sets Ay, ..., A, € A such that |J;_, A; € A.

In the case where A is closed with respect to finite unions, the finite
additivity is equivalent to the equality

H(AU B) = p(A) + u(B) (13.2)

for all disjoint sets A, B € A.

If the domain of definition of an additive real-valued set function u con-
tains the empty set @, then p(@) = 0. In particular, this is true for any
additive set function on a ring or an algebra.

It is also useful to consider the property of subadditivity (also called the
semiadditivity):

p(UA) <D ma (133)

for all A; € A with (JI__; 4; € A. Any additive nonnegative set function on
an algebra is subadditive (see below).

1.3.2. Definition. A real-valued set function p on a class of sets A is
called countably additive if
n=1 n=1
for all pairwise disjoint sets A, in A such that | J,—, A, € A. A countably
additive set function defined on an algebra is called a measure.

It is readily seen from the definition that the series in (1.3.4) converges
absolutely because its sum is independent of rearrangements of its terms.

1.3.3. Proposition. Let u be an additive real set function on an algebra
(or a ring) of sets A. Then the following conditions are equivalent:

(i) the function p is countably additive,

(ii) the function p is continuous at zero in the following sense: if A, € A,
Api1 CA, foralln € N and (o, A, = @, then

lim p(A4,) =0, (1.3.5)
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(iii) the function p is continuous from below, i.e., if A, € A are such that
A, C Ay forallm € IN and |J,—, Ay, € A, then

M(G An) = lim p(4,). (1.3.6)
n=1

PROOF. (i) Let v be countably additive and let the sets A,, € A decrease
monotonically to the empty set. Set B, = A,\A,+1. The sets B, belong
to A and are disjoint and their union is A;. Hence the series Y~ | u(By)
converges. Then > ° v u(B,,) tends to zero as N — oo, but the sum of this
series is p(Ay), since | J,- v By, = An. Hence we arrive at condition (ii).

Suppose now that condition (ii) is fulfilled. Let {B,} be a sequence of
pairwise disjoint sets in .4 whose union B is an element of A as well. Set
A, = B\Uj_; Bi. It is clear that {A,} is a sequence of monotonically
decreasing sets in A with the empty intersection. By hypothesis, u(A4,) — 0.
By the finite additivity this means that Y ;_, u(By) — w(B) as n — oo.
Hence p is countably additive. Clearly, (iii) follows from (ii), for if the sets
A, € A increase monotonically and their union is the set A € A, then the
sets A\ A, € A decrease monotonically to the empty set. Finally, by the finite
additivity (iii) yields the countable additivity of p. O

The reader is warned that there is no such equivalence for semialgebras
(see Exercise 1.12.75).

1.3.4. Definition. A countably additive measure u on a o-algebra of
subsets of a space X is called a probability measure if u >0 and u(X) = 1.

1.3.5. Definition. A triple (X, A, ) is called a measure space if p is a
nonnegative measure on a o-algebra A of subset of a set X . If uu is a probability
measure, then (X, A, n) is called a probability space.

Nonnegative not identically zero measures are called positive measures.

Additive set functions are also called additive measures, but to simplify
the terminology we use the term measure only for countably additive measures
on algebras or rings. Countably additive measures are also called o-additive
measures.

1.3.6. Definition. A measure defined on the Borel o-algebra of the whole
space IR"™ or its subset is called a Borel measure.

It is clear that if A is an algebra, then the additivity is just equality
(1.3.2) for arbitrary disjoint sets in A. Similarly, if A is a o-algebra, then
the countable additivity is equality (1.3.4) for arbitrary sequences of disjoint
sets in A. The above given formulations are convenient for two reasons.
First, the validity of the corresponding equalities is required only for those
collections of sets for which both parts make sense. Second, as we shall see
later, under natural hypotheses, additive (or countably additive) set functions
admit additive (respectively, countably additive) extensions to larger classes
of sets that admit unions of the corresponding type.
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1.3.7. Example. Let A be the algebra of sets A C IN such that either A
or IN\ A4 is finite. For finite A, let 4(A) = 0, and for A with a finite complement
let u(A) = 1. Then p is an additive, but not countably additive set function.

PROOF. It is clear that 4 is indeed an algebra. Relation (1.3.2) is obvious
for disjoint sets A and B if A is finite. Finally, A and B in .4 cannot be infinite
simultaneously being disjoint. If u were countably additive, we would have

had p(IN) = 2022, p({n}) = 0. 0

There exist additive, but not countably additive set functions on o-
algebras (see Example 1.12.28). The simplest countably additive set function
is identically zero. Another example: let X be a nonempty set and let a € X
Dirac’s measure d, at the point a is defined as follows: for every A C X,
0qa(A) =11if a € A and 6,(A) = 0 otherwise. Let us give a slightly less trivial
example.

1.3.8. Example. Let A be the o-algebra of all subsets of IN. For every
set A= {ny}, let p(A) =3, 27" . Then p is a measure on A.

In order to construct less trivial examples (say, Lebesgue measure), we
need auxiliary technical tools discussed in the next section.

Note several simple properties of additive and countably additive set func-
tions.

1.3.9. Proposition. Let p be a nonnegative additive set function on an
algebra or a ring A.

(i) If A, Be A and A C B, then u(A) < u(B).

(ii) For any collection Ay,...,A, € A one has

M(O Ai) < iM(AJ
i=1 i=1

(iii) The function p is countably additive precisely when in addition to the
additivity it is countably subadditive in the following sense: for any sequence
{A,} € A with \J,_, A, € A one has

M(O An) < i p(Ap).
n=1 n=1

PROOF. Assertion (i) follows, since pu(B\A) > 0. Assertion (ii) is eas-
ily verified by induction taking into account the nonnegativity of u and the
relation u(AU B) = p(A\B) + u(B\A) + u(AnN B).

If v is countably additive and the union of sets A, € A belongs to A,
then according to Proposition 1.3.3 one has

(U A) - ([‘j A).
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which by (ii) gives the estimate indicated in (iii). Finally, such an estimate
combined with the additivity yields the countable additivity. Indeed, let B,
be pairwise disjoint sets in A whose union B belongs to A as well. Then for
any n € IN we have

S uBe) =u(|J Br) < u(B) <3 u(By),
— k=1 k=1

k=1

whence it follows that Y p-;, u(Bg) = pu(B). O

1.3.10. Proposition. Let Ay be a semialgebra (see Definition 1.2.13).
Then every additive set function p on Ay uniquely extends to an additive
set function on the algebra A generated by Ay (i.e., the family of all finite
unions of sets in Ag). This extension is countably additive provided that w is
countably additive on Ag. The same is true in the case of a semiring A and
the ring generated by it.

PrOOF. By Lemma 1.2.14 the collection of all finite unions of elements
of Ap is an algebra (or a ring when A4, is a semiring). It is clear that any set
in A can be represented as a union of disjoint elements of Ag. Set

plA) = 3 u(4)

if A; € Ay are pairwise disjoint and their union is A. The indicated extension
is obviously additive, but we have to verify that it is well-defined, i.e., is
independent of partitioning A into parts in Ag. Indeed, if By,..., B,, are
pairwise disjoint sets in A4y whose union is A, then by the additivity of
on the algebra Ay one has the equality p(A4;) = >, p(A4; N B;), u(Bj) =
iy u(A; N B;), whence the desired conclusion follows. Let us verify the
countable additivity of the indicated extension in the case of the countable
additivity on Ag. Let A, 4, € A, A=J;~, A, be such that A, N Ay = @ if
n # k. Then

N Ny
A:UB]" An:UBn,i7
j=1 i=1

where Bj, B, ; € Ag. Set Cy;; := Bp; N Bj. The sets Cy,; ; are pairwise
disjoint and

oo Ny N
Bi=JUCnisy Bni=JCnij
n=11i=1 j=1
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and by the definition of y on A one has the following equality:
N N,
M(A) = ZM(Bj)a M(An) = ZM(Bn,i)'
j=1 i=1

We obtain from these equalities that u(A) = Y02 | u(Ay), since both quan-
tities equal the sum of all u(C, ; ;). That it is possible to interchange the
summations in n and j is obvious from the fact that the series in n converge
and the sums in j and ¢ are finite. ([l

1.4. Compact classes and countable additivity

In this section, we give a sufficient condition for the countable additivity,
which is satisfied for most of the measures encountered in real applications.

1.4.1. Definition. A family K of subsets of a set X is called a compact
class if, for any sequence K, of its elements with (., K, = @, there exists

N such that ﬂgzl K,=02.
The terminology is explained by the following basic example.

1.4.2. Example. An arbitrary family of compact sets in IR" (more
generally, in a topological space) is a compact class.

PROOF. Indeed, let K,, be compact sets whose intersection is empty. Sup-
pose that for every n the set E,, = ﬂ?zl K; contains some element z,,. We
may assume that no element of the sequence {x,} is repeated infinitely often,
since otherwise it is a common element of all E,,. By the compactness of K3
there exists a point z each neighborhood of which contains infinitely many el-
ements of the sequence {z,,}. All sets E,, are compact and x; € E,, whenever
1 > n, hence the point = belongs to all E,, which is a contradiction. ([

Note that some authors call the above-defined compact classes countably
compact or semicompact and in the definition of compact classes require the
following stronger property: if the intersection of a (possibly uncountable)
collection of sets in C is empty, then the intersection of some its finite subcol-
lection is empty as well. See Exercise 1.12.105 for an example distinguishing
the two properties. Although such a terminology is more consistent from the
point of view of topology (see Exercise 6.10.66 in Chapter 6), we shall not
follow it.

1.4.3. Theorem. Let u be a nonnegative additive set function on an
algebra A. Suppose that there exists a compact class IC approximating i in
the following sense: for every A € A and every € > 0, there exist K. € K
and A; € A such that A, C K. C A and u(A\A:) < e. Then p is countably
additive. In particular, this is true if the compact class K is contained in A
and for any A € A one has the equality

WA = swp p(K).
KCA, KeK
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PROOF. Suppose that the sets A, € A are decreasing and their inter-
section is empty. Let us show that p(A4,) — 0. Let us fix ¢ > 0. By
hypothesis, there exist K,, € K and B,, € A such that B,, C K,, C A, and
w(A\By) < €27 Tt is clear that (), K, C ().~ A, = &. By the def-
inition of a compact class, there exists N such that ﬂﬁf:l K, = @. Then
NY_, B, = @. Note that one has

n=1

N N
Ay = () An € | J(4:\By).
n=1 n=1
Indeed, let z € Ay, ie., x € A, for all n < N. If z does not belong to
UnNzl(An\Bn), then = ¢ A,\B,, for all n < N. Then =z € B, for every
n < N, whence we obtain x € ﬂg:1 B,,, which is a contradiction. The above
proved equality yields the estimate

N N
PAN) <Y p(An\Bn) <) 27" <e.
n=1 n=1

Hence p(A,,) — 0, which implies the countable additivity of u. O

1.4.4. Example. Let I be an interval in IR', A the algebra of finite
unions of intervals in I (closed, open and half-open). Then the usual length Aq,
which assigns the value b — a to the interval with the endpoints a and b and
extends by additivity to their finite disjoint unions, is countably additive on
the algebra A.

PROOF. Finite unions of closed intervals form a compact class and ap-
proximate from within finite unions of arbitrary intervals. (]

1.4.5. Example. Let I be a cube in IR" of the form [a, ] and let A
be the algebra of finite unions of the parallelepipeds in I that are products of
intervals in [a,b]. Then the usual volume J,, is countably additive on .A. We
call A, Lebesgue measure.

PROOF. Asin the previous example, finite unions of closed parallelepipeds
form a compact approximating class. ([l

It is shown in Theorem 1.12.5 below that the compactness property can
be slightly relaxed.
The previous results justify the introduction of the following concept.

1.4.6. Definition. Let m be a nonnegative function on a class £ of
subsets of a set X and let P be a class of subsets of X, too. We say that P is
an approximating class for m if, for every E € £ and every € > 0, there exist
P. € P and E. € € such that E. C P. C E and |[m(E) — m(E;)| < €.

1.4.7. Remark. (i) The reasoning in Theorem 1.4.3 actually proves
the following assertion. Let p be a nonnegative additive set function on an
algebra A and let Ay be a subalgebra in A. Suppose that there exists a
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compact class I approximating p on Ay with respect to A in the following
sense: for any A € Ay and any ¢ > 0, there exist K. € K and A. € A such
that A. € K. C A and p(A\A.) < e. Then pu is countably additive on Ay.

(ii) The compact class K in Theorem 1.4.3 need not be contained in A.
For example, if A is the algebra generated by all intervals in [0, 1] with rational
endpoints and p is Lebesgue measure, then the class IC of all finite unions of
closed intervals with irrational endpoints is approximating for p and has no
intersection with A. However, it will be shown in §1.12(ii) that one can always
replace K by a compact class K’ that is contained in o(.A) and approximates
the countably additive extension of y on o(A). It is worth noting that there
exists a countably additive extension of i to the g-algebra generated by Ay
and K (see Theorem 1.12.34).

Note that so far in the considered examples we have been concerned with
the countable additivity on algebras. However, as we shall see below, any
countably additive measure on an algebra automatically extends (in a unique
way) to a countably additive measure on the c-algebra generated by this
algebra.

We shall see in Chapter 7 that the class of measures possessing a compact
approximating class is very large (so that it is not easy even to construct an
example of a countably additive measure without compact approximating
classes). Thus, the described sufficient condition of countable additivity has
a very universal character. Here we only give the following result.

1.4.8. Theorem. Let i1 be a nonnegative countably additive measure on
the Borel o-algebra B(IR™) in the space R™. Then, for any Borel set B C R"
and any € > 0, there exist an open set U. and a compact set K. such that
K. CBCU. and w(U\K,) < e.

PROOF. Let us show that for any ¢ > 0 there exists a closed set F, C B

such that
w(B\F:) < g/2.

Then, by the countable additivity of u, the set F. itself can be approximated
from within up to £/2 by F. N U, where U is a closed ball of a sufficiently
large radius. Denote by A the class of all sets A € B(IR") such that, for any
g > 0, there exist a closed set F. and an open set U, with F. C A C U, and
w(U\F;) < e. Every closed set A belongs to A, since one can take for F. the
set A itself, and for U one can take some open d-neighborhood A? of the set A,
i.e., the union of all open balls of radius § with centers at the points in A.
When § is decreasing to zero, the open sets A® are decreasing to A, hence their
measures approach the measure of A. Let us show that A is a o-algebra. If
this is done, then the theorem is proven, for the closed sets generate the Borel
o-algebra. By construction, the class A is closed with respect to the operation
of complementation. Hence it remains to verify the stability of A with respect
to countable unions. Let A; € A and let € > 0. Then there exist a closed set
F; and an open set U; such that F; C A; C U; and u(U;\F;) < e279, j € IN.
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Theset U = Ujoil Uj is open and the set Z, = Ule F} is closed for any k € IN.
It remains to observe that Z; C U;’il A; C U and for k large enough one has
the estimate p(U\Zy) < e. Indeed, u(U;Z, (U;\Fy)) < X252, 6277 = ¢ and
by the countable additivity u(Zx) — M(U;’il F}) as k — oo. O

This result shows that the measurability can be defined (as it is actually
done in some textbooks) in the spirit of the Jordan—Peano construction via
inner approximations by compact sets and outer approximations by open sets.
Certainly, it is necessary for this to define first the measure of open sets, which
determines the measures of compacts. In the case of an interval this creates no
problem, since open sets are built from disjoint intervals, which by virtue of
the countable additivity uniquely determines its measure from the measures
of intervals. However, already in the case of a square there is no such disjoint
representation of open sets, and the aforementioned construction is not as
effective here.

Finally, it is worth mentioning that Lebesgue measure considered above on
the algebra generated by cubes could be defined at once on the Borel o-algebra
by the equality A, (B) := inf Zji1 An(I;), where inf is taken over all at most
countable covers of B by cubes I;. In fact, exactly this will be done below,
however, a justification of the fact that the indicated equality gives a countably
additive measure is not trivial and will be given by some detour, where the
principal role will be played by the idea of compact approximations and the
construction of outer measure, with which the next section is concerned.

1.5. Outer measure and the Lebesgue extension of measures

It is shown in this section how to extend countably additive measures
from algebras to o-algebras. Extensions from rings are considered in §1.11.

For any nonnegative set function p that is defined on a certain class A of
subsets in a space X and contains X itself, the formula

oo o0
P (A) = inf{z p(An)|A, e A Ac | An}

n=1 n=1
defines a new set function defined already for every A C X. The same con-
struction is applicable to set functions with values in [0, +00]. If X does not
belong to A, then p* is defined by the above formula on all sets A that can
be covered by a countable sequence of elements of A, and all other sets are
assigned the infinite value. An alternative definition of p* on a set A that
cannot be covered by a sequence from A is to take the supremum of the values
of u* on the sets contained in A and covered by sequences from A (see Exam-
ple 1.12.130). The function p* is called the outer measure, although it need
not be additive. In Section 1.11 below we discuss in more detail Carathéodory
outer measures, not necessarily originated from additive set functions.
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1.5.1. Definition. Suppose that p is a nonnegative set function on do-
main A C 2%X. A set A is called p-measurable (or Lebesque measurable with
respect to p) if, for any € > 0, there exists A € A such that

(AN A) <e.
The class of all j--measurable sets is denoted by A,,.

We shall be interested in the case where p is a countably additive measure
on an algebra A.

Note that the definition of measurability given by Lebesgue (for an inter-
val X) was the equality pu*(A) + p*(X\A) = p(X). It is shown below that
for additive functions on algebras this definition (possibly not so intuitively
transparent) is equivalent to the one given above (see Theorem 1.11.8 and also
Proposition 1.5.11 for countably additive measures). In addition, we discuss
below the definition of the Carathéodory measurability, which is also equiva-
lent to the above definition in the case of nonnegative additive set functions
on algebras, but is much more fruitful in the general case.

1.5.2. Example. (i) Let @ € A and pu(@) =0. Then A C A, (if A € A,
one can take A. = A). In addition, any set A with u*(A) = 0 is y-measurable,
for one can take A, = .

(ii) Let A be the algebra of finite unions of intervals from Example 1.4.4
with the usual length A\. Then, the A-measurability of A is equivalent to the
following: for each € > 0, one can find a set F that is a finite union of intervals
and two sets AL and A7 with

A=(EUA)\AL, X(AD) <&, M'(AD) <e.

(iii) Let X = [0,1], A = {2, X}, w(X) = 1, u(&) = 0. Then p is a
countably additive measure on A and A, = A. Indeed, p*(E) = 1 for any
E # &. Hence the whole interval is the only nonempty set that can be
approximated up to € < 1 by a set from A.

Note that p* is monotone, i.e., p*(A) < u*(B) if A C B. However, even if
1 is a countably additive measure on a o-algebra A, the corresponding outer
measure p* may not be countably additive on the class of all sets.

1.5.3. Example. Let X be a two-point set {0,1} and let A = {@, X}.
Set u(@) =0, u(X) = 1. Then A is a o-algebra and p is countably additive
on A, but p* is not additive on the o-algebra of all sets, since p*({0}) = 1,

pr({1}) =1, and p* ({0} U{1}) = 1.

1.5.4. Lemma. Let pu be a nonnegative set function on a class A. Then
the function p* is countably subadditive, i.e.,

u([_j An) < iu*(z‘ln) (1.5.1)

n=1

for any sets A,.
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PROOF. Let € > 0 and p*(A,) < oo. For any n, there exists a collection
{Bnx}32, C Asuch that A, C Up—, Bn i and

ZN(Bn,k) <pr(Ap) + oo
k=1

Then U, A, € U,~; Use; Bn,i and hence

(U 4 ) DD ulBag) Y (A +e
n=1k=1 n=1
Since ¢ is arbitrary, we arrive at (1.5.1). 0

1.5.5. Lemma. In the situation of the previous lemma, for any sets A
and B such that p*(B) < oo one has the inequality

1 (A) = 1" (B)| < 0" (AL B). (15.2)

PROOF. We observe that A C BU (A A B), whence by the subadditivity
of u* we obtain the estimate

p'(A) < p*(B) + " (A A B),

e, p*(A) — p*(B) < u*(A A B). The estimate p*(B) — p*(A) < u*(AA B)
is obtained in a similar manner. O

1.5.6. Theorem. Let u be a nonnegative countably additive set function
on an algebra A. Then:

(i) one has A C A, and the outer measure p* coincides with p on A;

(ii) the collection A,, of all p-measurable sets is a o-algebra and the re-
striction of u* to A, is countably additive;

(iil) the function p* is a unique nonnegative countably additive extension
of 1 to the o-algebra o(A) generated by A and a unique nonnegative countably
additive extension of p to A,,.

PROOF. (i) It has already been noted that A C A,. Let A € A and
Ac U, Ay, where A, € A. Then A = |J;-,(ANA,). Hence by Proposition
1.3.9(iii) we have

Z wWANA,) < Z
n=1 n=1

whence we obtain p(A4) < p*(A). By definition, p*(A) < u(A). Therefore,
n(A) = p(A).

(ii) First we observe that the complement of a measurable set A is mea-
surable. This is seen from the formula (X\A4) A (X\A4.) = AA A.. Next, the
union of two measurable sets A and B is measurable. Indeed, let € > 0 and
let A, B: € A be such that p*(AA A.) <e/2 and p*(B A B.) < /2. Since

(AUB)A(Ac.UB.) C (AN A.)U(BA B),
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one has
" ((A UB) A (AU BE)> <y ((A AAYUBA Bg)) <e.
Therefore, AU B € A,. In addition, by what has already been proven, we
have AN B = X\ ((X\A4) U (X\B)) € A,. Hence A, is an algebra.
Let us now establish two less obvious properties of the outer measure.

First we verify its additivity on A,. Let A, B € A, where AN B = &. Let
us fix € > 0 and find A,, B. € A such that

(AN A) <e/2 and p"(BA B.) <e/2.
By Lemma 1.5.5, taking into account that p* and p coincide on A, we obtain
W (AUB) > u(A. U B.) —;["((AUB) A (A, UBE)). (1.5.3)
By the inclusion (AUB)A(A.UB,) C (AAA.)U(BAB.) and the subadditivity
of u* one has the inequality
w((AUB)A (A UB)) S p (ADA) +p' (BAB) Se (154)
By the inclusion A. N B. C (AA A.)U (B A B.) we have
p(Ac N Be) = p*(Ac N Be) S w* (AN A) 4+ p*(BAB:) <e.
Hence the estimates p(A:) > p*(A) — /2 and p(B.) > p*(B) — /2 yield
p(Ae U Be) = p(Az) + p(Bz) — p(Ae N Be) = p*(A) + p (B) — 2e.
Taking into account relationships (1.5.3) and (1.5.4) we obtain
p (AU B) = p*(A) + p*(B) — 3e.

Since ¢ is arbitrary, one has p*(A U B) > pu*(A) + p*(B). By the reverse
inequality p*(AU B) < p*(A) + pu*(B), we conclude that

(AU B) = i (A) + p* (B).

The next important step is a verification of the fact that countable unions
of measurable sets are measurable. It suffices to prove this for disjoint sets
A, € A,. Indeed, in the general case one can write B, = A,,\ UZ: Aj. Then
the sets B,, are pairwise disjoint and measurable according to what we have
already proved; they have the same union as the sets A,,. Dealing now with
disjoint sets, we observe that by the finite additivity of u* on A4, the following
relations are valid:

Zn:ﬂ*(Ak) = H*<CJ Ak) < M*(D Ak) < p(X).
k=1 k=1 k=1

Hence ) pu*(Ax) < co. Let € > 0. We can find n such that
k=1

>t <

k=n+1

DO ™
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By using the measurability of finite unions one can find a set B € A such that

w ((Uzzl Ak) A B) < £/2. Since

(Ua)ase((Uadan)o( U )

k=n+1
we obtain
w(Oa) o) <w((Uagos)ew( 0 4)
k=1 k=1 k=n+1

<

+ Y (&) <e

k=n+1

N ™

Thus, (J;o; Ay is measurable. Therefore, A, is a o-algebra. It remains to
note that the additivity and countable subadditivity of p* on A, yield the
countable additivity (see Proposition 1.3.9).

(iii) We observe that o(A) C A, since A, is a o-algebra containing A.
Let v be some nonnegative countably additive extension of p to o(A). Let
A € o(A) and € > 0. It has been proven that A € A,, hence there exists
B € A with p*(A A B) < e. Therefore, there exist sets C,, € A such that
AABcCU,.,Cyand > 07, u(Cy) < e. Then we obtain

V(A) = v(B)| S V(AAB) <Y w(Cn) =Y u(Ch) <e.
n=1 n=1
Since v(B) = u(B) = p*(B), we finally obtain
W(A) = p*(A)| = [v(A) —v(B) + 1 (B) — p* (4)]
< [v(A) = v(B)| + [u*(B) — p*(A)| < 2.

We arrive at the equality v(A) = p*(A) because € is arbitrary. This reasoning
also shows the uniqueness of a nonnegative countably additive extension of y
to A, since we have only used that A € A, (however, as noted below, it is
important that we deal with nonnegative extensions). O

A control question: where does the above proof employ the countable
additivity of u?

1.5.7. Example. Let A be the algebra of all finite subsets of IN and their
complements and let © equal 0 on finite sets and 1 on their complements. Then
 is additive and the single-point sets {n} cover IN, hence p*(IN) = 0 < p(IN).

It is worth noting that in the above theorem p has no signed countably
additive extensions from A to o(A), which follows by (iii) and the Jordan
decomposition constructed in Chapter 3 (see §3.1), but it may have signed
extensions to A,. For example, this happens if we take X = {0,1} and let
A=0(A)={9,X}, p=0,v({0}) =1, v({1}) = -1, v(X) = 0.
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An important special case, to which the extension theorem applies, is the
situation of Example 1.4.5. Since the o-algebra generated by the cubes with
edges parallel to the coordinate axes is the Borel g-algebra, we obtain a count-
ably additive Lebesgue measure A, on the Borel o-algebra of the cube (and
even on a larger o-algebra), which extends the elementary volume. This mea-
sure is considered in greater detail in §1.7. By Theorem 1.5.6, the Lebesgue
measure of any Borel (as well as any measurable) set B in the cube is A% (B).
Now the question arises why we do not define at once the measure on the Borel
o-algebra of the cube by this formula. The point is that there is a difficulty in
the verification of the additivity of the obtained set function. This difficulty
is circumvented by considering the algebra generated by the parallelepipeds,
where the additivity is obvious.

With the aid of the proven theorem one can give a new description of
measurable sets.

1.5.8. Corollary. Let i be a nonnegative countably additive set function

on an algebra A. A set A is p-measurable precisely when there exist two sets
A A" € o(A) such that

AcAcA” and p*(A"\A")=0.

Moreover, one can take for A" a set of the form \J;— | Nrey Ank, Ank € A,

and for A" a set of the form (\,_, Urey Bk, Bni € A.

PrOOF. Let A € A,,. Then, for any ¢ > 0, there exists a set A, € o(A)
such that A C A, and p*(A) > p*(A:) —e. Indeed, by definition there
exist sets A, € A with A C [, A, and p*(A) > > 2, u(A,) —e. Let
A = U Ap. Tt is clear that A € A, A. € o(A) C A, and by the
countable additivity of u* on A, we have p*(A:) <> 07 | u(A,). Set

A = ﬁ Ay .
n=1

Then A C A” € 0(A) C A, and p*(A) = p*(A”), since
W (A) > i (Agm) — 1/n > i (A”) — 1/n

for all n. Note that for constructing A” the measurability of A is not needed.
Let us apply this to the complement of A and find a set B € 0(A) C A,
such that X\ A C B and u(B) = p*(X\A). Set A’ = X\B. Then we obtain
A" C A, and by the additivity of * on the o-algebra A, and the inclusion
A,B e A, we have

W (A7) = p(X) — " (B) = u(X) — 1 (X\A) = p* (A),
which is the required relation. Conversely, suppose that such sets A" and A”
exist. Since A is the union of A’ and a subset of A”\A’, it suffices to verify
that every subset C' in A"\ A’ belongs to A,. This is indeed true because
p(C) < p*(A"\A") = p*(A") — p*(A’) = 0 by the additivity of pu* on A,
and the inclusion A”, A" € o(A) C A,,. O
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The uniqueness of extension yields the following useful result.

1.5.9. Corollary. For the equality of two nonnegative Borel measures
and v on the real line it is necessary and sufficient that they coincide on all
open intervals (or all closed intervals).

PRrROOF. Any closed interval is the intersection of a decreasing sequence of
open intervals and any open interval is the union of an increasing sequence of
closed intervals. By the countable additivity the equality of p and v on open
intervals is equivalent to their equality on closed intervals and implies the
equality of both measures on the algebra generated by intervals in IR'. Since
this algebra generates B(IR'), our assertion follows by the uniqueness of a
countably additive extension from an algebra to the generated o-algebra. [

The countably additive extension described in Theorem 1.5.6 is called
the Lebesque extension or the Lebesgue completion of the measure p, and
the measure space (X, Ay, i) is called the Lebesgue completion of (X, A, p).
In addition, A, is called the Lebesgue completion of the o-algebra A with
respect to p. This terminology is related to the fact that the measure p on
A, is complete in the sense of the following definition.

1.5.10. Definition. A nonnegative countably additive measure p on a
o-algebra A is called complete if A contains all subsets of every set in A with
u-measure zero. In this case we say that the o-algebra A is complete with
respect to the measure p.

It is clear from the definition of outer measure that if A C B € A,
and p(B) = 0, then A € A, and p(A) = 0. It is easy to construct an
example of a countably additive measure on a o-algebra that is not complete:
it suffices to take the identically zero measure on the o-algebra consisting
of the empty set and the interval [0,1]. As a less trivial example let us
mention Lebesgue measure on the g-algebra of all Borel subsets of the interval
constructed according to Example 1.4.4. This measure is considered below in
greater detail; we shall see that there exist compact sets of zero Lebesgue
measure containing non-Borel subsets.

Let us note the following simple but useful criterion of measurability of
a set in terms of outer measure (which is, as already remarked, the original
Lebesgue definition).

1.5.11. Proposition. Let i be a nonnegative countably additive measure
on an algebra A. Then, a set A belongs to A, if and only if one has

W7 (A) + i (X\A) = p(X).

This is also equivalent to the equality p*(E N A) + p*(E\A) = p*(E) for all
sets & C X.

PROOF. Let us verify the sufficiency of the first condition (then the

stronger second one is sufficient too). Let us find p-measurable sets B and C
such that A ¢ B, X\A C C, u(B) = p*(A), u(C) = p*(X\A). The existence
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of such sets has been established in the proof of Corollary 1.5.8. Clearly,
D =X\CC A and

w(B) = (D) = n(B) + u(C) — u(X) = 0.
Hence p*(A A B) = 0, whence the measurability of A follows.

Let us now prove that the second condition above is necessary. By the sub-
additivity of the outer measure it suffices to verify that u*(ENA)+p*(E\A) <
p*(E) for any E C X and any measurable A. It follows from (1.5.2) that it
suffices to establish this inequality for all A € A. Let ¢ > 0 and let sets
A, € A be such that E C |J2, A, and p*(E) > Y07, u(A,) —e. Then
EnAcU (A, nA)and E\A C U,—,(A,\A), whence we obtain

oo

pH(ENA) +p (B\A) < u(An N A) + > p(A,\A)

n

Il
-

n=1

M

1(An) < p*(E) +e.

Il
-

n

Since € is arbitrary, our claim is proven. O

Note that this criterion of measurability can be formulated as the equality
w*(A) = p.(A) if we define the inner measure by the equality

ps(A) i= p(X) — p* (X\A),

as Lebesgue actually did. It is important that in this case one must not use
the definition of inner measure in the spirit of the Jordan measure as the
supremum of measures of the sets from A inscribed in A. Below we shall
return to the discussion of outer measures and see that the last property in
Proposition 1.5.11 can be taken for a definition of measurability, which leads
to very interesting results. In turn, this proposition will be extended to finitely
additive set functions.

Let us observe that any set A € A, can be made a measure space by
restricting p to the class of p-measurable subsets of A, which is a o-algebra
in A. The obtained measure 4 (or p|a) is called the restriction of u to A.
Restrictions to arbitrary sets are considered in §1.12(iv).

We close this section by proving the following property of continuity from
below for outer measure.

1.5.12. Proposition. Let u be a nonnegative measure on a o-algebra A.
Suppose that sets A, are such that A, C Apy1 for alln € IN. Then, one has

M(D An) = lim x*(A,). (1.5.5)

n—oo

PrOOF. According to Corollary 1.5.8, there exist p-measurable sets B,
such that A,, C B, and u(B,) = p*(Ay). Set

oo oo
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One has A,, C By, if k > n, hence A, C B and |J'—, A4,, C B. Therefore,

n=1

M(U An) < u(B) = lim u(ﬂ Bk) <limsup p(B,) = lim p*(Ay).
n=1 k=n

n—oo n—00
Since the reverse inequality is also true, the claim is proven. ([

1.6. Infinite and o-finite measures

We have so far been discussing finite measures, but one has to deal with
infinite measures as well. The simplest (and most important) example is
Lebesgue measure on IR™. There are several ways of introducing set functions
with infinite values. The first one is to admit set functions with values in the
extended real line. For simplicity let us confine ourselves to nonnegative set
functions. Let ¢ + 0o = oo for any ¢ € [0, 4+00]. Now we can define the finite
or countable additivity of set functions on algebras and o-algebras (or rings,
semirings, semialgebras) in the same way as above. In particular, we keep
the definitions of outer measure and measurability. In this situation we use
the term “a countably additive measure with values in [0, +o00]”. Similarly,
one can consider measures with values in (—oo, 400] or [—00, +00). A certain
drawback of this approach is that rather pathological measures arise such as
the countably additive measure that assigns +oo to all nonempty sets.

1.6.1. Definition. Let A be a o-algebra in a space X and let pu be a set
function on A with values in [0,+00] that satisfies the condition p(2) = 0

and is countably additive in the sense that ,u(U;C:l A]) =021 u(A;j) for all
pairwise disjoint sets A; € A, where infinite values are admissible as well.

Then p is called a measure with values in [0,4+00]. We call p a o-finite
measure if X = ;- X,,, where X,, € A, p(X,,) < c0.

A desire to consider only measures with real but possibly unbounded
values leads to modification of requirements on domains of definitions of mea-
sures; this is the second option. Here the concepts of a ring and §-ring of sets
introduced in Definition 1.2.13 become useful. For example, a natural domain
of definition of Lebesgue measure on IR" could be the collection £? of all sets
of finite Lebesgue measure, i.e., all sets £ C IR™ such that measures of the
sets By, := EN{x: |x;] < k,i=1,...,n} in cubes (where we have already
defined Lebesgue measure) are uniformly bounded in k. Lebesgue measure on
LY is given by the formula A, (E) = khl& An(Ey). It is clear that the class £0

is a 0-ring. Lebesgue measure is countably additive on £2 (see below). In the
next section we discuss the properties of Lebesgue measure on IR" in greater
detail.

In what follows when considering infinite measures we always specify
which definition we have in mind. Some additional information about mea-
sures with values in the extended real line (including their extensions and
measurability with respect to such measures) is given in the final section and
exercises.



1.6. Infinite and o-finite measures 25

1.6.2. Lemma. Let R be a ring of subsets of a space X (i.e., R is
closed with respect to finite intersections and unions, @ € R and A\B € R
for all A,B € R). Let pp be a countably additive set function on R with
values in [0, +oo] such that there exist sets X,, € R with X = J,~; X,, and
w(X,) < oo. Denote by u, the Lebesgue extension of the measure p regarded
on the set S, = U;LZI X; equipped with the algebra of sets consisting of the
intersections of elements in R with S,. Let L, denote the class of all fi,,-
measurable sets. Let

A={AcCX: AnS, € L,, Vne N, u(A) = lim p,(ANS,) < oco}.

Then A is a ring closed with respect to countable intersections (i.e., a §-ring)
and Ti is a o-additive measure whose restriction to every set S, coincides
with (.

PROOF. Let A; € A be pairwise disjoint sets with union in .A. We denote
this union by A. For every n, the sets A; NS, are disjoint too, hence

pn(ANS,) =" pn(A; N S,).
1=1

Since A € A, the left-hand side of this equality is increasing to @(A). There-
fore, Y02 un(Ai N'S,) < f(A) for all n, whence it follows by the equality
Jim. pn(A; NSy) = 1u(A;) for every i that > ;o (A;) < m(A). This yields
that 7 is a countably additive measure. Let E € R. Then the sets ENJ; X;
belong to R and increase to E, which gives u(E) = fi(E). Other claims are
obvious. O

1.6.3. Remark. Suppose that in the situation of Lemma 1.6.2 the space
X is represented as the union of another sequence of sets X/, in R with finite
measures. Then, as is clear from the lemma, this sequence yields the same
extension of p and the same class A.

1.6.4. Example. Let £, be the class of all sets E C IR" such that all
the sets By := EN{x: |z;| <k, i=1,...,n} are Lebesgue measurable. Then
L, is a o-algebra, on which the function A, (E) = klim A (EY) is a o-finite

measure (called Lebesgue measure on IR™). The o-algebra £, contains the
above-considered d-ring £2. If we apply the previous lemma to the ring of all
bounded Lebesgue measurable sets, then we arrive at the é-ring £.

In addition to Lebesgue measure, o-finite measures arise as Haar measures
on locally compact groups and Riemannian volumes on manifolds. Sometimes
in diverse problems of analysis, algebra, geometry and probability theory one
has to deal with products of finite and o-finite measures. Although the list of
infinite measures encountered in real problems is not very large, it is useful
to have a terminology which enables one to treat various concrete examples
in a unified way. Many of our earlier-obtained assertions remain valid for
infinite measures. We only give the following result extending Theorem 1.5.6,
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which is directly seen from the reasoning there (the details of proof are left
as Exercise 1.12.78); this result also follows from Theorem 1.11.8 below.

1.6.5. Proposition. Let u be a countably additive measure on an algebra
A with values in [0,+00]. Then A, is a o-algebra, A C A, and the function
p* is a countably additive measure on A, with values in [0,400] and coincides
with u on A.

However, there are exceptions. For example, for infinite measures, the
countable additivity does not imply that the measures of sets A,, monotoni-
cally decreasing to the empty set approach zero. The point is that all the sets
A, may have infinite measures. In many books measures are defined from the
very beginning as functions with values in [0, 40c]. Then, in theorems, one has
often to impose various additional conditions (moreover, different in different
theorems; the reader will find a lot of examples in the exercises on infinite
measures in Chapters 1-4). It appears that at least in a graduate course it is
better to first establish all theorems for bounded measures, then observe that
most of them remain valid for o-finite measures, and finally point out that
further generalizations are possible, but they require additional hypotheses.
Our exposition will be developed according to this principle.

1.7. Lebesgue measure

Let us return to the situation considered in Example 1.4.5 and briefly
discussed after Theorem 1.5.6. Let I be a cube in R" of the form [a, b]",
Ap the algebra of finite unions of parallelepipeds in I with edges parallel to
the coordinate axes. As we know, the usual volume ), is countably additive
on Ag. Therefore, one can extend A, to a countably additive measure, also
denoted by A, on the o-algebra L, (I) of all A\,-measurable sets in I, which
contains the Borel o-algebra. We write IR™ as the union of the increasing
sequence of cubes I, = {|z;| < k,i =1,...,n} and denote by A, the o-finite
measure generated by Lebesgue measures on the cubes I according to the
construction of the previous section (see Example 1.6.4). Let

L, = {E cR": ENI; € ﬁn(Ik), Vk € ]N}

1.7.1. Definition. The above-defined measure A\, on L, is called Lebes-
gue measure on IR™. The sets in L, are called Lebesque measurable.

In the case where a subset of IR™ is regarded with Lebesgue measure, it is
customary to use the terms “measure zero set”, “measurable set” etc. without
explicitly mentioning Lebesgue measure. We also follow this tradition.

For defining Lebesgue measure of a set E € L,, one can use the formula

M (E) = klim A (ENI)
as well as the formula
An(E) =) A (ENQ;),

Jj=1
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where (); are pairwise disjoint cubes that are translations of [—1,1)" and
whose union is all of IR". Since the o-algebra generated by the parallelepipeds
of the above-mentioned form is the Borel o-algebra B(I) of the cube I, we see
that all Borel sets in the cube I, hence in IR" as well, are Lebesgue measurable.

Lebesgue measure can also be regarded on the §-ring £2 of all sets of
finite Lebesgue measure.

In the case of IR' Lebesgue measure of a set E is the sum of the series of
A (E N (n,n+ 1]) over all integer numbers n.

The translation of a set A by a vector h, i.e., the set of all points of the
form a + h, where a € A, is denoted by A + h.

1.7.2. Lemma. Let W be an open set in the cube I = (—1,1)". Then
there exists an at most countable family of open pairwise disjoint cubes @Q; in
W of the form Q; = ¢;I + hj, ¢c; >0, hj € W, such that the set W\ U;il Q;
has Lebesgue measure zero.

PRrROOF. Let us employ Exercise 1.12.48 and write W as W = U;il W;,
where W; are open cubes whose edges are parallel to the coordinate axes
and have lengths ¢27P with positive integer p, ¢, and whose centers have the
coordinates of the form [2~™ with integer [ and positive integer m. Next we
restructure the cubes W; as follows. We delete all cubes W; that are contained
in Wy and set @1 = Wi. Let us take the first cube W,,, in the remaining
sequence and represent the interior of the body W,,,\@Q1 as the finite union of
open pairwise disjoint cubes @2, ..., Qm, of the same type as the cubes W;
and some pieces of the boundaries of these new cubes. This is possible by our
choice of the initial cubes. Next we delete all the cubes W; that are contained
in U2 Q;, take the first cube in the remaining sequence and construct a
partition of its part that is not contained in the previously constructed cubes
in the same way as explained above. Continuing the described process, we
obtain pairwise disjoint cubes that cover W up to a measure zero set, namely,
up to a countable union of boundaries of these cubes. (I

In Exercise 1.12.72, it is suggested that the reader modify this reasoning
to make it work for any Borel measure. We have only used above that the
boundaries of our cubes have measure zero. Note that the lengths of the edges
of the constructed cubes are rational.

1.7.3. Theorem. Let A be a Lebesgue measurable set of finite measure.
Then:

(i) M (A + k) = A, (A4) for any vector h € R™;

(i) An(U(A)) = Ay(A) for any orthogonal linear operator U on IR™;

(iii) Ap (@A) = |a|" A, (A) for any real number c.

PRrROOF. It follows from the definition of Lebesgue measure that it suffices
to prove the listed properties for bounded measurable sets.

(i) Let us take a cube I centered at the origin such that the sets A and
A + h are contained in some cube inside I. Let Ay be the algebra generated
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by all cubes in I with edges parallel to the coordinate axes. When evaluating
the outer measure of A it suffices to consider only sets B € Ay with B+h C 1.
Since the volumes of sets in A are invariant under translations, the sets A+h
and A have equal outer measures. For every € > 0, there exists a set A, € Ag
with A% (A A A.) <e. Then

(AR A (A +h) = A ((AAA) +h) = \o(AA AL <,

whence we obtain the measurability of A + h and the desired equality.

(ii) Asin (i), it suffices to prove our claim for sets in .4y. Hence it remains
to show that, for any closed cube K with edges parallel to the coordinate axes,
one has the equality

M (U(K)) = M\ (K). (1.7.1)
Suppose that this is not true for some cube K, i.e.,
)\n(U(K)) = rA,(K),

where r # 1. Let us show that for every ball @ C I centered at the origin one
has

M (U(Q) =rMn(Q) if UQ) C I (1.7.2)

Let d be the length of the edge of K. Let us take an arbitrary natural
number p and partition the cube K into p™ equal smaller closed cubes K
that have equal edges of length d/p and disjoint interiors (i.e., may have in
common only parts of faces). The cubes U(K) are translations of each other
and have equal measures as proved above. It is readily seen that faces of
any cube have measure zero. Hence A, (U(K)) = p"A, (U(K1)). Therefore,
M (U(K1)) = rAn(K7). Then (1.7.2) is true for any cube of the form ¢K + h,
where ¢ is a rational number. This yields equality (1.7.2) for the ball Q.
Indeed, by additivity this equality extends to finite unions of cubes with edges
parallel to the coordinate axes. Next, for any € > 0, one can find two such
unions E; and Ey with F1 C Q C E; and A\, (E3\E;) < e. To this end, it
suffices to take balls Q" and Q" centered at the origin such that Q' € Q C Q”
with strict inclusions and a small measure of Q”\@Q’. Then one can find a finite
union E; of cubes of the indicated form with Q' C E; C @ and an analogous
union Fy with @ C Es C @Q”. It remains to observe that U(Q) = @, and
(1.7.2) leads to contradiction.

(iii) The last claim is obvious for sets in Ag, hence as claims (i) and (ii),
it extends to arbitrary measurable sets. O

It is worth noting that property (iii) of Lebesgue measure is a corollary
of property (i), since by (i) it is valid for all cubes and o = 1/m, where m
is any natural number, then it extends to all rational «, which yields the
general case by continuity. It is seen from the proof that property (ii) also
follows from property (i). Property (i) characterizes Lebesgue measure up to
a constant factor (see Exercise 1.12.74). There is an alternative derivation of
property (ii) from properties (i) and (iii), employing the invariance of the ball
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with respect to rotations and the following theorem, which is very interesting
in its own right.

1.7.4. Theorem. Let W be a nonempty open set in R". Then, there
exists a countable collection of pairwise disjoint open balls U; C W such that
the set W'\ U;)il U; has measure zero.

PROOF. It suffices to prove the theorem in the case where A\, (W) < oo
(we may even assume that W is contained in a cube). Let K = (—1,1)" and
let V be the open ball inscribed in K. It is clear that A, (V) = a\,(K), where
0 <a<1 Set gq=1—a. Let us take a number § > 1 such that ¢80 < 1.
By Lemma 1.7.2, the set W can be written as the union of a measure zero set
and a sequence of open pairwise disjoint cubes K; of the form K; = ¢; K + h;,
where ¢; > 0 and h; € IR". In every cube K, we inscribe the open ball
Vj = ¢;V + hj. Since A, (V})/An(K;) = o, we obtain

An(KG\V)) = An(K;) — A (V) = ¢An(K5).

Hence
o0 o0 o0
M (MU V) = Do AENV) = 0D MnlEG) = ara(W).
j=1 j=1 j=1
Let us take a finite number of these cubes such that

)\n(W\ JLVJ Vj) < Barn(W).
j=1

Set Vj(l) = V;, j £ Ni. Let us repeat the described construction for the
open set W obtained from W by deleting the closures of the balls V1,...,Vx,
(we observe that a finite union of closed sets is closed). We obtain pairwise

disjoint open balls Vj(z) C Wi, 7 £ Ny, such that

N»
A (Wl\jL_Jl VD) < Bada(W1) < (80X (W):

By induction, we obtain a countable family of pairwise disjoint open balls
Vj(k)7 7 < Ng, with the following property: if Zj is the union of the closures

of the balls V¥ ... . V") and Wy = Wj,_1\Zs, where Wy = W, then

N1

(Wi U V) < (80 A w).

j=1
Since (8¢)* — 0, the set W\ Up—, Ujvzkl Vj(k) has measure zero. O

It is clear that in the formulation of this theorem the balls U; can be
replaced by any sets of the form ¢;S 4 h;, where S is a fixed bounded set of
positive measure. Indeed, the proof only employed the translation invariance
of Lebesgue measure and the relation A, (rA) = r"A,(4) for r > 0. In
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Chapter 5 (Corollary 5.8.3) this theorem will be extended to arbitrary Borel
measures.

Note that it follows by Theorem 1.7.3 that Lebesgue measure of any rect-
angular parallelepiped P C I (not necessarily with edges parallel to the coor-
dinate axes) equals the product of lengths of its edges. Clearly, any countable
set has Lebesgue measure zero. As the following example of the Cantor set
(named after the outstanding German mathematician Georg Cantor) shows,
there exist uncountable sets of Lebesgue measure zero as well.

1.7.5. Example. Let I = [0,1]. Denote by J;1 the interval (1/3,2/3).
Let J27 and J2o denote the intervals (1/9,2/9) and (7/9,8/9), which are
the middle thirds of the intervals obtained after deleting J; ;. Continue this
process inductively by deleting the open middle intervals. After the nth step
we obtain 2" closed intervals; at the next step we delete their open middle
thirds Jp411, -..,Jnt1,2n, after which there remains 27*1 closed intervals,
and the process continues. The set C'= I\, ; Jn,; is called the Cantor set.
It is compact, has cardinality of the continuum, but its Lebesgue measure is
Zero.

PRrROOF. The set C' is compact, since its complement is open. In order to
see that C has cardinality of the continuum, we write the points in [0, 1] in the
ternary expansion, i.e., x = Z;’il x]-?)*j, where x; takes values 0,1,2. As in
the decimal expansion, this representation is not unique, since, for example,
the sequence (1,1,2,2,...) corresponds to the same number as the sequence
(1,2,0,0,...). However, this non-uniqueness is only possible for points of
some countable set, which we denote by M. It is verified by induction that
after the nth step of deleting there remain the points = such that z; = 0 or
z; = 2 if j < n. Thus, C\M consists of all points whose ternary expansion
involves only 0 and 2, whence it follows that C has cardinality of the set of
all reals. Finally, in order to show that C' has zero measure, it remains to
verify that the complement of C in [0,1] has measure 1. By induction one
verifies that the measure of the set J,, 1 U---UJ, on-1 equals 27=137"_ Since
oo 277137 =1, our claim is proven. O

1.7.6. Example. Let ¢ > 0 and let {r,} be the set of all rational
numbers in [0,1]. Set K = [0, 1\, —,(r, —e4™",r, + €47 "). Then K is a
compact set without inner points and its Lebesgue measure is not less than
1 — & because the measure of the complement does not exceed 2y . 47"

Thus, a compact set of positive measure may have the empty interior.
A similar example (but with some additional interesting properties) can be
constructed by a modification of the construction of the Cantor set. Namely,
at every step one deletes a bit less than the middle third so that the sum of
the deleted intervals becomes 1 — €.

Note that any subset of the Cantor set has measure zero, too. Therefore,
the family of all measurable sets has cardinality equal to that of the class of
all subsets of the real line. As we shall see below, the Borel o-algebra has
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cardinality of the continuum. Hence among subsets of the Cantor set there
are non-Borel Lebesgue measurable sets. The existence of non-Borel Lebesgue
measurable sets will be established below in a more constructive way by means
of the Souslin operation.

Now the question naturally arises how large the class of all Lebesgue
measurable sets is and whether it includes all the sets. It turns out that an
answer to this question depends on additional set-theoretic axioms and cannot
be given in the framework of the “naive set theory” without the axiom of
choice. In any case, as the following example due to Vitali shows, by means
of the axiom of choice it is easy to find an example of a nonmeasurable (in
the Lebesgue sense) set.

1.7.7. Example. Let us declare two points  and y in [0, 1] equivalent
if the number x — y is rational. It is clear that the obtained relation is indeed
an equivalence relation, ie., 1) z ~ 2z, 2) y ~xz if z ~ y, 3) ¢ ~ z if
x ~ y and y ~ z. Hence we obtain the equivalence classes each of which
contains points with rational mutual differences, and the differences between
any representatives of different classes are irrational. Let us now choose in
every class exactly one representative and denote the constructed set by FE.
It is the axiom of choice that enables one to construct such a set. The set E
cannot be Lebesgue measurable. Indeed, if its measure equals zero, then the
measure of [0, 1] equals zero as well, since [0, 1] is covered by countably many
translations of E by rational numbers. The measure of E cannot be positive,
since for different rational p and ¢, the sets £ + p and E + ¢ are disjoint and
have equal positive measures. One has E +p C [0,2] if p € [0,1], hence the
interval [0, 2] would have infinite measure.

However, one should have in mind that the axiom of choice may be re-
placed by a proposition (added to the standard set-theoretic axioms) that
makes all subsets of the real line measurable. Some remarks about this are
made in §1.12(x).

Note also that even if we use the axiom of choice, there still remains the
question: does there exist some extension of Lebesgue measure to a count-
ably additive measure on the class of all subsets of the interval? The above
example only says that such an extension cannot be obtained by means of the
Lebesgue completion. An answer to this question also depends on additional
set-theoretic axioms (see §1.12(x)). In any case, the Lebesgue extension is not
maximal: by Theorem 1.12.14, for every set E C [0, 1] that is not Lebesgue
measurable, one can extend Lebesgue measure to a countably additive mea-
sure on the o-algebra generated by all Lebesgue measurable sets in [0, 1] and
the set F.

Closing our discussion of the properties of Lebesgue measure let us men-
tion the Jordan (Peano—Jordan) measure.

1.7.8. Definition. A bounded set E in IR" is called Jordan measurable
if, for each € > 0, there exist sets U. and V. that are finite unions of cubes
such that U. C E C V; and A\, (Vo\Ue) < e.
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It is clear that when € — 0, there exists a common limit of the measures of
U, and V, called the Jordan measure of the set E. It is seen from the definition
that every Jordan measurable set F is Lebesgue measurable and its Lebesgue
measure coincides with its Jordan measure. However, the converse is false: for
example, the set of rational numbers in the interval is not Jordan measurable.
The collection of all Jordan measurable sets is a ring (see Exercise 1.12.77),
on which the Jordan measure coincides with Lebesgue measure. Certainly,
the Jordan measure is countably additive on its domain and its Lebesgue
extension is Lebesgue measure. In Exercise 3.10.75 one can find a useful
sufficient condition of the Jordan measurability.

1.8. Lebesgue—Stieltjes measures

Let x be a nonnegative Borel measure on IR'. Then the function

t— F(t) = p((—o0,1))

is bounded, nondecreasing (i.e., F'(t) < F(s) whenever ¢ < s; such functions

are also called increasing), left continuous, i.e., F(t,) — F(t) as t, 1 t,

which follows by the countable additivity u, and one has , lim F(t) = 0.
[—— 00

These conditions turn out also to be sufficient in order that the function F' be
generated by some measure according to the above formula. The function F
is called the distribution function of the measure . Note that the distribution
function is often defined by the formula F(t) = p((—oc,t]), which leads to
different values at the points of positive y-measure (the jumps of the function
F are exactly the points of positive py-measure).

1.8.1. Theorem. Let F be a bounded, nondecreasing, left continuous
function with . lim F(t) = 0. Then, there exists a unique nonnegative Borel
——00

measure on R such that
F(t) = p((—o00,t)) forallt € R

PRrROOF. It is known from the elementary calculus that the function F'
has an at most countable set D of points of discontinuity. Clearly, there is
a countable set S in IR'\D that is everywhere dense in IR, Let us consider
the class A of all sets of the form A = [J;__, J;, where J; is an interval of one
of the following four types: (a,b), [a,b], (a,b] or [a,b), where a and b either
belong to S or coincide with —oo or +oo. It is readily seen that A is an
algebra. Let us define the set function p on A as follows: if A is an interval
with endpoints a and b, where a < b, then u(A) = F(b) — F(a), and if A
is a finite union of disjoint intervals J;, then p(A) = Y. p(J;). It is clear
that the function p is well-defined and additive. For the proof of countable
additivity p on A, it suffices to observe that the class of finite unions of
compact intervals is compact and is approximating. Indeed, if J is an open or
semiopen interval, e.g., J = (a, b), where a and b belong to S (or coincide with
the points 400, —00), then, by the continuity of F' at the points of .S, we have
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F(b)—F(a) = lim [F(b;) — F(a;)], where a; | a, b; 1 b, a;, b; € S. lf a = —00,
then the same follows by the condition , lim F(t) = 0. Let us extend p to a
——00

countably additive measure on the Borel o-algebra B(IR') (note that B(IR')
is generated by the algebra A, since S is dense). We have F(t) = p((—o0,t))
for all ¢ (and not only for ¢t € S). This follows by the left continuity of both
functions and their coincidence on a countable everywhere dense set. The
uniqueness of p is clear from the fact that the function F' uniquely determines
the values of y on intervals.

We observe that due to Proposition 1.3.10, we could also use the semi-
algebra of semiclosed intervals of the form (—o0,b), [a,b), [a,+00), where
a,bes. O

The measure p constructed from the function F' as described above is
called the Lebesgue—Stieltjes measure with distribution function F'. Similarly,
by means of the distribution functions of n variables (representing measures of
sets (—oo, x1)X- - -x(—00, T, )) one defines Lebesgue—Stieltjes measures on IR"
(see Exercise 1.12.156).

1.9. Monotone and o-additive classes of sets

In this section, we consider two more classes of sets that are frequently
used in measure theory.

1.9.1. Definition. A family £ of subsets of a set X is called a mono-
tone class if \J;—, En € € for every increasing sequence of sets E,, € £ and
Moy By € E for every decreasing sequence of sets E,, € .

1.9.2. Definition. A family £ of subsets of a set X is called a o-additive
class if the following conditions are fulfilled:

(i) X €€,

(ii) E2\Ey € € provided that E1, Es € € and Ey C Es,

(iii) Uf;l E, € & provided that E,, € £ are pairwise disjoint.

Note that in the presence of conditions (i) and (ii), condition (iii) can
be restated as follows: E; U Fy € £ for every disjoint pair Fy, Es € £ and
U,—, En € € whenever E,, € € and E,, C E,,4; for all n € IN.

Given a class £ of subsets of X, we have the smallest monotone class
containing £ (called the monotone class generated by &), and the smallest
o-additive class containing &£ (called the c-additive class generated by &).
These minimal classes are, respectively, the intersections of all monotone and
all o-additive classes containing &.

The next result called the monotone class theorem is frequently used in
measure theory.

1.9.3. Theorem. (i) Let A be an algebra of sets. Then the o-algebra
generated by A coincides with the monotone class generated by A.
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(i) If the class & is closed under finite intersections, then the o-additive
class generated by € coincides with the o-algebra generated by E.

PRrROOF. (i) Denote by M(.A) the monotone class generated by A. Since
o(A) is a monotone class, one has M(A) C o(A). Let us prove the inverse
inclusion. To this end, let us show that M(A) is a o-algebra. It suffices to
prove that M(A) is an algebra. We show first that the class M(.A) is closed
with respect to complementation. Let

Mo = {B: B,X\B € M(A)}.

The class My is monotone, which is obvious, since M(A) is a monotone class
and one has the equalities

Since A C My C M(A), one has My = M(A).
Let us verify that M(A) is closed with respect to finite intersections. Let
Ae M(A). Set

My={BeM(A): ANBe M(A)}.

If B, € M4 are monotonically increasing sets, then

AN D B, = D(AmBn) € M(A).
n=1 n=1

The case where the sets B,, are decreasing is similar. Hence M 4 is a monotone
class. If A € A, then we have A C M4 C M(A), whence we obtain that
Mas = M(A). Now let A € A and B € M(A). Then, according to the
equality M(A) = M4, we have AN B € M(A), which gives A € Mp. Thus,
A C Mp C M(A). Therefore, Mp = M(A) for all B € M(A), which means
that M(A) is closed with respect to finite intersections. It follows that M (.A)
is an algebra as required.

(ii) Denote by S the o-additive class generated by £. It is clear that
S C (), since (&) is a o-additive class. Let us show the inverse inclusion.
To this end, we show that S is a o-algebra. It suffices to verify that the class
S is closed with respect to finite intersections. Set

So={AecS: AnNEcS forall E €&}

Note that Sy is a o-additive class. Indeed, X € Sy. Let A, B € Sp and A C B.
Then, for any E € £, we have (B\A)NE = (BN E)\(AN E) € S, since the
intersections AN E, BN E belong to S and S is a g-additive class. Similarly,
it is verified that Uf:;l A, € 8 for any pairwise disjoint sets A,, € Sy. Since
E C Sy, one has So =S. Thus, ANE €S forall Ac S and E € £. Now set

S1={AeS: AnBeS forall BeS}.

Let us show that S; is a o-additive class. Indeed, X € S&;. If Ay, Ay € Sy,
A1 C Ag, then As\A; € Sy, since for all B € S, by the definition of Sy, we



1.10. Souslin sets and the A-operation 35

obtain (A2\A;) N B = (A2 N B)\(A1 N B) € S. Similarly, it is verified that
U>2, B, € S for any sequence of disjoint sets in 8. Since £ C Sy as proved
above, one has S§ = S. Therefore, AN B € S for all A,B € S. Thus, Sis a
o-algebra. O

As an application of Theorem 1.9.3 we prove the following useful result.

1.9.4. Lemma. If two probability measures p and v on a measurable
space (X, A) coincide on some class of sets £ C A that is closed with respect
to finite intersections, then they coincide on the o-algebra generated by E.

PROOF. Let B = {A € A: u(A) = v(A)}. By hypothesis, X € B.
If A/B € Band A C B, then B\A € B. In addition, if sets A; in B are
pairwise disjoint, then their union also belongs to B. Hence B is a o-additive
class. Therefore, the o-additive class S generated by £ is contained in B. By
Theorem 1.9.3(ii) one has S = o(€). Therefore, o(£) C B. O

1.10. Souslin sets and the A-operation

Let B be a Borel set in the plane and let A be its projection to one of the
axes. Is A a Borel set? One can hardly imagine that the correct answer to this
question is negative. This answer was found due to efforts of several eminent
mathematicians investigating the structure of Borel sets. A result of those
investigations was the creation of descriptive set theory, in particular, the
invention of the A-operation. It was discovered that the continuous images
of the Borel sets coincide with the result of application of the A-operation
to the closed sets. This section is an introduction to the theory of Souslin
sets discussed in greater detail in Chapter 6. In spite of an introductory and
relatively elementary character of this section, it contains complete proofs of
two deep facts of measure theory: the measurability of Souslin sets and, as
a consequence, the measurability of sets that are images of Borel sets under
continuous mappings.

Denote by IN® the set of all infinite sequences (n;) with natural compo-
nents.

1.10.1. Definition. Let X be a nonempty set and let £ be some class
of its subsets. We say that we are given a Souslin scheme (or a table of
sets) {An, .. np} With values in € if, to every finite sequence (nq,...,ng) of
natural numbers, there corresponds a set Ay, . € E. The A-operation (or
the Souslin operation) over the class £ is a mapping that to every Souslin
scheme {An, ... n,} with values in € associates the set

A= UJ N4 (1.10.1)
(n;)eIN> k=1

The sets of this form are called E-Souslin or €-analytic. The collection of all
such sets along with the empty set is denoted by S(E).
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Certainly, if @ € € (or if £ contains disjoint sets), then @ € S(€) auto-
matically.

1.10.2. Example. By means of the A-operation one can obtain any
countable unions and countable intersections of elements in the class £.

PRrROOF. In the first case, it suffices to take A,, . n, = A,,, and in the
second, Ap, . n. = Ap. O

A Souslin scheme is called monotone (or regular) if

An17'~~;nk7”k+1 C Anhm,nk'
If the class £ is closed under finite intersections, then any Souslin scheme with

values in £ can be replaced by a monotone one giving the same result of the
A-operation. Indeed, set

A* e = An1 N Anhnz N---N Anl,..‘,nkn

N1,y

We need the following technical assertion. Let (INOO)Oo denote the space
of all sequences n = (n',n?,...) with n* € IN*°.

1.10.3. Lemma. There exist bijections
B: NxIN - N and ¥: N®x(IN®)™ - N>

with the property: for all m,n € N, 0 = (0;) € IN* and (%) € (INOO)OO,

where Tt = (T;) € IN®°, the collections o1, ...,0, and 7", ..., 7" are uniquely

r'n

determined by the first 3(m,n) components of the element ¥ (o, (7%)).

PROOF. Set B(m,n) = 2™~ 1(2n — 1). It is clear that 3 is a bijection of
IN x IN onto IN, since, for any [ € IN, there exists a unique pair of natural
numbers (m,n) with [ = 2m71(2n — 1). Set also ¢(I) := m, () := n, where
B(m,n) =1. Let o = (0;) € N> and (7¢) € (]NC’O)OO7 where 78 = (TJZ) € IN*™.
Finally, set

\I/(U, (7'1)) = (ﬂ(al,rqf((ll))), . ,ﬂ(al,ri((ll)), .. )

For every n = (1;) € IN*| the equation \I/(J, (Ti)) = 7 has a unique solution
o = p(ni), T; = ¥(ng(,;)). Hence V¥ is bijective. Since m < ((m,n) and
B(m, k) < B(m,n) whenever k < n, it follows from the form of the solution
that the first 8(m,n) components of \If(a, (Ti)> uniquely determine the first
m components of o and the first n components of 7. ([

The next theorem describes a number of important properties of Souslin
sets.

1.10.4. Theorem. (i) One has S(S(€)) = S(€). In particular, the class
S(&) is closed under countable unions and countable intersections.

(ii) If the complement of every set in £ belongs to S(E) (for example, is
an at most countable union of elements of £) and & € £, then the o-algebra
a(€) generated by & is contained in the class S(£).
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PrOOF. (i) Let Ajt--tm € & and let

o0 o0
A= U m Anymis Angny, = U ﬂ A;?l’, ,I;ZZ
(nz)Eﬂ\IOC k=1 veIN> m=1
Keeping the notation of the above lemma, for any natural numbers 7y, ...,

we find 0 € IN™ and 7 = (7) € (IN*)™ such that 7, = ¥(o,7)1,...,m =
U(o,7);. Certainly, o and 7 are not uniquely determined, but according to the
»(l) 720

lemma, the collections o7,...,0,) and 77, o) are uniquely determined
by the numbers 7y, ...,7n;. Hence we may set
Tw(l), ‘77_3?(”
B(m,....m) = Asy, o) €E.

Then, denoting by n = (n;) and ¢ = (0,,) elements of IN™ and by (7™) with
7™ = (71 elements of (IN>°)™, we have

U ﬂ B(m,...,m) = U m B(‘l/(cr, (Tm))l,...,\ll(a, (Tm))l>

n =1
@ 'T
U T N R g Wt
o,(tm) =1 o,(rm) m,n=1
-Uu ﬂl ﬂlAZﬁx an=U ﬂlg ﬂlA;a: i
“U ) Arremy = 4
o m=1
Thus, S(S(£)) C S(E). The inverse inclusion is obvious.
(ii) Set

F={BeS(E&): X\BeS(&)}.

Let us show that F is a o-algebra. By construction, F is closed under
complementation. Let B, € F. Then ()., B, € 5(5) according to as-
sertion (i). Similarly, X\ (2, B, = U,—~,(X\B,) € S(£). By hypothesis,
@ € F. Therefore, F is a o-algebra. Since by hypothesis £ C F, we obtain
o(&) CFCS(E). O

It is clear that the condition X\F € S(€) for E € & is also necessary in
order that (&) C S(£). The class S(E) may not be closed with respect to
complementation even in the case where £ is a o-algebra. As we shall see later,
this happens, for example, with £ = B(lRl). If we apply the A-operation to
the class of all compact (or closed) sets in IR", then the hypothesis in assertion
(ii) of the above theorem is satisfied, since every nonempty open set in IR"
is a countable union of closed cubes. Below we consider this example more
carefully.
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The next fundamental result shows that the A-operation preserves mea-
surability. This assertion is not at all obvious and, moreover, it is very sur-
prising, since the A-operation involves uncountable unions.

1.10.5. Theorem. Suppose that p is a finite nonnegative measure on
a o-algebra M. Then, the class M,, of all u-measurable sets is closed with
respect to the A-operation. Moreover, given a family of sets € C M that is
closed with respect to finite unions and countable intersections, one has

1 (A) =sup{u(E): ECA, E€&}
for every E-Souslin set A. In particular, every E-Souslin set is p-measurable.

PROOF. The first claim is a simple corollary of the second one applied to
the family £ = M,,. So we prove the second claim. Let a set A be constructed
by means of a monotone table of sets E,, ., € £ Let e > 0. For every
collection my, ..., my of natural numbers, denote by D,,, ... m, the union of
the sets Ey,, .. n, over all ny <my,...,ni < my. Let

oo
Mooy = U ﬂ Eﬂl,m,ﬂj'

(n)eIN®, ny<ma,.onp <my 3=1

It is clear that as m — oo, the sets M, monotonically increase to A, and the
sets My, .....m,,m With fixed m, ..., mj monotonically increase to My, ... m,-
By Proposition 1.5.12, there is a number my with p*(M,,,) > p*(A) —e27 L
Then we can find a number may with p* (M, m,) > p*(My,, ) — 272, Contin-
uing this construction by induction, we obtain a sequence of natural numbers
my, such that

M*(Mml’mz"“’mk) > u*(Mmlym27“~,mk—1) — 27k,

Therefore, for all k one has
ﬂ*(Mm1,m2,~~~,mk) > PJ*(A) —¢&.

By the stability of £ with respect to finite unions we have Dy, ., € £, and
the stability of £ with respect to countable intersections yields the inclusion
E = o Dmy,..om, € E. Since My, ., C Dim,.....m,, We obtain by
the previous estimate p*(Din, my,...mi) > 1 (A) — &, whence it follows that
w(E) > u*(A) — e, since the sets Dy, m,.....m, decrease to E.

It remains to prove that £ C A. Let x € E. Then, for all £ we have
z € Dp,y,...m,,- Hence x € E,, . p, for some collection nq,...,ny such that
ny < m,...,nEg < myg. Such collections will be called admissible. Our task
is to construct an infinite sequence ni, ns, ... such that all its initial intervals
ni,...,n, are admissible. In this case = € ﬂzil Eny.,...n. C A In order to
construct such a sequence let us observe that, for any £ > 1, we have admis-
sible collections of k numbers. An admissible collection nq,...,ng is called
extendible if, for every [ > k, there exists an admissible collection p1,...,p;
with p1 = nq,...,pr = ni. Let us now observe that there exists at least
one extendible collection ny of length 1. Indeed, suppose the contrary. Since
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every initial interval ny,...,ng in any admissible collection ny,...,ng,...,n;
is admissible by the inclusion E,,, .. ny» We obtain that for every
n < m; there exists the maximal length I(n) of admissible collections with
the number n at the first position. Therefore, the lengths of all admissible
collections are uniformly bounded and we arrive at a contradiction. Similarly,
the extendible collection n; is contained in some extendible collection n1,ng
and so on. The obtained sequence possesses the desired property. (I

.....

1.10.6. Corollary. If (X, A) and (Y,B) are measurable spaces and a
mapping f: X — Y be such that f~*(B) € A for all B € B, then for every
set E € S(B), the set f~1(E) belongs to S(A) and hence is measurable with
respect to every measure on A.

PROOF. It follows from (1.10.1) that f~1(E) € S(A). O

Another method of proof of Theorem 1.10.5 is described in Exercise
6.10.60 in Chapter 6. A thorough study of Souslin sets and related prob-
lems in measure theory is accomplished in Chapters 6 and 7. However, even
now we are able to derive from Theorem 1.10.5 very useful corollaries.

1.10.7. Definition. The sets obtained by application of the A-operation
to the class of closed sets in IR™ are called the Souslin sets in the space IR".

It is clear that the same result is obtained by applying the A-operation
to the class of all compact sets in IR"™. Indeed, if A is contained in a cube K,
,,,,, v, that generate A can be replaced by the compacts
Ay, ..., NK. Any unbounded Souslin set A can be written as the union of its
intersections AN K; with increasing cubes K;. It remains to use that the class
of sets constructed by the A-operation from compact sets admits countable
unions.

As was mentioned above, it follows by Theorem 1.10.4 that Borel sets in
IR™ are Souslin. Note also that if L is a linear subspace in IR" of dimension
k < n, then the intersection of L with any Souslin set A in IR™ is Souslin in
the space L. This follows by the fact that the intersection of any closed set
with L is closed in L. Conversely, any Souslin set in L is Souslin in IR" as
well.

1.10.8. Proposition. The image of any Souslin set under a continuous
mapping from R™ to R? is Souslin.

PROOF. Let a set A have the form (1.10.1), where the sets A, . ., are
compact (as we know, such a representation is possible for every Souslin set).
As noted above, we may assume that A, . 5 5wy C Ang,..on, for all k. Let

f: R™ — IR? be a continuous mapping. It is clear that

= U 1) A

(ni)E]l\Ioo k=1
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It remains to observe that the sets By, . n, = f(An,,...n,) are compact by
the continuity of f and that

k=1 k=1

Indeed, the left-hand side of this equality is contained in the right-hand side
for any sets and mappings. Let y € (g~ f(An,,...n,). Then, for every £,
there exists xx € Ap, ... n, With f(zp) = y. If for infinitely many indices k the
points xj coincide with one and the same point x, then x € ﬂ;ozl Anyo
by the monotonicity of A, . ... Clearly, f(z) = y. Hence it remains to
consider the case where the sequence {zj} contains infinitely many distinct
points. Since this sequence is contained in the compact set A,,, there exists
a limit point = of {xy}. Then = € A,, . ,, for all k, since x; € Ap, .
for all j > k and A,,,.. », is a closed set. Thus, z € ﬂ,zil Any....n,- By the
continuity of f we obtain f(x) =y. O

1.10.9. Corollary. The image of any Borel set B C IR under a con-
tinuous mapping f: R™ — R is a Souslin set. In particular, the set f(B)
is Lebesgue measurable.

In particular, the orthogonal projection of a Borel set is Souslin, hence
measurable. We shall see in Chapter 6 that Souslin sets in IR™ coincide with
the orthogonal projections of Borel sets in IR"™* (thus, Souslin sets can be
defined without the A-operation) and that there exist non-Borel Souslin sets.
It is easily verified that the product of two Borel sets in IR™ is Borel in IR*".
Indeed, it suffices to check that AxIR"™ € B(IR*") if A € B(IR™). This is true
for any open set A, hence for any Borel set A, since the class of all Borel sets
A with such a property is obviously a o-algebra.

1.10.10. Example. Let A and B be nonempty Borel sets in IR". Then
the vector sum of the sets A and B defined by the equality

A+B:={a+b: ac Abec B}

is a Souslin set. In addition, the convex hull conv A of the set A, i.e., the
smallest convex set containing A, is Souslin as well. Indeed, A+ B is the image
of the Borel set Ax B in IR*" under the continuous mapping (z,y) — z+y.
The convex hull of A consists of all sums of the form
k
> tia;, wheret; > 0,50 t; =1,a; € A k€ IN.

i=1

For every fixed k, the set S of all points (¢1, ..., t;) € IR® such that Zf:l t; =1
and ¢; > 0 is Borel. Hence the set A% xS in (IR™)* xIR¥ is Borel as well and
its image under the mapping (a1, ..., ax, t1,...,tx) — Zle t;a; is Souslin.
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1.11. Carathéodory outer measures

In this section, we discuss in greater detail constructions of measures
by means of the so-called Carathéodory outer measures. We have already
encountered the principal idea in the consideration of extensions of countably
additive measures from an algebra to a o-algebra, but now we do not assume
that an “outer measure” is generated by an additive measure.

1.11.1. Definition. A set function m defined on the class of all subsets
of a set X and taking values in [0, +o0] is called an outer measure on X (or
a Carathéodory outer measure) if

(i) m(2) = 0;

(ii) m(A) < m(B) whenever A C B, i.e., m is monotone;

(ii) m(Uf;;l An) <% m(A,) for all A, C X.

An important example of a Carathéodory outer measure is the function
©* discussed in §1.5.

1.11.2. Definition. Let m be a set function with values in [0, +o00] de-
fined on the class of all subsets of a space X such that m(@) = 0. A set
A C X is called Carathéodory measurable with respect to m (or Carathéodory
m-measurable) if, for every set E C X, one has the equality

m(ENA)+m(E\A) =m(E). (1.11.1)
The class of all Carathéodory m-measurable sets is denoted by My, .

Thus, a measurable set splits every set according to the requirement of
additivity of m (see also Exercise 1.12.150 in this relation).
Let us note at once that in general the measurability does not follow from
the equality
m(A4) + m(X\A) = m(X) (1.11.2)

even in the case of an outer measure with m(X) < oco. Let us consider the
following example.

1.11.3. Example. Let X = {1,2,3}, m(@) = 0, m(X) = 2, and let
m(A) = 1 for all other sets A. It is readily verified that m is an outer measure.
Here every subset A C X satisfies (1.11.2), but for A = {1} and F = {1,2}
equality (1.11.1) does not hold (its left-hand side equals 2 and the right-hand
side equals 1). Tt is easy to see that only two sets @ and X are m-measurable.

In this example the class 9, of all Carathéodory m-measurable sets is
smaller than the class A, from Definition 1.5.1, since for the outer measure m
on the class of all sets the family Ay, is the class of all sets. However, we shall
see later that in the case where m = p* is the outer measure generated by a
countably additive measure p with values in [0, +00] defined on a o-algebra,
the class My, may be larger than A, (Exercise 1.12.129). On the other hand,
under reasonable assumptions, the classes 97,,- and A, coincide.
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Below a class of outer measures is singled out such that the corresponding
measurability is equivalent to (1.11.2). This class embraces all outer measures
generated by countably additive measures on algebras (see Proposition 1.11.7
and Theorem 1.11.8).

1.11.4. Theorem. Let m be a set function with values in [0,400] on the
class of all sets in a space X such that m(@) = 0. Then:

(i) My, s an algebra and the function m is additive on My,.

(ii) For every sequence of pairwise disjoint sets A; € My, one has

m(Em QAi) = im(EﬂAi), VEC X,

m(EnJA) =Y mENA)+ lm m(En(J4), VECX.
i=1 i=1 i=n
(iii) If the function m is an outer measure on the set X, then the class
My is a o-algebra and the function m with values in [0,400] is countably
additive on M. In addition, the measure m is complete on My, .

PrOOF. (i) It is obvious from (1.11.1) that @ € M, and that the class
My, is closed with respect to complementation. Suppose that sets Aj, Ay
belong to My, and let £ C X. By the measurability of A; and As we have

m(E) =m(ENA;)+m(E\A4;)
=m(ENA) +m((E\A;) N As) + m((E\A4;)\A2)
=m(ENA;) +m((E\A;) N Az) +m(E\(4; U Ap)).
According to the equality EN Ay = EN(A; UAy)N A; and the measurability
of A; one has
m(EN (A1 UAp)) =m(ENA;)+m((E\A;) N Ay). (1.11.3)
Hence we obtain
m(E) =m(EN (A1 UAs)) +m(E\(A; UAy)).
Thus, A; U Ay € My, ie., My, is an algebra. For disjoint sets A; and As by

taking £ = X in (1.11.3) we obtain the equality m(A; UAs) = m(A4;)+m(Az).
(ii) Let A; € My, be disjoint. Set

Sp = LnJAi, R, = DA,
i=1 i=n

Then by equality (1.11.3) we have

m(ENS,) =m(ENA,) +m(ENS,_1).
By induction this yields the first equality in assertion (ii). Next, by the
equalities R; NS,,_1 = S,—1 and R1\S,_1 = R, one has

n—1

mENR) =m(ENS, 1) +m(ENR,) =Y m(ENA;)+m(ENRy).

=1
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This gives the second equality in assertion (ii), since the sequence m(E N R,;,)
is decreasing by the equality

m(ENR,) =m(ENR,11)+m(ENA,),

which follows from the measurability of A,, and the relations R,\ A4, = R,+1
and R, NA, =A,.

(iii) Suppose now that m is countably subadditive and that sets A; € M,
are disjoint. Let A = (J;=; 4;. The second equality in (ii) yields that for
any E C X one has m(ENA) > > m(E N A4;), which by the countable
subadditivity gives

m(E N A) ZmEﬂA (1.11.4)

We already know that S, = A; U - U A, € My,. It follows by the first
equality in assertion (ii) that

m(E) = m(EN S,) + m(E\S,) i (ENA;) +m(BE\A).

By (1.11.4) we obtain m(E) > m(E N A) + m(E\A). By subadditivity the
reverse inequality is true as well, i.e., A € M. Hence M,, is an algebra
closed with respect to countable unions of disjoint sets. This means that 9,
is a g-algebra. By taking E = X in (1.11.4) we obtain the countable additivity
of m on My,. We verify that m is complete on My,. Let m(A) = 0. Then, for
any set E, we have m(ENA)+m(E\A) =m(F),as0 <m(ENA) <m(A) =0,
and m(E\A) = m(E), as m(E\A) < m(E) < m(E\A)+m(4A) =m(E\A). O

Note that the countably additive measure p := m|ogg,, on My, where m
is an outer measure, gives rise to a usual outer measure p* as we did before.
However, this outer measure may differ from the original function m (certainly,
on the sets in 9M,,, both outer measures coincide). Say, in Example 1.11.3 we
obtain p*(A) = 2 for any nonempty set A different from X. Some additional
information is given in Exercises 1.12.125 and 1.12.126.

In applications, outer measures are often constructed by the so-called
Method I described in the following example and already employed in §1.5,
where in Lemma 1.5.4 the countable subadditivity has been established.

1.11.5. Example. Let X be a family of subsets of a X such that @ € X.
Suppose that we are given a function 7: X — [0, +00] with 7(@) = 0. Set

m(A) = inf{z 7(Xa): XpeX,AcC | Xn}, (1.11.5)
n=1 n=1

where in the case of absence of such sets X,, we set m(A4) := co. Then m is

an outer measure. It is denoted by 7*.

This construction will be used in §3.10(iii) for defining the so-called Haus-
dorff measures. Exercise 1.12.130 describes a modification of the construction
of m that differs as follows: if there are no sequences of sets in X covering A,
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then the value m(A) is defined as supm(A’) over those A" C A for which such
sequences exist.

It should be emphasized that it is not claimed in the above example that
the constructed outer measure extends 7. In general, this may be false. In
addition, sets in the original family X may be nonmeasurable with respect
to m. Let us consider the corresponding counter-examples. Let us take for
X the set IN and for X the family of all singletons and the whole set X. Let
7(n) = 27", 7(X) = 2. Then m(X) = 1 and X is measurable with respect
to m. If we take for X the interval [0, 1] and for 7 the outer Lebesgue measure
defined on the class X of all sets, then the obtained function m coincides with
the initial function 7 and the collection of m-measurable sets coincides with
the class of the usual Lebesgue measurable sets, which is smaller than X.
In Exercise 1.12.121 it is suggested to construct a similar example with an
additive function 7 on a o-algebra of all sets in the interval.

Let us now specify one important class of outer measures.

1.11.6. Definition. An outer measure m on X is called reqular if, for
every set A C X, there exists an m-measurable set B such that A C B and
m(A) = m(B).

For example, the outer measure \* constructed from Lebesgue measure
on the interval is regular, since one can take for B the set ﬂzozl A,,, where
the sets A,, are measurable, A C A,, and A(4,) < A*(A) + 1/n (such a set is
called a measurable envelope of A, see §1.12(iv)). More general examples are
given below.

1.11.7. Proposition. Let m be a regular outer measure on X with
m(X) < oo. Then, the m-measurability of a set A is equivalent to the equality
m(A4) + m(X\A4) = m(X). (1.11.6)

PROOF. The necessity of (1.11.6) is obvious. Let us verify its sufficiency.

Let E be an arbitrary set in X, C € My, E C C, m(C) = m(E). It suffices
to show that

m(E) >m(ENA)+m(E\A), (1.11.7)
since the reverse inequality follows by the subadditivity. Note that
m(A\C) + m((X\A)\C) > m(X\O). (1.11.8)
By the measurability of C' one has
m(A) =m(ANC)+m(A\C), (1.11.9)
m(X\A) =m(C N (X\4)) + m((X\A)\O). (1.11.10)

It follows by (1.11.6), (1.11.9) and (1.11.10) combined with the subadditivity
of m that

m(X) =m(ANC)+m(A\C) + m(C N (X\A)) + m((X\A)\C)
>m(C) + m(X\C) = m(X).
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Therefore, the inequality in the last chain is in fact an equality. Subtracting
from it (1.11.8), which is possible, since m is finite, we arrive at the estimate

m(CNA)+m(C\A) <m(C).
Finally, the last estimate along with the inclusion £ C C and monotonicity
of m yields
m(ENA)+m(E\A) <m(C) =m(E).

Hence we have proved (1.11.7). O

Example 1.11.3 shows that Method I from Example 1.11.5 does not always
yield regular outer measures. According to Exercise 1.12.122, if X C My,
then Method I gives a regular outer measure. Yet another useful result in this
direction is contained in the following theorem.

1.11.8. Theorem. Let X, X, 7, and m be the same as in Example 1.11.5.
Suppose, in addition, that X is an algebra (or a ring) and the function T is
additive. Then, the outer measure m is regular and all sets in the class X are
measurable with respect to m. If T is countably additive, then m coincides with
T on X.

Finally, if 7(X) < oo, then My, = X,, i.e., in this case the definition of
the Carathéodory measurability is equivalent to Definition 1.5.1.

PRrROOF. It suffices to verify that all sets in X are measurable with respect
to m; then the regularity will follow by Exercise 1.12.122. Let A € X. In order
to prove the inclusion A € 9M,,, it suffices to show that, for every set E with
m(F) < oo, one has the estimate

m(E) > m(ENA)+m(EN(X\A)).

Let ¢ > 0. There exist sets X,, € X with £ C |J;—, X,, and

i 7(X,) <m(E) +e.

The condition that X is a ring yields X,,NA € X and X,N(X\4) = X,\4 € X.
Hence by the additivity of 7 on X we have for all n

T(X,) = 7(Xn NA) + 7(X, N (X\A)).

Since

ENAC UXmA En(X\4) c [ (X.n(X\4)),
n=1 n=1
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we obtain
m(E) +¢e > i 7(X,) = i (X, NA) + i (X, N (X\A))
n=1 n=1 n=1
> i m(X, NA)+ im(Xn N(X\A4))
n=1 n=1

> m7(E NA)+m(EN(X\A4)).

The required inequality is established, since € is arbitrary. In the general
case, one has m < 7 on X, but for a countably additive function 7 it is easy
to obtain the reverse inequality.

Let us now verify that in the case 7(X) < oo, Definition 1.5.1 gives
the same class of 7-measurable sets as Definition 1.11.2 applied to the outer
measure m = 7*. Let A € M, and € > 0. There exist sets A,, € X with
Ac Uy, Ayand m(A) > > 7(A,)—e. Since m(4,) < 7(A4,), taking into
account the countable additivity of m on the o-algebra 9., which contains X,
we obtain

m(A) > im(An) > m([j An) —e.

Therefore, m(UfLo:1 An\A) < e. By using the countable additivity of m once
again, we obtain m(A VAN UI:L:1 An) < 2¢ for k sufficiently large. Since ¢ is
arbitrary it follows that A € X,.. Conversely, if A € X, then, for every € > 0,
there exists a set A, € X with m(A A A.) < e. One has X C M,,. By the
countable additivity of m on 90t,,, we obtain that A belongs to the Lebesgue
completion of M,,,. The completeness of M, yields the inclusion A € M,,. O

1.11.9. Corollary. If a countably additive set function with values in
[0, +00] is defined on a ring, then it has a countably additive extension to the
o-algebra generated by the given ring.

Unlike the case of an algebra, the aforementioned extension is not always
unique (as an example, consider the space X = {0} with the zero measure on
the ring X = {@}). It is easy to prove the uniqueness of a countably additive
extension of a o-finite measure 7 from a ring X to the generated o-ring (see
Exercise 1.12.159); if a measure 7 on a ring X is such that the corresponding
outer measure m on My, is o-finite, then m is a unique countably extension
of 7 also to o(X) (see Exercise 1.12.159). In the above example the measure
m is not o-finite because m({0}) = occ.

Let us stress again that in general the outer measure m may differ from
7 on X (see Exercise 1.12.121). Finally, we recall that if a function 7 on an
algebra X is countably additive, then the associated outer measure m coincides
with 7 on X. For infinite measures, it may happen that the class X is strictly
contained in M~ (see Exercise 1.12.129).

Closing our discussion of Carathéodory outer measures let us prove a
criterion of m-measurability of all Borel sets for an outer measure on IR"™". We
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recall that the distance from a point a to a set B is the number
dist (a, B) := inf |b— a.
beB
1.11.10. Theorem. Let m be a Carathéodory outer measure on IR™. In

order that all Borel sets be m-measurable, it is necessary and sufficient that
the following condition be fulfilled:

m(AUB) =m(A) + m(B) whenever d(A,B) >0, (1.11.11)

where d(A, B) 1= inf,capep |a — b|, and d(A, @) := +o0.

PROOF. Let M, contain all closed sets and d(A4, B) = d > 0. We take
disjoint closed sets

Cy ={x: dist (x,A) <d/4} DA and Co={zx: dist(z,B) <d/4} D B
and observe that by Theorem 1.11.4(ii) one has
m((AUB)N(C1UC)) =m((AUB)NCy) +m((AUB)NCy),

which yields (1.11.11), since

(AUB)NCy =A, (AUB)NCy =B, (AUB)N(C, UCy) = AUB.

Let (1.11.11) be fulfilled. It suffices to verify that every closed set C' is m-
measurable. Due to the subadditivity of m, the verification reduces to proving
the estimate

m(4) >m(ANC)+m(A\C), VACR" (1.11.12)

If m(A) = oo, then (1.11.12) is true. So we assume that m(A) < co. The sets
C,, := {x: dist (x,C) < n~'} monotonically decrease to C. Obviously, one
has d(A\C,, AN C) > n~!. Therefore,

m(A\Cp,) + m(ANC) =m((A\Cp) U(ANC)) <m(A). (1.11.13)

Let us show that
lim m(A\C,) = m(A\C). (1.11.14)

Let us consider the sets Dy, := {x € A: (k+1)~! < dist (z,C) < k~'}. Then
A\C = U, Di U(A\Cy,). Hence

m(A\Cp) < m(A\C) < m(A\C,) + Y m(Dy).
k=n
Now, for proving (1.11.14), it suffices to observe that the series of m(Dy)
converges. Indeed, one has d(Dy,D;) > 01if j > k+ 2. By (1.11.11) and

induction this gives the relation Z,ivzl m(Day) = m(Uivzl ng) < m(A) and
a similar relation for odd numbers. According to (1.11.13) and (1.11.14) we
obtain

m(A\C) +m(ANC) = lim m(A\Cy) +m(ANC) < m(A).

The proof of (1.11.12) is complete. So the theorem is proven. O
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It is seen from our reasoning that it applies to any metric space in place
of R™. We shall return to this subject in §7.14(x).

1.12. Supplements and exercises

(i) Set operations (48). (ii) Compact classes (50). (iii) Metric Boolean alge-
bra (53). (iv) Measurable envelope, measurable kernel and inner measure (56).
(v) Extensions of measures (58). (vi) Some interesting sets (61). (vii) Additive,
but not countably additive measures (67). (viii) Abstract inner measures (70).
(ix) Measures on lattices of sets (75). (x) Set-theoretic problems in measure
theory (77). (xi) Invariant extensions of Lebesgue measure (80). (xii) Whit-
ney’s decomposition (82). Exercises (83).

1.12(i). Set operations

The following result of Sierpinski contains several useful modifications of
Theorem 1.9.3 on monotone classes.

Let us consider the following list of operations on sets in a given set X
and indicate the corresponding notation:

a finite union Uf, a countable union Uc, the union of an increasing se-
quence of sets lim T, a disjoint union LIf, a countable disjoint union Lic, a finite
intersection Nf, a countable intersection Nc, the intersection of a decreasing
sequence of sets lim |, the difference of sets \, the difference of a set and its
subset —.

Note that the symbols f and ¢ indicate the finite and countable character
of the corresponding operations and that in the operation A\ B the set B may
not belong to A, unlike the operation —. Every operation O in this list has
the dual operation denoted by the symbol O and defined as follows:

(UNH?:=nf, (Ue)? :=nc, (lim 1) :=1lim |, (Uf)?:=—, (Le)? = —,
(1.12.1)

(NAL:=Uf, (Ne)? := Ue, lim |)? :=1im 1, (\)? :=Uf, (—)%:=Uf.

The property of a family F of subsets of X to be closed with respect to
some of the above operations is understood in the natural way; for example,
“F is closed with respect to lim 1” means that if sets F,, € F increase, then
their union belongs to F as well. It is readily verified that if we are given a
class F of subsets of X and a collection of operations from the above list, then
there is the smallest class of sets that contains F and is closed with respect
to the given operations.

1.12.1. Theorem. Let F and G be two classes of subsets of X such that
G C F and the class F is closed with respect to some collection of operations
O = (01,04,...) from (1.12.1). Denote by Fo the smallest class of sets
that contains G and is closed with respect to the operations from the same
collection O. Then the following assertions are true:

(i) if GNG' € Fy for all G,G’ € G, then the class Fy is closed with respect
to finite intersections;
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(i) if O € O for every operation O € O and X\G € Fy for all G € G,
then the class Fy is closed with respect to complementation; in particular, if
O = (Ue,Nc), then Fy = o(G);

(iii) 4f all the conditions in (i) and (ii) are fulfilled, then the algebra gen-
erated by G is contained in F, and if O = (lim 1,lim |), then Fy = o(G).

A proof analogous to that of the monotone class theorem is left as Ex-
ercise 1.12.100. Another result due to Sierpinski gives a modification of the
theorem on o-additive classes.

1.12.2. Theorem. Let £ be a class of subsets in a space X containing
the empty set. Denote by &, 5 the smallest class of sets in X that contains
E and is closed with respect to countable unions of pairwise disjoint sets and
any countable intersections. If X\E € &, for all E € &, then &, 5 = o (E).

PrROOF. Let A:={A € & 5: X\A € &5} It suffices to show that the
class A is closed with respect to countable unions of pairwise disjoint sets
and any countable intersections, since it will coincide then with the class £, 5,
hence the latter will be closed under complementation, i.e., will be a o-algebra.
If sets A,, € A are disjoint, then their union belongs to £, s by the definition
of &5, and the complement of their union is (),—, (X'\ 4,,), which also belongs
to Eus, since X\ A, € &,5. Hence A admits countable unions of disjoint sets.
If B,, € A, then ()~ B,, € &,5. Finally, observe that X\ 2, B, can be
written in the form

0o 00 n—1
U\, = [(X\Bn) N (ﬂ Bk)] (1.12.2)
n=1 n=1 k=1
Indeed, the right-hand side obviously belongs to the left one. If  belongs to
the left-hand side, then, for some n, we have x ¢ B,,. If z does not belong
to the right-hand side, then = ¢ ﬂZ;ll By, and x € B;. Hence there exists a
number m between 1 and n — 2 such that = € ();, By and = ¢ ("5, By.
Then z € (X\Bp+1) N (Ni—; Bk), which belongs to the right-hand side of
(1.12.2), contrary to our assumption. It is clear that the sets whose union
is taken in the right-hand side of (1.12.2) are pairwise disjoint and belong
to &us because we have X\B,, B, € &,5. Thus, &, admits countable
intersections. (I

1.12.3. Example. The smallest class of subsets of the real line that
contains all open sets and is closed under countable unions of pairwise disjoint
sets and any countable intersections is the Borel o-algebra. The same is true
if in place of all open sets one takes all closed sets.

PRrROOF. If € is the class of all open sets, then the theorem applies directly,
since the complement of any open set is closed and hence is the countable
intersection of a sequence of open sets.

Now let € be the class of all closed sets. Let us verify that the complements
of sets in £ belong to the class £ 5. These complements are open, hence are
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disjoint unions of intervals or rays. Hence it remains to show that every
open interval (a,b) belongs to &,s. This is not completely obvious, since
the open interval cannot be represented in the form of a disjoint union of a
sequence of closed intervals. However, one can find a sequence of pairwise
disjoint nondegenerate closed intervals I,, C (a,b) such that their union S is
everywhere dense in (a,b). Let us now verify that B := (a,b)\S € £,,5. We
observe that the closure B of the set B consists of B and the countable set
M = {x} formed by the points a and b and the endpoints of the intervals T,,.
Hence B = (\°_, B\{z1,...,2}. The set B is nowhere dense compact.
This enables us to represent each of the sets B\{x1,...,2,,} in the form of
the union of disjoint compact sets. Let us do this for B\{z;}, the reasoning
for other sets is similar. Since B has no interior, the open complement of B
contains a sequence of points /; increasing to z; and a sequence of points r;
decreasing to x1. We may assume that {1 < a, 1 > b. The sets ({;,1;11) N B
and (rj41,75) N B are compact, since the points L, ljy1,7m541,7; belong to
the complement of B with some neighborhoods. These sets give the desired
decomposition of B\{z1}. O

In Chapter 6 one can find some additional information related to the
results in this subsection.

1.12(ii). Compact classes

A compact class approximating a measure may not consist of measurable
sets. For example, if A is the o-algebra on [0, 1] consisting of the sets Bx|0, 1],
where B € B([0,1]), u is the restriction of Lebesgue measure to A, and K is
the class of all compact sets in [0, 1]%, then K is approximating for u, but the
interval I := [0, 1]x{0} does not belong to A,,, since u*(I) = 1 and I does not
contain nonempty sets from A. In addition, a compact approximating class
may not be closed with respect to unions and intersections. The next result
shows that one can always “improve” the original approximating compact
class by replacing it with a compact class that consists of measurable sets,
approximates the measure, and is stable under finite unions and countable
intersections.

1.12.4. Proposition. (i) Let K be a compact class of subsets of a set X.
Then, the minimal class K5 which contains K and is closed with respect to
finite unions and countable intersections, is compact as well (more precisely,
Kss coincides with the class of at most countable intersections of finite unions
of elements of K).

(ii) In addition, if € is a compact class of subsets of a set' Y, then the
class of products KxE, K € K, E € £, is compact as well.

(iii) If a nonnegative measure p on an algebra (or semialgebra) Aoy has
an approzimating compact class IC, then there exists a compact class K' that
is contained in o(Ap), approzimates p on o(Ap), and is stable under finite
untons and countable intersections.
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PRrROOF. (i) We show first that the class g of finite unions of sets in K is
compact. Let 4; = J“| K", where K!' € K, be such that ﬂle A; # & for
all K € IN. Denote by M the set of all sequences v = (v;) such that v; < my;
for all ¢ > 1. Let M) be the collection of all sequences v in M such that
ﬂle K" # @. Note that the sets M, are nonempty for all k. This follows

from the relation
k k
U N&r=Nare

veM i=1 i=1

which is easily seen from the fact that z € ﬂle A; precisely when there exist
v <my,i=1,...,k, with z € K*. In addition, the sets M}, are decreasing.
We prove that there is a sequence v in their intersection. This means that
the intersection (.-, A,, is nonempty, since it contains the set () -, K4,
which is nonempty by the compactness of the class I and the fact that the
sets ﬂflzl K} are nonempty.

In order to prove the relation (,—, M) # @ let us choose an element
vk = (1/,(116))%0:1 in every set Mj. Since I/»,(lk) < m,, for all n and k, there exist
infinitely many indices k such that the numbers I/ik) coincide with one and the
same number v1. By induction, we construct a sequence of natural numbers
v = (v;) such that, for every n, there exist infinitely many indices k with the
property that Vi(k) =y; for all i = 1,...,n. This means that v € M, since
the membership in M, is determined by the first n coordinates of a sequence,
and for all k > n we have v*) € M, by the inclusion v*) € M;, ¢ M,,. Thus,
v belongs to all M,.

The compactness of the class s obviously yields the compactness of the
class KCgs of all at most countable intersections of sets in 4. It is clear that
this is the smallest class that contains I and is closed with respect to finite
unions and at most countable intersections (observe that a finite union of
several countable intersections of finite unions of sets in /C can be written as
a countable intersection of finite unions).

(ii) If the intersections ﬂﬁ;l(Kn x E,), where K,, € K, E,, € &, are
nonempty, then ﬂﬁ;l K, and ﬂgzl FE,, are nonempty as well, which by the
compactness of K and € gives points = € (-, K,, and y € (., E,,. Then
(z,y) € Moy (KX Ey,).

(iii) According to (i) we can assume that K is stable under finite unions
and countable intersections. Let X' = K No(Ap). Clearly, K’ is a compact
class. Let us show that K’ approximates p on Ag. Given A € Ay and € > 0,
we can construct inductively sets A,, € Ay and K,, € K such that

ADK DA DKy DAy D+ and p(A\Anp1) <2771 Ag = A

We observe that (—, A, = ()o—; K,. Denoting this set by K we have
K € K/, since 0(Ap) and K admit countable intersections. In addition, K C A
and u(A\K) < e. Finally, K’ approximates p on o(Ap). Indeed, for every
A € o(Ap) and every ¢ > 0, one can find sets A, € A such that Ay :=
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Mooy Ay C A and p(A\Ap) < e. To this end, it suffices to find sets B,, € A
covering X\ A such that the measure of their union is less than u(X\A) + ¢
and take A, = X\B,. There exist sets K,, € K’ such that K,, C A, and
w(ANK,) <27 Let K :=(,—; K. Then K C Ay, pu(Ag\K) < p(K) +¢
and K € K’ because K’ is stable under countable intersections. O

Assertion (ii) will be reinforced in Lemma 3.5.3. The class of sets of the
form KxE, where K € K, E € &, is denoted by Kx& (the usual understanding
of the product of sets K and £ as the collection of pairs (K, E) does not lead
to confusion here).

It is worth noting that if u is a finite nonnegative measure on a o-
algebra A, then, by assertion (iii) above, the existence of a compact approxi-
mating class for u does not depend on whether we consider i on A or on its
completion A,. We know that an approximating compact class K need not
be contained in A,. However, according to Theorem 1.12.34 stated below,
there is a countably additive extension of u to the o-algebra generated by A
and IC.

A property somewhat broader than compactness is monocompactness,
considered in the following result of Mallory [647], which strengthens Theo-
rem 1.4.3.

1.12.5. Theorem. Let R be a semiring and let p be an additive non-
negative function on R such that there exists a class of sets M C R with
the following property: if sets M, € M are nonempty and decreasing, then
ﬂzozl M, is nonempty (such a class is called monocompact). Suppose that

w(R) =sup{p(M): M e M,M C R} foral ReR.
Then s countably additive on R.
ProOOF. Let R = Uff’:l R,,, where R,, € R. It suffices to show that

p(R) <Y p(Ry).

Suppose the opposite. Then there exists a number ¢ such that
o0
Z 1(Ry) < ¢ < p(R).
n=1

Let us take M € M with M C R and u(M) > c¢. We can write M\R; as a
disjoint union

m1
M\R, = | R, R eR.
j=1

Let us find My, ..., M,,, € M with M; C R/ and E;":ll w(M;) 4+ u(Ry) > c.

By induction, we construct sets M;, . ; € M as follows. If M, ; are
already constructed, then we find finitely many disjoint sets R/1»Ind € R
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e jn_\Rn+1’ and also a set M;
S . . J1seees Insd
has Mj, ... j.; C R nJ and

n

S My, )+ Y n(R) > e

J1sesdnsd =1

Note that >~ (M, .. j..;) > 0 due to our choice of c. Hence there exists
J1seesdnsd

a sequence of indices j; such that M;, ; # @ for all k (such a sequence is

found by induction by choosing ji,. .., jk—1 with p(M;, . ;. ,) > 0). Thus,
Mpey Mj,.... j. is nonempty, whence it follows that R # |J,—; R, which is a
contradiction. O

j € M such that one

1--dns

Fremlin [326] constructed an example that distinguishes compact and
monocompact measures, i.e., there is a probability measure possessing a mono-
compact approximating class, but having no compact (countably compact by
the terminology of the cited work) approximating classes.

1.12(iii). Metric Boolean algebra

Let (X, A, u) be a measure space with a finite nonnegative measure u.
In this subsection we discuss a natural metric structure on the set of all u-
measurable sets.

Suppose first that p is a bounded nonnegative additive set function on an
algebra A. Set

d(A,B)=u(AAB), ABecA

The function d is called the Fréchet—Nikodym metric. Let us introduce the
following relation on A: A ~ B if d(A, B) = 0. Clearly, A ~ B if and only if
A and B differ in a measure zero set. This is an equivalence relation:

1) A~ A, 2)if A~ B, then B~ A, 3)if A~ B and B ~ C, then
A ~ C. Denote by A/u the set of all equivalence classes for this relation. The
function d has a natural extension to A/ux A/ u:

d(A,B) = d(A, B)

if A and B represent the classes A and E, respectively. By the additiv-
ity of u, this definition does not depend on our choice of representatives in
the equivalence classes. The function d makes the set A/u a metric space.
The triangle inequality follows, since for all A, B,C' € A one has the inclusion
AANC C (AAB)U(BAC), whence we obtain u(AAC) < u(AAB)+u(BAC).
By means of representatives of classes, one introduces the operations of inter-
section, union, and complementation on .A/u. The metric space (A/p,d) is
called the metric Boolean algebra generated by (A, 1). Note that the function
w is naturally defined on A/p and is Lipschitzian on (A/u,d). This follows
by the inequality |p(A) — u(B)| < u(A A B) = d(A, B).

A measure p is called separable if the metric space (A/u,d) is separable,
i.e., contains a countable everywhere dense subset. The separability of p is
equivalent to the existence of an at most countable collection of sets A, € A
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such that, for every A € A and € > 0, there exists n with u(AA A,) < e. The
last property can be taken as a definition of separability for infinite measures.
Lebesgue measure and many other measures encountered in applications are

separable, but nonseparable measures exist as well. Concerning separable
measures, see Exercises 1.12.102 and 4.7.63 and §7.14(iv).

1.12.6. Theorem. Let p be a bounded nonnegative additive set function
on an algebra A.

(i) The function p is countably additive if and only if d(A,,@) — 0 as
A, ] @.

(ii) If A is a o-algebra and u is countably additive, then the metric space
(A/p,d) is complete.

PRrROOF. (i) It suffices to note that A, A @ = A, and d(4,,9) = u(4,).
(i) Let {A,} be a Cauchy sequence in (A/p, d) and A, a representative of the
class A,. Let us show that there exists a set A € A such that d(A,, A) — 0.
It suffices to show that there is a convergent subsequence in {A,}. Hence,

passing to a subsequence, we may assume that p(Ax A A,) < 27" for all n
and k£ > n. Set

A =limsup A, := ﬁ G Ay

We show that d(A,, A) — 0. Let € > 0. The sets ﬂﬁ;l U, Ay increase
to A. By the countable additivity of u there exists a number N such that

u(kij Ak\A) = u(ﬁ D Ak\A> <e.

n=1k=n

Then, for all m > N, we have
u( U Ak\A) <e.
k=m
Since p(Am A Ag) > (Ax\An), we obtain for all m sufficiently large that

u(kDmAk\Am)< fj AN A) < i 2k <,

k=m+1 k=m+1
whence we have (A, A A) < 2e, since A, A,,, C U, Ak- O

We remark that in assertion (ii) the space (A/p,d) is complete even if A
is not complete with respect to p, which is natural, since every set in the com-
pleted o-algebra A, coincides up to a measure zero set with an element of A,
hence belongs to the same equivalence class. Note also that the consideration
of (A/pu,d) is simplified if we employ the concepts of the theory of integration
developed in Chapters 2 and 4 and deal with the indicator functions of sets
rather than with sets themselves.

Now let A be a o-algebra and let p be countably additive.
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1.12.7. Definition. The set A € A is called an atom of the measure u
if u(A) > 0 and every set B C A from A has measure either 0 or p(A).

If two atoms A; and A, are distinct in the sense that d(A4, B) > 0 (i.e.,
A and B are not equivalent), then p(A4; N Ay) = 0. Hence there exists an at
most countable set {A, } of pairwise non-equivalent atoms. The measure y is
called purely atomic if y(X\ U~ An) = 0. If there are no atoms, then the
measure y is called atomless.

1.12.8. Example. Lebesgue measure ) is atomless on every measurable
set A in [a, b]. Moreover, for any o € [0, A(A)], there exists a set B C A such
that \(B) = a.

PRrROOF. The function F(z) = A(AN[a,x)) is continuous on [a,b] by the
countable additivity of Lebesgue measure. It remains to apply the mean value
theorem. 0

1.12.9. Theorem. Let (X, A, 1) be a measure space with a finite non-
negative measure . Then, for every e > 0, there exists a finite partition of X
into pairwise disjoint sets X1, ..., X, € A with the following property: either
w(X;) <e, or X; is an atom of measure greater than €.

PRroOF. There exist only finitely many non-equivalent atoms A, ..., A,
of measure greater than . Then the space Y = X\ J_; 4; has no atoms
of measure greater than . Let us show that every set B € A, contained in
Y and having positive measure, contains a set C' such that 0 < p(C) < e.
Indeed, suppose that there exists a set B for which this is false. Then p(B) > ¢
(otherwise we may take C' = B) and hence B is not an atom. Therefore, there
exists a set By € A with ¢ < pu(B1) < p(B). Then pu(B\B1) > ¢ (otherwise
we arrive at a contradiction with our choice of B) and for the same reason
the set C4 = B\B; contains a subset By € A with e < pu(B3) < u(Cy). Note
that u(C1\Bz) > e. Let Co = C1\Bs2 and in Cy we find a set By € A with
e < u(Bs) < p(C2). Continuing by induction, we obtain an infinite sequence
of pairwise disjoint sets B,, of measure greater than ¢, which is impossible,
since u(Y) < 0.

Now for every A € A we set

n(A) = sup{u(B): BC A, B € A, u(B) <¢e}.

According to what has been proven above, one has that 0 < n(4) <e¢if ACY
and p(A) > 0. We may find a set By € Ain Y such that 0 < u(By) < n(Y),
provided that u(Y) > e; if u(Y) < g, then the proof is complete. By using
the above established property of subsets of Y, we construct by induction a
sequence of pairwise disjoint sets B,, € A such that B,, C Y and

%n(Y\ CJ B'L) < p(Bpy1) <e.
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If at some step it is impossible to continue this construction, then this com-
pletes the proof. Let By =Y\ J;~; B;. Then

Bo) <n(V\ U B) < 20(Bria)

for all n. The series of measures of B,, converges, hence u(B,) — 0, whence
we have n(Bp) = 0. Therefore, u(Bg) = 0. It remains to take a number k
such that Y%, yu(B;) < e. The sets Ay,..., Ay, Bi,..., By, Uj=141 BiUBo
form a desired partition. O

1.12.10. Corollary. Let i be an atomless measure. Then, for every
a € [0, u(X)], there exists a set A € A such that p(A) = a.

PROOF. By using the previous theorem one can construct an increasing
sequence of sets A, € A such that p(A,) — a. Indeed, let @ > 0. We
can partition X into finitely many parts X; with p(X;) < 1/2. Let us take
the biggest number m with p(U7L; X;) < a. Letting A; := 2, X; we
have p(A4;) > a — 1/2. In the same manner we find a set By C X\4;
with pu(B1) > a — u(A;) — 1/3 and take As := A; U By. We proceed by

induction and obtain sets A,y of the form A, U B,,, where B,, C X\A4,, and
w(Brn) > a— pu(A,) — (n+ 1)~ Now we can take A = J,— ;| A,. O

We remark that in the case of infinite measures the Fréchet—Nikodym
metric can be considered on the class of sets of finite measure. Another
related metric is considered in Exercise 1.12.152.

1.12(iv). Measurable envelope, measurable kernel
and inner measure

Let (X, B, 1) be a measure space with a finite nonnegative measure . We
observe that the restriction of 1 to a measurable subset A is again a measure
defined on the trace o-algebra B4 of the space A that consists of the sets
AN B, where B € B. The following construction enables one to restrict p
to arbitrary sets A, possibly nonmeasurable, if we define B4 as above. The
trace o-algebra B, is also called the restriction of the o-algebra B to A and
denoted by the symbol BN A. B

For any set A C X, there exists a set A € B (called a measurable envelope
of A) with

Ac Aand p(A) = p*(A). (1.12.3)
For such a set (which is not unique) we can take

A=, A,, where A, € B, A, D A and p(A4,) < p*(A) +1/n. (1.12.4)

Informally speaking, A is a minimal measurable set containing A.
By (1.12.3) and the definition of outer measure it follows that if we have
AC BC Aand B e B, then u(AA B) =0.
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1.12.11. Definition. The restriction pa (denoted also by pla) of the
measure p to By is defined by the formula

pa(BNA) = pla(BNA) :=uBnNA), Beb,
where A is an arbitrary measurable envelope of A.
It is easily seen that this definition does not depend on our choice of A

and that the function p4 is countably additive. If A € B, then we obtain the
usual restriction.

1.12.12. Proposition. The measure g coincides with the restriction
of the outer measure u* to Ba.

ProOOF. Let B € B. Then
p(BNA) < p*(BNA)=pu(BNA) =pa(BNA).
On the other hand, if BN A C C, where C' € B, then
AcC A\(BN(A\C)).

By the definition of a measurable envelope we obtain u(B N (A\C)) = 0.
Hence

u(BNA) < p(BNC)+p(BN(A\C)) =w(BNC) < p(C),
which yields by taking inf over C that u(B N A) < p*(B N A). O

By analogy with a measurable envelope one can define a measurable kernel
A of an arbitrary set A. Namely, let us first define the inner measure of a set
A by the formula

p+(A) = sup{u(B): B C A,B € B}.

A measurable kernel of a set A is a set A € B such that
ACA and p(A) = pa(A).

For A one can take the union of a sequence of sets B,, € B such that B, C A
and u(By) > pu«(A) —1/n. Obviously, a measurable kernel is not unique, but
if a set C' from B is contained in A, then u(C\A) = 0. Informally speaking,
A is a maximal measurable subset of A.

Outer and inner measures are also denoted by the symbols u. and p;,
respectively (from “mesure extérieure” and “mesure intérieure”).

Note that the nonmeasurable set in Example 1.7.7 has inner measure 0
(otherwise E would contain a measurable set Ey of positive measure, which
gives disjoint sets Eg + 7, with equal positive measures). The following mod-
ification of this example produces an even more exotic set.

1.12.13. Example. The real line with Lebesgue measure A contains a
set E such that

AM(E)=0 and M(ENA)=AA) =\ (A\E)
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for any Lebesgue measurable set A. The same is true for the interval [0, 1].

PROOF. Similarly to Example 1.7.7, we find a set Ej containing exactly
one representative from every equivalence class for the following equivalence
relation: x ~ y if £ —y = n + m+\/2, where m,n € Z. Set

E:{e+2n+m\/§: eeEo,m,neZ}.

In the case of the interval we consider the intersection of E with [0, 1]. Let
A C FE be a measurable set. Note that the set A— A = {a1 —ag: ay,ag € A}
contains no points of the form 2n +1+m+/2 with integer n and m. Therefore,
A — A contains no intervals, hence A(A) = 0 (see Exercise 1.12.62). Thus,
A«(E) = 0. We observe that the complement of E coincides with F + 1 (in
the case of [0, 1] one has [0,1\E C (E + 1)U (E —1)). Indeed, the difference
between any point x and its representative in Fy is a number of the form
n+m+/2. Hence x = e +n+m+/2 is either in F (if n is even) or in E+1. On
the other hand, F N (E + 1) = @, since Ey contains only one representative
from every class. Therefore, the complement of E has inner measure 0. This
means that A*(A N E) = A(A) for any Lebesgue measurable set A, since

N(ANE) = MA) = A (A\(ANE)) = MA) — \(A\E),

where the number \,(A\FE) does not exceed the inner measure of the com-
plement of E, i.e., equals zero. Similarly, A*(A\E) = A\(A). O

1.12(v). Extensions of measures

The next result shows that one can always extend a measure whose do-
main does not coincide with the class of all subsets of the given space. It
follows that a measure has no maximal countably additive extension unless it
can be extended to all subsets.

1.12.14. Theorem. Let u be a finite nonnegative measure on a o-algebra
B in a space X and let S be a set such that u.(S) = a < p*(S) = B, where
1+ (S) = sup{u(B): B C S,B € B}. Then, for any v € [a, B8], there exists a
countably additive measure v on the o-algebra c(BUS) generated by B and S
such that v = on B and v(S) = ~.

PROOF. Suppose first that p,(S) = 0and p*(S) = p(X). We may assume
that p(X) =1. Set

s = {E = (SNA)U((X\S)NB): A, B¢ B}. (1.12.5)

As we have seen in Example 1.2.7, £g is the o-algebra generated by S and B.
Now we set

v((SN AU ((X\S) N B)) =m(4) + (1 = 7)u(B).
Let us show that the set function v is well-defined, i.e., if
E=(SNA4)U((X\S)NB) = (SN 4) U ((X\S) N By),
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where Ag, By € B, then v(E) does not depend on which of the two represen-
tations of F we use. To this end, it suffices to note that u(Ag) = p(A) and
w(Bg) = p(B). Indeed, ANS = Ay N S. Then the measurable sets A\ Ay
and Ap\A are contained in X'\ S and have measure zero, since p*(S) = p(X).
Therefore, one has u(A A Ap) = 0. Similarly we obtain u(B A By) = 0,
since p*(X\S) = p(X) by the equality u.(S) = 0. By construction we have
v(S) =yu(X) =v. If A= B € B, then v(B) = yu(B) + (1 =y)u(B) = u(B).

Let us show that v is a countably additive measure. Let FE, be pair-
wise disjoint sets in Eg, generated by pairs of sets (A, B,) € B according
to (1.12.5). Then the sets A, NS are pairwise disjoint. Therefore, if n # k,
the measurable sets A, N Ag are contained in X\S and hence have mea-
sure zero. Therefore, p(Uy”; An) = Yoo ) w(Ay). Similarly, u(U,—; Bn) =
S i(By). This shows that v(Us> En) = Yoo v(Eyn). Thus, in the
considered case the theorem is proven.

In the general case, let us take a measurable envelope S of the set S (see
(1.12.4). Let S be a measurable kernel of S. Then u(S) = u.(S) = a. Set

Xo=5\S, Sy=S5\S.

The restriction of the measure p to Xy is denoted by pg. Note that we have
1 (So) = po(Xo) = B —a and (up)«(So) = 0. According to the previous step,
there exists a measure vy on the space X, with the o-algebra g, generated
by Sp and all sets B € B with B C Xj such that v(Sp) = v — a and vy
coincides with po on all sets B C Xg in B. The collection of all sets of the
form

E=AUEyUB, where A, BeB,AC X\S,BCS,Ec&s,,
is the o-algebra &£ generated by S and B. Let us consider the measure
V(E) = u(A) + vo(Eo) + u(B).

It is readily seen that v is a countably additive measure on £ equal to p on B,
and that v(S) = u(@) + vo(So) + pu(S) =y —a+a=-1.
It is easily verified that the formula

V(E) = p*(ENS)+p(EN(X\S)), EE€é&s,

gives an extension of the measure p with v(S) = p*(S). The closely related
Nikodym’s approach is described in Exercise 3.10.37. O

The assertion on existence of extensions can be generalized to arbitrary
families of pairwise disjoint sets. For countable families of additional sets this
is due to Bierlein [89]; the general case was considered in Ascherl, Lehn [40].

1.12.15. Theorem. Let (X,B,u) be a probability space and let {Z,} be
a family of pairwise disjoint subsets in X. Then, there exists a probability
measure v that extends p to the o-algebra generated by B and {Z,}.
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PRrOOF. First we consider a countable family of pairwise disjoint sets Z,,.
Let us choose measurable envelopes Z,, of the sets Z,,. Let

n—1
Blzzl, Bn:Zn\UZz7 n > 1.
1=1

Then the sets B,, belong to B and are disjoint. We shall show that the set
S = U, (Bx\Zy,) has inner measure zero. Note first that

112 (Bo\Zn) < 112 (Zn\Zn) = 0

for all n > 1, since B, C Z,. Now let C € B, C C U, (Bx\Z,). Then
w(C) =32 uw(CnNB,) =0, since CN B, C B,\Z,. Thus, u.(S) = 0. By
Theorem 1.12.14, there exists an extension of the measure p to a countably
additive measure vy on the o-algebra A generated by B and S such that
vo(S) = 0. Denote by v the Lebesgue completion of vy. All subsets of the
set S belong to A,, and the measure v vanishes on them. In particular,
v(B,\Z,) = 0. Note that
n—1
Z,\B, C | J(Bi\Z). (1.12.6)
i=1
Indeed, if # € Z,\B,, then z € Z, NU'-{ Zi € Z,NU,~; B;. Then z € B;
for some ¢ < n. Clearly, ¢ Z;, since Z; N Z,, = &. Hence z € B;\Z;. By
(1.12.6) we obtain v(Z,\By) = 0. Thus, we have v(B, A Z,) = 0, which
means the v-measurability of all sets Z,.
In the case of an uncountable family we set

c:sup{u*(S): S = [j Zan}7
n=1

where sup is taken over all countable subfamilies {Z,, } of the initial family of
sets. By using the countable additivity of u, it is readily verified that there ex-
ists a countable family N = {a,} such that u.(S) = ¢, where S = 7| Za,, .
According to the previous step, the measure i extends to a countably additive
measure vy on the o-algebra A generated by B and the sets Z,, . Denote by
€ the class of all sets of the form

E=AAC, where Ac A CcC|]JZs, B ¢N.
j=1
It is readily verified that £ is a o-algebra. It is clear that A C £ (since one
can take C' = @) and that Z, € & for all a (since for « ¢ N one can take
A = @). Finally, let v(A A C) := vp(A). This definition is non-ambiguous,
which follows from the above-established non-ambiguity of Definition 1.12.11.
To this end, however, it is necessary to verify that if E = A; A C is another
representation of the above form, then the set A A A; has vp-measure zero.
Since this set is contained in a countable union of the sets Zg,, 8; € N, we
have to show that the set Z = Uj’;l Zg, has inner measure zero with respect
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to vp. This is not completely obvious: although Z has zero inner measure
with respect to p, in the process of extending a measure the inner measure
may increase. In our case, however, this does not happen. Indeed, suppose
that Z contains a set E of positive vp-measure. By the construction of vy (the
Lebesgue completion of the extension explicitly described above) it follows
that for E one can take a set of the form E = (4;NS)U (42N (X\S)), where
A1, Ay € B, S =U,2(By\Za,) with some sets B,, € B constructed at the
first step of our proof. We have vy(E) = pu(Az). Then, the set E and its subset
Ey = A N (X\S) have equal yp-measures. Since the sets B,, are pairwise
disjoint, the set X'\ /S is the union of the sets | J,~, (B,NZ,, ) and X\ U, B.
But Ay does not meet the sets Z,,, for it is contained in Z. Therefore, we
obtain Ey = A> N (X\U,~; Bn) € B and hence p(Ey) = v9(Ep) > 0. This
contradicts the equality p.(Z) = 0. By the above reasoning we also obtain
that v is a countably additive measure that extends the measure vy, hence
extends the measure p as well. (Il

The question arises whether the assumption that the additional sets in
the above theorem are disjoint is essential. Under the continuum hypothesis,
there exists a countable family of sets E; C [0, 1] such that Lebesgue measure
has no extensions to a countably additive measure on a o-algebra containing
all Ej. This assertion goes back to Banach and Kuratowski [57], and its
proof is found in Corollary 3.10.3. The same is true under Martin’s axiom
defined below in §1.12(x); see a short reasoning in Mauldin [659]. On the
other hand, it is proved in Carlson [168] that if the system of axioms ZFC
(the Zermelo—Fraenkel system with the axiom of choice) is consistent, then it
remains consistent with the statement that Lebesgue measure is extendible
to any o-algebra obtained by adding any countable sequence of sets. For yet
another extension result, see Exercise 1.12.149.

Generalizations of Theorem 1.12.15 are obtained in Weber [1007] and
Lipecki [616], where disjoint collections are replaced by well-ordered collec-
tions.

In Chapter 7 we discuss extensions to o-algebras not necessarily obtained
by adding disjoint families.

1.12(vi). Some interesting sets

In this subsection, we consider several interesting examples of measurable
and nonmeasurable sets on the real line.

1.12.16. Example. There exists a Borel set B on the real line such that,
for every nonempty interval J, the sets B N.J and (IR*\B) N .J have positive
measures.

PrOOF. Let {I,} be all nondegenerate intervals in [0,1] with rational
endpoints. Let us find a nowhere dense compact set A; C I} of positive
measure. The set I;\ A; contains an interval, hence there is a nowhere dense
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compact set By C I;\A; of positive measure. Similarly, there exist nowhere
dense compact sets As C I2\(A; U By) and By C Ib\(41 U By U As) with
A(Az) > 0 and A(Bz2) > 0. By induction, we construct in [0,1] a sequence of
pairwise disjoint nowhere dense compact sets A,, and B,, of positive measure
such that B, C I,\A,. If A; and B; are already constructed for ¢ < n, the
set Ip,41\ Ui, (A4; U B;) contains some interval, since the union of finitely
many nowhere dense compact sets is a nowhere dense compact set. In this
interval one can find disjoint nowhere dense compact sets A, 11 and By of
positive measure and continue our construction. Let F = Uf;l B,. If we
are given an interval in [0,1], then it contains the interval I,,, for some m.
According to our construction, I, contains sets A,,+1 and Bj,+1, i.e., the
intersections of I,,, with E' and [0,1]\E have positive measures. Finally, let
us set B = ::‘ioo(E—i—z) O

Let us introduce several concepts and facts related to ordered sets and or-
dinal numbers. A detailed exposition of these issues (including the transfinite
induction) is given in the following books: Dudley [251], Jech [459], Kol-
mogorov, Fomin [536], Natanson [707]. A set T is called partially ordered if
it is equipped with a partial order, i.e., some pairs (t,s) € T x T are linked
by a relation t < s satisfying the conditions: 1) ¢t < ¢, 2) if t < s and s < w,
then t < u for all s,t,u € T. Sometimes such a relation is called a partial
pre-order, and the definition of a partial order includes the requirement of
antisymmetry: if ¢t < s and s < ¢, then ¢ = s. But we do not require this.
We write t < s if t < s and t # s. The set T is called linearly ordered if
all its elements are pairwise comparable and, in addition, if ¢ < s and s < ¢,
then t = s. An element m of a partially ordered set is called maximal if there
is no element x with > m. A minimal element is defined by analogy.

A set is called well-ordered if it is linearly ordered and every nonempty
subset of it has a minimal element. For example, the sets IN and R' with
their natural orderings are linearly ordered, IN is well-ordered, but R! is not.

The interval (a, ) in a well-ordered set M is defined as the set of all
points = such that a < x < . A set of the form {z € M: x < a} is called an
initial interval in M (the point « is not included). The closed interval [«, 5] is
the interval («, 8) with the added endpoints. Two well-ordered sets are called
order-isomorphic if there is a one-to-one order-preserving correspondence be-
tween them. A class of order-isomorphic well-ordered sets is called an ordinal
number or an ordinal. Ordinal numbers corresponding to infinite sets are
called transfinite numbers or transfinites. If we are given two well-ordered
sets A and B that represent distinct ordinal numbers o and (3, then either A
is order-isomorphic to some initial interval in B, or B is order-isomorphic to
some initial interval in A. In the first case, we write o < (3, and in the second
0 < a. Thus, given any two distinct ordinals, one is less than the other. Any
set consisting of ordinal numbers is also well-ordered (unlike subsets of IR*
with their usual ordering). The set W («) of all ordinal numbers less than « is
a well-ordered set of the type «. If we are given a set X of cardinality x, then
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by means of the axiom of choice it can be well-ordered (Zermelo’s theorem),
i.e., there exist ordinals corresponding to sets of cardinality x. Therefore,
among such ordinals there is the smallest one w(x). Similarly, one defines the
smallest uncountable ordinal number w; (the smallest ordinal number corre-
sponding to an uncountable set), which is sometimes used in measure theory
for constructing various exotic examples. The least uncountable cardinality
is denoted by ;. The continuum hypothesis is the equality N; = ¢. The first
(i.e., the smallest) infinite ordinal is denoted by wy.
The next example is a typical application of well-ordered sets.

1.12.17. Example. There exists a set B C IR (called the Bernstein set)
such that this set and its complement have nonempty intersections with all
uncountable closed subsets of the real line. The intersection of B with every
set of positive Lebesgue measure is nonmeasurable.

PRrROOF. It is clear that there exist the continuum of closed sets on the
real line (since the complement of any closed set is a countable union of
intervals) and that the collection of all uncountable closed sets has cardinality
of the continuum c¢. Let us employ the following fact: the set of all ordinal
numbers smaller than w(c) (the first ordinal number corresponding to sets of
cardinality of the continuum) has cardinality of the continuum ¢. Hence the set
of all uncountable closed sets on the real line can be parameterized by infinite
ordinal numbers less than w(c), and represented in the form {F,, o < w(c)}.
By means of transfinite induction, in every F, we can choose two points x,,
and y, such that all selected points are distinct. Indeed, the sets F, can
be well-ordered. By using that the set of indices « is well-ordered, we pick
the first (in the sense of the established order) elements z1,y1 € Fy for the
first element in the index set. If 1 < a < ¢ and pairwise distinct elements
x3,yp are already found for all 8 < «, we take for x,,y, the first elements
in the set F,\ Uﬁ<a{x5,y5}, which is infinite, since F, has cardinality of
the continuum according to Exercise 1.12.111, and the cardinality of the set
of indices not exceeding « has cardinality less than ¢. By the transfinite
induction principle, elements z,, Y, are defined for all & < w(c). It remains
to take B = {z4,a < w(c)}. It is clear that y, € R\B and z, € F, N B,
Yo € Fo N (IR\B). The last claim is obvious from the fact that any set of
positive measure contains a compact set of positive measure. ([l

It will be shown in Chapter 6 (Corollary 6.7.13) that every uncountable
Souslin set contains an uncountable compact subset. Hence the Bernstein set
contains no uncountable Souslin subsets. This is employed in the following
lemma.

1.12.18. Lemma. Let T be a set of cardinality of the continuum and let
E Cc RxT. Suppose that, for any x € R, the section E, = {t: (x,t) € E}
is finite and that, for any T' C T, the set {x: E, NT" # @} is Lebesgue
measurable. Then, there exist a set Z of Lebesque measure zero and an at
most countable set S C T such that E, C S for all z € R\Z.
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ProoOF. Without loss of generality we may take for T" a set of cardinality
of the continuum such that it contains no uncountable Souslin subsets (for
example, the Bernstein set). Note that there exists a Borel set N of measure
zero such that the set D := E N ((R\V) xIR) has the following property:
for any open set U, the set {x: D, NU # &} is Borel. Indeed, let {U,}
be the sequence of all intervals with rational endpoints. By hypothesis, we
have {z: U, N E, # @} = B, UN,, where B,, € B(R) and A(N,,) = 0. We
find measure zero Borel sets N}, with N,, C N}, and put N = [J.;~, N;. An
arbitrary nonempty open set U is the union of finitely or countably many
sets U,. Hence in order to establish the indicated property of the set IV, it
suffices to verify that the sets {z: D, NU, # @} are Borel. To this end, we
observe that {z: D, NU, # @} = B, UN,\N = B,\N. Let us now show
that D is Borel. It follows from our assumption that the sets D, are finite.
Hence

D= m U {(m,r): [r —rm| <1/n, Dy (ry —1/n,rp +1/n) # @},
n=1m=1
where {r,,} are all rational numbers. Indeed, the left-hand side of this relation
always belongs to the right-hand side, and if (z,7) does not belong to D, then,
for some n, we have |r —t| > (2n)~! for all ¢ from the finite set D,, hence
(x,r) does not belong to the right-hand side of this relation. Thus, D is the
countable intersection of countable unions of the sets

(P — 1/ny 1 + 1/n)><{a;: D, N (rm—=1/n,1rm+1/n) # @},

which are Borel as shown above. Thus, D is a Borel set. Let S be the
projection of D to the second factor. Then S is a Souslin set. According to
our choice of T, the set S is at most countable. It is clear that N and S are
as required. ([

Now we can prove the following interesting result.

1.12.19. Theorem. Let {A;}ier be some family of measure zero sets
covering the real line such that every point belongs only to finitely many of
them. Then, there exists a subfamily T' C T such that the set | J,cq At is
nonmeasurable.

PROOF. Let E = {(x,t): t € T,z € A;}. I, for each T C T, the set
U,ers At is measurable, then E satisfies the hypotheses of the above lemma.
Hence there exist a measure zero set Z and an at most countable set S C T
such that B, C S for all z € R'"\Z. Then R'\Z C (J, g As, which is a
contradiction. O

Let us recall that a Hamel basis (or an algebraic basis) in a linear space L
is a collection of linearly independent vectors v, such that every vector in L
is a finite linear combination of v,. If IR is regarded as a linear space over the
real field, then any nonzero vector serves as a basis. However, the situation
changes if we regard IR over the field Q of rational numbers: now there is
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no finite basis. But it is known (see Kolmogorov, Fomin [536]) that in this
case there exists a Hamel basis as well and any basis has cardinality of the
continuum. It is interesting that the metric properties of Hamel bases of the
space IR over Q may be very different.

1.12.20. Lemma. Fach Hamel basis of R over Q has inner Lebesgue
measure zero, and there exist Lebesque measurable Hamel bases.

PROOF. Let H be a Hamel basis and h € H. In the case A\ (H) > 0,
where A is Lebesgue measure, the set H contains a compact set of positive
measure. According to Exercise 1.12.62, the set {hy —ha, h1, ho € H} contains
a nonempty interval. Hence there exist hi, hy € H and nonzero g € Q such
that h1 — ho = gh, which contradicts the linear independence of vectors of our
basis over Q.

In order to construct a measurable Hamel basis, we apply Exercise 1.12.61
and take two sets A and B of measure zero such that {a+b,a € A,b € B} = R.
Let M = AU B. Then M has measure zero. It remains to observe that there
exists a Hamel basis consisting of elements of M. As in the proof of the
existence of a Hamel basis, it suffices to take a set H C M that is a maximal
(in the sense of inclusion) linearly independent set over Q. Then H is a Hamel
basis, since the linear span of H over Q contains M, hence it equals IR. [

1.12.21. Example. There exists a Lebesgue nonmeasurable Hamel basis
of IR over Q.

PROOF. We give a proof under the assumption of the continuum hypoth-
esis, although this hypothesis is not necessary (Exercise 1.12.66). Let us take
any Hamel basis H. By using that it has cardinality of the continuum we
can establish a one-to-one correspondence « +— h,, between ordinal numbers
a < ¢ and elements of H. For any o < ¢ and any nonzero g € QQ, we denote by
Va,q the collection of all numbers of the form ¢ ha, +- - - +gnha, +qha, where
¢; € Q and o; < . According to the continuum hypothesis, every set V, 4 is
countable (since its cardinality is less than c), and their union gives IR\{0}.
Let us write V,, 4 as a countable sequence {hy, ,} and, for every k € IN, consider
L h’;,q. If we prove that the sets M}, 4 are linearly independent,
then they can be complemented to Hamel bases Hj, ;. The union of the latter
sets contains the union of the sets My, , and hence equals IR\{0}, whence it
follows that a countable collection of bases Hj, , contains nonmeasurable sets
because they all have inner measure zero. For the proof of linear independence

of My, 4 we consider a collection of distinct elements hﬁl,q’ ceey h’émq € My q,
where a1 < -+ < ay, < ¢. Let ¢qq,...,q, € Q and let j > 1 be the maximum

of the indices of nonzero g;. The expansion of g; hfij’ 4 With respect to the basis
H contains the element q;gh.,, whereas the expansions of all other qih’;i7 q do
not involve h;, whence it follows that qht 4 gk £0. (Il

a@1,q Qn,q

The next example is a deep theorem due to Besicovitch; its compact proof
can be found in Stein [906, Chapter X]. Let R be a rectangle in the plane
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with the longer side length 1. Denote by R its translation to 2 in the positive
direction parallel to the longer side, i.e., if e is the unit vector in the right
half-plane giving the direction of the longer side, then R = R+2¢. The known
methods of constructing the Besicovitch set (see Stein [906]) are based on the
following assertions.

1.12.22. Lemma. For anye > 0, there exist a number N = N, € IN and
2N rectangles Ry,...,Ron C IR? with the side lengths 1 and 2=V such that

N ~
Ao (U?=1 Rj) < g, and the above-defined rectangles R; are pairwise disjoint,
N ~
so that Ay (U?:l Rj) =1, where Ay is Lebesque measure on R2.

1.12.23. Lemma. Let P be a parallelogram in the plane with two sides
in the linesy = 0 and y = 1. Then, for any € > 0, one can find a number
N = N, € IN and N parallelograms P, ..., Py in P such that each of them
has two sides in the lines y = 0 and y = 1, Ag (Ui\il Pi) < g, and every
interval in P with the endpoints in the lines y =0 and y = 1 can be parallely
translated to one of P;.

1.12.24. Example. There exists a compact set K C IR? (the Besicovitch
set) of measure zero such that, for any straight line [ in IR?, the set K contains
a unit interval parallel to [.

ProoFr. Consequently applying the previous lemma, we obtain a sequence
of compact sets K1 D Ky D --- D K; D ---, where K; is the square
0 < z,y < 1, with the following properties: A2(K;) < 1/j and, for any
closed interval I joining the horizontal sides of K, the set K; contains a
closed interval obtained by a parallel transport of I. The set ﬂ;; K; has
measure zero and contains a parallel transport of every interval of length 1
whose angle with the axis of ordinates lies between —n /4 and 7/4. The union
of two sets of such a type is a desired compact set. O

Sets of the indicated type give a solution to the so-called Kakeya problem:
what is a minimal measure of a set that contains unit intervals in all directions?
Concerning this problem, see Wolff [1024].

Kahane [479] considered the set F' of all line segments joining the points
of the compact set E in the interval [0, 1] of the axis of abscissas described
in Exercise 1.12.155 and the points of the form (—2z,1), « € E. This set
has zero measure, but contains translations of line segments of unit length
whose angles with the axis of ordinates fill in some interval, so that a suitable
union of finitely many sets of this type is a Besicovitch set. It is possible to
prove the existence of a Besicovitch type set without any explicit construction.
A class of random Besicovitch sets is described in Alexander [11]. Korner
[542] considered the set P of all compact subsets P C [—1,1]x [0, 1] with the
following two properties: (i) P is a union of line segments joining points of
the interval [—1, 1] in the axis of abscissas and points of the interval [0, 1] in
the axis of ordinates, (ii) P contains a translation of each line segment of unit
length. It is shown that P is closed in the space KC of all compact sets in the



1.12. Supplements and exercises 67

plane equipped with the Hausdorff metric, and the collection of all compact
sets in P of measure zero is a second category set in P, hence is not empty.

Finally, let us mention the following surprising example due to Nikodym.
Its construction is quite involved and may be read in the books by Guzman
[386] and Falconer [277].

1.12.25. Example. There exists a Borel set A C [0,1] x [0,1] (the
Nikodym set) of Lebesgue measure 1 such that, for every point x € A, there
exists a straight line [,, whose intersection with A is exactly the point x.

The Nikodym set is especially surprising in connection with Fubini’s the-
orem discussed in Chapter 3; see also Exercise 3.10.59, where the discussion
concerns interesting Davies sets that are related to the Nikodym set.

1.12(vii). Additive, but not countably additive measures

In this subsection, it is explained how to construct additive measures on
o-algebras that are not countably additive. Unlike our constructive example
on an algebra, here one has to employ non-constructive methods based on the
axiom of choice. More precisely, we need the following Hahn—Banach theorem,
which is proven in courses on functional analysis by means of the axiom of
choice (see Kolmogorov, Fomin [536]).

1.12.26. Theorem. Let L be a real linear space and let p be a real
Sfunction with the following properties:

(a) plax) = ap(z) for alla > 0 and x € L;

(b) p(z +y) < p(z) +p(y) for all z,y € L.
Suppose that Ly is a linear subspace in L and that | is a linear function on
Lg such that l(z) < p(x) for all x € Lg. Then l extends to a linear function T

on all of L such that l(x) < p(zx) for all x € L.

Functions p with properties (a) and (b) are called sublinear. If, in addi-
tion, p(—x) = p(z), then p is called a seminorm. For example, the norm of a
normed space (see Chapter 4) is sublinear. Let us give less trivial examples
that are employed for constructing some interesting linear functions.

1.12.27. Example. The following functions p are sublinear:
(i) let L be the space of all bounded real sequences x = (z,) with its
natural linear structure (the operations are defined coordinate-wise) and let

1 n
p(x) =inf S(x,a1,...,a,), S(z,a1,...,a,):=sup — Thta;s
k>1 7057
where inf is taken over all natural n and all finite sequences aq,...,a, € IN;

(ii) let L be the space of all bounded real functions on the real line with
its natural linear structure and let
n

p(f)=infS(f,a1,...,a,), S(f,a1,...,a,):= suplZf(t—i—ai),

n
teR M
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where inf is taken over all natural n and all finite sequences aq,...,a, € IR;
(iii) let L be the space of all bounded real functions on the real line and
let

p(f) = mf{hmsw thJraz)}

t—+oo T

where inf is taken over all natural n and all finite sequences ay,...,a, € IR;
(iv) let L be the space of all bounded real sequences = = (z,,) and let

p(z) =inf S(z,a1,...,a,), S(x,a1,...,a,):=limsup — leﬁ_al,
k—oo
where inf is taken over all natural n and all finite sequences a,...,a, € IN.

PrOOF. Claim (i) follows from (ii). Let us show (ii). It is clear that
[p(f)] < oo and p(af) = ap(f) if @« > 0. Let f,g € L. Take € > 0 and find
at,...,0n,b1,...,b, such that

su t+a;) < +e, sup — (t+b;) < +e
teﬂgan ) < p(f) temng ) <pl(9)
We observe that

fgg%zz (f +9)(t+a; +by)

11]1

< sup — Z th—i—az—l—b +sup—z th—i—az—i—b

teR N

K2

For fixed ¢ and b; we have n™* Y f(t+a; +b;) < S(f,a1,...,an), whence it
=1
follows that

sup — Z th+az+b)<5’(f7a17..., n)-

teR M J 1
A similar estimate for g yields
p(f+g) S S(f7a17"'7an) +S(g7b177b’m) <p(f) +p(g) +2€7
which shows that p(f + g) < p(f) + p(g), since ¢ is arbitrary. The proof of
(iii) is similar, and (iv) follows from (iii). O
Let us now consider applications to constructing some interesting set func-

tions.

1.12.28. Example. On the o-algebra of all subsets in IN, there exists a
nonnegative additive function v that vanishes on all finite sets and equals 1
on IN; in particular, v is not countably additive.
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PROOF. Let us consider the space L of all bounded sequences with the
function p from assertion (iv) in the previous example and take the subspace
Lg of all convergent sequences. Set {(x) = lim z, if © € Lg. Note that

n—oo

n
I(z) = p(z), since for fixed a; and n we have limsupn=! 3 x4 4, = klim Tk
; —00

k—oo =1
Let us extend [ to a linear function [ on L with [ < p. If x € L and z,, <0

o~ ~

for all n, then p(x) < 0 and hence I(z) < 0. Therefore, I(z) > 0 if z,, > 0.

~

If v = (x1,...,24,0,0,...), then I(z) = I(z) = 0. Finally, Z\(l,l,...) = 1.
For every set E C IN, let v(E) = lA(IE), where I is the indicator of the
set F, i.e., the sequence having in the nth position either 1 or 0 depending
on whether n is in E or not. Finite sets are associated with finite sequences,
hence v vanishes on them. ;Fhe value of v on IN is 1, and the additivity of v
follows by the additivity of [ and the fact that Ig,ur, = Ir, + Ig, for disjoint

F4 and Es. It is obvious that v is not countably additive. O

The following assertion is justified in a similar manner (its proof is dele-
gated to Exercise 2.12.102 in the next chapter because it is naturally related
to the concept of the integral, although can be given without it).

1.12.29. Example. On the o-algebra of all subsets in [0, 1), there exists
a nonnegative additive set function ¢ that coincides with Lebesgue measure
on all Lebesgue measurable sets and ((E + h) = ((F) for all E C [0,1) and
h € [0,1), where in the formation of E 4+ h the sum e + h > 1 is replaced by
e+h—1.

If we do not require that the additive function ¢ should extend Lebesgue
measure, then there is a simpler example.

1.12.30. Example. There exists an additive nonnegative set function
¢ defined on all bounded sets on the real line and invariant with respect to
translations such that ¢([0,1)) = 1.

PROOF. Let L be the space of bounded functions on the real line with the
sublinear function p from Example 1.12.27(ii). By the Hahn—Banach theorem,
there exists a linear function [ on L with I(f) < p(f) for all f € L. Indeed,
on Ly = 0 we set [5(0) = 0. Note that I(—f) = —I(f) < p(—f), whence

—p(—=f) <Uf) <p(f), VfeL.

If f > 0, then p(—f) < 0 by the definition of p, hence I{(f) > 0. Next,
=1, p(—1) = —1, which gives [(1) = 1. Tt is clear that |I(f)| < sup|f(¢)],
t

(_
since p(f) < sup|f(t)|. Finally, for all h € R" we have I(f) = I(f(- + h)) for
t

each f € L. Indeed, let g(t) = f(t + h) — f(t). We verify that I(g) = 0. Let
hy=(k—-1hifk=1,...,n+1. Then

ZSt;p\f(S)\
n+1[f(t—|—(n—|—1)h)—f(t)] < Tarl

)

p(g) < S(gahla"'ahn-‘rl) = Slzp
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which tends to zero as n — oo. Thus, p(g) < 0. Similarly, we obtain the
estimate p(—g) < 0. Therefore, I[(g) = 0. Now it remains to set ((A) = 1(14)
for all A C [0,1), where I 4 is the 1-periodic extension of I4 to the real line.
By the above-established properties of [ we obtain a nonnegative additive
set function on [0, 1) that is invariant with respect to translations within the
set [0,1). In addition, ¢([0,1)) = 1, since I|g 1) = 1. For any bounded set A,
we find n with A C [-n,n) and set

n—1

=3 ¢((antii+n) -j).
Jj=—n
It is readily verified that we obtain a desired function. O

We observe that ¢ coincides with Lebesgue measure on all intervals.

1.12(viii). Abstract inner measures

Having considered Carathéodory outer measures, it is natural to turn to
superadditive functions. In this subsection, we present some results in this
direction.

A set function 7 defined on the family of all subsets in a space X and
taking values in [0, +00] is called an abstract inner measure if (&) = 0 and:
(a) n(AU B) > n(A) + n(B) for all disjoint A and B,

(b) n(ﬂzo:l An) = nlilrgo n(A,) for every decreasing sequence of sets such
that n(A;1) < o0

(c) if n(A) = oo, then, for every number ¢, there exists B C A such that
¢ <n(B) < 0.

It follows from (a) that n(U;—; En) = > oey n(Ey) for all pairwise dis-
joint sets F,. In addition, n(B) < n(A) whenever B C A because we have
n(A\B) > 0, i.e., n is monotone.

If 14 is a nonnegative countably additive measure on a o-algebra A, then
the function p, has properties (a) and (b), which is readily verified (one can
either directly verify property (b) by using measurable kernels of the sets E,,
or refer to the properties of p* and the equality p.(A) = pu(X) — p*(X\A) for
finite measures). For finite (or semifinite) measures p property (c) is fulfilled,
too. In fact, this property will be fulfilled for any measure if we define u, by

i (A) :=sup{u(B): BC A, B€ A, u(B) < oo}. (1.12.7)

Suppose that F is a family of subsets of a set X with @ € F. Let
T: F — [0,+00] be a set function with 7(&) = 0. We define the function 7,
on all sets A C X by the formula

T(4) = sup{ZT(Fj): F,eF, F; C Aare disjoint}. (1.12.8)
j=1
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Note that 7, can also be defined by the formula

T«(A) = sup{z T(F;): neN, F; € F, F; C A are disjoint}. (1.12.9)
j=1

This follows by the equality 7(&) = 0. Note the following obvious estimate:
(F)>7(F), VFeF.

It is seen from the definition that 7. is superadditive. Certainly, this function
(as any other one) generates the class 9., (see Definition 1.11.2) that is an
algebra, on which 7, is additive by Theorem 1.11.4. The question arises of
the countable additivity of the function 7, on this algebra and its relation
to 7. Obviously, if 7: 2% — [0, +occ] with 7(@) = 0 is superadditive on the
family of all sets, then 7. = 7 because E]Oil T(F;) < T(U;‘;l F;) < 7(A) for
all pairwise disjoint sets F; C A.

1.12.31. Proposition. (i) Let 7 be an abstract inner measure on a
space X. Then M, is a o-algebra and T is countably additive on M.

(ii) Suppose that on a c-algebra A we are given a measure p with values
in [0,+00]. Then, the function T = u. defined by (1.12.7) is an abstract inner
measure and if the measure u is finite, then the measure T on the domain 9.
extends .

PRrOOF. (i) Under condition (b) the function 7 is countably additive on
the algebra 9, by Theorem 1.11.4(ii) and this does not employ condition (a).
Let us show that 9, is a o-algebra. For simplification of our reasoning we
assume that 7 has only finite values (the general case is similar and uses
condition (c)). As noted above, condition (a) yields that 7(B) < 7(A) if
B C A, i.e., T is monotone. Let A, € M, increase to A. For any E C X, by
the monotonicity of 7 and (b) we have

T(ENA)+71(E\A) > nh_}rrgo T(ENA,)+ nan;O T(E\A,) = 7(4).

Since (a) yields the converse, we obtain A € 9. Assertion (ii) has already
been explained. Here one has A C M, and if u(X) < oo, then |4 = p. O

It should be noted that for a measure p on an algebra A that is not a
o-algebra, the function p, may fail to have property (b). For example, this is
the case for the usual length on the algebra A generated by intervals in [0, 1]:
the set R of irrational numbers has inner measure 0 (evaluated, of course, by
means of A!) and is the intersection of a sequence of decreasing sets with
finite complements and inner measures 1. However, inner measures are a very
efficient tool for constructing and extending measures. Here and in the next
subsection, we consider rather abstract examples whose real content is seen
when dealing with inner compact regular set functions on topological spaces
(see Chapter 7).
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1.12.32. Proposition. Let F be a family of subsets of a space X and
let u: F — [0, +00] be such that @ € F and (@) = 0. Suppose that we have
the identity

and that there exists a compact class K such that
u(A) <sup{p.(K): Ke K, KC A}, VAeF.

Then:
(i) the class M,,, is an algebra, F C M,,,, the function p, is countably

additive on M,,, and coincides with p on F;
(ii) lim p.(An) =0if A, C X, Ay | @ and ps(Ar) < o0.

ProoOF. (i) It is clear that u. extends u, since we can take A = B in
the above equality. According to Exercise 1.12.127, we have F C 9,,. By
Theorem 1.11.4, the class 9, is an algebra and pu. is additive on 9, . The
countable additivity will be established below.

(ii) Let A, | @, ps(A1) < 0o and € > 0. We may assume that the class K
is closed with respect to finite unions and countable intersections, passing to
the smallest compact class K > K with such a property. Let us find C,, € K
with

Cn - An7 N*(An) < ﬂ*(cn) + 6277171.
For this purpose we take a number ¢ € (p.(4,) — 27", 1, (A,)) and find
disjoint sets Fi,..., Fy, € F such that Fy U--- U F,, C A, and ¢ < p(Fy) +
-+ u(Fy). Then we find K; C Fj such that ¢ < p(Ky) + -+ + p(Kp,)
and take C,, = K; U---U K,,. Similarly one verifies that there exist sets
M, € M, with

M, C Cp, and p.(Cp) < pa(My) +e2 7L
It is easy to see that p.(A,\M,) < £27™. One has ﬂzozl C,=,asC, C A,.
Hence ﬂﬁ:l C,, = @ for some k. By using the additivity of u, and the relation
ﬂﬁzl M, C ﬂflzl C,, = &, we obtain
fe(Ap) < pa(Cp) + 27771 < (M) + €277

k k
_— (Mn\i_ﬂlMi) pe2 < ;p*(Mn\Mi) team,

For n > k > i we have
fre (M \M;) < (A \M;) < pr(A\M;) < €277,

whence we obtain p.(A,) <e.

It remains to show the countable additivity of u, on 9,, . To this end,
it suffices to verify that if M, M, € M, and M C |Jo—, M, then p, (M) <
Soo (M), Let By = My and B,, = M,\(MyU---UM,_1), n > 1. Then
the sets B, € M,,, are disjoint and M C |J,2, B,. Let R, = .-, Bj.

Jj=n
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Suppose that the series of u.(M,) converges to ¢ < co. If u, (M) > ¢, then,
for any C' C M with p.(C) > ¢, we have u.(C N R,,) = co. This follows from
what has already been proven, since by Theorem 1.11.4 we have

M*(C) = ZM*(CO Bn) + nh—{go M*(C N Rn)a

n=1

and CN R, | @. As shown above, one can find Cy € K with Cy € M and
1+ (Co) > ¢. Then 1. (Co N Ry) = co. By induction we construct C,, € K such
that Cp, 41 C Cp, N Ryy1 and p.(Cy,) > c. This leads to a contradiction, since
C,, | @ and hence for some p we have C, = C; N--- N C, = &, whereas one
has p.(@) = 0. O

1.12.33. Theorem. Let KC be a compact class of sets in X that contains
the empty set and is closed with respect to formation of finite unions and
countable intersections, and let pu: K — [0,+00) be a set function satisfying
the condition

or, which is equivalent, the condition
w(A) = (AN B) +sup{u(K): Ke K, KCc A\B}, VA BeKk.

Then:

(i) M,,, is a o-algebra and p, is countably additive on M,,, as a function
with values in [0, 4+00];

(ii) LK C M,,. and p, extends p;

(iil) ps(A) =sup{u(K): K C A, K € K} forall A C X;

(iv) M e M,,, precisely when M N K € M, for all K € K;

(v) lim g (An) = pe(A) if An | A and p.(Ay) < oo.

PROOF. Since u(@) = 2u. (@), one has pu(&) = (&) = 0. By the above
proposition with 7 = K we obtain that 91, is an algebra, on which u, is
countably additive and (ii) is true. In particular, u is additive on K, which
gives (iii) (this also follows by Exercise 1.12.124). Let us verify (v). Let € > 0.
By (iii) we can find K7 C A; with K7 € K and p.(41) < pu(K1) +¢/2. By
induction we construct sets K,, € K with

K,CA,Nn K,_1, /L*(An n Kn—l) < /,L(Kn) +e27™.
By using the decrease of A; and the inclusion X C 9, , we obtain
pe (A1) + p(EG) < p(Kjpa) + e (ANKG) + p(E;G) +e2777
< (K1) + e (ANKG) + (A N EKG) + 22777
< p(Kjin) + pa(Aj) + 227970
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Set K =(,—, K,,. Then K C Aand K € K C 9M,,,. Since K,\K | @, by
the above proposition we have p.(K,\K) — 0. Therefore,

Ha(An) = pe (A1) + z_:[ﬂ*(AHl) — px (4;)]
< u(K1) + % + Z_:[u*(Km) — pu(Kj) + 27771

< u(Kn) + & < pa(A) + pa (Kn\K) + ¢
Hence p.(A) < lim pa(A4y) < pa(A).

Let us verify that 91, is a o-algebra. It suffices to show that if M,, € 91,
and M, | M, then M e M, . Let AC X. If K € K and K C A, then

P(K) = po (K N M) + pra(K\M) < (KN My) + i (A\M).

By using (v) and taking into account that p is finite on &, we obtain passing
to the limit as n — oo that

p(K) < pus (K NV M) + 1y (AAM) < pa (AN M) + i (A\M).

According to (iii) we have p.(A) < p (AN M)+ p.(A\M). Since the reverse
inequality is true as well, one has M € 9M,,,. Thus, (i) is established.

It remains to show (iv). Clearly, if M € M, and K € K, then we
have K N M € 9, , since K belongs to the algebra 9, . Conversely, let
KnMeMm,, forall K € K. For every A C X, we have whenever K C A
and K € K

WE) = p (KN (M N K)) + p (K\(M N K))
< (AN M) + pi (AAM) < o (A).

Taking sup over K we obtain by (iii) that M € 90,,..

If we have the second condition of the theorem, then p(@) = 0, whence
w(A) =sup{u(K): K e K,K C A} if A€ K. Hence u(BUC) = u(B)+p(C)
if B,C € K, BNC = &. Hence p, coincides with p on K. So we have (iii)
and the first condition of the theorem. The converse is true as well. O

The proof of the next theorem, which can be read in Fremlin [327, §413],
combines the functions v, and v*.

1.12.34. Theorem. Let R be a ring of subsets of a space X, let K be
some class of subsets of X closed with respect to formation of finite inter-
sections and finite disjoint unions, and let v be a finite nonnegative additive
function on R such that IC is an approximating class for v. Then the following
assertions are true.

(i) If every element of K is contained in an element of R, then v extends
to a finite nonnegative additive function v defined on a ring R that contains
R and IKC, such that K is an approximating class for v and, for each R € R
and € > 0, there exists R. € R with v(R A R,) < e.
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(ii) If R a o-algebra, v is countably additive, and K admits countable
intersections, then v extends to a measure v defined on a o-algebra A con-
taining R and IC, such that IC remains an approximating class for v and, for
each R € R, there exists A € A with V(R A A) = 0.

It is readily seen that unlike superadditive functions, a subadditive func-
tion m may not be monotone, i.e., may not satisfy the condition m(A4) < m(B)
whenever A C B. A submeasure is a finite nonnegative monotone subaddi-
tive function m on an algebra 2 such that m(@) = 0. A submeasure m is
called exhaustive if, for each sequence of disjoint sets A,, € 2, one has the
equality nh_)rr;o m(A,) = 0. A submeasure m is called uniformly exhaustive

if, for each € > 0, there exists n such that, in every collection of disjoint
sets Aq,..., A, € 2, there exists A; with m(A4;) < e. Clearly, a uniformly
exhaustive submeasure is exhaustive. A submeasure m is called Maharam if
lim m(A4,) = 0as 4, | &, A, € A. Recently, Talagrand [932] has con-

n—oo

structed a counter-example to a long-standing open problem (the so-called
control measure problem) that asked whether for every Maharam submeasure
m on a o-algebra 2, there exists a finite nonnegative measure p with the
same class of zero sets as m. It is known that this problem is equivalent to the
following one: is every exhaustive submeasure uniformly exhaustive? Thus,
both questions are answered negatively.

1.12(ix). Measures on lattices of sets

In applications one often encounters set functions defined not on alge-
bras or semirings, but on lattices of sets. The results in this subsection are
employed in Chapter 10 in our study of disintegrations.

1.12.35. Definition. A class R of subsets in a space X is called a
lattice of sets if it contains the empty set and is closed with respect to finite
intersections and unions.

Unlike an algebra, a lattice may not be closed under complementation.
Typical examples are: (a) the collection of all compact sets in a topological
space X, (b) the collection of all open sets in a given space X. Sometimes in
the definition of a lattice it is required that X € R. Certainly, this can be
always achieved by simply adding X to R, which does not affect the stability
with respect to formation of unions and intersections.

A finite nonnegative set function 5 on a lattice R is called modular if one
has §(@) =0 and

6(R1UR2)+B(R1QR2) :ﬂ(R1)+ﬁ(R2), VR, Ry € R. (11210)

If in (1.12.10) we replace the equality sign by “<”, then we obtain the def-
inition of a submodular function, and the change of “=" to “>" gives the
definition of a supermodular function. If R is an algebra, then the modular
functions are precisely the additive ones. We recall that a set function ( is
called monotone if 8(R1) < B(R2) whenever Ry C Ra.
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1.12.36. Proposition. Let 3 be a monotone submodular function on a
lattice R and X € R. Then, there exists a monotone modular function « on
R such that a < B and a(X) = B(X).

The proof is delegated to Exercise 1.12.148.

1.12.37. Corollary. Suppose that (8 is a monotone supermodular func-
tion on a lattice R and X € R. Then, there exists a monotone modular
function v on R such that v > 8 and v(X) = B(X).

PROOF. Let us consider the set function

Bo(C) = B(X) = B(X\C)
on the lattice Ry = {C: X\C € R}. It is readily verified that 5y is monotone
and submodular. According to the above proposition, there exists a monotone
modular function ay on Ry with ag < Fy and ap(X) = Fo(X). Now set
W(R) = ag(X) — ag(X\R), R € R. Then 7(X) = A(X) and 7(R) > 5(R),
since ag(X\R) < Bo(X\R). O

1.12.38. Lemma. Let 8 be a monotone modular set function on a lat-
tice R, X € R, and B(X) = 1. Then, there exists a monotone modular set
function ¢ on R such that 8 < ¢, ((X) =1, and

C(R)+ (. (X\R)=1, VRe®R. (1.12.11)

PROOF. The set ¥ of all monotone modular set functions 1 on R satisfy-
ing the conditions ¥(X) = 1 and ¢ > £, is partially ordered by the relation <.
Each linearly ordered part of ¥ has an upper bound in ¥ given as the supre-
mum of that part (this upper bound is modular, since the considered part is
linearly ordered). By Zorn’s lemma ¥ has a maximal element . Corollary
1.12.37 yields (1.12.11), since otherwise the function ¢ is not maximal. To see
this, it suffices to show that for any fixed Ry € %R, there is a function ¥ € ¥
such that ¢¥(Ro) + . (X\Ro) = 1. Let

T1(R) :=sup{B(RNS): SER, SNRy=92}, ReR.

The function 77 is modular. Indeed, given Ry, Ry € R, for every ¢ > 0, one can
find S; € R, ¢ =1,...,4, such that S; "Ry = @ and the sum of the quantities
T1(R1) — B(R1 N S1), Ti(R2) — B(R2 N S2), T1(R1 N R2) — B(R1 N RaN S3),
T1(R1 URy) — ﬂ((Rl UR2)N 54) is less than . The same estimate holds if
we replace all S; by S :=S;U---USy. Then (R NS) + B(R2NS) equals
B(RiNRyNS)+ B((R1URy)NS), since 8 is modular and (Ry URy) NS =
(RiNS)U (R2NS). The function S — 7 is modular and monotone as well,
which is seen from the fact that if Ry C Rs, R; € R and S € ‘R, then

B(R1) + B(R2N S) = B(R1NS)+ B(R1U (RN S)) < B(R1NS) + B(Ra).

Let

T2(R) :=sup{B(S) —11(S): SeM, SNRy C R}, ReR
It is readily verified that the function 75 is monotone and supermodular. By
the above corollary there exists a monotone modular function 73 on R with
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T3 > 7o and 73(X) = 72(X) =1 — 7 (X). Let ¢» = 71 + 75. The function ¥ is
monotone and modular. For all R € R, we have ¢(R) > 71 (R)+72(R) > B(R),
since 12(R) > B(R) — 71 (R). Finally, by the monotonicity of 5 — 71 one has

¥(Ro) = 12(Ro) = B(X) = 11(X) = 1 — . (X\Ro).
Since ¥(Ro) + ¥« (X\Rp) < 1, we obtain the required equality. a

1.12.39. Corollary. Suppose that in the proven lemma R is a compact
class closed with respect to formation of countable intersections. Set

E={ECX: ((F)+ (X\E) =1}
Then &£ is a o-algebra and the restriction of (s to € is countably additive.

PROOF. Let us show that £ = M. Let £ € £ and A C X. Then
C«(A) > (AN E) + (.(A\E). Let us verify the reverse inequality. Let
e > 0. We can find Ry, Re, R € R such that Ry C A, R C E, R3 C X\FE
and C,(A) < C(Ry) + &, G.(E) < C(Rz) + &, C.(X\E) < ((R) +¢. Then
G(ANE) = ((RiNR2), ¢(A\E) = ((R1NRs). Since ((R2)+((Rs) = 12,
by the modularity of { we obtain

C(ANE) + G (A\E) > (R N R2) + ((R1 N R3) = ((R1 N (R2 U Ry))
= ((R1) +((R2 U R3) — ((R1U R2 U R3) > ((R1) — 2e.
Hence E € M., . By Theorem 1.11.4 we obtain our assertion. ]

1.12(x). Set-theoretic problems in measure theory

We have already seen that constructions of nonmeasurable sets involve
certain set-theoretic axioms such as the axiom of choice. The question arises
whether this is indispensable and what the situation is in the framework of
the naive set theory without the axiom of choice. In addition, one might
also ask the following question: even if there exist sets that are nonmeasur-
able in the Lebesgue sense, is it possible to extend Lebesgue measure to a
countably additive measure on all sets (i.e., not necessarily by means of the
Lebesgue completion and not necessarily with the property of the translation
invariance)? Here we present a number of results in this direction. First,
by admitting the axiom of choice, we consider the problem of the existence
of nontrivial measures defined on all subsets of a given set, and then several
remarks are made on the role of the axiom of choice.

Let X be a set of cardinality Ny, i.e., X is equipotent to the set of all
ordinal numbers that are smaller than the first uncountable ordinal number.
Note that X is uncountable and can be well-ordered in such a way that every
element is preceded by an at most countable set of elements. The following
theorem is due to Ulam [967].

1.12.40. Theorem. If a finite countably additive measure 1 is defined
on all subsets of the set X of cardinality Ny and vanishes on all singletons,
then it is identically zero.
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PRrROOF. It suffices to consider only nonnegative measures (see §3.1 in
Chapter 3). By hypothesis, X can be well-ordered in such a way that, for
every y, the set {z: & < y} is at most countable. There is an injective
mapping « — f(z,y) of this set into IN. Thus, for every pair (x,y) with x < y
one has a natural number f(z,y). For every € X and every natural n, we
have the set

Al ={ye X: z <y, f(z,y) =n}.
For fixed n, the sets A7, x € X, are pairwise disjoint. Indeed, let y € AZNA7,
where x # z. We may assume that x < z. This is, however, impossible,
since © < gy, z < y and hence f(z,y) # f(z,y) by the injectivity of the
function f(-,y). Therefore, by the countable additivity of the measure, for
every n, there can be an at most countable set of points = such that p(A7) > 0.
Since X is uncountable, there exists a point z € X such that p(A}) = 0 for
all n. Hence A = ;2 ; A” has measure zero. It remains to observe that the
set X\ A is at most countable, since it is contained in the set {y: y < x},
which is at most countable by hypothesis. Indeed, if y > =z, then y € A7,
where n = f(z,y). Therefore, u(X\A) = 0, which completes the proof. O

Another proof will be given in Corollary 3.10.3 in Chapter 3.
We recall that one of the forms of the continuum hypothesis is the asser-
tion that the cardinality of the continuum ¢ equals ;.

1.12.41. Corollary. Assume the continuum hypothesis. Then, any finite
countably additive measure that is defined on all subsets of a set of cardinality
of the continuum and vanishes on all singletons is identically zero.

One more set-theoretic axiom employed in this circle of problems is called
Martin’s axiom. A topological space X is said to satisfy the countable chain
condition if every disjoint family of its open subsets is at most countable. Mar-
tin’s axiom (MA) can be introduced as the assertion that, in every nonempty
compact space satisfying the countable chain condition, the intersection of
less than ¢ open dense sets is not empty. The continuum hypothesis (CH) is
equivalent to the same assertion valid for all compacts (not necessarily satis-
fying the countable chain condition). Thus, CH implies MA. It is known that
each of the axioms CH, MA and MA-CH (Martin’s axiom with the negation of
the continuum hypothesis) is consistent with the system of axioms ZFC (this
is the notation for the Zermelo—Fraenkel system with the axiom of choice),
i.e., if ZFC is consistent, then it remains consistent after adding any of these
three axioms. In this book, none of these axioms is employed in main theo-
rems, but sometimes they turn out to be useful for constructing certain exotic
counter-examples or play some role in the situations where one is concerned
with the validity of certain results in their maximal generality. Concerning
the continuum hypothesis and Martin’s axiom, see Jech [458], Kuratowski,
Mostowski [555], Fremlin [323], Sierpinski [879].

Ulam’s theorem leads to the notion of a measurable cardinal. For brevity,
cardinal numbers are called cardinals. A cardinal  is called real measurable
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if there exist a space of cardinality x and a probability measure v defined
on the family of all its subsets and vanishing on all singletons. If v assumes
the values 0 and 1 only, then k is called two-valued measurable. Real non-
measurable cardinals (i.e., the ones that are not real measurable) are called
Ulam numbers. The terminology here is opposite to the one related to the
measurability of sets or functions: nonmeasurable cardinals are “nice”. It is
clear that the countable cardinality is nonmeasurable. Since every cardinal
less than a nonmeasurable one is nonmeasurable as well, the nonmeasurable
cardinals form some initial interval in the “collection of all cardinal numbers”
(possibly embracing all cardinals as seen from what is said below). Anyway,
this “interval” is very large, which is clear from the following Ulam—Tarski
theorem (for a proof, see Federer [282, §2.1], Kharazishvili [507]).

1.12.42. Theorem. (i) If a cardinal B is the immediate successor of a
nonmeasurable cardinal o, then B is nonmeasurable. (ii) If the cardinality of
a set M of nonmeasurable cardinals is nonmeasurable, then the supremum of
M is nonmeasurable as well.

A cardinal « is called inaccessible if the class of all smaller cardinal num-
bers has no maximal element and there is no subset of cardinality less than s
whose supremum equals x. The previous theorem means that if there ex-
ist measurable cardinals, then the smallest one is inaccessible. The cardinal
N; in Theorem 1.12.40 is the successor of the countable cardinal Ry, which
makes it nonmeasurable. The two-valued nonmeasurability of cardinality ¢
of the continuum is proved without use of the continuum hypothesis, which
follows from Exercise 1.12.108 or from the following result (see Jech [459],
Kuratowski, Mostowski [555, Ch. IX, §3], Kharazishvili [507]).

1.12.43. Proposition. If a cardinal k is two-valued nonmeasurable, then
so is the cardinal 2.

This proposition yields that the cardinal ¢ is not two-valued measurable.
Martin’s axiom implies that the cardinal ¢ is not real measurable. If ¢ is not
real measurable, then real measurable and two-valued measurable cardinals
coincide. The following theorem (see Jech [459]) summarizes the basic facts
related to measurable cardinals.

1.12.44. Theorem. The supposition that measurable cardinals do not
exist is consistent with the ZFC. In addition, if either of the following asser-
tions is consistent with the ZFC, then so are all of them:

(i) two-valued measurable cardinals exist;

(ii) real measurable cardinals exist;

(iii) the cardinal ¢ is real measurable;

(iv) Lebesgue measure can be extended to a measure on the o-algebra of
all subsets in [0, 1].

Nonmeasurable cardinals will be encountered in Chapter 7 in our discus-
sion of supports of measures in metric spaces. Some additional information
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about measurable and nonmeasurable cardinals can be found in Buldygin,
Kharazishvili [142], Kharazishvili [506], [507], [508], [511], Fremlin [323],
[325], Jech [459], Solovay [898].

We recall that the axiom of choice does not exclude countably additive
extensions of Lebesgue measure to all sets, but only makes impossible the
existence of such extensions with the property of translation invariance (in
the next subsection there are remarks on invariant extensions), in particular,
it does not enable one to exhaust all sets by means of the Lebesgue completion.

It is now natural to discuss what happens if we restrict the use of the
axiom of choice. It is reasonable to admit the countable form of the axiom
of choice, i.e., the possibility of choosing representatives from any countable
collection of nonempty sets. At least, without it, there is no measure theory,
nor even the theory of infinite series (see Kanovei [490]). It turns out that if
we permit the use of the countable form of the axiom of choice, then, as shown
by Solovay [897], there exists a model of set theory such that all sets on the
real line are Lebesgue measurable (see also Jech [458, §20]). Certainly, the full
axiom of choice is excluded here. Another interesting related result deals with
the so-called axiom of determinacy. For the formulation, we have to define
the following game G4 of two players I and I, associated with every set A
consisting of infinite sequences a = (ag, a1,,...) of natural numbers a,,. The
game proceeds as follows. Player I writes a number by € IN, then player 11
writes a number by € IN and so on; the players know all the previous moves. If
the obtained sequence b = (bg, b1, . ..) belongs to A, then I wins, otherwise 11
wins. The set A and game G 4 are called determined if one of the players I or
IT has a winning strategy (i.e., a rule to make steps corresponding to the steps
of the opposite side leading to victory). For example, if A consists of a single
sequence a = (a;), then I'T has a winning strategy: it suffices to write by # a;
at the very first move. The axiom of determinacy (AD) is the statement that
every set A C IN® is determined. In Kanovei [490] one can find interesting
consequences of the axiom of determinacy, of which the most interesting for
us are the measurability of all sets of reals (see also Martin [657]) and the
real measurability of the cardinal X;. Thus, on the one hand, the axiom of
determinacy excludes some paradoxical sets, but, on the other hand, it gives
some objects impossible under the full axiom of choice.

1.12(xi). Invariant extensions of Lebesgue measure

We already know that Lebesgue measure can be extended to a countably
additive measure on the o-algebra obtained by adding a given nonmeasur-
able set to the class of Lebesgue measurable sets. However, such an extension
may not be invariant with respect to translations. Szpilrajn-Marczewski [928]
proved that there exists an extension of Lebesgue measure A on the real line
to a countably additive measure [ that is defined on some o-algebra £ strictly
containing the o-algebra of Lebesgue measurable sets, and is complete and
invariant with respect to translations (i.e., if A € £, then A +¢ € £ and
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I(A+t) =1(A) for all t). It was proved in Kodaira, Kakutani [525] that
there exists a countably additive extension of Lebesgue measure that is in-
variant with respect to translations and is nonseparable, i.e., there exists no
countable collection of sets approximating all measurable sets in the sense
of measure. It was shown in Kakutani, Oxtoby [483] that there also exist
nonseparable extensions of Lebesgue measure that are invariant with respect
to all isometries.

Besides countably additive, finitely additive extensions invariant with re-
spect to translations or isometries have been considered, too. In this direction
Banach [49] proved that on the class of all bounded sets in R' and IR? there
exist nontrivial additive set functions m invariant with respect to all isome-
tries, i.e., translations and linear isometries (moreover, one can ensure the
coincidence of m with Lebesgue measure on all measurable sets, but one can
also obtain the equality m(E) = 1 for some set E of Lebesgue measure zero).
There are no such functions on IR?, which was first proved by F. Hausdorff.
This negative result was investigated by Banach and Tarski [60], who proved
the following theorem; a proof is found in Stromberg [915], Wise, Hall [1022,
Example 6.1], and also in Wagon [1001].

1.12.45. Theorem. Let A and B be bounded sets in IR® with nonempty
interiors. Then, for some n € IN, one can partition A into pieces A1,..., A,
and B into pieces By, ..., B, such that, for every i, the set A; is congruent
to the set B;.

If A is a ball and B consists of two disjoint balls of the same radius, then
n = 5 suffices in this theorem, but n = 4 is not enough.

Let R, be the ring of bounded Lebesgue measurable sets in IR". Ba-
nach [49] investigated the following question (posed by Ruziewicz): is it true
that every finitely additive measure on R,, that is invariant with respect to
isometries is proportional to Lebesgue measure? Banach gave negative an-
swers for n = 1,2. G.A. Margulis [655] proved that for n > 3 the answer
is positive. W. Sierpiniski raised the following question (see Szpilrajn [928]):
does there exist a maximal countably additive extension of Lebesgue mea-
sure on IR", invariant with respect to isometries? A negative answer to this
question was given only half a century later in Ciesielski, Pelc [182] (see also
Ciesielski [180]), where it was proved that, for any group G of isometries of
the space IR" containing all parallel translations, one can write IR" as the
union of a sequence of sets Z,, each of which is absolutely G-null (earlier
under the continuum hypothesis, a solution was given by S.S. Pkhakadze and
A. Hulanicki, see references in [182]). Here an absolutely G-null set is a set Z
such that, for each o-finite G-invariant measure m, there exists a G-invariant
extension defined on Z, and all such extensions vanish on Z (a countably
additive o-finite measure m is called G-invariant if it is defined on some
o-algebra M such that g(A) € M and m(g(4)) = m(A) for all g € G,
A € M). For the group of parallel translations, this result was obtained
earlier by A.B. Kharazishvili, who proved under the continuum hypothesis
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a more general assertion (see [507]). On this subject and related problems,
see Hadwiger [392], Kharazishvili [507], [510], [512], Lubotzky [625], von
Neumann [712], Sierpiriski [880], and Wagon [1001].

1.12(xii). Whitney’s decomposition

In Lemma 1.7.2, we have represented any open set as a union of closed
cubes with disjoint interiors. However, the behavior of diameters of such cubes
could be quite irregular. It was observed by Whitney that one can achieve
that these diameters be comparable with the distance to the boundary of the
set. As above, for nonempty sets A and B we denote by d(A, B) the infimum
of the distances between the points in A and B.

1.12.46. Theorem. Let 2 be an open set in R™ and let Z := R™"\Q be
nonempty. Then, there exists an at most countable family of closed cubes Qy,
with edges parallel to the coordinate axes such that:

(i) the interiors of Qi are disjoint and Q = Jp—; Q.

(i) diam Qy < d(Qp, Z) < 4diam Qy.

PROOF. In the reasoning that follows we mean by cubes only closed cubes
with edges parallel to the coordinate axes. Let Sy be a net of cubes obtained
by translating the cube [0, 27%]" by all vectors whose coordinates are multiples
of 27F. The cubes in Sy have edges 27% and diameters v/n27 . Set

O = {:c €Q: 2v/n27% < dist (z, Z) < 2\/52*’6“}, keZ.

It is clear that 0 = (J; 5, Q. Now we can choose a preliminary collection F
of cubes in the above nets. To this end, let us consider the cubes in Sy. If a
cube Q € Sk meets i, then we include it in F. Thus,

F=J {QeS: Qnu #2}.

k=—o0

It is clear that the union of all cubes in F covers 2. Let us show that

diamQ < d(Q,Z) < 4diamQ, VQ € F. (1.12.12)
A cube Q from F belongs to Sy, for some k. Hence it has the diameter /n2~%
and there exists x € Q N Q. Therefore,

d(Q, Z) < dist (z, Z) < 2¢/n27FH1,
On the other hand,
d(Q, Z) > dist (z, Z) — diam Q > 2/n27F — \/n27*.

It follows by (1.12.12) that all cubes @Q are contained in Q. However, cubes
in F may not be disjoint. For this reason some further work on F is needed.
Let us show that for every cube Q € F, there exists a unique cube from
F that contains () and is maximal in the sense that it is not contained in
a larger cube from F, and that such maximal cubes have disjoint interiors.
Then the collection of such maximal cubes is a desired one: they have all



1.12. Supplements and exercises 83

the necessary properties, in particular, their union equals the union of cubes
in F, ie., equals Q. For the proof of the existence of maximal cubes, let
us observe that two cubes Q' € Sy and Q" € S,, may have common inner
points only if one of them is entirely contained in the other (i.e., if there are
common inner points and k < m, then we have Q" C @’). This is clear
from the construction of 8. Now let Q € F. If Q C Q' € F, then we
obtain by (1.12.12) that diam @’ < 4diam @. By the above observation we
see that, for any two cubes Q',Q" € F containing Q, either Q' C Q" or
Q" C Q'. Together with the previous estimate of diameter this proves the
existence and uniqueness of a maximal cube K(Q) € F containing Q. For the
same reasons, maximal cubes K(Q) and K(Q2), corresponding to distinct
Q1,Q2 € F, either coincide or have disjoint interiors. Indeed, otherwise one
of them would strictly belong to the other, say, K(Q1) C K(Q2). Then
Q1 C K(Q2), contrary to the uniqueness of a maximal cube for Q;. Deleting
from the collection of cubes K(Q) the repeating ones (if different Q' and Q"
give one and the same maximal cube), we obtain the required sequence. [

Exercises

1.12.472 Suppose we are given a family of open sets in IR". Show that this
family contains an at most countable subfamily with the same union.

HINT: consider a countable everywhere dense set of points xx in the union W
of the given sets W,; for every point xzj, take all open balls K(zx,7;) centered
at xx, having rational radii r; and contained in at least one of the sets W,; for every
U(xk,7j), pick a set W, . D U(zk,7;) and consider the obtained family.

J
1.12.48° Let W be a nonempty open set in IR™. Prove that W is the union
of an at most countable collection of open cubes whose edges are parallel to the
coordinate axes and have lengths of the form p2~ %, where p,q € IN, and whose
centers have coordinates of the form m2~%, where m € Z, k € IN.
HINT: observe that the union of all cubes in W of the indicated type is W.

1.12.49? Let p be a nonnegative measure on a ring R. Prove that the class of
all sets Z € R of measure zero is a ring.

1.12.50° Let p be an arbitrary finite Borel measure on a closed interval I.
Show that there exists a first category set E (i.e., a countable union of nowhere
dense sets) such that p(I\E) = 0.

HINT: it suffices to find, for each n, a compact set K, without inner points
such that pu(K,) > p(I) —27". By using that p has an at most countable set of
points a; of nonzero measure, one can find a countable everywhere dense set of
points s; of p-measure zero. Around every point s; there is an interval U, ; with
Uy ;) < 2797 ™ Now we take the compact set K, = I'\ UjZ, Uny-

1.12.517 Let S be some collection of subsets of a set X such that it is closed
with respect to finite unions and finite intersections and contains the empty set (for
example, the class of all closed sets or the class of all open sets in [0, 1]). Show that
the class of all sets of the form A\B, A,B € S, B C A, is a semiring, and the class
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of all sets of the form (A1\B1) U---U (Ax\Bn), 4i,B; € S, B; C A;, n € N, is the
ring generated by S.

HINT: verify that (A\B)\(C\D) = (A\(BU(ANC))) U ((AnD)\(Bn D))
if B C A, D C C; next verify that the class of the indicated unions is closed with
respect to intersections.

1.12.527 Let m be an additive set function on a ring of sets R. Prove the

following Poincaré formula for all A;,..., A, € R:
i=1 i=1 1<i<j<n

n

+ Y mANANA) -+ (—1)”+1m(ﬂ Ai>.

1<i<j<k<n i=1

1.12.53? Let Ry and R2 be two semirings of sets. Prove that
RixR2={RiXRz2: Ri € R1,R2 € Ra}
is a semiring. Show that R1 xRz may not be a ring even if R; and R2 are algebras.

1.12.547 Let F be some collection of sets in a space X. Prove that every set
A in the o-algebra o(F) generated by F is contained in the o-algebra generated by
an at most countable subcollection {F,} C F.

HINT: verify that the union of all o-algebras o({F,}) generated by at most
countable subcollections {F,,} C F is a o-algebra.

1.12.55% (Brown, Freilich [134]) The aim of this exercise is to show that Propo-
sition 1.2.6 may be false if a o-algebra is defined in the broader sense mentioned
in §1.2. Suppose we are given a set X and a collection S of its subsets such that the
union of all sets in S is Y C X. Prove that the following conditions are equivalent:
(i) Y is an at most countable union of sets in S; (ii) there exists a smallest family of
sets A with the following properties: A is a o-algebra on some subset Z C X (i.e.,
Z is the unit of this o-algebra) and S C A, where a smallest family is a family that
is contained in every other family with the stated properties. Consider the example
where X = [0,1], Y = [0,1/2], S is the class of all at most countable subsets of Y.

HiNT: if Y is not the countable union of elements in S, then Y does not belong
to the class P of all sets A C Y such that A C Uiozl Sn, where S, € §. Let us fix
z € X\Y and consider the class £ of all sets E C Y U {z} such that either E € P
or (YU{z})\E € P. It is readily verified that £ is a o-algebra. One has Y ¢ .
If there exists a smallest family of sets A with the properties indicated in (ii), then
the corresponding set Z cannot be smaller than Y, i.e., Z =Y and hence Y € A.
Therefore, A does not belong to £, which gives a contradiction.

1.12.56. (Broughton, Huff [132]) Suppose we are given a sequence of o-algebras
A, in a space X such that A, is strictly contained in A, 1 for each n. Prove that
US2, An is not a o-algebra.

HINT: we may assume that there is a nonempty set B € A; not equal to X.
If, for some n, we have B N An,+1 = BN A, and the same is true for X\B, then
Ant+1 = A,, which is a contradiction. Hence one can find E € A; and infinitely
many pr with pry1 > p such that (E N Ay, +1)\(ENAp,) # @. Then the classes
E N A, are strictly increasing o-algebras on E. By induction, we construct a



1.12. Supplements and exercises 85

subsequence Aj,, Aj,, ..., where jry1 > ji, and sets E1 D E2 D ... with B € Aj,
and Er+1 € (Ex N .Ajk+1)\(Ek N A;,.). We obtain disjoint sets Fj := Ep\Eg41,
Fy € Aj, ;1 \Aj,. We may assume that X = (J;2; Fr. Let 7: X — N, n(Fx) =k
and let A}, := {A: 7 *(A) € A,}. It is easily verified that, for every n, there is the
smallest set B,, € A;, withn € B,. Then B,, C {k > n}, B, # {n}. If m € B, then
B,, C By, since B,, N B, € A,,,. Let n; := 1. We find by induction ny;1 € B,
Ng+t1 > ng. Then Bn, D Bp, D ... Let E:= {na,na,ne, ...} If 7r71(E) € An, ie.,
E € Aj,, then E € Aj,,, for some k, whence one has {nax, nak+2,...} € Ay, and
B, C {n2k, n2k+2,. ..}, contrary to the inclusion nagy1 € Bn,, -

1.12.577 Show that every set of positive Lebesgue measure contains a nonmea-
surable subset.

1.12.58. Prove that there exists a sequence of sets A, C [0, 1] such that for all
none has Api1 C Ap, (oo, An = @ and A*(A4,) = 1, where X is Lebesgue measure.

HINT: let {r,} be some enumeration of the rational numbers and let F C [0, 1]
be the nonmeasurable set from Vitali’s example. Show that the sets

En:=(EU(E+4+r)U---U(E+m.))NI0,1]
have inner measure zero and take A, := [0, 1]\ E.

1.12.59. Show that every nonempty perfect set contains a nonempty perfect
subset of Lebesgue measure zero. In particular, every set of positive Lebesgue
measure contains a measure zero compact set of cardinality of the continuum.

HiNT: it suffices to consider a compact set K of positive measure without
isolated points; then, similarly to the construction of the classical Cantor set, delete
from K the countable union of sets J, N K, where J,, are disjoint intervals, in such
a way that the remaining set is perfect, nonempty and has measure zero.

1.12.607 Let C be the Cantor set in [0, 1]. Show that
C+C:={ci+c2: c1,e0€C}=10,2], C—-C:={c1 —c2: c1,c2 € C} =[-1,1].

HINT: the sets C + C and C' — C are compact, hence it suffices to verify that
they contain certain everywhere dense subsets in the indicated intervals, which can
be done by using the description of C' in terms of the ternary expansion.

1.12.612 Give an example of two closed sets A, B C IR of Lebesgue measure
zero such that the set A+ B:={a+b: a€ A,be B} is R.

HiNT: take for A the Cantor set and for B the union of translations of A to all
integer numbers.

1.12.627 (Steinhaus [910]) Let A be a set of positive Lebesgue measure on the
real line. Show that the set A — A := {a1 — a2: a1,a2 € A} contains some interval.
Prove an analogous assertion for IR" (obtained in Rademacher [775]).

HINT: there is a compact set K C A with A(K) > 0; take an open set U with
K C U and A(U) < 2X\(K) = AM(K) + A(K + h) and observe that there exists € > 0
such that K + h C U whenever |h| < &; then A(K U (K + h)) < A(U) for such h,
whence K N (K + h) # @.

1.12.63. (P.L. Ulyanov, see Bary [66, Appendix, §23]) Let E C [0, 1] be a mea-
surable set of positive measure. (i) Prove that for every sequence {h,} converging to
zero and every € > 0, there exist a measurable set E. C E and a subsequence {hn, }
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such that A(E:) > A(E) — ¢ and for all z € E. we have © + hy,, € E, £ — hy,, € E
for all k.

(ii) Prove that there exist a measurable set Ey C E and a sequence of numbers
hn > 0 converging to zero such that A(Ep) = A(E) and for every = € Ey, we have
x + h, € E for all n > n(x).

HINT: (i) choose numbers ny such that

ME A (E+hny)) <87 NE A (E = hny)) <875,

and take E: = (32, ((E + hny,) N (E — hy,)). (ii) For {27"} and &1 = 1/2, take the
set Ey /o according to (i) and proceed by induction: if for some n we have chosen a
set E,—n according to (i) and a subsequence {h](c")} in {277}, then when choosing
Ey—n—1 for the number n+ 1, we take a subsequence in {h\™}. Let Eo = U, Ey-n
and h, := h;n).

1.12.64. Let A be a set of positive Lebesgue measure in IR™ and let k£ € IN.
Prove that there exist a set B of positive Lebesgue measure and a number § > 0
such that the sets B;, := B+ 0(i1,...,in), where i; € {1,...,k}, are disjoint
and are contained in A.

1.12.65. (Jones [469]) In this exercise, by a Hamel basis we mean a Hamel
basis of the space IR* over the field of rational numbers.

(i) Let M be a set in [0, 1] and let A.(M — M) > 0. Prove that M contains a
Hamel basis. Deduce that the Cantor set contains a Hamel basis and that every set
of positive measure contains a Hamel basis.

(ii) Prove that there exists a Hamel basis containing a nonempty perfect set.

(iii) Let H be a Hamel basis and DE := {e1 — e2,€e1,e2 € E,e1 > e2} for any
set E. Prove that A*(D"H) > 0 for some n and A.(D"H) = 0 for all n, where D"
is defined inductively.

(iv) Let H be a Hamel basis and TE := {e1 + e2 — e3,e1,€e2,e3 € E} for any
set E. Prove that A*(T"H) > 0 for some n and A.(T"H) = 0 for all n.

1.12.66. Prove the existence of a nonmeasurable (in the sense of Lebesgue)
Hamel basis of IR' over Q without using the continuum hypothesis (see Exam-
ple 1.12.21).

HINT: let w. be the smallest ordinal number corresponding to the cardinality of
the continuum. The family of all compacts of positive measure has cardinality ¢ and
hence can be put in some one-to-one correspondence a — K, with ordinal numbers
a < we. By means of transfinite induction we find a family of elements h, € K4
linearly independent over Q. Namely, if such elements hg are already found for all
[ < a, where a < ¢, then the collection of all linear combinations of these elements
with rational coefficients has cardinality less than that of the continuum. Hence K,
contains an element h, that is not such a linear combination. Let us complement
the constructed family {ha, @ < ¢} to a Hamel basis. We obtain a nonmeasurable
set, since if it were measurable, then, according to what we proved earlier, it would
have measure zero, which is impossible because the constructed family meets every
compact set in [0, 1] of positive measure.

1.12.67. Prove that there exists a bounded set E of measure zero such that
E + FE is nonmeasurable.

HINT: let H = {ha} be a Hamel basis over Q of zero measure with hq € [0, 1],
A={rh: r€QnN[0,1],h € H}. Set E, := A+ A; it is readily seen that Fi has
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inner measure zero because otherwise F/4 — F1 would contain an interval, which is
impossible, since any point in F1 — F1 is a linear combination of four vectors in H.
If F; is nonmeasurable, then we take E = A; otherwise we set F2 := F7 + E; and
construct inductively Eny1 := Ep + E,. In finitely many steps we obtain a desired
set, since E,, — E, cannot contain an interval and the union of all E,, covers [0, 1].

1.12.68. (Ciesielski, Fejzi¢, Freiling [181]) Show that every set E C IR contains
a subset A with A\,(A+ A) =0 and \*(A+ A) = \*(E + E), where X is Lebesgue

measure.

1.12.69. (Sodnomov [895]) Let E C IR! be a set of positive Lebesgue measure.
Then, there exists a perfect set P with P+ P C E.

1.12.70. Let 8 € (0,1). The operation T'(3) over a finite family of disjoint
intervals Ii,...,I, of nonzero length consists of deleting from every I; the open
interval with the same center as I; and length SA(I;). Given a sequence of num-
bers 3, € (0,1), let us define inductively compacts K, obtained by consequent
application of the operations T'(31),...,T(8r), starting with the interval I = [0, 1].

(i) Show that AN, Kn) = nh—>Holo [T;=,(1 — B:). In particular, letting 8, =

=1

1- am, where o € (0,1), we have A(N52, Kn) = a.

(ii) Show that there exists a sequence of pairwise disjoint nowhere dense compact
sets A, with the following properties: A(A,) = 27" and the intersection of A,41
with each interval contiguous to the set U?:l A, has a positive measure.

(iii) Show that the intersections of the set A := J;~, A2n—1 and its complement
with every interval I C [0, 1] have positive measures.

HINT: see George [351, p. 62, 63].

1.12.71° Prove that Lebesgue measure of every measurable set E C IR" equals
the infimum of the sums 220:1 An(Uk) over all sequences of open balls Uy, covering E.

HINT: observe that it suffices to prove the claim for open E and in this case
use the fact that one can inscribe in E a disjoint collection of open balls V; such
that the set E\ U]“;l V; has measure zero, and then cover this set with a sequence
of balls W; with the sum of measures majorized by a given ¢ > 0.

1.12.72. Suppose that p is a countably additive measure with values in [0, +o0]
on the o-algebra of Borel sets in IR™ and is finite on balls, and let W be a nonempty
open set in IR™. Prove that there exists an at most countable collection of dis-
joint open cubes @; in W with edges parallel to the coordinate axes such that
n(W\ U;il W;) =0.

HINT: we may assume that W is contained in a cube I; in the proof of Lemma
1.7.2 one can choose all cubes in such a way that their boundaries have p-measure
zero; to this end, we observe that at most countably many affine hyperplanes par-
allel to the coordinate hyperplanes have positive y-measure. In addition, given a
countable set of points ¢; on the real line, the set of points of the form r+1¢;, where r
is binary-rational (i.e., r = m2~% with integer m, k), is countable as well; therefore,
one can find & # 0 such that the required cubes have edges of length m2~*, where
m € Z, k € IN, and centers with coordinates of the form a + m27F.

1.12.73° Show that a set E C IR is Lebesgue measurable precisely when for
every £ > 0, there exist open sets U and V such that £ C U, U\E C V and
AV) <e.
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1.12.74° Let p be a Borel probability measure on the cube I = [0,1]™ such
that u(A) = p(B) for any Borel sets A, B C I that are translations of one another.
Show that p coincides with Lebesgue measure \,,.

HINT: observe that p coincides with A, on all cubes in I with edges parallel
to the axes and having binary-rational lengths (the boundaries of such cubes have
measure zero with respect to u by the countable additivity and the hypothesis). It
follows that p coincides with A, on the algebra generated by the indicated cubes.

1.12.75° (i) Show that for any countably additive function p: R — [0, 400)
on a semiring R and any A, A,, € R such that A, either increase or decrease to A,
one has the equality p(A) = nILn;O w(Ay).

(ii) Give an example showing that the properties indicated in (i) do not imply
the countable additivity of a nonnegative additive set function on a semiring.

HINT: (ii) consider the semiring of sets of the form QN (a,b), QN (a,b], QNJa, b),
QnNla, b], where Q is the set of rational numbers in [0, 1]; on such sets let 1 equal b—a.

1.12.76° Give an example of a nonnegative additive set function i on a semiring
R such that p(A) = lim p(An) whenever A, A, € R and A, either increase or
n—oo

decrease to A, but the additive extension of p to the ring generated by S8 does not
possess this property.
HINT: see Exercise 1.12.75.

1.12.77? (i) Show that a bounded set E C IR" is Jordan measurable (see Defini-
tion in §1.1) precisely when the boundary of E (the set of points each neighborhood
of which contains points from the set E and from its complement) has measure zero.
(if) Show that the collection of all Jordan measurable sets in an interval or in a cube
is a ring.

1.12.78? Prove Proposition 1.6.5.

1.12.79° Show that a bounded nonnegative measure p on a o-algebra A is
complete precisely when A = A,; In particular, the Lebesgue extension of any
complete measure coincides with the initial measure.

1.12.80° Give an example of a o-finite measure on a o-algebra that is not
o-finite on some sub-c-algebra.

HINT: consider Lebesgue measure on IR and the sub-o-algebra of all sets that
are either at most countable or have at most countable complements.

1.12.81? Let A, be subsets of a space X. Show that
o0 o0
{z: z € A, for infinitely many n} = m U Ap.

n=1k=n

1.12.82° Let u be a probability measure and let Ay, ..., A, be measurable sets
with Y7 | u(Ai) > n — 1. Prove that u()]_, 4;) > 0.

HINT: observe that ", u(Cs) = >0 (1 — u(A)) < 1, where C; is the com-
plement of A;.

1.12.83° (Baire category theorem) Let M;, j € IN, be closed sets in IR?
such that their union is a closed cube. Prove that at least one of the sets M; has
inner points. Generalize to the case where M; are closed sets in a complete metric
space X with U;’il M; = X. A set in a metric space is called nowhere dense if its
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closure has no interior; a countable union of nowhere dense sets is said to be a first
category set. The above result can be formulated as follows: a complete nonempty
metric space is not a first category set.

HINT: assuming the opposite, construct a sequence of decreasing closed balls
U; with radii 7; — 0 such that U; N M; = &.

1.12.84. Prove that IR cannot be written as the union of a family of pairwise
disjoint nondegenerate closed intervals.

HiINT: verify that such a family must be countable and that the family of all
endpoints of the given intervals is closed and has no isolated points; apply the Baire
theorem. One can also use that a closed set without isolated points is uncountable
(see Proposition 6.1.17 in Chapter 6).

1.12.85. Show that IR™ with n > 1 cannot be written as the union of a family
of closed balls with pairwise disjoint interiors.

HiINT: apply Exercise 1.12.84 to a straight line which passes through the origin,
contains no points of tangency of the given balls and is not tangent to any of them.

1.12.86° Show that the o-algebra B(IR') of all Borel subsets of the real line is
the smallest class of sets that contains all closed sets and admits countable intersec-
tions and countable unions.

HINT: use that the indicated smallest class is monotone and contains the algebra
of finite unions of rays and intervals; another approach is to verify that the collection
of all sets belonging to the above class along with their complements is a o-algebra
and contains all closed sets. A stronger assertion is found in Example 1.12.3.

1.12.87. (i) Prove that the union of an arbitrary family of nondegenerate closed
intervals on the real line is measurable.

(ii) Prove that the union of an arbitrary family of nondegenerate rectangles in
the plane is measurable.

(iii) Prove that the union of an arbitrary family of nondegenerate triangles in
the plane is measurable.

HiNT: (i) it suffices to verify that the union of the family of all intervals I,
of length not smaller than 1/k is measurable for each k; there exists an at most
countable subfamily I,, such that the union of their interiors equals the union of
the interiors of all I; the set |, Ioa\Uje; o, is at most countable, since every
point is isolated (such a point may be only an endpoint of some interval I,, and an
interval of length 1/k cannot contain three such points). (ii) Consider all rectangles
E, with the shorter side length at least 1/k; take a countable subfamily F,, with
the union of interiors equal to the union of the interiors of all E, and observe that
any circle of a sufficiently small radius can meet at most finitely many sides of those
rectangles E, that are not covered by the rectangles E,,. (iii) Modify the proof
of (ii) for triangles, considering subfamilies of triangles with sides at least 1/k and
angles belonging to [1/k, ™ —1/k]. We note that these assertions follow by the Vitali
covering theorem proven in Chapter 5 (Theorem 5.5.2).

1.12.88. (Nikodym [716]) For any sequence of sets Ey, let

limsup E,, := N Ey, liminf E,, := e FE.
n—oo =1 k= e —1 k=

Let (X, A, 1) be a probability space. Prove that a sequence of sets A,, € A converges
to a set A € A in the Fréchet—Nikodym metric d(B1, B2) = p(B1 A Bs) precisely
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when every subsequence in {A,} contains a further subsequence {E, } such that

A = limsup E,, = liminf E,,
n—oo n—oo
up to a measure zero set.
HiINT: see Theorem 1.12.6; this also follows by Theorem 2.2.5 in Chapter 2.

1.12.89° Let (X, A, p) be a space with a probability measure, let A, € A,,
and let

B :={z: z € A, for infinitely many n},

ie., B= e, UsZ, A, according to Exercise 1.12.81.

(i) (Borel-Cantelli lemma) Show that if Y > | 11(An) < oo, then u(B) = 0.

(ii) Prove that if (A,) > e > 0 for all n, then u(B) > e.

(iii) (Pték [772]) Show that if 4(B) > 0, then one can find a subsequence {n}
such that (], An,) > 0 for all m.

HINT: the sets By := ;o An decrease and one has p(Br) < Y00, pu(An),
w(By) > p(Ax). If p(B) > 0, we find the first number n; with (BN Ay,) > 0, then
we find no > ny with (BN Ay, N Ay,,) > 0 and so on. See also Exercise 2.12.35.

1.12.90. (i) Construct a sequence of sets E, C [0, 1] of measure ¢ > 0 such
that the intersection of each subsequence in this sequence has measure zero.

(ii) Let u be a probability measure and let A, be p-measurable sets such that
u(An) > e >0 for all n € IN. Show that there exists a subsequence ny such that
Npe; An, is nonempty.

(iii) (Erdds, Kestelman, Rogers [270]) Let A, be Lebesgue measurable sets in
[0,1] with A(A,) > & > 0 for all n € IN. Show that there exists a subsequence ny
such that (7-, An, is uncountable (see a stronger assertion in Exercise 3.10.107).

HINT: (i) define E, inductively: E; = (0,1/2), E2 = (0,1/4) U (3/4,1) and
so on; the set F,yi consists of 2" intervals J, ; that are the left halves of the
intervals J,—1,x and the left halves of the contiguous intervals to the intervals Jp,_1 .
(ii) Follows by the previous exercise.

1.12.91. Let a function a: IN — [0,400) be such that Y 2, a(k) < occ.
Prove that the set F of all x € (0,1) such that, for infinitely many natural num-
bers g, there exists a natural number p such that p and ¢ are relatively prime and
|z —p/q| < a(q)/q, has measure zero. In Exercise 10.10.57 in Chapter 10 see a
converse assertion.

HINT: for fixed ¢, let Eq be the set of all € (0,1) such that, for some p € N,
one has |z — p/q| < a(g)/q. This set consists of the intervals of length 2a(q)/q
centered at the points p/q, p = 1,...,q, whence A(E;) < 2a(g). By the Borel-
Cantelli lemma, A\(E) = 0.

1.12.92. (Gillis [354], [355]) Let E, C [0,1] be measurable sets and let
A Ex) > « for all k, where a € (0,1). Prove that for all p € IN and € > 0,
there exist k1 < --- < kp such that A\(Eg, N---NEg,) > af —e.

1.12.93. (i) Let E C [0, 1] be a set of Lebesgue measure zero. Prove that there
exists a convergent series with positive terms a,, such that, for any € > 0, the set E
can be covered by a sequence of intervals I,, of length at most ea,. (ii) Show that
there is no such series that would suit every measure zero set.
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1.12.94. (Wesler [1010]; Mergelyan [682] for n = 2) Let U be disjoint open
balls of radii 74 in the unit ball U in IR" such that U\ |J;~, Ux has measure zero.
Show that > 70 ri ™' = oo.

HINT: see Crittenden, Swanson [192], Larman [569], and Wesler [1010].

1.12.95. (i) Let « = n™', where n € IN. Prove that for any sets A and
B in [0,1] of positive Lebesgue measure, there exist points z,y € [0,1] such that
AAN[x,y]) = ar(A) and M(B N [z,y]) = aA(B). (ii) Show that if & € (0,1) does
not have the form n~! with n € IN, then assertion (i) is false.

HINT: see George [351, p. 59].

1.12.96. A set S C IR! is called a Sierpinski set if SN Z is at most countable
for every set Z of Lebesgue measure zero.

(i) Under the continuum hypothesis show the existence of a Sierpinski set.

(ii) Prove that no Sierpinski set is measurable.

HINT: see Kharazishvili [511].

1.12.97. Let A be a set in IR? of Lebesgue measure greater than 1. Prove
that there exist two distinct points z,y € A such that the vector x — y has integer
coordinates.

1.12.98° Prove that each convex set in IR? is Lebesgue measurable.
HiNT: show that the boundary of a bounded convex set has measure zero.

1.12.99. Let A be a bounded convex set in IR? and let A° be the set of all
points with the distance from A at most . Prove that Aq(A®), where A4 is Lebesgue
measure, is a polynomial of degree d in €.

HINT: verify the claim for convex polyhedra.

1.12.100? Prove Theorem 1.12.1.

1.12.101?7 Let (X, A, ) be a probability space, B a sub-c-algebra in A, and
let B" be the o-algebra generated by B and all sets of measure zero in A,,.

(i) Show that E € B* precisely when there exists a set B € B such that
EABe A, and u(EA B)=0.

(ii) Give an example demonstrating that B* may be strictly larger than the
o-algebra B, that is the completion of B with respect to the measure u|s.

HINT: (i) the sets of the indicated form belong to B* and form a o-algebra.
(ii) Take Lebesgue measure A on the o-algebra of all measurable sets in [0, 1] and
B ={2,[0,1]}. Then By = B.

1.12.102° Let u be a probability measure on a o-algebra A. Suppose that A is
countably generated, i.e., is generated by an at most countable family of sets. Show
that the measure pu is separable. Give an example showing that the converse is false.

HinT: if A is generated by sets A,, then the algebra Ay generated by those
sets is at most countable. It remains to use that, for any A € A and ¢ > 0, there
exists Ag € Ao such that pu(A A Ag) < e. As an example of a separable measure
on a c-algebra that is not countably generated, one can take Lebesgue measure
on the o-algebra of Lebesgue measurable sets in an interval (see §6.5). Another
example: Lebesgue measure on the o-algebra of all sets in [0, 1] that are either at
most countable or have at most countable complements.

1.12.103. Let (X, A, 1) be a measure space with a finite nonnegative measure
w and let A/p be the corresponding metric Boolean algebra with the metric d
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introduced in §1.12(iii). Prove that the mapping A — X\ A from A/u to A/u and
the mappings (A, B) — AUB, (A, B) — AN B from (A/p)? to A/p are continuous.

1.12.104. Let u be a separable probability measure on a o-algebra A and let
{Xt¢}ier be an uncountable family of sets of positive measure. Show that there
exists a countable subfamily {¢,} C T such that (32, Xz, ) > 0.

HINT: in the separable measure algebra A/u the given family has a point of
accumulation X’ with p(X’) > 0, since an uncountable set cannot have the only
accumulation point corresponding to the equivalence class of measure zero sets; there
exist indices ¢, with u(X’' A X,) < p(X)27™.

1.12.105?2 Let A be the class of all subsets on the real line that are either at
most countable or have at most countable complements. If the complement of a set
A € Ais at most countable, then we set u(A) = 1, otherwise we set u(A) = 0. Then
A is a o-algebra and p is a probability measure on A, the collection K of all sets with
at most countable complements is a compact class, approximating u, but there is no
class K' C A approximating u and having the property that every (not necessarily
countable) collection in K’ with empty intersection has a finite subcollection with
empty intersection.

HINT: if such a class K exists, then, for every x € IR', there is a set K, € K’
such that K, C R'\{z} and p(K,) > 0. Then u(K,) = 1 and hence each finite
intersection of such sets is nonempty, but the intersection of all K, is empty.

1.12.106° Let p be an atomless probability measure on a measurable space
(X, A) and let F C A be a countable family of sets of positive measure. Show that
there exists a set A € A such that 0 < u(ANF) < p(F) for all F € F.

HINT: let F = {Fp,}and F, = {A € A: p(ANF,) =0o0r u(ANF,) = pu(Fn)}.
Then F, is closed in A/pu. Since p is atomless, the sets F,, are nowhere dense
in A/p. By Baire’s theorem the intersection of their complements is not empty.

1.12.107. Let Q be the set of all rational numbers equipped with the o-algebra
29 of all subsets and let the measure p on 2@ with values in [0, +0c] be defined as the
cardinality of a set. Let v = 2u. Show that the distinct measures p and v coincide
on all open sets in Q (with the induced topology), and on all sets from the algebra
that consists of finite disjoint unions of sets of the form QN (a, ] and Q N (¢, +00),
where a,b,c € Q or ¢ = —oo (this algebra generates 29).

HINT: nonempty sets of the above types are infinite.

1.12.108. Prove that there exists no countably additive measure defined on all
subsets of the space X = {0, 1}* that assumes only two values 0 and 1 and vanishes
on all singletons.

HINT: let X,, = {(z;) € X: x, = 0}; if such a measure u exists, then, for
any n, either u(X,) =1 or u(X,) = 0; denote by Y,, that of the two sets X,, and
X\ X, which has measure 1; then ﬂf;l Y. has measure 1 as well and is a singleton.

1.12.109. Prove that for every Borel set E C IR", there exists a Borel set E
that differs from F in a measure zero set and has the following property: for every
point x at the boundary OF of the set E and every r > 0, one has

0< A (E n B(x,r)) < wpr™,

where B(z,r) is the ball centered at x with the radius r» and wy is the measure of
the unit ball.
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HINT: let Eo be the set of all # such that A, (E N B(z,r)) = 0 for some r > 0,
and let E7 be the set of all z such that \, (E N B(x,r)) = w,r" for some r > 0.
Consider £ = (F U E1)\Eo and use the fact that Eg and E; are open.

1.12.110. Prove that every uncountable set G C IR that is the intersection of
a sequence of open sets contains a nowhere dense closed set Z of Lebesgue measure
zero that can be continuously mapped onto [0, 1].

HINT: see Oxtoby [733, Lemma 5.1] or Chapter 6.

1.12.111. Prove that every uncountable set G C IR that is the intersection of
a sequence of open sets has cardinality of the continuum.
HINT: apply the previous exercise (see also Chapter 6, §6.1).

1.12.112. (i) Prove that the class of all Souslin subsets of the real line is
obtained by applying the A-operation to the collection of all open sets. (ii) Show
that in (i) it suffices to take the collection of all intervals with rational endpoints.

HINT: (i) use that every closed set is the intersection of a countable sequence
of open sets and that S(€) is closed with respect to the A-operation.

1.12.113. Prove that the classes of all Souslin and all Borel sets on the real
line (or in the space IR™) have cardinality of the continuum.

1.12.114. Let (X,.A, ) be a space with a finite nonnegative measure u such
that there exists a set F that is not pu-measurable. Prove that there exists ¢ > 0
with the following property: if A and B are measurable, £ C A, X\E C B, then
pw(ANB) > e

HINT: assuming the converse one can find measurable sets A, and B, with
E C Ap, X\E C Bn, ((An N By) < n™ 'y let A=, An, B =22, Bn; then
E C A X\E C B, u(AnN B) = 0, whence one has p*(F) + p*(X\F) < u(X) and
hence we obtain the equality u*(E) + p* (X\E) = pu(X).

1.12.115. Construct an example of a separable probability measure p on a o-
algebra A such that, for every countably generated o-algebra £ C A, the completion
of & with respect to p is strictly smaller than A.

HINT: see Example 9.8.1 in Chapter 9.

1.12.116. (Zink [1052]) Let (X, S,u) be a measure space with a complete
atomless separable probability measure p and let p*(E) > 0. Then, there exist
nonmeasurable sets F1 and Es such that £1 N Fy = &, E1 U F2 = E and one has
i (B) = p* (Ez) = pi* (E).

1.12.117° Let m be a Carathéodory outer measure on a space X. Prove that a
set A is Carathéodory measurable precisely when for all B C A and C C X\ A one
has m(BUC) = m(B) + m(C).

HinT: if A is Carathéodory measurable, then in the definition of measurability
one can take £ = B U () if one has the indicated property, then an arbitrary set
can be written in the foom F = BUC, B=ENA, C = E\A.

1.12.118? Suppose that m; and my are outer measures on a space X. Show
that max(m;, ms) is an outer measure too.

1.12.119? (Young [1029]) Let (X, A, u) be a measure space with a finite non-
negative measure u. Prove that a set A C X belongs to A, precisely when for each
set B disjoint with A one has the equality u*(AU B) = u*(A) + u*(B).
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HINT: for the proof of sufficiency take B = X\ A; the necessity follows by the
previous exercise.

1.12.120? Let m be a Carathéodory outer measure on a space X. Prove that
for any £ C X the function mg(B) = m(B N E) is a Carathéodory outer measure
and all m-measurable sets are m g-measurable.

1.12.121. Let 7 be an additive, but not countably additive nonnegative set
function that is defined on the class of all subsets of [0, 1] and coincides with Lebesgue
measure on all Lebesgue measurable sets (see Example 1.12.29). Show that the
corresponding outer measure m from Example 1.11.5 is identically zero under the
continuum hypothesis.

HiNT: Theorem 1.11.8 yields the m-measurability of all sets, m is countably
additive on My and m({z}) = 0 for each z.

1.12.122. Prove that if X C 9y, then Method I from Example 1.11.5 gives a
regular outer measure.

1.12.123. Let S be a collection of subsets of a set X, closed with respect to
finite unions and finite intersections and containing the empty set, i.e., a lattice of
sets (e.g., the class of all closed sets or the class of all open sets in [0, 1]).

(i) Suppose that on & we have a modular set function m, i.e., m(@) = 0 and
m(AUB) +m(ANB) =m(A) + m(B) for all A, B € S. Show that by the equality
m(A\B) = m(A) —m(B), A,B € S, B C A, the function m uniquely extends to an
additive set function (which, in particular, is well-defined) on the semiring formed
by the differences of elements in S (see Exercise 1.12.51), and then uniquely extends
to an additive set function on the ring generated by S.

(ii) Give an example showing that in (i) one cannot replace the modularity by
the additivity even if m is nonnegative, monotone and subadditive on S.

HINT: (i) use Exercise 1.12.51 and Proposition 1.3.10; in order to verify that m
is well-defined we observe that if A1\A] = A2\ A5, where A;, A; € S, A] C A;, then
m(A1) + m(A%) = m(A2) + m(A}) because A1 U Ay = Ao U Aj, Ay N A, = Al N As,
which is easily verified; see the details in Kelley, Srinivasan [502, Chapter 2, p. 23,
Theorem 2]. (ii) Take X = {0,1,2} and S consisting of X, @, {0,1}, {1,2}, {1}
with m(X) = 2, m(@) =0 and m = 1 on all other sets in S.

1.12.124. Suppose that F is a family of subsets of a set X, @ € F. Let
7: F — [0, +00] be a set function with 7(&) = 0. Let us define 7. on all sets A C X
by formula (1.12.8).

(i) Prove that if A,..., A, C X are disjoint sets and A; U---U A, C A, then
one has 7.(A) > >°7_ | 7.(4;).

(ii) Prove that 7, coincides with 7 on F if and only if, for all pairwise disjoint
sets Fi,..., I, € F and all F' € F with J]_, Fj C F, one has 7(F) > 377, 7(F}).

(iii) Prove that if 7 satisfies the condition in (ii) and the class F is closed with
respect to finite unions of disjoint sets, then

T«(A) =sup{r(F), FeF, FCA}, VACX.

HINT: (i) Let 7.(A) < oo and € > 0. For every ¢, there exist disjoint sets
Fi; € F, 5 < n(i), such that U;}L” Fyj C A; and 7.(A;) < e27% + Z?gl) T(F;). All
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sets Fj; are pairwise disjoint and are contained in A. Therefore,

n n n(i)

E:nnx)5555?”+§:§:r@b)§s+74Ax

i=1 i= i=1 j=1

whence we obtain the claim, since ¢ is arbitrary.

(ii) Let F;, F € F, F; C F, where the sets F}; are pairwise disjoint. Then the
inequality 7(F) > >°7_, 7(F}) yields the inequality 7(F') > 7.(F"). Since the reverse
inequality is obvious from the definition, we obtain the equality 7. = 7 on F. On
the other hand, this equality obviously implies the indicated inequality.

(iii) Let F1,..., F € F be disjoint sets and let E := |Jj_, F; C A. Then, by
hypothesis, we have E € F and Y7, 7(F;) < 7(E) < sup{7(F): F € F,F C A},
whence 7.(A) < sup{r(F): F € F,F C A}; the reverse inequality is trivial.

1.12.125. Let F and 7 be the same as in the previous exercise. (i) Prove that
the outer measure 7* coincides with 7 on F precisely when 7(F) < > 7(Fy)
whenever F, F,, € F and F C |2, Fu.

(ii) Prove that if the condition in (i) is fulfilled and the class F is closed with
respect to countable unions, then

7'(A) =inf{r(F), FeF, ACF}, VACX.
HINT: the proof is similar to the reasoning in the previous exercise.

1.12.126. Suppose that F is a class of subsets of a space X, @ € F. Let
T: F — [0, 4+00] be a set function with 7(@) = 0. Prove that the following conditions
are equivalent:

(i) 7* coincides with 7 on F and F C M,=;

(ii) 7(A) =7 (AN B) + 7°(A\B) for all A,B € F.

HiNT: (i) implies (ii) by the additivity of 7° on 9M.~. Let (ii) be fulfilled.
Letting B = @, we get 7(A) = 7°(A), A € F. Suppose that FF € F and F C X.
Let F; € F and E C Jj2, Fj. Then

oo oo

N or(F)=> T (FyNF)+ Y T(F\F) >t (ENF)+ 7" (E\F).

j=1 j=1 j=1
Taking the infimum over {F}}, we obtain 7*(E) > 7*(E N F) + 7" (E\F), i.e., we
have F' € M~.

1.12.127. Suppose that F is a class of subsets of a space X, @ € F. Let
T: F — [0,+00] be a set function with 7(&) = 0. Denote by 7. the correspond-
ing inner measure (see formula (1.12.8)). Prove that the following conditions are
equivalent:

(i) 7« coincides with 7 on F and F C M-,;

(if) 7(A) = «(ANB) + 1. (A\B), YVA,B € F.

HiINT: the proof is completely analogous to the previous exercise, one has only
take finitely many disjoint F; C A; see also Glazkov [360], Hoffmann-Jgrgensen
(440, 1.26].

1.12.128. (i) Show that if in the situation of the previous exercise we have one
of the equivalent conditions (i) and (ii), then on the algebra Ax generated by F,
there exists an additive set function 79 that coincides with 7 on F.
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(ii) Show that if, in addition to the hypotheses in (i), it is known that

T (F) < Z T«(Fn) whenever F, F, € Ax and F C J,—, Fhn,
n=1

then there exists a countably additive measure p on o(F) that coincides with 7
on F.

HINT: according to Theorem 1.11.4, the function 7. is additive on 9., and
M. is an algebra. Since the algebra 91, contains F by hypothesis, it also contains
the algebra generated by F. The second claim follows by the cited theorem, too.

1.12.129. Let (X, A, 1) be a measure space, where A is a o-algebra and p is
a countably additive measure with values in [0, +00]. Denote by £, the class of all
sets £ C X for each of which there exist two sets A1, As € A with A3 C E C As
and p(A2\A1) =0.

(i) Show that £, is a o-algebra, coincides with A, and belongs to 9.

(ii) Show that if the measure p is o-finite, then £, coincides with 9.

(iii) Let X = [0,1], let A be the o-algebra generated by all singletons, and let
the measure p with values in [0, 4+o00] be defined as follows: u(A) is the cardinality
of A, A € A. Show that 9+ contains all sets, but [0,1/2] € £,..

HiINT: (iii) show that p*(A) is the cardinality of A and that £, = A, by using
that nonempty sets have measure at least 1.

1.12.130. Let us consider the following modification of Example 1.11.5. Let
X be a family of subsets of a set X such that @ € X. Suppose that we are given a
function 7: X — [0, +o0] with 7(@) = 0. Set

M(A) = inf{Zr(Xn): X,ex,Ac | Xn}
n=1 n=1

if such sets X,, exist and otherwise let m(A) = supm(A’), where sup is taken over
all sets A" C A that can be covered by a sequence of sets in X.

(i) Show that m is an outer measure.

(i) Let X = [0,1]x[0,1], X = {[a,b)x¢t,a,b,t € [0,1],a < b}, 7([a,b)xt) = b—a.
Let m be given by formula (1.11.5). Show that m and m do not coincide and that
there exists a set £ € M N M such that m(E) # m(E).

HINT: (i) is verified similarly to the case of m; (ii) for E take the diagonal in
the square.

1.12.131. Let p be a measure with values in [0, +00] defined on a measurable
space (X,.A). The measure p is called decomposable if there exists a partition of
X into pairwise disjoint sets X, € A of finite measure (indexed by elements « of
some set A) with the following properties: (a) if EN X, € A for all «, then E € A,
(b) w(E) =>_ u(ENXy) for each set E € A, where convergence of the series ) ca,

co > 0, to aa finite number s means by definition that among the numbers ga at
most countably many are nonzero and the corresponding series converges to s, and
the divergence of such a series to +0o means the divergence of some of its countable
subseries.

(i) Give an example of a measure that is not decomposable.

(ii) Show that a measure p is decomposable precisely when there exists a par-
tition of X into disjoint sets X of positive measure having property (a) and prop-
erty (b’): if A€ A and (AN X,) =0 for all o, then p(A) =0.



1.12. Supplements and exercises 97

1.12.132. Let p be a measure with values in [0, +-00] defined on a measurable
space (X, A). The measure p is called semifinite if every set of infinite measure has
a subset of finite positive measure.

(i) Give an example of a measure with values in [0, +00] that is not semifinite.

(ii) Give an example of a semifinite measure that is not o-finite.

(iii) Prove that for any measure p with values in [0, +o0], defined on a o-
algebra A, the formula po(A) := sup{u(B): B C A,B € A, u(B) < oo} defines a
semifinite measure with values in [0, +oo] and u is semifinite precisely when p = uo.

(iv) Show that every decomposable measure is semifinite.

(v) Give an example of a semifinite measure g with values in [0, +-00] that is
defined on an algebra A and has infinitely many semifinite extensions to o(A).

HINT: (v) let X = IR', let A be the class of all finite sets and their complements,
and let ;1(A) be the cardinality (denoted Card) of ANQ. For any s > 0 and A € o(A),
let s (A) = Card(ANQ) if AN(IR'\Q) is at most countable, us(A) = s+Card(ANQ)
if (IR*\A4) N (IR*\Q) is at most countable.

1.12.133. Let p be a measure p with values in [0, +00] defined on a measurable
space (X, A). A set E is called locally measurable if EN A € A for every A € A
with p1(A) < co. The measure p is called saturated if every locally measurable set
belongs to A.

(i) Let X =R, A= {IR, o}, u(IR) = 400, (&) = 0. Show that u is a complete
measure with values in [0, +o00] that is not saturated.

(if) Show that every o-finite measure is saturated.

(iii) Show that locally measurable sets form a o-algebra.

(iv) Show that every measure with values in [0,+o00] can be extended to a
saturated measure on the o-algebra L of all locally measurable sets by the formula
ME)=puE)if Eec A n(E)=4c0if E ¢ A.

(v) Construct an example showing that & may not be a unique saturated ex-
tension of p to the o-algebra L.

HINT: (i) observe that every set in X is locally measurable with respect to u;
(iii) use that (X\E)N A = A\(AN E); (v) let po(A4) = 0 if A is countable and
uo(A) = oo if A is uncountable; observe that po is saturated.

1.12.134. Let (X, A, u) be a measure space, where u takes values in [0, +00].
The measure p is called Maharam (or localizable) if i is semifinite and each collection
M C A has the essential supremum in the following sense: there exists a set £ € A
such that all sets M\ E, where M € M, have measure zero and if E’ € A is another
set with such a property, then E\E’ is a measure zero set.

(i) Prove that every decomposable measure is Maharam.

(ii) Give an example of a complete Maharam measure that is not decomposable.

HINT: (i) let the sets Xo, a € A, give a decomposition of the measure space
(X, A, pn) and M C A. Denote by F the family of all sets F' € A with p(FNM) =0
for all M € M. Tt is clear that F contains the empty set and admits countable
unions. For every a, let ¢o := sup{p(F N X,),F € F} and choose Fy,n € F such
that nhjgo/‘(Favn NXa) = ca. Let Fo := Usr | Fan and ¥ := Uaenr(Fa N Xa).
Then ¥ N X, = F, and hence ¥ € A. Therefore, E := X\ € A. For any M € M
we have

pW(M\E) = p(MN®) =Y p(MN¥NXa) =Y p(MNFaNXa)=0
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by the definition of F. If E’ is another set with such a property, then X\E’ € F and
U’ := TU(X\E') € F. Now it is readily shown that u(¥NX.) = p(¥'NX,) for all o,
whence p((¥'\¥) N Xo) =0, ie, p(¥'\V¥) = 0 and pu(E\E') = 0. (ii) Examples
with various additional properties can be found in Fremlin [327, §216].

1.12.135. A measure with values in [0, +00] is called locally determined if it
is semifinite and saturated. Let pu be a measure with values in [0, +oc] defined on
a measurable space (X, .A). Let £, be the o-algebra of locally A,-measurable sets,
i.e., all sets L such that LN A € A, for all A € A, with u(A) < co. Let

A(L) =sup{pu(LNA): Ae Ay, pu(Ad) <o}, LeLy.

(i) Show that the measure i is locally determined and complete and that one
has [i(A) = p(A) whenever A € A, and p(A) < oco.

(ii) Show that if p is decomposable, then so is 1z and in this case i coincides
with the completion of .

(iii) Show that if 4 is Maharam, then so is f.

(iv) Show that the measure u is complete and locally determined precisely when
one has y = [i.

HINT: the detailed verification of these simple assertions can be found, e.g., in
Fremlin [327].

1.12.136. Let (X,.A) be a measurable space and let a measure p on A with
values in [0, +o0] be complete and locally determined. Suppose that there exists
a family D of pairwise disjoint sets of finite measure in A such that if £ € A
and p(E N D) = 0 for all D € D, then u(E) = 0. Prove that the measure p is
decomposable.

HINT: see Fremlin [327, §2130].

1.12.137. Let X be a set of cardinality of the continuum and let Y be a set
of cardinality greater than that of the continuum. For every E C X XY, the sets
{(a,y) € E} with fixed a € X will be called vertical sections of E, and the sets
{(z,b) € E} with fixed b € Y will be called horizontal sections of E. Denote
by A the class of all sets A C X xY such that all their horizontal and vertical
sections are either at most countable or have at most countable complements in the
corresponding sections of XxY. Let y(A) be the number of those horizontal sections
of the complement of A that are at most countable. Similarly, by means of vertical
sections we define the function v(A). Let p(A) = v(A) + v(A).

(i) Prove that A is a o-algebra and that v, v, and p are countably additive
measures with values in [0, +00].

(ii) Prove that u is semifinite in the sense of Exercise 1.12.132.

(iii) Prove that p is not decomposable in the sense of Exercise 1.12.131.

HinT: (ii) if (X X Y)\A has infinite number of finite or countable horizontal
sections, then, given N € IN, one can take points yi1,...,yn € Y, giving such
sections; let us take the set B such that the horizontal sections of its complement
at the points y; coincide with the corresponding sections of the complement of A,
and all other sections of the complement of B coincide with X xy; then B C A and
v(B) = N, v(B) = 0. (iii) If sets Eq give a partition of X XY and p(E.) < oo,
then the cardinality of this family of sets cannot be smaller than that of Y. Indeed,
otherwise, since E, is contained in a finite union of sets of the form a xY and
X xb, one would find a set X xy whose intersection with every F, is a set with the
uncountable complement in X xy, whence u((X xy) N Ea) = 0 for all «, but we
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have u(X xy) = 1. On the other hand, for every x € X, there is a unique set Eq,
with p4((zxY) N Eq,) = 1, and since the complement of (zxY) N Eq, in XY is
at most countable, the set XY meets at most countably many sets E,. Hence the
cardinality of the family {E,} is that of the continuum, which is a contradiction.

1.12.138. Let X = [0,1] x{0,1} and let A be the class of all sets E C X
such that the sections F, := {y: (z,y) € E} are either empty or coincide with
{0,1} for all z, excepting possibly the points of an at most countable set. Show
that A is a o-algebra and the function p that to every set E assigns the cardinality
of the intersection of E with the first coordinate axis, is a complete and semifinite
countably additive measure with values in [0, 4+00], but the measure generated by
the outer measure p* is not semifinite.

1.12.139. (Luther [639]) Let p be a measure with values in [0, +o00] defined
on a ring R, let & be the restriction of u* to the o-ring S generated by R, and let
Ro and Sy be the subclasses in R and S consisting of all sets of finite measure. Set

(E) =limsup{r(PNE),PcRo}, E€S.

(i) Prove that the following conditions are equivalent: (a) u is semifinite, (b)
is an extension of 4 to S, (c) any measure v on S with values in [0, +00] that agrees
with 1 on Rg coincides with 1 on R.

(if) Show that any measure v on S with values in [0, +00] that agrees with p
on Ro, coincides with 1z and &z on Sp, and that gt < v <@ on S.

(iii) Prove that the following conditions are equivalent: (a) & is semifinite, (b) u
is semifinite and has a unique extension to S, (¢) &t = &, (d) for all E € S one has
A(E) = limsup{(PNE),P € Ro}.

(iv) Prove that if the measure 7 is o-finite, then p has a unique extension to S.

(v) Give an example showing that in (iv) it is not sufficient to require the
existence of some o-finite extension of p.

1.12.140. (Luther [640]) Let p be a measure with values in [0, +o0] defined
on a o-ring R. Prove that y = p1 + pe, where p1 is a semifinite measure on R,
the measure ps can assume only the values 0 and oo, and in every set R € R there
exists a subset R’ € R such that pi(R') = p1(R) and p2(R') = 0.

1.12.141. Let & and & be two algebras of subsets of 2 and let i, u2 be
two additive real functions on & and &, respectively (or pi, pu2 take values in the
extended real line and vanish at &). (a) Show that the equality p1(E) = u2(E) for
all £ € & N &, is necessary and sufficient for the existence of an additive function
u that extends u1 and pa2 to some algebra F containing & and &. (b) Show that
if g1, u2 > 0, then the existence of a common nonnegative extension p is equivalent
to the following relations: pi(C) > u2(D) for all C € &, D € & with D C C and
p1(E) < po(F) forall E € &, F € & with E C F.

HINT: see Rao, Rao [786, §3.6, p. 82].

1.12.142. Let (X, A, 1) be a probability space and let u* be the corresponding
outer measure. For a set ¥ C X, we denote by mg the restriction of p* to the class
of all subsets of E. Show that mg coincides with the outer measure on the space
FE generated by the restriction ug of u to E in the sense of Definition 1.12.11. In
particular, mg is a regular Carathéodory outer measure.

HINT: let E be a measurable envelope of E; for any set B C F one has

mg(B) =inf{u(A): A€ A BC A}
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By the definition of g we have
pi(B) = inf{ugs(C): C € Ag,BC C}=inf{u(ANE): Ac A, BC ANE}.
Clearly, one has mg(B) > ui(B). On the other hand, given ¢ > 0, we find a set

A. € A such that u(A. N E) < pip(B) + . Hence u(A.) < ps(B) 4+ ¢ and B C A,
which yields the estimate mg(B) < ui(B) + . Hence mg(B) < ux(B).

1.12.143. Suppose that p is a measure with values in [0, +00] on a measurable
space (X, A). Let u* and u+ be the corresponding outer and inner measures and let
m = (" + pa) /2.

(i) (Carathéodory [164, p. 693]) Show that m is a Carathéodory outer measure.
Denote by v the measure generated by m.

(ii) Let X ={0,1}, A ={X, 2}, n(X) = 1. Show that u # v.

(iii) (Fremlin [324]) Prove that if p is Lebesgue measure on [0, 1], then p = v.

1.12.144. Let m be a Carathéodory outer measure on a space X and let
¢: [0,+00] — [0,+00) be a bounded concave function such that ¢(0) = 0 and

@(t) > 0if t # 0. Let d(A,B) = ¢(m(A A B)), A,B € Mn. Denote by ﬁu the
factor-space of the space My by the ring of m-zero sets. Show that (ﬁu,d) is a
complete metric space.

1.12.145. (Steinhaus [910]) Let E be a set of positive measure on the real
line. Prove that, for every finite set F', the set E contains a subset similar to F, i.e.,
having the form ¢+ tF', where t # 0.

1.12.146. (i) Let u be an atomless probability measure on a measurable space
(X, A). Show that every point z € X belongs to A, and has py-measure zero.

(ii) (Marczewski [651]) Prove that if a probability measure p on a measurable
space (X, .A) is atomless, then there exist nonempty sets of u-measure zero.

HINT: (i) let us fix a point z € X and take its measurable envelope E. Then
w(E) = 0. Indeed, if ¢ = p(E) > 0, we find a set A € A such that A C E and
u(A) = ¢/2, which is possible since p is atomless. Then either € A or z € E\ A and
u(A) = p(E\A) = ¢/2, which contradicts the fact that E is a measurable envelope
of z. Alternatively, one can use the following fact that will be established in §9.1 of
Chapter 9: there exists a function f from X to [0, 1] such that for every t € [0, 1]
one has u(z: f(x) < t) =t. It follows that for every ¢ € [0,1] the set f~'(t) has
p-measure zero. Assertion (ii) easily follows. Moreover, by the second proof, there
exists an uncountable set of pu-measure zero.

1.12.147. (Kindler [517]) Let S be a family of subsets of a set Q with @ € S
and let a, 3: & — (—o00,+00] be two set functions vanishing at &. Prove that the
following conditions are equivalent:

(i) there exists an additive set function p on the set of all subsets of Q taking
values in (—oo, +o0] and satisfying the condition a < p|s < S;

(ii) if A, B; € Sand 377 | Ia, = >27" I, then D00 | a(Ay) < 37 B(By).

1.12.148. Prove Proposition 1.12.36. Moreover, show that there is a non-
negative additive function a on the set of all subsets of X with a|x < B and
o(X) = B(X).

HINT: (a) by induction on n we prove the following fact: if R1, ..., R, € R, then
there are Ry,..., R, € Rsuchthat Ry CRy C...C Ry, > 0 Ir, = 1) Ig; and

w1 B(R:) > >, B(RY). For the inductive step to n+1, given Ry, ..., Rny1 € R,
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set Sn+1 = Rp+1 and use the inductive hypothesis to find Si,...,S, € R such

that S1 C ... C Sn, DoiyIr, = >0 Is; and 30 B(R:) > >0, B(Si). Now
set S, = Spn+1 N Sn, S, = S; for i < n. There are Ri,..., R, € R such that
RICR,C...CR,, Y0, Isr =327 Ip; and 337, B(Si) > >, B(R;). Let
R,.1 = Spi1 = SnUSpy1. Then S;,Si, R; € R. As Ip, <300 Isg, one has
R, c U, Si C Sn C Ryy1. In addition,

n+1 n n—1 n+1 n+1
=1 =1 =1 =1 i=1
Finally,
n+1

Zﬁ

B(S:) + B(Sn+1) Zﬁ ) + B(Sn N Snt1) + B(Sn U Sn+1)

-
Il Ms
A

3

—1 n n+1

<N B(S) + B(Sn) + B(Sn+1) = D B(S:) + B(Snt1) < D B(R).

1 =1 =1

7

(b) We may assume that 5(X) = 1. Let us show that if Ri,...,R, € R are
such that Y. | Ir,(z) > m for all z, where m € IN, then Y. | 3(R;) > m. Let R;
be as in (a). It suffices to verify our claim for the sets R;. As R; C Rj,;, one has
R,=---=Rp_ ;i1 =X. Hence B(Rj) =1for j >n+m—1.

(c) On the linear space L of finitely valued functions on X we set

= inf{z Oélﬂ(R-L) R; € 9‘{, @ > O7f < ZaiIRi}.
i=1 =
It is readily verified that p(f + g) < p(f) + p(g) and p(af) = ap(f) for all f,g € L,
a > 0. In addition, p(1) > 1. Indeed, otherwise we can find R; € R and «o; > 0
i=1,...,n, of the form a; = n;/m, where n;, m € IN, such that >, a;B(R:) <
Set M :={(i,7): 1 <i<mn, 1§]§n1}andR”7R, if (¢,7) € M. Then

n n
Z Ir;; = Z”ZJRZ' = mZOCiIRi >m,
=1 i=1

(1,5)eM

but

> B(Ry) Iznzﬂ( mZazﬁ ) <m,

(i,5)eM

which contradicts (b). By the Hahn-Banach theorem, there is a linear functional
A on L such that A(1) = p(1) > 1 and A < p. Let v(F) := A(Ig), E C X. Then
v(E) < B(R)if E C R € R. Let a(E) := v (E) := sup,pv(E). Then o is
nonnegative and additive (see Proposition 3.10.16 in Ch. 3) and «(R) < B(R) if
ReR. Finally, 1 <v(X)<a(X)<pB(X)=1

1.12.149. Let (X, A, 1) be a probability space and let S be a family of subsets
in X such that p.(JS2, Sn) = 0 for every countable collection {S,} C S. Prove
that there exists a probability measure i1 defined on some o-algebra A such that
A,S C A, [i extends p and vanishes on S, and for each A € A there exists A’ € A
with (A A A") =0
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HINT: let Z be the class of all subsets in X that can be covered by an at most
countable subfamily in S. It is clear that p.(Z) =0if Z € Z. Let

A={ANZ Ac A Zc Z)}

It is easily seen that A is a o-algebra and contains A and S. Set fi(A A Z) := u(A)
for A € A and Z € Z. The definition is unambiguous because if AN Z = A" A Z/,
AA €A Z,7' € Z,then ANA"=Z N Z', whence pf(ANA") = u (Z AN Z") =0,
since Z A Z' € Z. Note that i(Z) = 0 for Z € Z, since one can take A = &. The
countable additivity of i is easily verified.

1.12.150° Let u be a bounded nonnegative measure on a o-algebra A in a
space X. Denote by £ the class of all sets £ C X such that

p(E)=pu"(ENA)+u"(ENA) forall Ae A

Is it true that the function p* is additive on £7

HINT: no. Let us consider the following example due to O.V. Pugachev. Let
X ={1,-1,i,—i}. We define a measure p on a o-algebra A consisting of eight sets
as follows:

w(@) =0, uX)=3,
p(1) = p(-1) = p({i,—i}) =1, p({1,-1}) = p({1,4, —i}) = p({-1,i,—i}) = 2.
Clearly, the domain of definition of u is indeed a o-algebra. It is easily seen that p
is additive, hence countably additive. For every E C X, we have

p'(E) = " (E\A) + p* (EN A)
for all A € A, but u* is not additive on the algebra of all subsets in X.

1.12.151. (Radd, Reichelderfer [777, p. 260]) Let ® be a finite nonnegative set
function defined on the family U of all open sets in (0, 1) such that:

(i) ®(UsZ, Un) = X02, ®(Un) for every countable family of pairwise disjoint
sets U, € U,

(ii) ®(U1) < ®(Uz) whenever Uy, Uz € U and U C Us,

(i) ®(U) = ;li% ®(U.) for every U € U, where U, is the set of all points in U
with distance more than ¢ from the boundary of U.

Is it true that & has a countably additive extension to the Borel o-algebra
of (0,1)7

HINT: no; let ®(U) =11if [1/4,1/2] C U and ®(U) = 0 otherwise.

1.12.152. Let p be a nonnegative o-finite measure on a measurable space
(X, A) and let My be the class of all sets of finite p-measure. Let

ou(A,B) = wW(AAB)/u(AUB) if pn(AUB) >0, 0,(A,B) =0if p(AUB) = 0.

(i) (Marczewski, Steinhaus [653]) (a) Show that o, is a metric on the space of
equivalence classes in Mo, where A ~ B whenever (A A B) = 0.

(b) Show that if A,, A € Mo and 0, (An, A) — 0, then p(A, A A) — 0.

(c) Show that if u(A, A A) — 0 and p(A) > 0, then 0, (An, A) — 0.

(d) Observe that 0,(@,B) = 1 if u(B) > 0 and deduce that in the case of
Lebesgue measure on [0, 1], the identity mapping (Mo, d) — (Mo, 00), where d is the
Fréchet—Nikodym metric, is discontinuous at the point corresponding to &.

(ii) (Gladysz, Marczewski, Ryll-Nardzewski [359]) For all Ay,..., A, € My let

Cu((AU- U A\ (AN N AR))
ou(Ar,..., An) = WA U U AL
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if ulAqU---UA,)>0and 0u(A1,...,4,) =0if u(A1 U---UA,) =0. Prove the
inequality
1
ou(Ar, ..., A) < e ;Uu(AuAj)-
<]
Deduce that if 0, (A, Aj) <2/nforall 1 <4< j<mn,then (A1 N---NA,)>0.
1.12.1537 Let Aq,..., A, be measurable sets in a probability space (22,4, P).

Prove that
i=1 i=1 1<i<j<n
HINT: by using induction on n and the easily verified fact that A,, is the union
of the disjoint sets By := (U, 4:)\(U7,' 4s) and B := JI_,' (4: N A,) we obtain

n n n—1 n—1
3 P(A) - P(U Ai) =3 P(A) - P( U Ai) + P(A,) — P(B))
i=1 i=1 i=1 i=1
< > P(AiNA))+ P(B).
1<i<j<n—1
It remains to observe that P(Bz2) < .1 P(A; N A,). More general inequalities of
this type are considered in Galambos, Simonelli [336].

1.12.154. (Darji, Evans [203]) Let A be a measurable set in the unit cube [
of R", let F C I\A be a finite set, and let ¢ > 0. Show that there exists a finite
set S C A with the following property: for every partition P of the cube I into
finitely many parallelepipeds of the form [a;, b;]X -« - X[an, bn] with pairwise disjoint
interiors, letting B:=|J{P € P: PNF # @&,PNS =@} we have \,(AN B) < e.

1.12.155. (Kahane [479]) Let E be the set of all points in [0, 1] of the form

z =337 ,en4™", en € {0,1}. Show that E + %E =1[0,3/2], but for almost all
real \, the set £ + A\E has measure zero.

1.12.156. Multivariate distribution functions admit the following characteri-
zation. For any vectors x = (z1,...,%n), ¥ = (Y1,.-.,Yn) let

[xvy) = [:L'l, yl) XX ['rﬂd yn)
Given a function F on IR" let F[z,y) := . s(u)F(u), where the summation is

taken over all corner points u of the set [z, y) and s(u) equals +1 or —1 depending on
whether the number of indices k with uy = yx is even or odd. Prove that the function
F on IR" is the distribution function of some probability measure precisely when
the following conditions are fulfilled: 1) F[z,y) > 0 whenever z < y coordinate-
wise, 2) F(27) — F(x) whenever the vectors 2’ increase to x, 3) F(z) — 0 as
maxy Tr — —oo and F(m) — 1 as ming xr — +o00.

HINT: see Vestrup [976, §2.3, 2.4].

1.12.157. Let A be a o-algebra of subsets of IN. Show that A is generated by
some finite or countable partition of IN into disjoint sets, so that every element of
A is an at most countable union of elements of this partition.

HINT: let n ~ m if n and m cannot be separated by a set from A. Tt is readily
verified that we obtain an equivalence relation. Every equivalence class K is an
element of A. Indeed, let us fix some k € K. For every n € IN\K, there is a set
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A, € Asuch that k € An, n & An. Then K = (72, An. Indeed, ), An C K
by construction. On the other hand, if { € K and | € ()2, An, then k is separated
from I by the set (>, An € A. Hence we obtain an at most countable family
of disjoint sets M,, € A with union IN such that every element of A is a finite or
countable union of some of these sets.

1.12.158. (i) Let A be a o-algebra of subsets of IN and let u be a probability
measure on A. Show that p extends to a probability measure on the class of all
subsets of IN.

(ii) Let A be the o-algebra generated by singletons of a set X and let Ao be its
sub-o-algebra. Show that any measure p on 4y extends to a measure on A.

HINT: (i) apply Exercise 1.12.157 (cf. Hanisch, Hirsch, Renyi [406]; the result
also follows as a special case of extension of measures on Souslin spaces, which is
considered in Volume 2). (ii) Observe that p is concentrated at countably many
atoms, and any atom is either countable or has a countable complement.

1.12.159. Let p be a countably additive measure with values in [0, 4oc0] on a
ring X of subsets of a space X.

(i) Suppose that p is o-finite, i.e., X = [J77; X, where one has X, € X and
u(Xrn) < co. Show that p has a unique countably additive extension to the o-ring
Y (X) generated by X.

(ii) Suppose that the measure m := p* is o-finite on Xn. Show that it is a
unique extension of p to o(%).

HINT: (i) according to Corollary 1.11.9, p* is a countably additive extension
of p to (%) (even to o(X)). Let v be another countably additive extension of u
to X(X). We show that p* = v on X(X). Let £ € X(X). We may assume that
Xn C Xnt1. It suffices to show that u*(E N X,) = v(EN X,) for every n. This
follows by the uniqueness result in the case of algebras because it is readily seen
that the set £'N X, belongs to the o-algebra generated by the intersections of sets
in X with X,,. (ii) See Vulikh [1000, Ch. IV, §5].

1.12.160. Two sets A and B on the real line are called metrically separated
if, for every & > 0, there exist open sets A. and B: such that A C Ac and B C B:
with A(A: N B:) < ¢, where )\ is Lebesgue measure.

(i) Show that if sets A and B are metrically separated, then there exist Borel
sets Ao and By such that A C Ag and B C By with A(Ao N Bo) = 0.

(ii) Let A be a Lebesgue measurable set on the real line and let A = A; U Aa,
where the sets A; and As are metrically separated. Show that A; and Ay are
Lebesgue measurable.

HiNT: (i) let A, and B, be open sets such that A C A,, B C B,, and
MAnNBy,) < n~'. Take the sets Ao := (22, Ay and By := (22, By. (ii) According
to (i) there exist Borel sets By and By with A1 C Bi, A2 C B2, and A\(B1NBz) = 0.
Let E := AN (B1\A1). It is readily verified that E C By N Bz. Hence A(E) = 0,
which shows that A; is Lebesgue measurable.
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The Lebesgue integral

Any measurement is subject to unavoidable errors, and the
general total consists of a given number of the smallest capri-
cious particulars, but in the large, the average of all these minor
caprices vanishes, and then God’s fundamental law appears, the
law which alone turns slaves into the true masters of everything
undertaken and forthcoming.

D.I. Mendeleev. Intimate thoughts.

2.1. Measurable functions

In this section, we study measurable functions. In spite of its name, the
concept of measurability of functions is defined in terms of o-algebras and
18 not connected with measures. Connections with measures arise when the
given o-algebra is the o-algebra of all sets measurable with respect to a fixed
measure. This important special case is considered at the end of the section.

2.1.1. Definition. Let (X,.A) be a measurable space, i.e., a space with
a o-algebra. A function f: X — IR is called measurable with respect to A
(or A-measurable) if {x: f(x) < c} € A for every c € R".

The simplest example of an 4-measurable function is the indicator I of
a set A € A defined as follows: I4(x) =1if v € A and I4(x) =0if x € A.
The indicator of a set A is also called the characteristic function of A or the
indicator function of A. The set {z: I4(x) < ¢} is empty if ¢ < 0, equals the
complement of A if ¢ € (0,1] and coincides with X if ¢ > 1. It is clear that
the inclusion A € A is also necessary for the A-measurability of 14.

2.1.2. Theorem. A function f is measurable with respect to a o-algebra
A if and only if f~*(B) € A for all sets B € B(R").

PROOF. Let f be A-measurable. Denote by £ the collection of all sets
B € B(IR') such that f~*(B) € A. We show that £ is a o-algebra. Indeed, if
B, € &, then (see Lemma 1.2.8)

P UB) = U Byea FHRNB,) = X\[7(By) € A
n=1 n=1

Since & contains the rays (—oo, ¢), we obtain that B(R') C &, i.e., B(R') = &.
The converse assertion is obvious, since the rays are Borel sets. [
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Let us write f in the form f = f™ — f—, where
fH(x) = mfcu((f(ac),O)7 f(z):= max(—f(x),()).

It is clear that the A-measurability of f is equivalent to the A-measurability
of both functions f* and f~. For example, if ¢ > 0, we have the equality
{z: f(x) <c}={z: fT(z) <c}.

Tt is clear from the definition that the restriction f|g of any A-measurable
function f to an arbitrary set £ C X is measurable with respect to the o-al-
gebra Ap = {ANE: Aec A}

The following more general definition is frequently useful.

2.1.3. Definition. Let (X1, A1) and (X2, A2) be two spaces with o-al-
gebras. A mapping f: X1 — X5 is called measurable with respect to the pair

(A1, A2) (or (Ay, As)-measurable) if f~1(B) € Ay for all B € As.

In the case where (Xo, A2) = (IRl7 B(IRI))7 we arrive at the definition of a
measurable function. In another special case where X; and X are metric (or
topological) spaces with their Borel o-algebras A; = B(X1) and Az = B(X>),
i.e., the o-algebras generated by open sets, we obtain the notion of a Borel (or
Borel measurable) mapping. In particular, a real function on a set £ C R" is
called Borel if it is B(E)-measurable.

2.1.4. Example. Every continuous function f on a set £ C IR" is Borel
measurable, since the set {x: f(z) < ¢} is open for any ¢, hence Borel.

An important class of A-measurable functions is the collection of all simple
functions, i.e., A-measurable functions f with finitely many values. Thus,
any simple function f has the form f = Y""" | ¢;l4,, where ¢; € R', A; € A,
in other words, f is a finite linear combination of indicators of sets in A.
Obviously, the converse is also true.

The following theorem describes the basic properties of measurable func-
tions.

2.1.5. Theorem. Suppose that functions f, g, fn, where n € IN, are
measurable with respect to a o-algebra A. Then:

(i) the function po f is measurable with respect to A for any Borel function
¢: R' = R, in particular, this is true if ¢ is continuous;

(ii) the function af +Bg is measurable with respect to A for alla, 3 € R';

(iii) the function fg is measurable with respect to A;

(iv) if g(x) # 0, then the function f/g is measurable with respect to A,

(v) if there exists a finite limit fo(x) = 7}1—{20 fu(x) for all x, then the
function fy is measurable with respect to A,

(vi) if the functions sup,, fn(x) and inf, f,(z) are finite for all x, then
they are measurable with respect to A.

ProOOF. Claim (i) follows by the equality
(po )H(B) = ¢ 1(B)).
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By (i), for the proof of (ii) it suffices to consider the case « = § = 1 and
observe that

(o0 f@) +gla) <} = {o fla) <o)
:U({x: f(@) <rn}pni{a: rn<c—g(a:)}),

where the union is taken over all rational numbers r,. The right-hand side of
this relation belongs to A, since the functions f and g are measurable with
respect to A. Claim (iii) follows by the equality 2fg = [(f + 9)* — f* — ¢°]
and the already-proven assertions; in particular, the square of a measurable
function is measurable by (i). Noting that the function ¢ given by the equality
w(x) = 1/x if © # 0 and ¢(0) = 0, is Borel (a simple verification of this is
left as an exercise for the reader), we obtain (iv). The least obvious in all the
assertions in the theorem is (v), which, however, is clear from the following
easily verified relations:

(o < =UU N {o fule)<c— 1},

k=1n=1m=n+1

For the proof of (vi) we observe that
up (@) = T max(fy @), ., fo(z).

By (v), it suffices to show the measurability of max(fi, ..., f,). By induction,
this reduces to n = 2. It remains to observe that

{x: max(f1(z), f2(z)) < } {z: fi(z) <c}n{z: folz) <c}.

The assertion for inf is verified similarly (certainly, one can also use the equal-
ity inf,, f, = —sup,,(—fn)). The theorem is proven. O

~ 2.1.6. Remark. For functions f with values on the extended real line
IR = [—00, +00] we define the A-measurability by requiring the inclusions

fH(=00), [l (+o0) € A

and the A-measurability of f on f~(IR). This is equivalent to the measura-
bility in the sense of Definition 2.1.3 if IR is equipped with the o-algebra B(IR)
consisting of Borel sets of the usual line with possible addition of the points
—00, +00. Then, for functions with values in IR, assertions (i), (v), (vi) of the
above theorem remain valid, and for the validity of assertions (ii), (iii), (iv)
one has to consider functions f and g with values either in [—o00,400) or in
(—00, +00]. The algebraic operations for such values are defined in the follow-
ing natural way: +o0o+¢ = +o0 if ¢ € (—o0, +0], +00-0 =10, +00-c = 400
ifc>0,400-c=—-0if c <0.

2.1.7. Lemma. Let functions f, be measurable with respect to a o-algeb-
ra A in a space X. Then, the set L of all points x € X such that lim f,(x)
n—oo
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exists and is finite belongs to A. The same is true for the sets L~ and Lt of
all those points where the limit equals —oo and 400.

PrROOF. The set L coincides with the set of all points x where the se-
quence {f,(x)} is fundamental, hence

=N U N {& he-Hwl< %} € A
k=1m=1n,j>m
This equality is verified as follows: x belongs to the right-hand side precisely
when, for each k, there exists m such that |f,(z) — f;(z)| < 1/k whenever
n,j > m. This is exactly the fundamentality of {f,(z)}. For L~ and LT
proofs are similar. (Il

2.1.8. Lemma. Suppose that A is a o-algebra of subsets of a space X.
Then, for any bounded A-measurable function f, there exists a sequence of
simple functions f, convergent to f uniformly on X.

PROOF. Let ¢ = sup |f(x)|+1. For every n € IN we partition [—c¢, ¢) into
zeX

n disjoint intervals I; = [—c+ 2¢(j — 1)n~!, —c + 2¢jn™!) of length 2cn™".
Let A; = f~1(I;). Tt is clear that A; € A and U;-Lzl Aj = X. Let ¢; be the
middle point of I;. Let us define the function f, by the equality f,(z) = ¢;
for x € A;. Then f, is a simple function and

sup |f(x) = fu(@)] < en™t,
zeX

since the function f maps A; to I;, and f, takes A; to the middle point of I,
which is at the distance at most cn™! from any point in ;. O

2.1.9. Corollary. Suppose that A is a o-algebra of subsets of a space X .
Then, for every A-measurable function f, there exists a sequence of simple
functions f, convergent to f at every point.

PROOF. Let us consider the functions g, defined by g,(z) = f(x) if
f(z) € [-n,n] and g,(x) = 0 otherwise. We can find simple functions f,
such that |f.(z) — gn(x)] < n~!. It is clear that lim f,(x) = f(z) for
all z € X. O

Once again we draw the reader’s attention to the fact that so far no mea-
sures have been involved in our discussion of measurable functions. Suppose
now that we have a nonnegative countably additive measure p on a o-algebra
A of subsets of a space X.

2.1.10. Definition. Let (X, A, ) be a measure space. A real function
f on X is called p-measurable if it is measurable with respect to the o-algebra
A, of all p-measurable sets. In addition, we agree to call p-measurable also
any function f that is defined and A, -measurable on X\Z, where Z is a set
of n-measure zero (that is, f may be undefined or infinite on Z). The set of
all p-measurable functions is denoted by L°(1).
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Thus, the p-measurability of a function f means that, for any ¢ € R', the
set {z: f(z) < ¢} belongs to the Lebesgue completion of A with respect to p
(and that f is defined on a full measure set, i.e., outside a measure zero set). It
is clear that the class of y-measurable functions (even everywhere defined) may
be wider than the class of A-measurable functions, since no completeness of A
with respect to p is assumed. If a y-measurable function f is not defined on a
set Z of measure zero, then, defining it on Z in an arbitrary way (say, letting
flz = 0), we make it p-measurable in the sense of the first part of the given
definition. It will be clear from the sequel that a somewhat broader concept
of measurability of functions allowed by the second part of our definition is
technically convenient. Normally, in concrete situations, when one speaks of a
measurable function, it is clear whether it is supposed to be defined everywhere
or only almost everywhere and this circumstance is never specified. However,
one can easily imagine situations where such a specification is necessary. For
example, suppose one has to consider a family of functions f, on [0, 1], where
a € [0,1], such that the function f, is not defined at the point . Then from
the formal point of view, these functions have no common points of domain
of definition at all.

For functions with values in [—oco, +00] (possibly infinite on a set of pos-
itive measure), the p-measurability is understood as follows: f~!(—oc) and
/7 (+o0) belong to A,, and on the set {|f| < oo} the function f is p-
measurable. Such functions are not included in £°(1) (we do not consider
such functions at all); in order to avoid confusion, it is preferable to call them
mappings rather than functions.

2.1.11. Proposition. Let i be a nonnegative measure on a o-algebra A.
Then, for every u-measurable function f, one can find a setY € A and a
function g measurable with respect to A such that f(x) = g(x) for allz €Y
and p(X\Y) =0.

PrOOF. We may assume that f is defined and finite everywhere. By
Corollary 2.1.9, there exists a sequence of A,-measurable simple functions f,
pointwise convergent to f. The function f, assumes finitely many distinct
values on sets Aq,..., A, € A,. Every set A; contains a set B; from A such
that pu(A;\B;) = 0. Let us consider the function g, that coincides with f,
on the union of the sets B; and equals 0 outside this union. Clearly, g, is
an A-measurable simple function, and there is a measure zero set 7, € A
such that f,(z) = gn(z) if x € Z,. Let Y = X\U,—; Z,. Then Y € A and
w(X\Y) = 0. Let g(z) = f(z) if z € Y and g(z) = 0 otherwise. For every
x € Y one has f(z) = 7L1LH;O fulz) = nh_)nolo gn(x). Hence f is A-measurable
on Y. Therefore, g is A-measurable on X. ([

It follows by this proposition that for a bounded p-measurable function f,
there exist two A-measurable functions f; and fs such that

file) < f(z) < fa(w) for all w and p(z: fi(z) # f2(z)) = 0.
Indeed, let f; = fo =g on Y. Outside Y we set fi(x) =inf f, fo = sup f.
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2.2. Convergence in measure and almost everywhere

Let (X, A, u) be a measure space with a nonnegative measure u. We say
that some property for points in X is fulfilled almost everywhere (or p-almost
everywhere) on X if the set Z of all points in X that do not have this property
belongs to A, and has measure zero with respect to u. We use the following
abbreviations for “almost everywhere”: a.e., py-a.e. If a function g equals a
function f a.e., then it is called a modification or version of f. It is clear from
the definition of A, that there exists a set Zy € A such that Z C Z, and
w(Zy) = 0, i.e., the corresponding property is fulfilled outside some measure
zero set from A. This circumstance should be kept in mind when dealing with
incomplete measures. The complement of a measure zero set is called a set of
full measure.

For example, one can speak of a.e. convergence of a sequence of func-
tions f,, fundamentality a.e. of {f,}, nonnegativity a.e. of a function etc. It
is clear that a.e. convergence of { f,} follows from convergence of { f,(z)} for
each x (called pointwise convergence), and the latter follows from uniform
convergence of {f,}. A deeper connection between almost everywhere con-
vergence and uniform convergence is described by the following theorem due
to the eminent Russian mathematician D. Egoroff.

2.2.1. Theorem. Let (X, A,pu) be a space with a finite nonnegative
measure p and let u-measurable functions fp be such that p-almost everywhere
there is a finite limit f(x) := lim f,(x). Then, for every € > 0, there exists

n—oo

a set X, € A such that p(X\X.) < e and the functions f, converge to f
uniformly on X..

PROOF. The assertion reduces to the case where the sequence {f,(z)}
converges at every point because we can redefine the functions f, on the
measure zero set on which at least one of them is not defined or there is no
convergence. Then

xp o= ({o: ie) ~ S@)l < -} e A,
i>n
We observe that X" € X", for all m, n € IN, and that |J;~; X/ = X, since
for fixed m, for any x, there exists a number n such that | f;(z) — f(z)| < 1/m
whenever ¢ > n. Let € > 0. By the countable additivity of i, for each m, there
exists a number k(m) with p(X\X37, ) < e27™. Set X. = Nr_y Xitm)-
Then X, € A, and

nOX) = (U (O\Xf)) € 30 w(X0\XT,)) <2 Y2 =
m=1 m=1 m=1

Finally, for fixed m, we have |f;(x) — f(x)] < 1/m for all x € X, and all

i > k(m), which means uniform convergence of the sequence {f,} to f on the

set X.. It remains to take in X, a subset (denoted by the same symbol) from

A of the same measure. (]
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Simple examples show that Egoroff’s theorem does not extend to the case
e = 0. For example, the sequence of functions f,: x + z™ on (0, 1) converges
at every point to zero, but it cannot converge uniformly on a set £ C (0,1)
with Lebesgue measure 1, since every neighborhood of the point 1 contains
points from E and then sup,cp fn(z) = 1 for every n. The property of
convergence established by Egoroff is called almost uniform convergence.

Let us consider yet another important type of convergence of measurable
functions.

2.2.2. Definition. Suppose we are given a measure space (X, A, p) with
a finite measure p and a sequence of p-measurable functions fy,.
(i) The sequence {fn} is called fundamental (or Cauchy) in measure if,
for every ¢ > 0, one has
lim sup (e [fa(@) — fi(@) = ¢) =0,
N—oop k>N
(ii) The sequence {f,} is said to converge in measure to a p-measurable
function f if, for every ¢ > 0, one has

Jlim p(z: |f(2) = fol@)] Z ) =0.

Note that if a sequence of functions f,, converges in measure, then it is
fundamental in measure. Indeed, the set {z: |f,(2)— fi(x)| > ¢} is contained
in the set

{z: |f(2) = ful@)| = ¢/2} U {a: [f(2) = fu(z)] = ¢/2}.

Note also that if a sequence {f,} converges in measure to functions f
and g, then f = g almost everywhere. Hence up to a redefinition of functions
on measure zero sets, the limit in the sense of convergence in measure is
unique. Indeed, for every ¢ > 0 we have

a(o: 17(@) - g(@)| 2 ¢) < (s 1) — falo)] 2 o/2)
+ (s |fo(z) — g(a)] = ¢/2) — 0,

whence pi(z: | f(z)—g(z)] > 0) = 0, since the set of points where the function
|f — g| is positive is the union of the sets of points where it is at least n=!.

Let us clarify connections between convergence in measure and conver-
gence almost everywhere.

2.2.3. Theorem. Let (X, A, ) be a measure space with a finite measure.
If a sequence of p-measurable functions f, converges almost everywhere to a
function f, then it converges to f in measure.

PRrOOF. Let ¢ > 0 and
Ay, ={z: |f(z) - fi(x)| <c, Vi>n}.
The sets A,, are y-measurable and A,, C A, ;1. It is clear that the set UZO:I A,
contains all points at which {f,} converges to f. Hence u(X) = pu(Un_; An).
By the countable additivity of x4 we have u(A,) — u(X), i.e., u(X\4,) — 0.
It remains to observe that (z: [f(z) — fu(z)] > ¢) C X\A,. O
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The converse assertion is false: there exists a sequence of measurable
functions on [0, 1] that converges to zero in Lebesgue measure but does not
converge at any point at all.

2.2.4. Example. For every n € IN we partition [0, 1] into 2" intervals
Ing = [(k—1)27",k27™), k = 1,...,2", of length 27". Let f,x(x) = 1 if
x €Iy and fri(z) =0if © & I, . We write the functions f, 1 in a single
sequence

fn = (fl.,lafl,?afllvf?,%' . )
such that the function fy,41 follows the functions f, ;. The sequence {f,}
converges to zero in Lebesgue measure, since the length of the interval on
which the function f,, is nonzero tends to zero as n increases. However, there
is no convergence at any point x, since the sequence { f,,(x)} contains infinitely
many elements 0 and 1.

The next theorem due to F. Riesz gives a partial converse to Theo-
rem 2.2.3.

2.2.5. Theorem. Let (X, A, u) be a space with a finite measure.

(i) If a sequence of p-measurable functions f,, converges to f in measure p,
then there exists its subsequence { f,, } that converges to f almost everywhere.

(ii) If a sequence of u-measurable functions f, is fundamental in mea-
sure u, then it converges in measure p to some measurable function f.

PRrROOF. Let {f,} be fundamental in measure. Let us show that there
exists a sequence of natural numbers ny — oo such that

p(zs 1fale) = Fi@) 2 27%) <275, Vn, =y

Indeed, we find a number n; with

p(ws 1fale) = fi@) 2 271) <270 W= m
Next we find a number ny > nq with

p(es @) = @) 2 272) <272 Y, j > s

Continuing this process, we obtain a desired sequence {n}. Let us show that
the sequence {f,, } converges a.e. To this end, it suffices to show that it is
a.e. fundamental. Set

By ={a [fayu(2) = fu, (@) 2277},

Since
“(U Ej) < Z2‘j =27k L0 ask— 0,
=k =k

the set Z = (N, U;’;k E; has p-measure zero. If € X\ Z, then the sequence
{fn.(2)} is fundamental. Indeed, there exists a number k such that = does
not belong to U;’ik E;, ie., z ¢ E; for all j > k. By definition this means
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that |fn,,, (z) — fn, (z)] <277 for all j > k. Hence, for every fixed m > k, for

J

all ¢ > j > m one has the estimate

[Fri () = s (@) < (i () = Fis (@) + [ fori s () = Frs o (@) -

+ ‘fnj+1 (m) - fnj (‘T)' < ZZ_I < 2_j+1 < 2—m7
1=j

which means that {f,, (z)} is fundamental. Thus, the selected subsequence
{fn,} converges almost everywhere to some function f. Then one has con-
vergence in measure as well, which yields assertion (ii). Finally, assertion (i)
follows from the above-noted fact that any sequence convergent in measure
is fundamental in measure. In addition, the limit of the selected subsequence
coincides almost everywhere with the limit of {f,} in measure due to the
uniqueness of the limit in measure up to a redefinition of a function on a set
of measure zero. O

2.2.6. Corollary. Let p be a finite measure and let two sequences of pi-
measurable functions f, and g, converge in measure p to functions f and g,
respectively. Suppose that U is a continuous function on some set Y C IR>
such that (f(z),g(z)) €Y and (fn(x),gn(x)) €Y for all x and all n. Then,
the functions ¥ (f,,gn) converge in measure p to the function ¥(f,g). In
particular, fongn — fg and af, + Bgn — af + Bg in measure p for all real
numbers o and (3.

PROOF. According to Exercise 2.12.29 the functions U( f, g) and U(f,,, gn)
are measurable. If our claim is false, then there exist ¢ > 0 and a subsequence
Jn such that

u(o [9(F(@),9(@) = 0 (f, (2),05, ()] > ¢) > (2.2.1)

for all n. By the Riesz theorem, {j,} contains a subsequence {i,} such that
fi, (x) — f(z) and g;, () — g(z) a.e. Due to the continuity of ¥ we obtain

U (fi, (%), 95, (2)) = U(f(2),9(x)) ae.,

whence U(f; ,g:.) — ¥(f,g) in measure, which contradicts (2.2.1). The
remaining claims follow by the proven claim applied to the functions ¥(x,y) =
xy and ¥(z,y) = ax + By. O

2.2.7. Remark. We shall see later that convergence in measure can
be described by a metric (Exercise 4.7.60). It can be seen directly from the
definition that convergence in measure possesses the following property: if
functions f,, converge in measure p to a function f, and, for every fixed n,
the functions f,, ; converge in measure y to the function f,,, then there exist
numbers k,, > n such that the sequence f, 5, converges in measure p to f.
The choice of k,, is made inductively. First we find a number k; with

u(e: (@) - fil@) z27t) <27
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If we have already found increasing numbers k1,...,k,_1 such that k; > j
and

,u(m: |fj,kj(x) _f](x)| > 27J> < 27J fOI‘j = 17"'an_ 1’

then we can find k,, > max(k,—1,n) such that

p(e: fun, (@) = ful@) Z277) <270

For the proof of convergence of { f,, k., } to f in measure y it suffices to observe
that, for every fixed ¢ > 0, for all n with 27" < ¢/2 one has the inclusion

{1, @) = f@) = cf
Aot @ = fa@) =27 {20 1fale) = £(@)] = e/2},

where the measure of the set on the right tends to zero. It is interesting to
note that a.e. convergence cannot be described by a metric or by a topology
(Exercise 2.12.70).

This remark enables one to construct approximations in measure by func-
tions from given classes.

2.2.8. Lemma. Let K be a compact set on the real line, U an open
set containing K, and f a continuous function on K. Then, there erists a
continuous function g on the real line such that g = f on K, g =0 outside U
and
sup [g(z)| = sup |f(z)].
z€IR! zeK
ProOF. It suffices to consider the case where U is bounded. The set U\ K
is a finite or countable union of pairwise disjoint open intervals. Set g = 0
outside U, g = f on K, and on every interval (a,b) constituting U we define
g with the aid of linear interpolation of the values at the endpoints of this
interval: g(ta+ (1—1t)b) = tg(a)+ (1 —t)g(b). The obtained function has the
required properties. O

2.2.9. Proposition. For every measurable function f on an interval
I with Lebesque measure, there exists a sequence of continuous functions fy,
convergent to f in measure.

PRrROOF. The functions g, defined by the equality
gn(@) = f(@) if |f(2)] < n, gn(x) = nsign f(z) if |f(x)] > n,
are measurable and converge to f pointwise, hence in measure. Each of
the functions g, is the uniform limit of simple functions. According to
Remark 2.2.7, it suffices to prove our claim for all functions of the form
f = Y0 cila,, where A; are disjoint measurable sets in I. Moreover, we
may assume that the sets A; are compact, since every A; is approximated

from inside by compact sets in the sense of measure. Then, for any m € IN,
there exist disjoint open sets U; that are finite unions of intervals such that
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A; € U; and MU, (U\A;)) < m™!. Let ¢ = max;<y |¢;|. According to
Lemma 2.2.8, there exists a contmuous function f,,: I — [—¢,¢] such that
fm = fon U, A; and f,, = 0 outside |J;_, U;. Thus, the measure of the
set {fm # f} does not exceed m~!, whence we obtain convergence of {f,}
to f in measure. O

The nature of measurable functions on an interval with Lebesgue measure
is clarified in the following classical Lusin theorem.

2.2.10. Theorem. A function f on an interval I with Lebesque measure
is measurable precisely when for each € > 0, there exist a continuous function
fe and a compact set K. such that A\(I\K.) < e and f = f. on K..

PRrROOF. The sufficiency of the above condition is seen from the fact that
if it is satisfied, then the set {z: f(z) < ¢} coincides up to a measure zero
set with the Borel set Uf:l{m €Ki/t fim(z) < c}. Let us verify its neces-
sity. By using the previous proposition, we choose a sequence of continuous
functions f,, convergent in measure to f. Applying the Riesz theorem and
passing to a subsequence, we may assume that f, — f a.e. By Egoroff’s the-
orem, there exists a measurable set F, such that N(I\F;) < /2 and f, — f
uniformly on F.. Next we find a compact set K. C F. with M(F.\K.) < /2
and observe that f|g, is continuous being the uniform limit of continuous
functions. It remains to note that, by Lemma 2.2.8, the function f|x_ can be
extended to a continuous function f. on I. (I

2.2.11. Remark. It is worth noting that Proposition 2.2.9 and Theorem
2.2.10 with the same proofs remain valid for arbitrary bounded Borel measures
on an interval. In Chapter 7 (see §7.1, §7.14(ix)) we return to Lusin’s theorem
in the case of measures on topological spaces.

2.3. The integral for simple functions

Let (X, A,u) be a space with a finite nonnegative measure. For any
simple function f on X that assumes finitely many values ¢; on disjoint sets
A;,i=1,...,n, the Lebesgue integral of f with respect to p is defined by the

equality
/ f(z Z cin(A

That the integral is well-defined is obvious from the additivity of measure,
which enables one to deal with the case where all the values ¢; are distinct.

If A € A, then the integral of f over the set A is defined as the integral
of the simple function 14 f, i.e.,

n

[ @) utdn) = Y- cnain 4).

=1
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The following brief notation for the integral of a function f over a set A with
respect to a measure p is used:
/ fdu.
A

2.3.1. Definition. A sequence {f,} of simple functions is called funda-
mental in the mean or mean fundamental (or fundamental in L*(u), which is
explained below) if, for every e > 0, there exists a number n such that

/|fz (x)| p(dz) < e foralli, j > n.

Note that a sequence is fundamental in the mean exactly when it is fun-
damental with respect to the metric

o(f9) == 1 — gl == /X (@) — g(2)] ()

on the space of equivalence classes of simple functions, where two functions
are equivalent if they coincide almost everywhere. We discuss this in greater
detail in Chapter 4.

2.3.2. Lemma. The Lebesque integral on simple functions enjoys the
following properties:
[ #@)utdz) = o,
X
(ii) the inequality

(i) if f >0, then
[ t@ntan)] < [ 1@ utde) < sup 7] n(x)
X X reX

holds;
(iii) if o, B € RY, then

[ 107(6) + Aoto)] ) = [ 16o) i) 5 [ ot

In particular, if A and B are disjoint sets in A, then

[ @) = [ f@tn + [ @t @s)

PROOF. Assertions (i) and (ii) are obvious from the definition. In addi-
tion, the definition yields the equality

/af da:—a/f

Hence it suffices to verify claim (iii) for o = § = 1. Let f assume distinct
values ¢; on sets A;, i = 1,...,n, and let g assume distinct values b; on sets B;,
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j=1,...,m. Then the sets A; N B; € A are disjoint and f + g = a; +b; on
the set A; N B;. Hence

/X [£(@) + 9(@)] pu(dz) = 3 (as + by (A N By)

i<n, j<m

= aip(Ai) + Y bju(By)

i<n j<m

:/Xf(x)p(d:E)Jr/Xg(x)N(dm)v

since ., (A N Bj) = p(A;) and >°, ., u(A; N B;) = p(B;). The last
claim in (iii) follows by the equality Taup = I4 + Ip. O

2.3.3. Corollary. If f and g are simple functions and f < g almost
everywhere, then

[ s@ntan) < [ gle) utan).

PrROOF. Let A = {: f(z) < g(z)}. Then A € A and p(X\A) = 0.
Let ¢ = sup,¢ x[|f(z)] + |g(x)]]. We have g — f + cIx\a > 0. By definition,
the integral of the function c¢/x\ 4 equals zero. Hence the inequality we prove
follows by assertions (i) and (iii) in Lemma 2.3.2. O

The second assertion in the next lemma expresses a very important prop-
erty of the uniform absolute continuity of any sequence fundamental in the
mean.

2.3.4. Lemma. Suppose that a sequence of simple functions f, is fun-
damental in the mean. Then:
(i) the sequence

[ futa)
X
converges to a finite limit,

(ii) for every € > 0, there exists 6 > 0 such that, for each set D with
w(D) < § and all n, one has the estimate

/ )] () < e
D

PROOF. (i) It suffices to observe that according to what has been proven
earlier, one has

[ o) utdn) = [ su@yntan)] < [ 1520 = fule) nlda).
(ii) We find N such that

/X Fule) = (@) plda) < S, ¥, j> N,

| ™



118 Chapter 2. The Lebesgue integral

Let C = max |fi(x)|+1 and 6 = ¢(2C) 1. If u(D) < § and n > N, then
z€

[ 1nta)lnta) = /Ifn (2) + f ()] pldz)
< [ 10(e) = @l utde) + [ (o)l )

§§+C(5§E.

If n < N, then we have

/D [ful@)| u(da) < Cu(D) < =

The lemma is proven. O

2.4. The general definition of the Lebesgue integral

In this section, a triple (X,.A, u) denotes a space X with a o-algebra A
and a finite nonnegative measure p on A.

In the definition of the integral it is convenient to employ the extended
concept of a measurable function given in Definition 2.1.10 and admit func-
tions that are defined almost everywhere (i.e., may be undefined or infinite
on sets of measure zero). The idea of the following definition is to obtain
the integral by means of completion, which is much in the spirit of defining
measurable sets by means of approximations by elementary ones.

2.4.1. Definition. Let a function f be defined and finite p-a.e. (i.e.,
f may be undefined or infinite on a set of measure zero). The function f is
called Lebesgue integrable with respect to the measure p (or p-integrable) if
there exists a sequence of simple functions f, such that f,(x) — f(z) almost
everywhere and the sequence {f,} is fundamental in the mean. The finite
value

lim fn( ) p(dx),

n—oo

which exists by Lemma 2.3.4, is called the Lebesgue integral of the function f

and is denoted by
/ f(@)pu(dz) or by / fdu.

Let LY (1) be the collection of all u-integrable functions.

Obviously, any p-integrable function is p-measurable. Let us show that
the value of the integral is independent of our choice of a sequence {f,}
involved in its definition. It is to be noted that in the next section we give an
equivalent definition of the integral that does not require the justification of its
correctness. Exercises 2.12.56, 2.12.57, and 2.12.58 contain other frequently
used definitions of the Lebesgue integral equivalent to the one given above
(see also Exercises 2.12.59, 2.12.60, and 2.12.61). The most constructive is
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the definition from Exercise 2.12.57: the integral is the limit of the so-called

Lebesgue sums
—+oo

Z ekp(z: ek < f(z) <e(k+1))
k=—o00
as € — 0, where the absolute convergence of the series for some ¢ > 0 is
required (i.e., convergence separately for positive and negative k); then it
follows automatically that the sum is finite for every € > 0 and the above
limit exists. In particular, it suffices to consider e of the form ¢ = 1/n,
n € IN. The corresponding Lebesgue sums become

=Xk k k+1
X e s < T0),

These facts will be obvious from the subsequent discussion.

2.4.2. Lemma. Let {f,} and {g,} be two sequences of simple functions
that are mean fundamental and converge almost everywhere to one and the
same function f. Then the integrals of f, and g, converge to the same value.

PRrROOF. Let € > 0. By Lemma 2.3.4, there exists § > 0 such that for any
set D with u(D) < §, one has the estimate

’/Dfn(”f)“(dx)‘ + ’/Dgn(w)u(dx) <e VnelN (2.4.1)

By Egoroft’s theorem, there exists a set X5 € A such that pu(X\X;) < ¢ and
on the set Xs the sequences {f,} and {g,} converge to f uniformly. Hence
there exists a number NV such that

sup |fn(z) —gn(z)| <e, Vn>N. (2.4.2)

re€Xs

Then, by (2.4.1) and (2.4.2), we obtain for n > N
[ e utdn) = [ gn(o) utao)
<| [, 1)~ su@] i) +

X\ X

o) utae) - [

90 (2) p(da)|
X\ X5

<en()+] [ pa@utdn)|+] [ gule) ude)| < e(ulx) 1),
X\ X5 X\ X
which proves our claim. O

The reader is warned that in order that a function f be integrable it is
not sufficient to represent it as the pointwise limit of simple functions f,, with
the convergent sequence of integrals. For example, as we shall see below, the
function f(x) = 27! on the interval [—1,1] with Lebesgue measure is not
Lebesgue integrable, although it can be easily represented as the limit of odd
simple functions f,, whose integrals over [—1, 1] vanish. The fundamentality
of {fn} in the mean is a key condition. Almost everywhere convergence is
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needed to identify the limit of {f,} with a point function, not just with
an abstract element of the completion of the metric space corresponding to
simple functions. Let us recall that the completion of a metric space M can
be defined by means of a metric space of fundamental sequences from the
elements of M. The above definition employs this idea, but does not entirely
reduce to it.

2.4.3. Lemma. Suppose that f is a p-integrable function and A € A,.
Then, the function fI, is p-integrable as well.

PrROOF. We may assume that A € A because there is a set B € A such
that B C A and pu(A\B) = 0, i.e.,, I4 = Ig a.e. Let {f,} be a sequence of
simple functions that is fundamental in the mean and converges to f almost
everywhere. Then the functions ¢, = fn,Ila are simple as well, converge to
fI4 almost everywhere, and the sequence {g,} is fundamental in the mean,
which follows by the estimate |g, — gm| < |fn — fm| and Corollary 2.3.3. O

This lemma implies the following definition.

2.4.4. Definition. The Lebesgue integral of a function f over a set
A € A, is defined as the integral of the function fl1a over the whole space if
the latter is integrable.

It is clear that any integrable function is integrable over every set in A,,.
The integral of the function f over the set A is denoted by the symbols

[ @ udn) and [ rau

In the case where we integrate over the whole space X, the indication of the
domain of integration may be omitted and then we use the notation

/fdu.

In the case of Lebesgue measure on IR", we also write

/Af(x) dz.

We observe that by definition any two functions f and g that are equal
almost everywhere, either both are integrable or both are not integrable, and
in the case of integrability their integrals are equal. In particular, an arbitrary
function (possibly infinite) on every set of measure zero is integrable and has
zero integral. It is often useful not to distinguish functions that are equal
almost everywhere. Such functions are called equivalent. To this end, in
place of the space £ (1) one considers the space L (1) (an alternate notation:
LY (X, 1)) whose elements are equivalence classes in £1 (i) consisting of almost
everywhere equal functions. We return to this in §2.11 and Chapter 4.

No completeness of the measure p is assumed above, but it is clear that
one can also take A, for .A. Moreover, according to our definition, we obtain
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the same class of integrable functions if we replace A by A, in the case where
A, is larger than A. Indeed, although in the latter case we increase the
class of simple functions, this does not affect the class of integrable functions,
since every A,-simple function coincides almost everywhere with some A-
measurable function.

2.5. Basic properties of the integral

As in the previous section, (X,.A, ) stands for a measure space with a
finite nonnegative measure pu.

2.5.1. Theorem. The Lebesque integral defined in the previous section
possesses the following properties:
(i) if f is an integrable function and f >0 a.e., then

/ £(z) p(dz) > 0;
X

(ii) if a function f is integrable, then the function |f| is integrable as well

and
| /X f@) ulde)| < /X |f(@)] p(da);

(iii) every A,-measurable bounded function f is integrable and

[ 1@ utdo)] < sup 1) ()

(iv) if two functions f and g are integrable, then, for all a, 5 € R', the
function af 4+ Bg s integrable and

[ st + o) i) = [ syt +5 [ oo

In particular, if A and B are disjoint sets in A, then, for every integrable
function f, one has

[t utde) = [ @)+ [ f@)

(v) if integrable functions f and g are such that f(z) < g(x) a

/deué/xgdu-

PROOF. (i) There is a sequence of simple functions f,, that is fundamental
in the mean and converges to f almost everywhere. Then the functions |f;,]
are simple, |f,| — |f| a.e., which due to the nonnegativity of f a.e. implies
that |f,| — f a.e. In addition, one has

/an ) = fon(@)]| i) < /\fn ()] (),

then

'7

since ‘|t| - \s\‘ < |t —s| for all t, s € R'. Tt remains to use that the integrals

of the functions |f,| are nonnegative.
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Claim (ii) is clear from the reasoning in (i).

(i) If a measurable function f takes values in [—c, ¢], then by Lemma 2.1.8
one can find a sequence of simple functions f,, with values in [—c¢, ¢] uniformly
convergent to f. It remains to apply assertion (ii) of Lemma 2.3.2.

(iv) If two mean fundamental sequences of simple functions f,, and g,, are
such that f, — f and g, — g a.e., then h, = af, + B9, — af + Bg a.e. and

/|hn—hm|dus|a|/ Ifn—fmldu+|ﬁ|/ 19 — Gl it
X X X

which means that {h,} is fundamental in the mean. It remains to use the
linearity of the integral on simple functions.

Claim (v) follows by the linearity of the integral and claim (i), since one
has g(z) — f(z) > 0 almost everywhere. O

Let us now give an equivalent definition of the Lebesgue integral used in
many books. An advantage of this definition is its somewhat greater con-
structibility, and its drawback is the necessity to consider first nonnegative
functions. If this characterization of integrability is taken as a definition, then
one can also prove the linearity of the integral. Let us set

fT =max(f,0), f~ =max(—f,0).

2.5.2. Theorem. A nonnegative p-measurable function f is integrable
precisely when the following value is finite:

I(f) = Sup{/ pdu: < f a.e., pis simple}.
X

In this case I(f) coincides with the integral of f. The integrability of an
arbitrary measurable function f is equivalent to the finiteness of I(f1) and
I(f7), and then I(f*) —I(f~) coincides with the integral of f.

PrROOF. We may deal with a version of f that is A-measurable and non-
negative. Let f,(z) = kd™" if f(z) € [k4™", (k+1)47"), k=0,...,8" — 1,
fu(x) =2™if f(x) > 2™. Then the functions f,, are simple, f,, < f, fot1 = fn
and f, — f. The integrals of f, are increasing. If f is integrable, then these
integrals are majorized by the integral of f and hence converge to some num-
ber I < I(f). It is clear that

I(f)S/fdu~

Taking into account the estimate f,, < f,,, for n < m, we conclude that {f,}
is fundamental in the mean. Hence I coincides with the integral of f, which
yields the equality I = I(f). Conversely, if I(f) is finite, then again we obtain
that {f,} is fundamental in the mean, which gives the integrability of f. The
case of a sign-alternating function reduces to the considered one due to the
linearity of the integral. O

A simple corollary of property (v) in Theorem 2.5.1 is the following fre-
quently used Chebyshev inequality.
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2.5.3. Theorem. For any p-integrable function f and any R > 0 one
has

plos 1@ = B) < & [ 1f@)|u(da). (25.1)
PROOF. Set Ag = {z: |f(z)| > R}. It is clear that R - I4,(z) < |f(z)|

for all z. Hence the integral of the function R-I4,, is majorized by the integral
of |f|, which yields (2.5.1). O

/X\fldu=0,

2.5.5. Proposition. A nonnegative p-measurable function f is inte-
grable with respect to u precisely when

2.5.4. Corollary. If

then f =0 a.e.

sup/ min(f,n)du < co.
X

n>1

PrOOF. We may deal with an A-measurable version of f. The functions
frn = min(f,n) are bounded and .A-measurable. Suppose that their integrals
are uniformly bounded. There exist simple functions g, such that we have
|[fn(x) — gn(z)| < n~1t for all z. Since f,(z) — f(z), one has g,(z) — f(x).
Whenever n > k, we have |f,, — fx| = fn — f&, hence

/Ign—gkldu=/lgn—fn+fn—fk+fk—gk|du
S/|gn*fnldﬂ+/|fn*fk|dﬂ+/|fk*9k|du

< on0)+ [ fudi = [ fdut L.

It remains to observe that the sequence

[ fuin

is fundamental, since it is increasing and bounded. Thus, the sequence {g, }
is fundamental in the mean. The converse is obvious. O

2.5.6. Corollary. Suppose that f is a p-measurable function such that
|f(2)] < g(x) a.e., where g is a p-integrable function. Then the function f is
p-integrable as well.

ProoF. The functions f+ and f~ are u-measurable and
min(f*,n) <min(g,n) and min(f,n) < min(g,n).

Hence the functions f* and f~ are integrable and so is their difference, i.e.,
the function f. O
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This corollary yields the integrability of a measurable function f such
that the function |f| is integrable. Certainly, the hypothesis of measurability
of f cannot be omitted, since there exist nonmeasurable functions f with
@) =1.

The next theorem establishes a very important property of the absolute
continuity of the Lebesgue integral.

2.5.7. Theorem. Let f be a p-integrable function. Then, for every
e > 0, there exists § > 0 such that

/D @) plde) < e if u(D) <.

PROOF. There is a mean fundamental sequence of simple functions f,
convergent to |f| almost everywhere. By Lemma 2.3.4, there exists § > 0
such that

[ f@utan)| <5 vnemw,

for any set D with u(D) < §. It remains to observe that

/lf )| p(d) = hm/fn

since f,Ip — |f|Ip a.e. and the sequence {f,Ip} is fundamental in the
mean. [l

Let us consider functions with countably many values.

2.5.8. Example. Suppose that a function f assumes countably many
values ¢, on disjoint p-measurable sets A,,. Then, the integrability of f with
respect to p is equivalent to convergence of the series > oo |cn|p(A,). In

addition,
[ fdu=" conla)
X n=1

PROOF. It is clear that the function f is measurable. Let us consider
the simple functions f, = >.i, ¢;Ia,. Then |f,| < |f|. If the function f
is integrable, then the integrals of the functions |f,| are majorized by the
integral of | f|, whence sup,, > ;" , |c;i|p(A;) < 0o, which means convergence of
the above series. If this series converges, then the sequence { f,,}, as is readily
seen, is fundamental in the mean, which implies the integrability of f because
fn(x) — f(x) for each . We also obtain the announced expression for the
integral of f. O

2.6. Integration with respect to infinite measures

In this section, we discuss integration over spaces with infinite measures.
Let i be a countably additive measure defined on a g-algebra A in a space X
and taking values in [0, +c0].
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2.6.1. Definition. If p is an infinite measure, then a function f is
called simple if it is A-measurable, assumes only finitely many values and
satisfies the condition ,u(:v: flz) # O) < 00. The integrability and integral
with respect to an infinite measure are defined in the same manner as in the
case of a space with finite measure, i.e., with the aid of Definition 2.4.1, where
we set 0- p(z: f(xz) =0) =0 for any simple function f.

With this definition many basic properties of the integral remain valid
(although there are exceptions, for example, bounded functions may not be
integrable). The integral for infinite measures can also be defined in the spirit
of Theorem 2.5.2.

The next result shows that the integral with respect to an arbitrary in-
finite measure reduces to the integral with respect to a o-finite measure (ob-
tained by restricting the initial measure), and the latter can be reduced, if
we like, to the integral with respect to some finite measure. In particular, it
follows that the integral with respect to an infinite measure is well-defined and
possesses the principal properties of the integral established in the previous
section.

2.6.2. Proposition. (i) If a function f is integrable with respect to a
countably additive measure p with values in [0,400], then the measure u is
o-finite on the set {x: f(x) #0}.

(ii) Let p be a o-finite measure on a space X that is the union of an
increasing sequence of p-measurable subsets X, of finite measure. Then, the
function f is integrable with respect to p precisely when the restrictions of f
to the sets X,, are integrable and

sup/ |f]dp < 0.
n Jx

n

In this case, one has

/fdu: lim/ fdu:Z/ fdu, Xo=@. (2.6.1)
X TR JXn =1V Xn\Xn_1

(iii) For any o-finite measure u, there exists a strictly positive p-integrable
function o with countably many values. The function f is integrable with
respect to p precisely when the function f/o is integrable with respect to the
bounded measure v = o - u defined by the equality

v(A):= /Ag(x) pldz), Ae A

In addition,
/ fdu :/ idl/. (2.6.2)
X x 0

PROOF. (i) Let us take a mean fundamental sequence of simple functions
fn convergent almost everywhere to f. The set Xo = (Jp— {z: fu(z) # 0}
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is a countable union of sets of finite measure. Since f = lim f, a.e., one has
n—oo

f =0 a.e. on the set X\ Xj.

(ii) Let a function f be integrable. As in the case of a finite measure, this
yields the integrability of |f|. Then, as is readily seen, the restrictions of |f]
to X,, are integrable. Hence the integrals of | f| over X, (which are well-defined
according to what has been proven for finite measures) are majorized by the
integral of |f| over X. Moreover, if {f;} and {g;} are mean fundamental
sequences of simple functions almost everywhere convergent to f, then the
restrictions of f; and g; to each set X,, converge in the mean to the restriction
of f to X,,. Given € > 0, one can find a number N such that

/\fj—fk\du+/lgj—gk\duée, Vj,k>N.
X X
Next we find n such that

/ [1fn]+lgn] dp < e.

X\ X,

Then, for j > N, we have

/|fj—9j|dM=/ |fj—gj|du+/ |f5 — g5l dp
X X, X\X

n

S/ |fj—9j|dﬂ+/ [1fi = Inl+ |~ —gn|+ lgn — g;1] dp
Xn X\Xn

<[ 1f-gldu2e
Xn

It follows that the integrals of f; and g; converge to a common limit, which
means that the integral is well-defined for infinite measures, too.

Conversely, if the integrals of | f| over the sets X, are uniformly bounded,
then, since the sets X,, are increasing, there exists a finite limit

lim |f] dp.
Xn

n—oo

Let us choose numbers C), ; > 0 such that

0 .
Z/ |f] dp < 277,
n=1 |f|2Cn,j

It is easy to find a sequence of simple functions f; with the following proper-
ties: forn=1,...,j on every set X,, ; = {z € X,\X—1: |f(z)| < Cy;} one
has the inequality |f; — f| < 27727 (1 + ,u(Xn))_l, and outside the union of
these sets one has f; = 0. It is clear that the sequence {f;} is fundamental
in the mean and converges almost everywhere to f. This reasoning yields
relation (2.6.1) as well.
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(iii) We observe that if A,, are pairwise disjoint sets of finite p-measure

with union X, then the function o equal to 27" (u(A4,) + 1)_1 on A, is inte-
grable with respect to p. Set

v(A) = /Ag(x) p(dx), A€ A

By using that, for every fixed n, the function A — (AN A,) is a count-
ably additive measure, it is readily verified that v is a bounded countably
additive measure. Equality (2.6.2) holds for indicators of all sets in A that
are contained in one of the sets A,. Hence it remains valid for all p-simple
functions and consequently for all u-integrable functions. Then it is clear that
the integrability of f with respect to u is equivalent to the integrability of f/o
with respect to v. Indeed, if a sequence of simple functions f; converges to f
p-a.e. and is fundamental in L' (u), then {f;/0} converges to f/o v-a.e. and
is fundamental in L'(v). Conversely, if f/o € £L}(v), then there is a sequence
of simple functions g; fundamental in L'(v) that is v-a.e. convergent to f/o.
Let X,, =}, 4;. Then g; olx, are simple functions convergent p-a.e. to f,
and the sequence {g;jolx,} is fundamental in L*(y). O

2.6.3. Remark. Given a sequence of p-integrable functions f;, the set
X mentioned in the proof of (i) can be chosen in such way that f; = 0 almost
everywhere outside X for each j.

For the reader’s convenience we summarize the basic properties of the
integral with respect to infinite measures that are immediate corollaries of
the results in the previous section and the above proposition.

2.6.4. Proposition. Let (X, A) be a measurable space and let p be a
measure on A with values in [0,+00]. Then, all the assertions of the previous
section, excepting assertion (iil) of Theorem 2.5.1, are true for .

2.6.5. Remark. The measurability and integrability of complex func-
tions f with respect to a measure pu are defined as the measurability and
integrability of the real and imaginary parts of f, denoted by Re f and Im f,

respectively. Set
/fdu :=/Refd,u+i/1mfdu.

For mappings with values in IR", the measurability and integrability are
defined analogously, i.e., coordinate-wise. Thus, the integral of a mapping
f=(f1,..., fn) with integrable components f; is the vector whose coordinates
are the integrals of f;. We draw attention to the fact that the coordinate-wise
measurability of the mapping f = (f1,..., fn) with respect to a o-algebra 4
is equivalent to the inclusion f~'(B) € A for all B € B(IR") (see Lemma
2.12.5).
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2.7. The completeness of the space L'

In this section, we show that the space of Lebesgue integrable functions
possesses the important property of completeness, i.e., every mean fundamen-
tal sequence converges in the mean (the Riemann integral does not have this
property). As in the case of simple functions, we introduce the corresponding
notion.

2.7.1. Definition. (i) A sequence of functions f, that are integrable with
respect to a measure [ (possibly with values in [0, +00]) is called fundamental
in the mean or mean fundamental if, for every € > 0, there exists a number

N such that
/ fule) = ful@) u(dx) <e, Y, k> N.
X

(ii) We say that a sequence of p-integrable functions f, converges to a
w-integrable function f in the mean if

lim [ |f(@)— ful@)] p(de) = 0.
X

n—oo

Mean fundamental or mean convergent sequences are also called fundamental
or convergent in L' ().

Such a convergence is just convergence with respect to the natural norm
of the space L' (), which is discussed in greater detail in Chapter 4.

First we consider the case where 1 is a bounded measure and then extend
the results to measures with values in [0, +0o0].

2.7.2. Lemma. Suppose that a sequence of simple functions ¢; is fun-
damental in the mean and converges a.e. to w. Then
Jim [ (o) - ¢5(a)| u(dw) =0, (2.7.1)
— 00 X
PROOF. Let ¢ > 0. By Lemma 2.3.4 applied to the sequence {¢;} and
the absolute continuity of the Lebesgue integral, there exists § > 0 such that
for all n one has

[e(@)] + len(@)] p(dz) <e
D

for any set D with measure less than §. By Egoroff’s theorem, there exists a
set X such that u(X\Xs) < § and on X5 the sequence {¢,} converges to ¢
uniformly. Hence there exists a number N such that for all 5 > N one has
sup,¢ x, |2j(z) — ¢(x)| < e. Then, for all n > N, we have

/X lo(@) — @n ()] plde)
< /X (@) ~ on() ) + / 0(2) — on(@)] plde) < ep(X) +e,

X\ Xs
which proves (2.7.1). O
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2.7.3. Theorem. If a sequence of p-integrable functions f, is fundamen-
tal in the mean, then it converges in the mean to some p-integrable function f.

PRrROOF. By the definition of integrability of f,, and Lemma 2.7.2 we ob-
tain that, for every n, one can find a simple function g, such that

/ | fn (@ ()] p(dzx) < % (2.7.2)

Then, the sequence {g,} is fundamental in the mean, since

[ 19.(0) - gu(o)l utio)
sL[|gn<m>—fn<x>\+|fn< )= fu(@)] + fu(@) — gula >|} plda)
<t [ ) = A o).

In addition, by the Chebyshev inequality, one has

(o lon(@) = aula)) = ¢) << [ 1gn(0) = gula)] (),

hence the sequence {gi} is fundamental in measure and converges in measure
to some function f. By the Riesz theorem, there exists a subsequence {gy, }
convergent to f almost everywhere. By definition, the function f is integrable.
Relations (2.7.1) and (2.7.2) yield mean convergence of {f,} to f, since

[ @) = fu@l o) < [ [156) = @)+ lan(0) = o) i)
The theorem is proven. [l

According to the terminology introduced in Chapter 4, the proven fact
means the completeness of the normed space L*(p).

2.7.4. Corollary. If a mean fundamental sequence of p-integrable func-
tions fn converges almost everywhere to a function f, then the function f is
integrable and the sequence {f,} converges to f in the mean.

It is clear from Proposition 2.6.2 and Remark 2.6.3 that the results of this
section remain valid for infinite countably additive measures.

2.7.5. Corollary. The assertions of Theorem 2.7.3 and Corollary 2.7.4
are true in the case where p is a countably additive measure with values
in [0, +o0].

The result of this section gives a new proof of the completeness of the
measure algebra (A/u,d) verified in §1.12(iii). To this end, we identify any
measurable set A with its indicator function and observe that the indicator
functions form a closed set in L'(y) and that u(A A B) coincides with the
integral of |I4 — Ip|.



130 Chapter 2. The Lebesgue integral

2.8. Convergence theorems

In this section, we prove the three principal theorems on convergence
of integrable functions; these theorems bear the names of Lebesgue, Beppo
Levi, and Fatou. As usual, we suppose first that u is a bounded nonnegative
measure on a space X with a o-algebra A. The most important in the theory
of integral is the following Lebesgue dominated convergence theorem.

2.8.1. Theorem. Suppose that p-integrable functions f,, converge almost
everywhere to a function f. If there exists a p-integrable function ® such that

[fn(z)| < ®(x) a.e. for everyn,

then the function f is integrable and

[ 1@ utdz) =t [ () ). (281)
X X
In addition,

lim [ |f(z) = fu(z)| p(dz) = 0.
n—oo X

PRrROOF. The function f is measurable, since it is the limit of an almost

everywhere convergent sequence of measurable functions. The integrability of

f follows by the estimate |f| < ® a.e. Let € > 0. By the absolute continuity

of the Lebesgue integral, there exists § > 0 such that
/ @) plde) < 5 i u(D) <.
D

By Egoroff’s theorem, there is a set X such that p(X\Xs5) < ¢ and the
functions f, converge to f uniformly on X;s. Hence there exists a number N
such that

|fu(x) — f(2)] < X+ 1

for all n > N. Therefore, for n > N we have
/ F(@) — ful@)] p(de)
X
< z) — fn(z dxr z) — fn(x dz
/X\X5|f<> Fu)] i >+/ 1£(@) — fula)| plde)

Xs

9 S &
<2 O(z)puldr) + ————n(Xs5) < -+ - ==
Jo )+ ) < 5

The theorem is proven. |

The next very important result is the monotone convergence theorem due
to Lebesgue and Beppo Levi.

2.8.2. Theorem. Let {f,} be a sequence of p-integrable functions such
that fp(x) < foe1(x) a.e. for each n € IN. Suppose that

sgp/X Jn(z) p(de) < oco.
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Then, the function f(x) = lim f,(z) is almost everywhere finite and inte-
grable. In addition, equality (2.8.1) holds true.

Proor. For n < m we have

J =t = [ (= = [ Fudi= [ g

Since the sequence of integrals of the functions f,, is increasing and bounded,
it is convergent. Therefore, the above equality implies that the sequence {f,}
is fundamental in the mean, hence converges in the mean to some integrable
function g. Mean convergence yields convergence in measure (due to the
Chebyshev inequality). By the Riesz theorem some subsequence {f,, } C {fn}
converges to g almost everywhere. By the monotonicity, the whole sequence
fn(x) converges to g(x) for almost all 2, whence we obtain the equality f(z) =
g(z) almost everywhere. In particular, f(x) < oo a.e. The last claim follows
by the Lebesgue theorem, since |f,(x)| < |f(x)| + |fi(x)| a.e. for each n. O

The third frequently used result is Fatou’s theorem (sometimes it is called
Fatou’s lemma).

2.8.3. Theorem. Let {f,} be a sequence of nonnegative p-integrable
functions convergent to a function f almost everywhere and let

sup/X fa(x) u(de) < K < 0.

Then, the function f is p-integrable and

[ 1@ utan) < .
X
Moreover,

/X F(2) plda) < liminf [ fo(@) pu(da).

n—oo X
PROOF. Set g,(z) = infy>, fr(x). Then

Oﬁgnﬁfm 9n§9n+1-

Hence the functions g, are integrable and form a monotone sequence, and
their integrals are majorized by K. By the monotone convergence theorem,
almost everywhere there exists a finite limit

g(x) = lim g,(z),

n—oo

the function g is integrable, its integral equals the limit of the integrals of the
functions g, and does not exceed K. It remains to observe that f(z) = g(z)
a.e. by convergence of {f,(x)} a.e. The last claim follows by applying what
we have already proven to a suitably chosen subsequence. ([
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2.8.4. Corollary. Let {f,} be a sequence of nonnegative p-integrable
functions such that

bup/fn ) < K < .

Then, the function iminf f,, is p-integrable and one has
n—oo

/X Hminf £, (z) p(dz) < liminf / fo(z <K.

PRrRoOF. Note that
liminf f,,(z) = lim 1nf fn(x)

n—oo k—oon>

and apply Fatou’s theorem. O

2.8.5. Theorem. The dominated convergence theorem and Fatou’s the-
orem remain valid if in place of almost everywhere convergence in their hy-
potheses we require convergence of {fn} to f in measure pu.

PROOF. Since {f,} has a subsequence convergent to f almost everywhere,
we obtain at once the analog of Fatou’s theorem for convergence in measure,
as well as the conclusion of the Lebesgue theorem for the chosen subsequence.
It remains to observe that then our claim is true for the whole sequence {f,}.
Indeed, otherwise we could find a subsequence f,, such that

J Vo= flduz >0
X

for all k, but this is impossible because we would choose in {f,, } a further
subsequence convergent a.e., thus arriving at a contradiction. ([

We now extend our results to measures with values in [0, +00].

2.8.6. Corollary. The dominated convergence theorem, monotone con-
vergence theorem, Fatou’s theorem, Corollary 2.8.4 and Theorem 2.8.5 remain
valid in the case when p is an unbounded countably additive measure with val-
ues in [0, +00].

PROOF. In order to extend these theorems to unbounded measures, one
can apply Proposition 2.6.2 and Remark 2.6.3. Indeed, let 1 be an unbounded
measure and let f,(z) — f(x) a.e., where the functions f, are integrable.
According to Remark 2.6.3, there exists a measurable set Xy such that the
measure p on X is o-finite, i.e., X is the countable union of pairwise disjoint
sets X,, € A of finite measure, and all functions f,, and f vanish on the
complement of Xy. Let us take a function g with countably many values that
is strictly positive on X and integrable with respect to p (such a function
has been constructed in Proposition 2.6.2). Let us consider the bounded
measure v = - u. The functions F,, = f,,/o and F = f/p are integrable with
respect to v and F,, — F v-a.e. If the functions f, are majorized by a u-
integrable function ®, then the function ¥ = ®/p turns out to be v-integrable
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and majorizes the sequence {F,}. According to the dominated convergence
theorem for the measure v and the functions Fj,, we obtain the corresponding
assertion for p and f,. In a similar manner one extends to infinite measures
all other results of this section. (|

If one introduces the integral according to Theorem 2.5.2, then one can
prove first the Beppo Levi theorem and derive from it the Lebesgue and Fatou
theorems.

By using the Lebesgue dominated convergence theorem one proves the
following assertion about continuity and differentiability of integrals with re-
spect to a parameter.

2.8.7. Corollary. Let p be a nonnegative measure (possibly with values
in [0, +00]) on a space X and let a function f: X x(a,b) — R' be such that
for every a € (a,b) the function x — f(x,«) is integrable.

(i) Suppose that for u-a.e. x the function o — f(z,a) is continuous
and there exists an integrable function ® such that for every fixed oo we have
|f(z,a)| < ®(x) p-a.e. Then, the function

J: aH/Xf(x,oz)u(dx)

18 continuous.

(ii) Suppose that, for p-a.e. x, the function a — f(x, ) is differentiable
and there exists a p-integrable function ® such that for p-a.e. x we have
|0f (z, ) /0a| < ®(x) for all a simultaneously. Then, the function J is dif-

ferentiable and
’ of (z,
J(a):/Xifg;a) u(da).

PROOF. Assertion (i) is obvious from the Lebesgue theorem. (ii) Let «
be fixed and let ¢,, — 0. Then, by the mean value theorem, for p-a.e. x, there
exists £ = £(x, @, n) such that

t (flz,a +t) — f(z,a))| = [0f(x,€) /00| < B().

The above ratio converges to df(z,a)/0a. By the Lebesgue theorem, the
limit lim ¢, (J(a+t,) — J(a)) equals the integral of 0f(z,a)/da. O

Exercise 2.12.68 contains a modification of assertion (ii), ensuring the
differentiability at a single point.

Considering the functions f,(z) = nlg1/m(x) that converge to zero
pointwise on (0,1], we see that in the dominated convergence theorem one
cannot omit the integrable majorant condition, and that in Fatou’s theorem
one cannot always interchange the limit and integral. An interesting conse-
quence of the absence of integrable majorants is found in Exercise 10.10.43 in
Chapter 10. However, it may happen that the functions f,, converge to f in
the mean without having a common integrable majorant (Exercise 2.12.41).
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In addition, there is no need to require the existence of integrable majorants
in the following interesting theorem due to Young (see Young [1034, p. 315)).

2.8.8. Theorem. Suppose we are given three sequences of p-integrable
functions {fn}, {gn}, and {hn} (where p may take values in [0,4o0]) such
that

gn(z) < fu(z) < ho(z)  ae.

and

n—oo n—oo n—oo

Let g and h be integrable and let

lim hnd,u:/ hdu, lim/gnd,u:/gd,u.

Then f is integrable and

lim fndp = / fdu.

PROOF. It is clear that f is integrable, since g(z) < f(z) < h(z) a.e.,
whence we obtain |f(z)| < |g(z)| + |h(z)| a.e. By Fatou’s theorem we obtain
the relation

[ tdu= [ gdu= [t (£, - g du
<liminf | (fn — gn)dp = liminf fndy—/ gdu,
b's b's

n—oo X n—oo

whence one has

/ fdu < liminf/ fndu.
X n—oo X

Similarly, by using h,, we obtain

/ fdu > limsup/ fndu.
b'e n—oo JX

Note that we could also apply the concept of the uniform absolute continuity
(see §4.5 and Exercise 4.7.71). O

In Young’s theorem, the functions f,, may not converge to f in the mean,
but if g, < 0 < h,, then we also have mean convergence, which follows at
once from this theorem and the estimate 0 < |f,, — f| < hp—gn+|f|- A simple
corollary of Young’s theorem is the following useful fact obtained in the works
of Vitali (and also Young and Fichtenholz) for Lebesgue measure and later
rediscovered by Scheffé in the general case (it is called in the literature the
“Scheffé theorem”; it appears that the name “Vitali-Scheffé theorem” is more
appropriate).
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2.8.9. Theorem. If nonnegative pu-integrable functions f, converge a.e.
to a p-integrable function f (where p is a measure with values in [0, +00]) and

lim nw=/fm
X X

then
lim |f — fnldu=0.
n—oo X

For functions f, of arbitrary sign convergent a.e. to f, the mean convergence
of fn to f is equivalent to convergence of the integrals of |f,| to the integral

of 1.
PROOF. Since 0 < |f, — f| < |fn] + |f], Young’s theorem applies. O

An interesting generalization of this result is contained in Proposition
4.7.30 in Chapter 4.

All the results in this section have exceptional significance in the theory
of measure and integration, which we shall see below. So, as an application of
these results we consider just one, but rather typical example of how Fatou’s
theorem works.

2.8.10. Example. Suppose we are given a sequence of integrable func-
tions f,, on a space X with a probability measure p and that there exists
M > 0 such that, for all n € IN, we have

J,

limsup/ |foldp < 0o and  liminf|f,(z)| < oo a.e.
X n—oo

n—oo

fulo) = [ Fui

Then either

or

limsup/ |fnldp =00 and limsup|f,(z)] =00 ae.
X

n—oo n—oo
In particular, if for a.e.  the sequence of numbers f,,(x) is bounded, then the
integrals of | f,,| are uniformly bounded.

ProoOF. We observe that

/len(x)l—/xfnldu2u(dx)=/xlfnl2dﬂ— [Vl

S/XIntQdu—/andMQZ/Xfn(x)—/xfndu?u(dw)SM/Xfnldu,

since the absolute value of the integral of f,, does not exceed the integral
of |fn|. This inequality, weaker than in the theorem, will actually be used.
Let J, be the integral of |f,|. If the numbers J, are bounded, then, by
Fatou’s theorem, one has hnnlioréf |fn(z)|] < oo a.e. Otherwise, passing to a

2
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subsequence, we may assume that J, — oco. The above-mentioned inequality
yields

2
u(dx) < M.

/X\un(xn/@— Vo

By Fatou’s theorem, one has lim inf‘ [ fr @)/ T — VI
follows that limsup |f,,(z)| = oo a.e. O

n—oo

< 00 a.e., whence it

Exercise 2.12.95 contains a generalization of this example. In Chapter 4
and other exercises in this chapter, other useful results related to limits under
the integral sign are given.

2.9. Criteria of integrability

The definition of the integral is almost never used for verification of the
integrability of concrete functions. Very efficient and frequently practically
used sufficient conditions of integrability are given by the Beppo Levi and
Fatou theorems. In real problems, one of the most obvious criteria of inte-
grability of measurable functions is employed: majorization in the absolute
value by an integrable function. In this section, we derive from this trivial
criterion several less obvious ones and obtain the integrability criteria in terms
of convergence of series or Riemannian integrals over the real line.

2.9.1. Theorem. Let (X, A,pu) be a space with a finite nonnegative
measure and let f be a p-measurable function. Then, the integrability of f
with respect to p is equivalent to convergence of the series

Znu(m: n<|f(z)] <n+1), (2.9.1)

n=1

and is also equivalent to convergence of the series

Z p(z: |f(z)] =n). (2.9.2)
n=1
PROOF. Let Ay = {z: |f(z)] <1}. Set A, = {z: n < |f(z)] <n+1}
for n € IN. Then the sets A,, are y-measurable disjoint sets whose union is the
whole space up to a measure zero set. The function g defined by the equality
gla, =n,n=0,1,...,is obviously pg-measurable and one has g(z) < |f(x)| <
g(z)+1. Therefore, the function g is integrable precisely when f is integrable.
According to Example 2.5.8, the integrability of g is equivalent to convergence
of the series (2.9.1). It remains to observe that the series (2.9.1) and (2.9.2)
converge or diverge simultaneously. Indeed, {z: |f(z)] > n} = Uy, 4k,
whence we obtain

ule: 15@)] = n) = 3 u(Ax).
k=n

Thus, taking the sum in n, we count the number u(A,) on the right-hand
side n times. (]
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2.9.2. Example. (i) A function f measurable with respect to a bounded
nonnegative measure u is integrable in every degree p € (0, 00) precisely when
the function p(z: |f(x)| > t) decreases faster than any power of ¢ as t — +o00.

(ii) The function |Inz[? on (0,1) is integrable with respect to Lebesgue
measure for all p > —1, and the function z¢ is integrable if o > —1.

For infinite measures the indicated criteria do not work, since they do not
take into account sets of small values of |f|. They can be modified for infinite
measures, but we give instead a universal criterion. One of its advantages is
a reduction of the problem to a certain Riemannian integral.

2.9.3. Theorem. Let pi be a countably additive measure with values in
[0, +00] and let f be a u-measurable function. Then, the u-integrability of f is
equivalent to the integrability of the function t — p(z: |f(z)| > t) on (0,400)
with respect to Lebesgue measure. In addition,
o]
J @t = [ e @) > 0 (293
PROOF. There are three different proofs of (2.9.3) in this book: see
Theorem 3.4.7 in Chapter 3, where a simple geometric reasoning involving
double integrals is given, and Exercise 5.8.112 in Chapter 5, where an even
shorter proof is based on integration by parts. Here no additional facts are
needed. Let f be integrable. Then, for any n, the function f,, equal |f(z)]
if n=1 < |f(2)| < n and 0 otherwise is integrable as well. If we prove (2.9.3)
for f, in place of f, then, as n — oo, we obtain this equality for f, since the
integrals of f, converge to the integral of |f|, and the sets {z: f.(z) > t}
increase for every t to {x: |f(x)| > t} so that the monotone convergence the-
orem applies. The function f,, is nonzero on a set of finite measure. Thus, the
general case is reduced to the case of a finite measure and bounded function.
The next obvious step is a reduction to simple functions; it is accomplished by
choosing a sequence of simple functions g,, uniformly convergent to f. Clearly,
plx: |f(x)] >1t) = nan;O p(x: |gn(x)] > t) for each t, with the exception of an

at most countable set of points ¢, where p(x: |f(x)] =t) > 0 (this is readily
verified). Hence it remains to obtain (2.9.3) for simple functions. This case
is verified directly: if |f| assumes values ¢; < -+ < ¢, on sets Ay,..., Ay,
then on [¢;—1,¢;) the function p(x: |f(x)] > t) equals p(Bpi1—;), where
Bj:=A,11-;U---UA, for j =1,...,n. The reader can easily provide the
details.

If the function p(x: |f(z)| > ¢) on the half-line is integrable, then the
functions p(z: |f,(x)| > t), where the functions f, are defined above, are
integrable as well. It is clear that the set {|f| > 1/n} has finite measure.
Hence the bounded functions f, are integrable. According to (2.9.3) the
integrals of f,, are majorized by the integral of ,u(x: |f(z)] > t) over the
half-line, which yields the integrability of f by Fatou’s theorem. O
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2.10. Connections with the Riemann integral

We assume that the reader is familiar with the definition of the Riemann
integral (see, e.g., Rudin [834]). In particular, the Riemann integral of the
indicator function of an interval is the interval length, hence for piecewise
constant functions on an interval the Riemann integral coincides with the
Lebesgue one.

2.10.1. Theorem. If a function f is Riemann integrable in the proper
sense on the interval I = [a,b], then it is Lebesgue integrable on I and its
Riemann and Lebesgue integrals are equal.

Proor. We may assume that b—a = 1. For every n € IN we partition the

interval I = [a, b] into disjoint intervals [a,a +27"),...,[b — 27", ] of length
27". These intervals are denoted by I,...,Ian. Let my = inf,es, f(2),
My = sup,eq, f(z). Let us consider step functions f, and g, defined as

follows: f, = my on Ix, g, = My on I, k = 1,...,2". It is clear that
fn(x) < f(.’l?) < gn(x) In additiona fn(‘r) < fn+1(x)7 gn+1(.’)3) < gn('r)
Hence the limits ¢(z) := lim f,(z) and ¢(x) := lim g,(x) exist, and one
n—oo n—oo
has ¢(z) < f(z) < ¢(x). It is known from the elementary calculus that the
Riemann integrability of f implies the equality
b b
lim [ fo(z)de= lim [ g,(z)dz= R(f), (2.10.1)

n—0oo n—oo

where R(f) denotes the Riemann integral of f (we also use the aforementioned
coincidence of the Riemann and Lebesgue integrals for piecewise constant
functions). The functions ¢ and ¢ are bounded and Lebesgue measurable
(being the limits of step functions), hence they are Lebesgue integrable. It is
clear that

/ fulx dx</ (x)d:tg/bl/}(x)dxg/bgn(:v)dm

for all n. By (2.10.1) the Lebesgue integrals of the functions ¢ and ¢ equal

R(f), hence p(z) = ¢(z) a.e., since p(zr) < 1p(x). Therefore, p = f =9 a.e.,
which yields our claim. O

There exist functions on an interval that have improper Riemann integrals
but are not Lebesgue integrable (see Exercise 2.12.37). However, the existence
of the absolute improper Riemann integral implies the Lebesgue integrability.

2.10.2. Theorem. Suppose that a function f is integrable on an inter-
val I (bounded or unbounded) in the improper Riemann sense along with the
function |f|. Then f is Lebesque integrable on I and its improper Riemann
integral equals its Lebesque integral.

PROOF. We consider the case where the interval I = (a, b] is bounded and
f is integrable in the proper Riemann sense on every interval [a + €, b], ¢ > 0.
The case where a = —o0, is similar, and the general case reduces to finitely
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many considered ones. Let f, = f on [a+n"1b], f, = 0 on (a,a +n~1).
By the Riemann integrability, the function f is Lebesgue measurable on the
interval [a + n~1,b], hence the function f, is measurable. It is clear that
fn — f pointwise, hence f is measurable on (a,b]. By the improper integra-
bility of |f], the functions |f,| < |f| have the uniformly bounded Lebesgue
integrals (equal to their Riemann integrals by the previous theorem). By the
Beppo Levi theorem (or by the Fatou theorem), the function |f| is Lebesgue
integrable. By the dominated convergence theorem, the Lebesgue integrals of
the functions f, over (a,b] approach the Lebesgue integral of f. Hence the
Lebesgue integral of f equals the improper Riemann integral. O

It is worth noting that even the absolute improper Riemann integral has
no completeness property from §2.7: let us take step functions on [0,1] con-
vergent in the mean to the indicator of the compact set from Example 1.7.6
(or the set from Exercise 2.12.28).

Closing our discussion of the links between the Riemann and Lebesgue
integrals we observe that the Lebesgue integral of a function of a real variable
can be expressed by means of certain generalized Riemann sums, although
not as constructively as the Riemann integral. For example, if the function
f has a period 1 and is integrable over its period, then its integral over [0, 1]
equals the limit of the sums

on
27"y flwo + k27
k=1
for a.e. xg. Concerning this question, see Exercise 2.12.63, Exercise 4.7.101 in
Chapter 4, the section on the Henstock—Kurzweil integral in Chapter 5, and
Example 10.3.18 in Chapter 10.

2.11. The Holder and Minkowski inequalities

Let (X, A, ) be a space with a nonnegative measure g (finite or with
values in [0,400]) and let p € (0,400). Let £P(u) denote the set of all u-
measurable functions f such that |f|P is u-integrable. In particular, £!(u) is
the set of all u-integrable functions. Let £°(u) denote the class of all p-a.e.
finite p-measurable functions. Two p-measurable functions f and g are called
equivalent if f = g p-a.e. The corresponding notation is f ~ g. It is clear
that if f ~ g and g ~ h, then f ~ h and g ~ f. In addition, f ~ f. Thus,
we obtain an equivalence relation and the collection £°(u) of all measurable
functions is partitioned into disjoint classes of pairwise equivalent functions.
We denote by L°(u) and LP(u) the corresponding factor-spaces of the spaces
LO(1) and L£P(u) with respect to this equivalence relation. Thus, LP(u) is
the set of all equivalence classes of y-measurable functions f such that |f|? is
integrable. The same notation is used for complex-valued functions. In the
case of Lebesgue measure on IR"™ or on a set £ C IR" we use the symbols
LP(IR™), LP(IR™), LP(E), and LP(FE) without explicit indication of measure.
In place of L?([a,b]) and LP([a,+00)) we write LP[a,b] and LP[a, +00).
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Sometimes it is necessary to explicitly indicate the space X in the above
notation; then the symbols £P(X, ), LP(X, ) are employed. It is customary
in books and articles on measure theory to allow the deliberate ambiguity
of notation in the expressions of the type “a function f in LP”, where one
should say “a function f in LP” or the “equivalence class of a function f
in LP”. Normally this does not lead to misunderstanding and may be even
helpful in formulations as an implicit indication that the assertion is valid not
only for an individual function, but for the whole equivalence class. We do not
always strictly distinguish between functions and their classes, too. However,
one should remember that from the formal point of view, an expression like
“a continuous function f from LP” is not perfectly correct, although one can
hardly advise the precise expression “the equivalence class of f € LP contains
a continuous function”. Certainly, one can simply say “a continuous function
feLr(p)”.

For 1 < p < oo we set

1/
11l i= 1l = ([ 1817 0m) ™", 1 € £

The same notation is used for elements of L?(u).
Finally, let £°°(u) be the set of all bounded everywhere defined p-measu-
rable functions. For f € £°(u) we set

[fllzoe(uy = [ flloc := inf sup |f(z)].
Fofaex

A function f is called essentially bounded if it coincides p-a.e. with a bounded
function. Then the number || f| o is defined as above. An alternative notation
is esssup | f|, vraisup | f]|.

In the study of the spaces L£P(u) and the corresponding normed spaces
L?(u) considered in Chapter 4, we need the following Holder inequality, which
is very important in its own right, being one of the most frequently used
inequalities in the theory of integration.

2.11.1. Theorem. Suppose that 1 < p < oo, ¢ =p(p—1)"1, f € LP(u),
g€ L9(u). Then fg € £'(u) and |fgls < | fllgll, vc., one has

st < ([ asean) ([ o)™ (2.11.1)

PRrROOF. The function fg is defined a.e. and measurable. It is readily
shown (see Exercise 2.12.87) that for all nonnegative a and b one has the
inequality ab < %’ + %. Therefore,

@) o) _ LIf@)I"  1lg@)l”
Ifllp lglle — » IfIE a llgllg
The right-hand side of this inequality is integrable and its integral equals 1,

hence the left-hand side is integrable as well and its integral does not exceed 1,
which is equivalent to (2.11.1). O
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2.11.2. Corollary. Under the hypotheses of the above theorem one has
1/p 1/q
[ tgdn< ([ 1sran) ([ loman) " (2.11.2)
X X X

In Exercise 2.12.89 the conditions for the equality in (2.11.2) are investi-
gated.

An immediate corollary of the Holder inequality is the following Cauchy—
Bunyakowsky inequality (also called Cauchy—Bunyakowsky—Schwarz inequal-
ity), which, however, can be easily proved directly: see Chapter 4, §4.3.

2.11.3. Corollary. Suppose that f,g € L?(u). Then fg € L (1) and

/ngdus(/x|f|2du /|g\2du )" (2.11.3)

Letting g = I {0y we arrive at the following estimate.

2.11.4. Corollary. Suppose that f € LP(p) and p(z: f(z) #0) < occ.
Then

[t < utes 120" ([ 1) " a=pe -1

Sometimes the following generalized Holder inequality is useful; its partial
case where r = 1, p1 = p, p2 = q we have just proved.

2.11.5. Corollary. Let 1 <r,p1,...,pp <00, 1/p1+---+1/p, =1/r,
and let f1 € L7 (p ),.. , fn € LP(u). Then f1~-«fn € L7(u) and one has

/\fl ful” du /Ifl\f’ldu /|f |Pn dp p". (2.11.4)

PROOF. We may assume that r = 1, passing to new exponents p}, = p;/r.
For n = 2 inequality (2.11.4) is already known. We argue by induction on
n and suppose that the desired inequality is known for n — 1. Let us apply
the usual Hélder inequality with the exponents p; and ¢ given by the equality
1/¢ = 1/pa + -+ 4+ 1/p, to the integral of the product |fi||f2--- fn| and
estimate it by || fillp,||f2- - fullq- Now we apply the inductive assumption
and obtain

1f2- fullg < [ f2llps - - [ fnllp.
which completes the proof. ([l

Holder’s inequality may help to establish membership in LP.

2.11.6. Example. Let p be a finite nonnegative measure. Suppose

that a p-measurable function f satisfies the following condition: there exist

€ (1,00) and M > 0 such that, for every function ¢ € L£(u), one has
fe € L'(u) and

/X fedu < MllellLe -
Then f € L9(u), where ¢ = p(p —1)~*, and || f||pa¢u) < M.
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Indeed, taking for ¢ the functions ¢,, := sgn f|f|p*11{|f|§n}, we obtain

1/q
[ iransa(f e
{If1<n} {If1<n}

which gives the estimate ||fIf¢j<nillzr(n) < M. By Fatou’s theorem we
arrive at the desired conclusion. The same is true for infinite measures if the
hypothesis is fulfilled for all ¢ € £>°(u) N L (w).

We recall that Chebyshev’s inequality estimates large deviations of a func-
tion from above. As observed in Salem, Zygmund [842], one can estimate
moderate deviations of functions from below by using Hoélder’s inequality.

2.11.7. Proposition. Let p be a probability measure on a measurable
space (X, A), let f € LP(u), where 1 < p < oo, and let ¢ = p(p —1)~. Then
one has

112,
ez |f<m>|>A||fL1<H>)><1—A>QW, Ael0,1).  (21L5)
LP(p

PrOOF. Letting A = {z: |f(x)] > A||f|l1(n} and g = |f|14 one has

(/ngu)p < u(A)”/q/Xgp dp < u(A)”/q/X |fIP dp.

Since [[fllLr () < llgllergy + M F L, ies (0= Nfllzrgy < lgllpr ), we
obtain (1 — )\)p||f||’£1(u) < u(A)p/q||f|\ip(u), which yields the claim. O

2.11.8. Example. Suppose that p is a probability measure. Let a
sequence {f,} C L?(p) be such that 0 < o < || fnllr2(u) < Bl fnllLr() with
some constants «, 3. Then, for every A € (0,1), the set of all points z
such that |f,(x)] > AaB~! for infinitely many numbers n has measure at
least (1 — \)2372.

PrOOF. We have
(o 1fa@)] = AaB7h) = (1= 22072
It remains to refer to Exercise 1.12.89. O
Let us now turn to the following Minkowskiinequality.

2.11.9. Theorem. Suppose that p € [1,4+00) and f,g € LP(n). Then
f+g€ LP(n) and one has

</X |f +gl” du)l/p < </X |f|pdﬂ> v + </X Iglpdu> 1/p. (2.11.6)

PRrROOF. The function f + g is defined a.e. and measurable. For p = 1
inequality (2.11.6) is obvious. For p > 1 we have |f + g|? < 2P(|f|? + |g|?),
hence |f + g|P € £1(n). We observe that

(@) + g(@)P < |f(2) + g(@) P (@)] + | (2) + g(@) P g(w)].  (211.7)
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Since |f 4+ g|P~t € LP/P=V () = L(p), by the Hélder inequality one has

Jareaptisian< (1 varan) ([ v an) "

Estimating in a similar manner the integral of the second summand on the
right-hand side of (2.11.7), we arrive at the estimate

Jarvaran< ([ 1r+aran)” ([ 1sra)” e (] o)™

Noting that 1 — 1/q = 1/p, we obtain [|f + gll, < |fll, + lgll, 0

Although one can take sums of functions in the spaces £P(u) and multiply
them by numbers (on sets of full measure), these spaces are not linear, since
the indicated operations are not associative: for example, if a function f is
not defined at a point z, then neither is f + (—f), but this function must
be everywhere zero because in a linear space there is only one zero element.
Certainly, one could take in £P(u) a subset consisting of all everywhere defined
finite functions, which is a linear space, but it is more reasonable to pass to
the space LP(u).

2.12. Supplements and exercises

(i) The o-algebra generated by a class of functions (143). (ii) Borel mappings
on IR"™ (145). (iii) The functional monotone class theorem (146). (iv) Baire
classes of functions (148). (v) Mean value theorems (150). (vi) The Lebesgue—
Stieltjes integral (152). (vii) Integral inequalities (153). Exercises (156).

2.12(i). The o-algebra generated by a class of functions
Let F be a class of real functions on a set X.

2.12.1. Definition. The smallest o-algebra with respect to which all
functions in F are measurable is called the o-algebra generated by the class F
and is denoted by o(F).

It is clear that o(F) is the o-algebra generated by all sets of the form
{f <e}, feF cec R Indeed, the o-algebra generated by these sets
belongs to o(F) and all functions in F are measurable with respect to it.

The simplest example of the o-algebra generated by a class of functions
is the case when the class F consists of a single function f. In this case

o({f})={f"1(B): BeBMR")}.

Let IR*° be the countable product of real lines, i.e., the space of all real
sequences © = (x;). We denote by B(IR°°) the o-algebra generated by all sets
of the form

Civ={reR™: 2;<t}, i€, tcR"
The sets in B(IR*) are called Borel sets in IR™. Functions on IR° measurable
with respect to B(IR™) are called Borel or Borel measurable.
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2.12.2. Lemma. Let F be a class of functions on a nonempty set X.
Then, the o-algebra o(F) generated by them coincides with the class of all
sets of the form

Egyp={z: (fi(@),...,fu(2),...) €B}, f;€F, BeBIR™). (2.12.1)

PROOF. It is clear that sets of the indicated type form a o-algebra. We
denote it by £. This o-algebra contains all sets {f < ¢}, where f € F, ¢ € R
Indeed, if we take all f, equal f and put B = C1, then E,) g = {f < t}.
Hence o(F) C £.

On the other hand, Es,) g € o(F) for B € B(IR™). Indeed, it is readily
verified that for fixed f1,...,fn,... the class

Bo = {B e B(IR™): E(,p€oc(F)}

is a o-algebra. The sets C;; belong to By by the definition of o(F). Hence,
B(IR*™®) C By as claimed. It follows that £ C o(F), whence £ = o (F). O

2.12.3. Theorem. Let F be a class of functions on a nonempty set X.
Then, a function g on X 1is measurable with respect to o(F) precisely when g
has the form

g(x) :w(fl(x),...7fn(x),...), (2.12.2)

where f; € F and 1 is a Borel function on R*™. If F is a finite family
{f1,--+, fn}, then for ¢ one can take a Borel function on R™.

PrOOF. If gis the indicator of a set E, then our claim follows by the above
lemma: writing E in the form (2.12.1) with some f; € F and B € B(IR*),
we take ¢p = Ig. If g is a finite linear combination of the indicators of
sets E1, ..., Ey with coefficients cq,...,cx, then the functions fi(j) involved
in the representation of E;, can be arranged in a single sequence {f;} in
such a way that to the functions fi(j), j=1,...,k, there will correspond the
subsequences Ji(j). Set pj(x1,22,...) = wj(foj),fEJéj)7...). It is clear that

(; is a Borel function on IR™. Then g can be written in the form

k
g=crn(fo fayse ) oot et (fap ) = 3 ei0i (1 fon ).

J=1

Finally, in the general case, there exists a sequence of simple functions
gr. pointwise convergent to g. Let us represent every function gx in the form
(2.12.2) with some functions fl-(k) € F and Borel functions 1y, on B(IR*>). We

can arrange the functions fi(k) in a single sequence {f;}. As above, we can
write gr = ¢k (f1, fo2,...), where @ is a Borel function on IR (which is the
composition of ¢y with a projection to certain coordinates). Denote by Q the
set of all (z;) € IR*™ such that ¢(z) := klin;o ¢k () exists and is finite. Then

Q € B(IR™). Letting ¢ = 0 outside 2, we obtain a Borel function on R*. It
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remains to observe that g(z) = Lb(fl(x), fa(z), .. ) Indeed, for any = € X,
the sequence o (fl(x), fa(z), .. ) converges to g(x). Therefore,

(f1($)7f2(ff)a~-) €Q and w(fl(m),fg(x),...):g(m).

In the case when the family F consists of n functions, it suffices to take
functions 1 on IR". O

It is easily seen that the o-algebra generated by a family of sets coincides
with the o-algebra generated by the indicator functions of those sets.

2.12.4. Example. Let {A4,} be a countable collection of subsets of a
space X. Then, the o-algebra generated by {A,} coincides with the o-algebra
generated by the function

Ple) = 3374, ()

and is the class of all sets of the form ¢~1(B), B € B(R").

PRrROOF. It is clear that the function ¢ is measurable with respect to
the o-algebra o({A,}). Hence the o-algebra o({1}) belongs to o({A4.}).
The inverse inclusion follows from the fact that I4, = 6, o v, where 0,
are Borel functions on [0,1) defined as follows: for any number z with the
ternary expansion z = » -, ¢,37", where ¢, = 0,1,2, we set 0,,(2) := cj.
For all points z whose ternary expansion is not unique (such points form
a countable set) we take for representatives finite sums (for example, the
sequence (0,2,2,2,...) is identified with (1,0,0,0,...)). It is clear that the
step functions 6,, are Borel. O

2.12(ii). Borel mappings on IR"

As in the case of real functions, the mapping f: IR™ — IR is called Borel
if it is (B(IR™), B(IRk))-measurable, i.e., the preimage of any Borel set in IR”
is Borel in IR". If we write f in the coordinate form f = (f1,..., fx), then
f is Borel exactly when so are all coordinate functions f;. This is clear from
the following general assertion.

2.12.5. Lemma. Let (X,Bx), (Y1,B1),...,(Ys, Bx) be measurable spaces
and let the space Y = Yix- - XY}, be equipped with the o-algebra By generated by
the sets B1x---xBy, B; € B;. Then, the mapping f = (f1,...,fx): X =Y is
(Bx, By )-measurable precisely when all functions f; are (Bx, B;)-measurable.

PROOF. If the mapping f is measurable with respect to the indicated o-
algebras, then every component f; is measurable with respect to (Bx, B;) by
the measurability of the projection (y1,...,yr) — y; with respect to (By, B;),
which follows directly from the definition of By. Now suppose that every
function f; is measurable with respect to (Bx,B;). Then f~1(Byx---xBy) =

ﬂle 71 (B;) € Bx for all B; € B;. The class of all sets E C Y with
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f~Y(E) € Bx is a 0-algebra. Since this class contains the products Byx- - -xBy,
generating By, it contains the whole o-algebra By . (]

It is easily seen that the composition of two Borel mappings is a Borel
mapping and that every continuous mapping f: IR" — IR” is Borel. There-
fore, as already explained in §1.10, for any set A € B(IR"), the set AxIR? is
Borel in R" xIR? (as the preimage of A under the natural projection), hence
Ax B € B(R" xIR?%) whenever A € B(R"), B € B(R?).

2.12.6. Proposition. Let f: R™ — IR® be a Borel mapping. Then its
graph 'y = {(ac,f(x)) cx € IR”} is a Borel subset of R" xIRF.

PROOF. It follows by the previous lemma that (z,y) — (f(z),y) from
R" xR* to IR* xIR* is a Borel mapping. By the continuity of the function
(z,9) — |ly—z|| we conclude that the function g: (z,y) — ||ly— f(x)|| is Borel.
It remains to observe that I'y = g~ *(0). O

2.12.7. Corollary. Let f: R" — R"* be a Borel mapping and let
B C R" be a Borel set. Then f(B) is a Souslin set. In particular, f(B)
is measurable with respect to any Borel measure.

PROOF. As we proved, the graph of the mapping f is a Borel subset of
the space IR" xIRF. The projection of this graph to IR” is f(B). O

We shall see in Chapter 6 that every Souslin set is the continuous image
of a Borel set, whence it follows that Corollary 2.12.7 remains valid for any
Souslin set B as well.

2.12.8. Corollary. Let f be a bounded Borel function on IR™ x IR¥.
Then, the function g(z) = sup,cgr f(x,y) is measurable with respect to any
Borel measure on IR™.

PrOOF. For every ¢ € IR', the set {z € R": g(z) > ¢} coincides with
the projection to IR"™ of the Borel set {(z,y) € R" xR*: f(x,y) > cy. O

We note that the considered function g may not be Borel (see Exercise
6.10.42 in Chapter 6).

2.12(iii). The functional monotone class theorem
The next theorem is a functional version of the monotone class theorem.

2.12.9. Theorem. Let H be a class of real functions on a set Q such that
1 € 'H and let Hy be a subset in H. Then, either of the following conditions
yields that H contains all bounded functions measurable with respect to the
o-algebra € generated by Ho:

(i) H is a closed linear subspace in the space of all bounded functions
on Q with the norm || f|| := supq |f(w)| such that nh_)n;O fn € H for every

increasing uniformly bounded sequence of nonnegative functions f, € H, and,
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in addition, Hy is closed with respect to multiplication (i.e., fg € Ho for all
functions f, g € Hp).

(ii) H is closed with respect to the formation of uniform limits and mono-
tone limits and Hy is an algebra of functions (i.e., f+ g,cf, fg € Ho for all
f.9 € Ho, c € RY) and 1 € Hy.

(iii) H is closed with respect to monotone limits and Hy is a linear space
containing 1 such that min(f, g) € Ho for all f,g € Ho.

PROOF. (i) Let us denote by H; the linear space generated by 1 and Hj.
Condition (i) yields that the class H; consists of all functions of the form
co + crthi + -+ cphn, ¢; € RY, hy € Ho, and is an algebra of functions, i.e.,
a linear space closed with respect to multiplication. By Zorn’s lemma, there
exists a maximal algebra of functions Hy with H; C Ho C H. It is clear that
by the maximality the algebra Hs is closed with respect to the uniform limits.
Then |f| € Hs for all f € Ha, since the function |f| is the uniform limit of
a sequence of functions of the form P, (f), where P, is a polynomial. Hence
[t =max(f,0) = (f +|f|)/2 € Hz for all f € Hs. Similarly, min(f,0) € Ha.
Therefore, Ho admits the operations max and min. Finally, we observe that
if {g,} is a bounded increasing sequence of nonnegative functions in Hs, then
g= nh_)rr;<> gn € Ha. Indeed, functions of the form Y, Yrg®, where ¥y, € Ha,

form an algebra, which we denote by Hsz. One has Hs C H, since 1g" € H
for all ¥ € Hy and k € IN. Indeed, ¢t ¢* and ¢~ ¢g* are monotone limits of
the sequences ¢+ gF ¢~ gF € Hy. By the maximality of Hy we have Hz = Ha.

Suppose now that a function f is measurable with respect to £. Since it is
the uniform limit of a sequence of £-measurable functions with finitely many
values, for the proof of the inclusion f € H it suffices to show that I, € H
for all A € £. Let

B={BcCQ:IpeH

The class B is closed with respect to formation of finite intersections and
complementation, since Iyng = Ialp and 1 € Hy. Moreover, B is a o-
algebra, since Hs admits monotone limits. Since £ is the o-algebra generated
by the sets {1/ > ¢}, where ¢ € Hy and ¢ € IR', it remains to verify that
A = {y > ¢} € B. This follows from the fact that I4 is the pointwise limit
of the increasing sequence of functions v, = min(l,n(¢ — c)‘*‘). As shown
above, ¥, € Hy, whence I4 € Hs.

Assertions (ii) and (iii) are proved similarly with the aid of minor modi-
fications of the above reasoning. O

2.12.10. Example. Let p and v be two probability measures on a
measurable space (X,.A) and let F be a family of A-measurable functions
such that fg € F for all f,g € F and every function f € F has equal
integrals with respect to p and v. Then, every bounded function measurable
with respect to the o-algebra o(F) generated by F also has equal integrals
with respect to p and v. In particular, if o(F) = A, then u = v.
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PrROOF. Let H be the class of all bounded A-measurable functions with
equal integrals with respect to p and v. Clearly, H is a linear space that
is closed under uniform limits and monotone limits of uniformly bounded
sequences (which follows by the standard convergence theorems). Let us set
Ho := F. Now assertion (i) of the above theorem applies. O

2.12.11. Example. Two Borel probability measures on IR"™ coincide
provided that they assign equal integrals to every bounded smooth function.
Indeed, let Ho = Cy°(IR"™) and let H be the class of all bounded Borel func-
tions with equal integrals with respect to both measures.

2.12(iv). Baire classes of functions

The pointwise limit of a sequence of continuous functions on an interval is
a Borel function, but is not necessarily continuous. We know that any Borel
function coincides almost everywhere with the pointwise limit of a sequence
of continuous functions. Is it possible in this statement to say “everywhere”
in place of “almost everywhere”? No, since the pointwise limit of continuous
functions must have points of continuity (Exercise 2.12.73). R. Baire [46]
introduced certain classes of functions that enable one to obtain all Borel
functions by consecutive limit operations starting from continuous functions.
The zero Baire class By is the class of all continuous functions on [0, 1]. The
Baire classes B,, for n = 1,2,..., are defined inductively: B,, consists of all
functions f that do not belong to B,,_1, but have the form

f(x) = jli{rolo fj (z), z€]0,1], (2.12.3)
where f; € B,_1. However, as we shall later see, the classes B, do not
exhaust the collection of all Borel functions. If a function f belongs to no
class By, but is representable in the form (2.12.3) with some f; € By, then
we write f € B,,.

In order to obtain all Borel functions, we have to introduce the Baire
classes B, with transfinite numbers corresponding to countable sets. Namely,
by means of transfinite induction, for every ordinal number « (see §1.12(vi))
corresponding to a countable well-ordered set, we denote by B, the class of
all functions f that do not belong to the classes Bz with 3 < o, but have the
form (2.12.3), where f; € Bg, and 3; < a.

In the same manner one defines the Baire classes of functions on an arbi-
trary metric (or topological) space. We shall need below the Baire classes of
functions on the plane.

It is readily verified that if f is a function of some Baire class B, and ¢ is
a continuous function on the real line, then the function po f is of Baire class
« or less. In addition, the uniform limit of a sequence of functions of Baire
class « or less also belongs to some Baire class Bg with 5 < « (see Exercises
2.12.75 and 2.12.76).
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2.12.12. Proposition. The union of all Baire classes B, coincides with
the class of all Borel functions.

PRrROOF. Let B be the class of all Baire functions. It is clear that the
class B is a linear space and is closed with respect to the pointwise limits.
Since B contains all continuous functions, it follows by Theorem 2.12.9 that
the class B contains all bounded functions that are measurable with respect
to the o-algebra generated by all continuous functions, i.e., B contains all
bounded Borel functions. Hence B contains all Borel functions. On the other
hand, all functions in all Baire classes are Borel, which follows by transfinite
induction and the fact that the class of Borel functions is closed with respect
to the pointwise limits. O

For a proof of the following theorem due to Lebesgue, see Natanson [707,
Ch. XV, §2].

2.12.13. Theorem. For any ordinal number a > 1 that is either finite
or corresponds to a countable well-ordered set, there exists a function F, on
[0,1] x [0,1] such that F,, is a function of some Baire class (as a function
on the plane) and, for any function f of the class less than «, there exists
t € [0,1] with f(z) = Fy(z,t) for all z € [0,1].

2.12.14. Corollary. All Baire classes B, are nonempty.

PROOF. If some Baire class B, is empty, then so are all higher classes,
hence any Baire function is of Baire class less than a. Let us take the function
F, from the previous theorem and set F(z,t) = max(Fy(z,t),0) and

) nk(x,t)

plat) = lim e 5
It is clear that the function ¢ assumes only the values 0 and 1. Accord-
ing to Exercise 2.12.77, the function ¢(x,z) belongs to some Baire class.
Then the function 1 — ¢(z,x) also does. Therefore, for some ¢, we have
1—(x,2) = Fy(x,tg) = F(x,tp) for all € [0,1]. This leads to a contradic-
tion: if p(to,to) = 0, then F(tg,t9) = 1, whence we obtain ¢(tg,tp) = 1, and
if (p(to,to) = 1, then F(to,to) = 0 and hence (p(to, to) =0. O

The Dirichlet function equal to 1 at all rational points and 0 at all ir-
rational points belongs to the second Baire class, but not to the first class
(see Exercise 2.12.78); however, it can be made continuous by redefining on
a measure zero set. There exist Lebesgue measurable functions on [0, 1] that
cannot be made functions in the first Baire class by redefining on a set of
measure zero (Exercise 2.12.79). Vitali proved (see [984]) that the situation
is different for the second class.

2.12.15. Example. Every Lebesgue measurable function f on the in-
terval [0, 1] coincides almost everywhere with a function g that belongs to one
of the Baire classes By, By, B>.
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PRrROOF. Passing to the function arctg f and applying Exercise 2.12.76,
we may assume that the function f is bounded. There exists a sequence of
continuous functions f,, such that f(z) = lim f,(x) for almost all z. Tt is

n—oo
clear that one can choose a uniformly bounded sequence with such a property.
For any fixed n, the functions f, = max(f,,..., fntk) are continuous, uni-
formly bounded and f,, x < fn x+1. Hence the functions g,(z) = klim fok(2)
—00
belong to the zero or first Baire class. These functions are uniformly bounded
and gp+1 < gn. Therefore, the function g(z) = lim g,(z) is of Baire class
n—oo
2 or less. It is clear that g(z) coincides with the limit of f,(z) everywhere,
where this limit exists, i.e., almost everywhere. Thus, g = f a.e. (]

2.12(v). Mean value theorems

It is known from the elementary calculus that the integral of a continuous
function over a compact interval equals the product of the interval length
and some value of the function on that interval. Here we discuss analogous
assertions for the Lebesgue integral. If a function f is Lebesgue integrable
on [a,b] and m < f < M, then the integral of f lies between m(b — a) and
M (b—a) and hence equals ¢(b—a) for some ¢ € [m, M]. But ¢ may not belong
to the range of f. For this reason, the following assertion is usually called the
first mean value theorem for the Lebesgue integral.

2.12.16. Theorem. If a function f > O is integrable on [a,b] and a
function g is continuous, then there exists £ € [a,b] such that

/a F(t)g(t) d / 0

PROOF. Let I be the integral of f over [a,b]. Then the integral of fg lies
between I ming and I maxg. O

The next useful result is often called the second mean value theorem.

2.12.17. Theorem. Suppose that a function f is integrable on (a,b) and
a function ¢ is bounded on (a,b) and increasing. Then, there exists a point
€ € [a,b] such that

b ¢ b
/ o(2) f(z) dz = o(a + 0) / F(@)da + (b —0) / F@)de,  (212.4)
a a §

where p(a + 0) and ¢(b — 0) denote the right and left limits, respectively. If,
in addition, ¢ is nonnegative, then there exists a point n € [a,b] such that

/ o(2)f (x) dz = p(b—0) / (@) da. (2.12.5)

PROOF. Suppose first that ¢ and f are continuously differentiable func-

tions on [a, b]. Set
@) = [ sy
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By the Newton—Leibniz formula we have

Since ¢’ > 0, we obtain

b b b
[min F(z)] / o' (z)dr < / ¢ () F(z) dz < [max F(z)] / o' (z) dx.

xT x

By the mean value theorem there exists a point £ € [a, b] such that

b b
/ () F(x) do = F(f)/ ¢'(x) dz = F(&)[p(b) — ¢(a)].

Substituting this equality in (2.12.6), we arrive at (2.12.4).

In the general case, we can find two sequences of continuously differen-
tiable functions f,, and ¢, on [a,b] such that the functions f, converge to
[ in the mean, the functions ¢,, are nondecreasing, sup,, , |¢n(x)| < oo and
on(z) — @(x) at all points of continuity of ¢. For ¢, one can take

1
() = /0 (@ —n~y)p(y) dy,

where p is a nonnegative smooth function vanishing outside [0, 1] and having
the integral 1, where we set ¢(x) = ¢(a + 0) if z < a. It is clear that
on(a) = p(a+0), |on(z)| < sup, [p(t)], and the functions ¢, are increasing
and continuously differentiable. The latter follows from the equality

b
onle) =n / | eplna —nz)dz,

which is obtained by changing variables, and the theorem on differentiation
of the Lebesgue integral with respect to a parameter. By the dominated
convergence theorem we obtain that ¢, (x) — ¢(z) at all points = where ¢
is left continuous, in particular, ¢,(b) — ¢(b — 0). Since the set of points
of discontinuity of ¢ is at most countable, one has ¢, (z) — ¢(z) almost
everywhere. Hence the integrals of ¢, f,, converge to the integral of ¢ f. Let
&, € [a,b] be certain points corresponding to ¢, and f, in (2.12.4). The
sequence &, has a limit point ¢ € [a,b]. Passing to a subsequence we may
assume that &, — &. In order to see that £ is a required point, it remains to
observe that

&n ¢ &n &n
@y [ o= [T igate) — sde s [ e o
since f, — f in the mean on [a,b] and the integrals of the function |f| over
intervals of length [£,, — £| tend to zero as n — oo by the absolute continuity
of the Lebesgue integral.
In the case where ¢ > 0, it suffices to show that the right-hand side of
(2.12.4) belongs to the closed interval formed by the values of the continuous
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function
b
Y(x) = (b 0) / f(tydt

on [a,b]. For example, if the integral of f over [a,£] is nonnegative, then
b ¢ b
p0-0) [ Jw)de < pla+0) [ f@)dotob-0) [ flo)do
£ a 13

b
< (b —0) / f(x) d,

whence the claim follows. O

2.12(vi). The Lebesgue—Stieltjes integral

In Chapter 1, we considered Lebesgue—Stieltjes measures on the real line:
to every left continuous increasing function F' having the limit 0 at —oo and
the limit 1 at 400, a Borel probability measure p with F(t) = p((—o0,t))
was associated. Let g be a p-integrable function.

2.12.18. Definition. The quantity

/ g(t)dF(t) := /]Rg(t) p(dt) (2.12.7)
is called the Lebesgue—Stieltjes integral of the function f with respect to the
function F.

This definition can be easily extended to all functions F' of the form
F = c1F1 + coF5, where Fy, Fy are the distribution functions of probability
measures i1 and po and cp,co are constant numbers. Then, one takes for p
the measure ¢y + copo (signed measures are discussed in Chapter 3). One
defines similarly the Lebesgue—Stieltjes integral over closed or open intervals.
In certain applications, one is given the distribution function F, and not the
measure /4 directly, and for this reason the notation for the integral by means
of the left-hand side of (2.12.7) is convenient and helpful in calculations. If g
assumes finitely many values ¢; on intervals [a;, b;) and vanishes outside those
intervals, then

[odr® =Y clF®) - ).
i=1

For continuous functions g on [a,b], the Lebesgue—Stieltjes integral can be
expressed as a limit of sums of the Riemannian type. It should be noted that
one can develop in this spirit the Riemann—Stieltjes integral, but we shall not
do this. In Exercise 5.8.112 in Chapter 5 one can find the integration by parts
formula for the Lebesgue—Stieltjes integral.
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2.12(vii). Integral inequalities

In the theory of measure and integral and its applications, an important
role is played by various integral inequalities. For example, we have already
encountered the Chebyshev inequality and the Hélder and Minkowski inequal-
ities. In this subsection we derive several other frequently used inequalities.
The first of them is Jensen’s inequality.

We recall that a real function ¥ defined on an interval Dom(¥) = (a,b)
(possibly unbounded) is called convex if

Utz + (1 —t)y) <t¥(z)+ (1 -t)¥(y), Ya,yec Dom(¥),Vtel0,1].

If ¥ is bounded in a one-sided neighborhood of a finite boundary point a or b,
then such a point is included in Dom(¥) and the value at this point is defined
by continuity. The following sufficient condition for convexity is frequently
used in practice: W is twice differentiable and ¥” > 0. The proof reduces
to the case © = 0, y = 1. Passing to ¥(z) — 2¥(1) — (1 — 2)¥(0) we reduce
everything to the case ¥(0) = ¥(1) = 0. Now we have to verify that ¥ < 0. If
this is not so, there exists a point of maximum & € (0, 1) with ¥(£) > 0. Then
U’'(€) = 0, whence ¥/ (¢) > 0 for t > € due to ¥” > 0. Hence ¥(1) > ¥(¢) > 0,
a contradiction.

Here are typical examples of convex functions: e, |z|* with o > 1.

We observe that for any point 2o € Dom(¥), there exists a number A(zg)
such that

U(x) > U(xo) + Mxo)(z —x0), Va € Dom(¥). (2.12.8)
For A\(zo) one can take any number between the lower derivative
U (20) = liinjgfh_l(if(xo + h) — ¥(z0))
and the upper derivative

W (zo) = hrf{ls(l)lp (W (2o 4+ h) — ¥(z0))
(see Exercise 2.12.88).
By using this property of convex functions (which can be taken as a
definition) one obtains the following Jensen inequality.

2.12.19. Theorem. Suppose that p is a probability measure on a space
(X, A). Let f be a p-integrable function with values in the domain of definition
of a convex function U such that the function U(f) is integrable. Then one
has

v( [ swutan) < [ o) o), (2129)

PROOF. Let xg be the integral of f. It is readily verified that xy belongs
to Dom(¥). Substituting f(z) in place of x in (2.12.8) we obtain

U (f(z)) = W(xo) + Awo) [f(z) — wo].
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Let us integrate this equality and observe that the integral of the second
summand on the right is zero. Hence we arrive at (2.12.9). O

A number of useful inequalities can be obtained by choosing concrete
functions ¥ in the general Jensen inequality.

2.12.20. Corollary. Let p be a probability measure on a measurable
space (X, A). Let f be a p-integrable function such that the function exp f is
integrable. Then

exp (/X f(x),u(dx)) < /Xexp f(z) p(dx). (2.12.10)

Letting ¥(t) = [t|* with o > 1, we obtain the following Lyapunov in-
equality (which also follows by Hoélder’s inequality).

2.12.21. Corollary. Let p be a probability measure on a measurable
space (X, A). Let f be a function such that the function |f|P is integrable for
some p > 1. Then, for any r € (0,p], the function |f|" is integrable and

(/lelrdu)l/r< (/X|f|pdu>1/p. (2.12.11)

In the case of a general measure space, a similar estimate is available.

2.12.22. Corollary. Let u be a nonnegative measure (possibly with val-
ues in [0, +00]) on a measurable space (X, A). Let f be a function such that
the function |f|P is integrable for some p > 1 and p(x: flx) # 0) < 0.
Then, for any r € (0,p], the function |f|" is integrable and

(/X Iflrdu)l/r < u(a:: f(x) # 0)1/7“71/'9 (/X If|P du>1/p. (2.12.12)

For the proof we set Q := {f # 0} and take the probability measure
()~ 1ulq. Note that (2.12.12) is better than (2.12.11) if 0 < u(Q) < 1.

The next two integral inequalities are employed in information theory and
probability theory (see Liese, Vajda [613]).

2.12.23. Theorem. Let f and g be positive integrable functions on a
space X with a nonnegative measure . Then

/Xflnfdu—/xfdu<ln/xfdu) (2.12.13)
>/Xf1ngdu—/xfd/~t(ln/xgdu>,

provided that f1n f and flng are integrable. In addition, the equality is only
possible when f = cg a.e. for some number c.
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PROOF. Suppose first that f and g have equal integrals. The inequality
Inz <z —1 on (0,00) yields the estimate flng — flnf = fln(g/f) <g—f
(it suffices to take x = g/f). By integrating we obtain the inequality

/Xflnfduzfxflngdu-

It is clear that the equality is only possible when one has fIn(g/f) = g— f a.e.,
which is equivalent to f = g a.e. In the general case, writing the last inequality
for the functions fo||le(#) and g||g||£11(#) with equal integrals and using that

the integral of f/[|f||r1(u) is 1, we arrive at (2.12.13). O

The quantity

fIn fdp
is called the entropy of f. The following estimate is named the Pinsker—
Kullback-Csiszar inequality (Pinsker [757] obtained it with some constant

and then Csiszar and Kullback justified it in the form presented below, see
Csiszédr [194]).

2.12.24. Theorem. Let p and v be two probability measures on a mea-
surable space (X, A) and let v = f - u, where f > 0. Then

2
vl o= ([ 15 =t1dn) <2 [ pmra

where the infinite value is allowed on the right-hand side.

PROOF. Let E = {f < 1}, v(F) = a, t = p(F). It is clear that a < t.
One has

/XIf—lldu—[E(l—f)dqu/X\E(f—1)du—2(t—a)-

Ifa=1ort=1,then f =1 a.e. So we assume further that a,¢ € (0,1). In
addition, we assume that the function fIn f is integrable because otherwise
one has +0o on the right due to the boundedness of the function fln f on the
set F. Applying inequality (2.12.13) to the probability density g that equals
a/ton E and (1 —a)/(1 —1t) on X\E, we obtain

1-a

/ flnfd,uzalng—l—(l—a)ln
« ¢ 1

Now it suffices to observe that for all « <t < 1 one has the inequality

Ya(t) = 2(t—a)27aln%f(lfa)ln117(tl <0,

which follows by the relation ¢, (t) = (a —¢)(4 —t~*(1 —t)~') < 0 for all
t > a and the equality ¥,(a) = 0. |

Several other important integral inequalities will be obtained in §3.10.
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Exercises

2.12.25° Let (X,.A), (Y,B), and (Z,€) be measurable spaces. Suppose that
a mapping f: X — Y is (A, B)-measurable and a mapping g: ¥ — Z is (B,&)-
measurable. Show that the composition go f: X — Z is (A, £)-measurable.

2.12.26° Suppose that measurable functions f, on [0, 1] converge almost ev-
erywhere to zero. Show that there exist numbers C,, > 0 such that lim C, = oo,

n—oo

but the sequence C,, f,, converges almost everywhere to zero.

2.12.27° Suppose that measurable functions f, on [0, 1] converge almost ev-
erywhere to zero. Prove that there exist numbers €, > 0 and a measurable finite
function g such that lim e, = 0 and |fn(z)| < eng(z) almost everywhere for ev-
n—oo
ery n.

HINT: in Exercise 2.12.26 take e, = C;; 1.

2.12.28? Construct a measurable set in [0, 1] such that every function on [0, 1]
that almost everywhere equals its indicator function is discontinuous almost every-
where (and is not Riemann integrable, see Exercise 2.12.38).

HINT: take a set such that the intersections of this set and its complement with
every interval have positive measures.

2.12.29° Suppose that functions f and g are measurable with respect to a
o-algebra A and that a function ¥ on the plane is continuous on the set of values
of the mapping (f,g). Show that the function ¥(f,g) is measurable with respect
to A.

HINT: letting Y be the range of (f, g), use that the sets {¥ < ¢} are open in Y,
ie,, {¥U < ¢} =Y NU, where U is open in the plane.

2.12.30° Let A be the o-algebra generated by all singletons in a space X.
Prove that a function f is measurable with respect to A if and only if it is constant
on the complement of some at most countable set.

HINT: the indicated condition is sufficient for the A-measurability of f, since
all at most countable sets belong to .A. The converse follows by the fact that the
above condition is fulfilled for all simple functions.

2.12.31? Let p be a probability measure, let {cq} be a family of real numbers,
and let f be a p-measurable function. Show that

u(z: f(2) 2 supea) > infpu(z: f(2) > ca).

HINT: let 7 = info pu(z: f(2) > ca) and let a, be such that the numbers ca,,
are increasing to sup, ca. One has p(z: f(z) > ca,) > r for all n, whence the
claim follows by the o-additivity of p.

2.12.32. (Davies [207]) Let u be a finite nonnegative measure on a space X.
Prove that a function f: X — IR' is measurable with respect to p precisely when for
each p-measurable set A with u(A) > 0 and each € > 0, there exists a y-measurable
set B C A such that p(B) > 0 and sup |f(z) — f(y)| <e.

z,ye€B

HINT: the necessity of this condition is clear from the fact that the set A is
covered by the sets {x € A: ne < f(z) < (n+1)e}. For the proof of sufficiency, one
can construct a sequence of py-measurable functions f, with countably many values,
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uniformly convergent to f on a set of full measure. To this end, for fixed ¢ > 0
and any set E of positive measure, we consider the class B(E, ¢) of all measurable
sets B C E with u(B) > 0 and sup |f(z) — f(y)| < € (this class is nonempty by
z,yeB
our hypothesis) and put 6; = sup{u(B): B € B(X,¢e)}; we choose B1 € B(X,¢)
with u(B1) > 61/2. Let us repeat the described construction for the set X\31
and find By C X\By with p(B2) > d2/2, where §2 = sup{u(B), B € B(X\Bi,¢)}.
By induction, we obtain p-measurable sets B,, with B, C X\(B1 U - U Bp_1),
w(Bn) > 6n/2, 6n = sup{u(B),B € B(X\(B1U---U Bp_1),e)}. This process will
be finite only in the case if X is covered by finitely many sets B,, up to a measure
zero set. In the general case we obtain a sequence of sets B, covering X up to a
set of measure zero. Indeed, otherwise there exists a set £ C X\ |Joo, Bn such
that u(E) = 6 > 0 and sup |f(z) — f(y)] < e. It is clear that 6, — 0 and
z,yeE

hence there exists dx < §/2. This leads to a contradiction, since E C X\ J*_, Bn,
whence u(E) < 6, < d. It remains to choose a point z, in every set B, and put
g|lB, = f(zn). Then |g(z) — f(z)| < e for all z € J.2, Bn.

2.12.337 (M. Fréchet) Suppose that a sequence of measurable functions f, on
a probability space (X, .A, u) converges a.e. to a function f and, for every n, there
is a sequence of measurable functions f, ., a.e. convergent to f,. Prove that there
exist subsequences {nx} and {my} such that f,, m, — f a.e.

HINT: use Remark 2.2.7 (or the metrizability of convergence in measure) and
the Riesz theorem.

2.12.34° Investigate for which real o and § the function z° sin(z”) is Lebesgue
integrable on (a) (0,1), (b) (0,4c0), (¢) (1,+00). Answer the same question for the
proper and improper Riemann integrability.

2.12.35” (Alekhno, Zabreiko [8]) Let p be a finite nonnegative measure on
a measurable space (X, .A) and let {f,} be a sequence of py-measurable functions.
Suppose that it is not true that this sequence converges to zero p-a.e. Prove that
there exist a subsequence {fn, } in {fn}, measurable sets A, with p(Ax) > 0 and
Ag41 C Ay for all k, and € > 0 such that | f, (z)| > € for all z € A and all k.

HINT: let gm(x) := sup,>,, |fn(z)]. Since the sequence {gm} decreases and
does not converge to zero on some positive measure set, it is readily seen that there
exists € > 0 such that the set E := [ +,{z: gm(z) > €} has positive measure.
Letting E, := {x € E: |fa(z)| > €}, we find nq such that u(E,,) > 0, then we find
ng > ny such that p(En, N Ey,) > 0 and so on. Finally, let Ay := En, N---N Ey, .

2.12.36° Investigate for which real a and 8 the function z*(In ) is Lebesgue
integrable on (a) (0,1), (b) (0, 4+00).

2.12.37° Let J, be a sequence of disjoint intervals in [0, 1], convergent to the
origin, |J,| =47", and let f = nil/\J2n| on Jon, f = —n71/|J2n+1\ on Jon41, and
let f be zero at all other points. Show that f is Riemann integrable in the improper
sense, but is not Lebesgue integrable.

2.12.38. (i) (H. Lebesgue, G. Vitali) Show that a bounded function is Riemann
integrable on an interval (or a cube) precisely when the set of its discontinuity points
has measure zero.
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(ii) Prove that a function f on [a,b] is Riemann integrable precisely when, for
each € > 0, there exist step functions g and h such that |f(z) — g(x)| < h(z) and

/:h(x)dxgs.

HINT: (i) see Rudin [834, Theorem 10.33], Zorich [1053, Ch. XI, §1]; (ii) apply
(i) and the Chebyshev inequality.

2.12.39?2 Suppose that a sequence of u-integrable functions f,, converges to f
in L' (u) and a sequence of pu-measurable functions ¢, converges to ¢ p-a.e. and is
uniformly bounded. Show that the functions ¢, f, converge to ¢f in L*(u).

HINT: observe that the assertion reduces to the case of a bounded measure and
use the uniform integrability of {f»}.

2.12.40° Let a function f > 0 be integrable with respect to a measure u. Prove
the equality

— 1 n . n < n+1 .
/fdu 1:{111 ; iz " < flz) <™
HINT: let fr =302 7" I;—1[mn ,nt1), then one has f, < f <rfr.

2.12.41° (i) Construct a sequence of nonnegative functions f,, on [0, 1] con-
vergent to zero pointwise such that their integrals tend to zero, but the function
®(x) = sup fn(x) is not integrable. In particular, the functions f, have no common

integrable majorant.
(ii) Construct a sequence of functions f, > 0 on [0, 1] such that their integrals
tend to zero, but sup f,(z) = +oo for every x.

HiNT: (i) take fn(x) = nlj,41)-1,,-1), © € [0,1]; (ii) take the functions fy x
from Example 2.2.4 and consider n fy .

2.12.42. Let p be a probability measure on a space X and let {f,} be a
sequence of p-integrable functions that converges p-a.e. to a p-integrable function f
such that the integrals of f,, converge to the integral of f. Prove that for any € > 0
there exist a measurable set F and a number N € IN such that for all n > N one
has

’ fnd,u‘gs and |fn(z)] <|f(z)|+1 forz € E.
X\E
HINT: there exists § > 0 such that

[ 1fldn < /3
A

whenever p1(A) < 6. There is a set E such that u(X\FE) < § and convergence of f,
to f is uniform on E. Let us now take N such that for all n > N one has

sup |f(2) = f(@)] < Fmin(Le) and | /X (o Prau| < <.

T

Then

‘/and/h/dequ/X\Efdqu/E(fffn)du’

%—&—g—&—%min(l,s)gs.
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2.12.43. Let p be a probability measure on a space X and let f, be pu-
measurable functions. Prove that the following conditions are equivalent:

(i) there exists a subsequence fn, convergent a.e. to 0;

(ii) there exists a sequence of numbers t,, such that

limsup |t,| >0 and Z tnfn(x) converges a.e.;

n— oo
n=1

(iii) there exists a sequence of numbers ¢,, such that

Z [tn] = 0o and Z [tnfr(x)] < 00 a.e.
n=1 n=1

HINT: by Egoroff’s theorem (i) yields (ii), (iii). If (iii) is true, then for the set
Xy = {x €X: Y ltnfu(z)] < N} we have

Sl [ faldn< N,
n=1 XN

whence it follows that

n—oo

lim inf | fn] dp = 0.
XN

This yields (i), since p(Xn) — 1, Finally, (ii) implies (i), since ¢y fr(z) — 0 a.e. and
it suffices to take nj with likm inf |tn, | > 0.

2.12.44°2 Show that a sequence of measurable functions f, on a space with a
probability measure p converges almost uniformly (in the sense of Egoroff’s theorem)
to a measurable function f precisely when

Tim ({20 @) = fa(@)] > €}) =0.
m>n

2.12.45. Prove the following analog of Egoroft’s theorem for spaces with infinite
measure: let p-measurable functions f,, converge p-a.e. to a function f such that
|fn] < g p-a.e., where the function g is integrable with respect to y; then, for any
e > 0, there exists a set A. such that the functions f, converge to f uniformly
on A., and the complement of A. has pu-measure less than e.

HINT: the sets G := {g > 1} and Gy, := {27% < g < 2'7*} have finite measures
by the integrability of g, hence they contain measurable subsets A C G and A, C Gy
on each of which convergence is uniform and p(G\A) < /2, u(Gr\Ax) < e4™*. For
A, one can take the union of all sets A and Ay with the set of all points x where
fn(x) =0 for all n.

2.12.46. (Tolstoff [950]) (i) Let f be a Borel function on [0,1]?, yo a fixed
point in [0,1] and lim f(z,y) = f(z,y0) for any = € [0,1]. Prove that for every
Y=o

€ > 0 there exists a measurable set Ac C [0,1] of Lebesgue measure A(A:) > 1 —¢
such that lim f(z,y) = f(z,yo) uniformly in = € A..
Y=o

(ii) Construct a bounded Lebesgue measurable function f on [0, 1]? such that
it is Borel in every variable separately and lir% f(z,y) =0 for any z € [0, 1], but on
y—

no set of positive measure is convergence uniform.
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HINT: (i) Let

dn(z) == sup{d: |f(z,y) — fz,yo)l < 1/n if [y — yo| < 5}.
By hypothesis, d,(z) > 0 for every z. It is readily seen that for fixed n € IN and
C > 0 the set

M(n,C) == {(z,y): |f(z,y) — f(z,y0)| = 1/n, |y —yo| < C}

is Borel. By Proposition 1.10.8 the projection of M (n,C') to the first coordinate axis
is a Souslin set and hence is measurable. It is easily verified that this projection
is {z: dn(xz) < C}, which yields the measurability of the function d,. Now, given
e > 0, for every n we find a measurable set A, C [0, 1] such that A(A,) >1—¢e27"
and 6n|a, > ¥n, where v, > 0 is some constant. Let A = (77, A,. If n~! < e and
|y — yo| < Yn, then |f(z,y) — f(x,y0)] < n~' <eforalxz € AC Ay. (ii) There
is a partition of [0,1] into disjoint sets E, with \*(E,) = 1. Let f(z,n 'x) = 1 if
x € E,, n € IN, at all other points let f = 0. The function f differs from zero only
at the points of a set covered by countably many straight lines of the form y = nx.
It is clear that f is Lebesgue measurable and Borel in every variable separately. If
A(E) > 0, then, for any n, E contains points from FE,, hence, for each € > 0, there
exist z € F and y < ¢ with f(z,y) = 1.

2.12.47. (Frumkin [330]) Let f be a function on [0,1]* such that, for ev-
ery fixed ¢, the function s — f(¢,s) is finite a.e. and measurable. Suppose that
lirr(l) f(t,s) = f(0,s) for a.e. s. Show that, for each §; > 0, there exists a measurable

set Es, C [0,1] with the following property: A(Fs,) > 1 — 41 and, given € > 0, one
can find § > 0 such that whenever ¢ < §, the inequality |f(t,s) — f(0, s)| < e holds
for all s, with the exception of points of some set E; of measure zero.

2.12.48. (Stampacchia [904]) Suppose we are given a sequence of functions f,
on [0, 1]x[0, 1] measurable in z and continuous in y. Assume that for every y € [0, 1]
the sequence {f.(z,y)} converges for a.e.  and that for a.e. z the sequence of
functions y — fn(x,y) is equicontinuous. Prove that for every £ > 0 there exists a
measurable set E. C [0, 1] of Lebesgue measure at least 1 — e such that the sequence
{fn(z,y)} converges uniformly on the set E. x[0,1].

2.12.49. Suppose we are given a sequence of numbers v = {7;}. For z € [0, 1]
let f,(z) = 0 if z is irrational, fy(0) = 1, and fy(z) = v if £ = m/k is an
irreducible fraction. Prove that the function f, is Riemann integrable precisely
when lim v, = 0.

k—oo
HINT: see Benedetto [76, Proposition 3.6, p. 96].

2.12.50° Let a function f on the real line be periodic with a period T' > 0
and integrable on intervals. Show that the integrals of f over [0,7] and [a,a + T
coincide for all a.

HINT: the translation invariance of Lebesgue measure yields the claim for simple
T-periodic functions.

2.12.51. Construct a set £ C [0, 1] with Lebesgue measure « € (0, 1) such that
the integral of the function |z — c|™! over F is infinite for all ¢ € [0, 1]\ E.

2.12.52. (M.K. Gowurin) Let a function f be Lebesgue integrable on [0, 1] and
let « € (0,1). Suppose that the integral of f over every set of measure « is zero.
Prove that f = 0 almost everywhere.
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HINT: show first that )
/ f(z)dz =0,
0

by taking natural numbers n and m such that the number n — ma is nonnegative
and does not exceed a given ¢; to this end, extend f periodically from [0, 1) to [0, 7]
and observe that the integral of f over [0, ma] is zero; next reduce the claim to the
case o < 1/2 by using that min(«, 1 —«) < 1/2; in the latter case observe that if the
measure of the set {f > 0} is at least «, then, by hypothesis and Example 1.12.8,
the measure of the set {f > 0} equals zero; finally, consider {f < 0}.

2.12.53. Suppose that a function f is integrable on [0, 1] and f(z) > 0 for all x.
Show that for each € > 0 there exists § > 0 such that

/Af(:r)dm >4

for every set A with measure at least €.
HINT: take ¢ > 0 such that the measure of the set {f > c} is greater than
1 —£/2 and estimate the integral of f over AN {f > ¢} for sets A of measure ¢.

2.12.54. Let E C [0, 2] be a set of Lebesgue measure d and let n € IN. Prove
the inequality

/E | cos(nx)| dx > gsin g

HINT: observe that at all points from E that do not belong to the intervals of
length d/(4n) centered at m/(2n) + km/n, one has the estimate |cos(nz)| > sind/8,
and the sum of measures of these intervals does not exceed d/2.

2.12.55. Let E C R be a set of finite Lebesgue measure. Evaluate the limit

lim [ (2—sinkz) " dz.
k—oo | p
HinT: A(E)/V/3; it suffices to consider the case of finitely many intervals; con-
sider first the case E = [0,d]; let I be the integral of (2 — sinx) ™" over [0, 27]; then
for b € (0, 27) the integral of n™!(2—sin ) ™" over [0, nb] equals [nb/(27)]T+O0(n™"),
where [r] is the integer part of r, which gives in the limit the number Ib/(27).

2.12.56° Let i be a bounded nonnegative measure on a o-algebra A. Prove
that the definition of the Lebesgue integral given in the text is equivalent to the
following definition. For simple functions we keep the same definition; for bounded

measurable f we set
[ ran=tm [ fudu
X n—oo X

where {f,} is an arbitrary sequence of simple functions uniformly convergent to f;
for nonnegative measurable functions f we set

/ fdp = lim min(f,n) dpy,
X

n—oo [y

and in the general case we declare f to be integrable if both functions f* = max(f,0)
and f~ = —min(f,0) are integrable, and we set

/deu=/xf+du—/xf_du-
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2.12.57° The purpose of this exercise is to show that our definition of the
Lebesgue integral is equivalent to the following definition due to Lebesgue himself.
Let p be a bounded nonnegative measure on a o-algebra A and let f be a measurable
function. Let us fix € > 0 and consider the partition P of the real line into intervals
[Yis Yit1), t € Z, yi < Yit1, of lengths not bigger than . Let §(P) = sup |yi+1 — vil.
Set I(P) := ;L:Oioo yi,u(:v: yi < f(z) < yiH). Suppose that for some € and P such
a series converges (i.e., the series in positive and negative ¢ converge separately).
Show that this series converges for any partition and that, for any sequence of
partitions Py with 6(Px) — 0, there exists a finite limit klin;o I(Py) independent of
our choice of the sequence of partitions, moreover, the function f is integrable in the
sense of our definition and its integral equals the above limit. Show that it suffices
to consider points y; = €t or y; = i/n, n € IN.

HINT: it is clear that our definition yields the property described in this new
definition. If the above-mentioned series converges, then it converges absolutely and
hence the function gp that equals y; on the set {y; < f < y;+1} is integrable. Since
|f — gp| < 6(P), the function f is integrable and the integrals of gp approach the
integral of f.

2.12.58? Let f be a bounded function on a space X with a bounded nonnegative
measure p. For every partition of X into disjoint measurable parts X1,..., X, we

set,
n

LEXH) =) Jnf fl@)u(Xs), U(X)) = > sup f(@)p(X).
i=1 ‘ i—1 TEX;

The lower integral I, of the function f equals the supremum of the sums L({X;})
over all possible finite partitions, and the upper integral I™ of f equals the infimum
of the sums U({X;}) over all possible finite partitions. The function f will be called
integrable if I, = I*. Prove that any function integrable in this sense is p-measurable
and its Lebesgue integral equals I. = I*. In addition, show that any bounded and
p-measurable function f is integrable in the indicated sense.

HiNT: if f is integrable in the indicated sense, then one can find two sequences of
simple functions ¢, and ¥ with ¢, (z) < f(z) < Yu(z) and [[pn —PnllL1) < 1/n.
If f is measurable and bounded, then one can consider the partitions into sets of the
form f~'((ai,ait1]), where aiy1 — a; = 1/n and finitely many intervals [a;, aiy1)
cover the range of f.

2.12.59. (MacNeille [642], Mikusinski [690]) Let R be an algebra (or semi-
algebra) of sets in a space X and let u be a probability measure on A = o(R).
Prove that the function f is integrable with respect to p precisely when there exists
a sequence of R-simple functions )y (i.e., finite linear combinations of indicators of

sets in R) such that
Z/ [t | dp < o0
k=1"%X

and f(x) =Y 7o, ¥x(x) for every x such that the above series converges absolutely.

In addition,
/ fdu=Z/ Vi dp.
X k=1"X

HINT: the hypothesis implies the integrability of f, since by the Fatou theorem
the series of |ix| converges a.e. If f is integrable, then there exists a sequence of
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R-simple functions ¢y that converges to f a.e. and ||f — prllp1(,) < 275~ Then
lox — @r1llLre < 277, Let g = ¢pr — pr—1. It is clear that S}, gx — f a.e.
and > 77 |gx| < oo a.e. Let us consider the set E of measure zero on which the
sum of the series of gi is not equal to f, but the series converges absolutely. If E
is empty, then we set ¥ = gr. If FE is not empty, then we can find sets R € R
such that > 7 | 11(Rx) < oo and every point from E belongs to infinitely many Rg.
To this end, for every j we cover E by a sequence of sets Rj, € R such that the
sum of their measures is less than 277, and then arrange R, in a single sequence.
Finally, let us form a sequence of functions g1, Ir,, —IRr,, 92, IRy, —IR,, - . ., according
to the rule Ysr—2 = gk, Y3k—1 = Ir,, ¥3x = —Ir,. If x € E, then the series of
|x(x)| diverges, since it contains infinitely many elements equal to 1. If this series
converges, then = ¢ F and the series of |gx(z)| and Ir, (z) converge as well. Hence
f(x) =72, gr(x), which equals Y 72 | ¢x () because Ir, (x) = 0 for all sufficiently
large k by convergence of the series. It remains to recall that the series of measures
of Ry converges.

2.12.60. (F. Riesz) Denote by Cy the class of all step functions on [0,1], i.e.,
functions that are constant on intervals from certain finite partitions of [0, 1]. Let
C1 denote the class of all functions f on [0, 1] for which there exists an increasing
sequence of functions f, € Cp such that f,(z) — f(z) a.e. and the Riemann integrals
of f, are uniformly bounded. The limit of the Riemann integrals of f,, is denoted
by L(f). Finally, let C denote the class of all differences f = fi1— fo with fi, fo € C1
and let L(f) = L(f1) — L(f2). Prove that the class C> coincides with the class of
Lebesgue integrable functions and that L(f) is the Lebesgue integral of f.

HINT: one implication is obvious and the other one can be found in Riesz,
Sz.-Nagy [809, Ch. 2].

2.12.61° Let us define the integral of a bounded measurable function f on [0, 1]
as follows. First we define the integral of a continuous function g over a closed set
E as the difference between the integral of g over [0, 1] and the sum of the series of
the integrals of g over finitely or countably many disjoint intervals forming [0, 1]\ E.
Given a closed set E, the integral over F of any function ¢ that is continuous on
E is defined as the integral over E of its arbitrary continuous extension to [0, 1] (it
is easily seen that this integral is independent of our choice of extension). Next we
take a sequence of closed sets E, with A(E,) — 1 such that on each of them f is
continuous, and define the integral of f over [0,1] as the limit of the integrals of f
over the sets E,. Prove that this limit exists and equals the Lebesgue integral of f.

2.12.62. A function g on IR? with values in [—oo, +00] is called lower semicon-
tinuous if, for every ¢ € [—o0, +00], the set {z: g(z) > ¢} is open. Let E C IR? be
a measurable set and let a function f: E — IR! be integrable. Prove that, for any
£ > 0, there exists a lower semicontinuous function g on IR such that g(z) > f(z)
for all x € E, g|g is integrable and the integral of g — f over F does not exceed ¢.

HINT: we find § > 0 with

/ If]d\ < £/2
A

whenever A C E and A(A) < 6. Let us pick 6, > 0 such that ) 2 6, < § and
Yoo Onlan| < €/2, where {gn} = Q is the set of all rational numbers. Let B, be
the ball of radius n centered at the origin and let G, be an open set containing
E, := BpnN{x € E: f(x) > gn} such that A(Gn) < A(En) + 6. Set g(x) =
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sup{gn: € Gn} and D = (J2° ((E N Gn)\E,). For any ¢ € IR', we have
{9 >ct=U,. 4,5.Gn, Le., g is lower semicontinuous. If z € £ and r > 0, then
there exists n with f(z)—r < ¢, < f(z) and © € B,. Then z € E,, and hence g(z) >
gn > f(x)—r. Since r is arbitrary, we obtain g(z) > f(z). Finally, we show that the
integral of g — f over E does not exceed e. Indeed, let h :=>">7  |gn|I(EnG.)\E, -
We observe that g(z) < f(z) + h(z) + | f(z)|Ip(z) for all z € E. This follows from
the fact that if x € E N Gr, then either z € E, and then ¢, < f(x), or z € E, and
then ¢, < h(z). It remains to note that the integrals of h and |f|Ip are majorized
by £/2.

2.12.63. (Hahn [395]) Let f € £'[0,1], let I be the integral of f, and let {IT,,}
be a decreasing sequence of finite partitions of [0, 1] into intervals J, 1 (k < Ny)
with A(Jn,x) < 8, — 0, where X is Lebesgue measure. Show that there exist points
&n,k € Jn,k such that ]Zggl En )N (Ink) — I’ — 0 asn — oo.

HINT: let us take continuous f, with ||f, — fllp1 — 0 and A(f, # f) — 0.
Then we find increasing numbers p; with |fi(t) — fi(s)] < 1/l for all |t — s| < dp,.
If pp <n < py1 (let pr = 1), then we pick any &, € Jnk N {fi = f}, and if
JnxN{fi = f} = @, then we take &, x € Jn,i such that |f(&nx)| <infy,  [f(t)]+1.
It remains to observe that the integral of |f| 4 |fi| over the set {f # fi} approaches
zero, and for all m > p;, the Riemann sum of f; corresponding to the partition IL,,
differs from the integral of f; not greater than in 1/1.

2.12.64. (Darji, Evans [203]) Let a function f be integrable on the unit cube
I ¢ R". Show that there exists a sequence {z;} that is everywhere dense in I
and has the following property: for every € > 0, there exists § > 0 such that
for every partition P of the cube I into finitely many parallelepipeds of the form

[ai,bi] X -+ X[an, by] with pairwise disjoint interiors and |b; — a;| < §, one has
) S° F(r(P)An(P) — / f(z) dw‘ <e,
PeP 1

where r(P) is the first element in {xx} belonging to P.

2.12.65. Show that there exists a Borel set in [0, 1] such that its indicator
function cannot coincide a.e. with the limit of an increasing sequence of nonnegative
step functions.

HINT: let E be a Borel set such that the intersections of F and [0, 1]\ E with all
intervals have positive measures. If {f,} is an increasing sequence of nonnegative
step functions a.e. convergent to Ig, then there exist an interval I and a number
n1 such that fn, (z) > 1/2 for all x € I. Then Ig(x) > 1/2 a.e. on I, i.e., one has
MINE)=XI).

2.12.66° Let f be a measurable function on the real line vanishing outside
some interval. Show that if £, — 0, then the functions z — f(x + €,) converge to
f in measure.

HiNT: for continuous functions the claim is trivial, in the general case we find a
sequence of continuous functions convergent to f in measure. Another solution can
be derived from Exercise 4.7.104 in Chapter 4.

2.12.67. Let f be a bounded measurable function on the real line.

(i) Is it true that f(z +n"*) — f(z) for a.e. ?

(ii) Show that there exists a subsequence njy — oo such that f(z+n; ") — f(x)
for a.e. x.
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HINT: (i) no; consider the indicator of a compact set K C [0, 1] constructed as
follows. For every n we partition [0, 1] into 22" intervals I, of length ¢, = 27271’,
from every such interval we delete the interval U, of length €2 that is adjacent
to the right endpoint of I, x, and denote the obtained closed set by K,. Set K =
Moo Kn. Then A(K) > 0 and for any « € K N [0,1) there exist an arbitrary
large number m with = +m~! ¢ K. This is verified with the aid of the following
elementary assertion: if an interval U of length &2 belongs to the interval [0, €], then
U contains a point of the form n™', n € IN. For the proof of this assertion, it
suffices to consider the smallest k € IN with k=" < ¢; then for some | € IN we have
(k+1)"' € U because ¢ < (k —1)7!, whence ¢ — k™! < &2 due to the estimate
(k—1)""—(k—1)"2 < k™' (ii) Tt suffices to verify our claim for functions with
bounded support; in that case by Exercise 2.12.66 the functions f(z+1/n) converge
to f in measure and it remains to choose an a.e. convergent subsequence.

2.12.687 Let (X, A, 11) be a space with a nonnegative measure and let a function
f: X x(a,b) — IR! be integrable in z for every ¢t and differentiable in ¢ at a fixed
point to € (a,b) for every z. Suppose that there exists a p-integrable function ®
such that, for each ¢, there exists a set Z; such that u(Z;) = 0 and

|f(z,t) — f(z,t0)| < D(2)[t —to| if z & Zi.

Show that the integral of f(x,t) with respect to the measure p is differentiable in ¢
at the point to and

G | 1@ oo = [ 2 )

HINT: for any sequence {t, }, the union of the sets Z;, has measure zero; apply
the reasoning from Corollary 2.8.7.

2.12.69. Prove that an arbitrary function f: [0,1] — IR can be written in the
form f(z) = ¥ (¢(x)), where ¢: [0,1] — [0,1] is a Borel function and ¢: [0,1] — R
is measurable with respect to Lebesgue measure.

HINT: writing « € [0,1] in the form « = } 7 | 2,27 ", where z, = 0 or 1, we
set p(x) =237 xn3™"; observe that ¢ maps [0, 1] one-to-one to a subset of the
Cantor set of measure zero; now v can be suitably defined on the range of ¢; let
1 = 0 outside this range.

2.12.70. Show that almost everywhere convergence on the interval I = [0, 1]
with Lebesgue measure cannot be defined by a topology, i.e., there exists no topology
on the set of all measurable functions on I (or on the set of all continuous functions
on I) such that a sequence of functions is convergent in this topology precisely when
it converges almost everywhere.

HINT: use that any convergence defined by a topology has the following prop-
erty: if every subsequence in a sequence {f,} contains a further subsequence con-
vergent to some element f, then f, — f; find a sequence of continuous functions
that converges in measure, but does not converge at any point.

2.12.71. (Marczewski [651]) Let 4 be a probability measure such that conver-
gence in measure for sequences of measurable functions is equivalent to convergence
almost everywhere. Prove that the measure p is purely atomic.

2.12.722 Prove that a function f on an interval [a,b] is continuous at a point
x precisely when its oscillation at x is zero, where the oscillation at x is defined by
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the formula
wy(@) = limsup{|f(2) = fW)]: |z —a| <& |y—a <e}.

2.12.73° (Baire’s theorem) Let f, be continuous functions on [a, b] such that
for every x € [a,b] there exists a finite limit f(z) = lim f,(x). Prove that the set
n—00

of points of continuity of f is everywhere dense in [a, b].
HinT: apply the Baire category theorem to the sets {m: wy(z) > jfl}.

2.12.74. (i) Construct an example of a sequence of continuous functions f,, on
[0, 1] such that, for every z € [0, 1], there exists a finite limit f(z) = lim fn(z), but
n—oo
the set of points of discontinuity of f is everywhere dense in [0, 1].
(ii) Construct an example showing that the function f in (i) may be discontin-
uous almost everywhere.

2.12.75. Prove that the uniform limit of a sequence of functions of Baire class
« or less is also of Baire class « or less.

2.12.76. Prove that if a function ¢ is continuous on the real line and a function
f is of Baire class « or less, then so is the function ¢ o f.

2.12.77. Prove that if a function f is of Baire class « or less on the plane, then
the function p(z) = f(x, ) is of Baire class a or less on the real line.

2.12.78. Prove that the Dirichlet function (the indicator of the set of rational
numbers) belongs to the second Baire class, but not to the first one.

2.12.79. Construct a measurable function on [0, 1] that cannot be redefined on
a set of measure zero to obtain a function from the first Baire class.

HINT: use that all functions in the first Baire class have points of continuity.
Consider the indicator function of a positive measure compact set without interior
points.

2.12.80. Let a function f on the plane be continuous in every variable sepa-
rately. Show that at some point f is continuous as a function on the plane.

2.12.81. Let f be a measurable real function on a measure space (X, A, u)
with a positive measure u. Prove that there exists a number y such that

1
/X @) =y M) = oo

HINT: passing to a subset of X, we may assume that the function f is bounded
and the measure p is finite (if the measure is infinite on some set where f is bounded,
then the claim is obvious); hence we assume that 0 < f <1 and that p(X) = 1; the
preimage under f of at least one of the intervals [0,1/2] or [1/2,1] has measure at
least 1/2; we denote such an interval by I; by induction we construct a sequence
of decreasing intervals I,, with p(f~'(I,)) > 27™; there exists y € (22, I,; then
u(ws [f(@) -yl > 27) > 277,

2.12.82? Let (X, A, 1) be a measurable space with a finite positive measure p
and let f be a p-measurable function with values in IR or in C. A point y is called
an essential value of f if pu(z: |f(z) —y| <e) > 0 for each € > 0.

(i) Show that a function f need not assume every essential value and that not
every actual value of f is essential.
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(ii) Show that the set of all essential values of f has a nonempty intersection
with f(X).

(iii) Show that the set of all essential values is closed and coincides with the
intersection of the closures of the sets f(X) over all functions f a.e. equal to f.

2.12.83. Let u be a nonnegative measure and let f be a p-measurable function
that has a bounded modification. Such functions are called essentially bounded.
The essential supremum esssup f and essential infimum essinf f of the function f
are defined as follows:

esssup f 1= inf{M: fle) <M ,u—a.e.}7 essinf f := sup{m: flx) >m ,u—a.e.}.
A bounded measurable function f on [a,b] is called reduced if, for every interval
(a, B) C [a,b], one has
inf (,p)f = essinfia g f, SUP (a,p)f = esssupy, gf-

Prove that each bounded measurable function f on [a, b] with Lebesgue measure has
a reduced modification.

HINT: construct a version that satisfies the required condition for all rational
«a and 3; observe that this condition is then fulfilled for all o and 3.

2.12.847 Let 1 be a probability measure, e, > 0, > > e, < 00, and let f,, be
p-measurable functions such that

S (s (@) > en) < oo

Prove that
oo
Z |fr(z)] < oo  ae.
n=1

HINT: let E =, Un_, {z: [fm(x)] > em}; since

1(U AlFml > em}) < 7 w{lfm] > emd),

then p(E) = 0; if z ¢ E, then there exists n with & {|fm| > em} for all m > n,
i.e., |fm(x)| < &m, which yields convergence of the series.

2.12.85” Let f,g: [0,1] — [0,1], where f is continuous and g is Riemann
integrable. Show that the composition g o f may fail to be Riemann integrable.

2.12.86° Let 4 be a nonnegative measure, let f € £2(u) N £L* (1), and let

[ fau= [ Fan= [ 1 an

Prove that f(z) € {0,1} a.e.
HINT: observe that the integral of (f*> — f)? vanishes, which yields f* = f a.e.

2.12.87° Let 1 < p < 0o, p~ ' +¢~* = 1. Prove that for all nonnegative a and b
one has the inequality ab < % + %, where the equality is only possible if b = a?~ .

HINT: consider the graph of the function y = 2P~" on [0,a] and observe that
the area of the region between it and the first coordinate axis equals a® /p, whereas
the area of the region between the graph and the straight line y = b equals b?/q; use
that the sum of the two areas is not less than ab, and the equality is only possible
ifb=a""".
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2.12.887 Justify the relation (2.12.8).
2.12.89° Let 1 <p<oo,p ' +q ' =1, f€LP(u), g€ L u), and let

/ fadi = [ lnllglla > 0.

Prove that g = signf - |f|*~! a.e.
HINT: conclude from the proof of the Hélder inequality and Exercise 2.12.87
that |g| = |f|"~!, whence the claim follows.

2.12.90° Let p be a probability measure and let f be a nonnegative u-integrable
function such that In f € £*(p1). Prove that
lim

Pty |
=1 .
p—0+ du nfdu

HINT: use the inequality |tP — 1|/p < |t — 1|+ |Int| for ¢ > 0, p € (0,1), and
the dominated convergence theorem.

2.12.91° Let p be a probability measure and let f be a nonnegative u-integrable
function such that In f € £* (). Prove that

1/p
lim (/ fr d,u) = exp/lnfdu.
p—0+

HiINT: apply the previous exercise.

2.12.92° Let p be a probability measure and let f € L'(u). Prove that

1+ (/Ifdu)2§ (/\/Wdufs (1+/|f|du)2-

HINT: apply Jensen’s inequality to the function ¢(t) = v/1 + t2 and the estimate
VI[P <1+]fl.

2.12.93” Let f,g > 0 be integrable functions on a space with a probability
measure g and let fg > 1. Show that

[ [gan=1.

HINT: observe that /f v/g > 1 and apply the Cauchy—Bunyakowsky inequality.

2.12.94° Let p be a countably additive measure with values in [0, +oo] and let
f € £'(p) be such that f — 1 € LP(u) for some p € [1,00). Prove that the measure
u is finite.

HINT: observe that the sets {f < 1/2} and {f > 1/2} have finite measures due
to integrability of |f — 1|7 and f.

2.12.95. Let u be a probability measure, let {f,} C £'(u), and let I,, be the
integral of f,. Suppose that there exists ¢ > 0 such that

[ fn = Lnlly < cllfalli, VneN.
Prove that either

limsup || fn|l1 < oo and liminf|f,(z)] < co a.e.,
n—oo n— oo

or
limsup ||fo|i =0 and limsup|fn(z)| = co a.e.

n—oo n—oo
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HINT: let || fn]|l1 — ooj if the sequence {In/||fn||}/p} is bounded, then we obtain
the uniform boundedness of || f||5/|| fn|l1, which by the Holder inequality yields the
uniform boundedness of the numbers ||f,||5~", hence of the numbers | f,||1, which

is a contradiction. Now we may assume that Cp, := I,/||fa|}’? — 400. Then by
Fatou’s theorem lim inf!fn (m)/anHi/p - Cn’ < 00 a.e., whence limsup | fn (z)| = co
n—0o0

n—o00

a.e.

2.12.96° Let f € £'[a,b] and let

b
/ t*f(t)dt =0

for all nonnegative integer k. Show that f =0 a.e.
HINT: take a sequence of polynomials p; that is uniformly bounded on [a, b]
and p;(t) — signf(t) a.e.

2.12.97. (G. Hardy) Let f be a nonnegative measurable function on [0, +00)
and let 1 < ¢ < 00, 0 < r < co. Show that

/OOO (/Ot f(s) ds) qt_T_1 dt < (g)q /0(><> Sq_T_lf(s)q ds.

HINT: for ¢ > 1 take p = q/(¢ — 1), set « = (1 — r/q)/p and apply the Holder
inequality to the integral of f(s)s*s™ over [0,¢] in order to estimate it by the
product of the integrals of f(s)?s*? and s~ “? in the corresponding powers.

2.12.98. (P.Yu. Glazyrina) Let f > 0 be a y-measurable function. Prove the

inequality
/f”du/f”dug /f"du/f”du

assuming that p, ¢, s are real numbers such that |p — s/2| < |¢ — s/2| and the above
integrals exist.
HINT: let r = (s —2¢)/(p—q), t = (s —2q)/(s —p—q). Then by our hypothesis
r>1,r '+t ' =1andt>1. Set a = q/t, B = q/r. Since
at = q, (p—a)r:(p—q/t)'r: (p—q+q/r)r:s—2q+q:s—q,
one has by Hoélder’s inequality

Jeraws ([reran) " ([rooran) " = ([ rran) ([ rraw) "
Similarly, one has
Jrraws ([ rran) " ([ rmran)"

It remains to multiply the two inequalities.

2.12.99. (Fukuda [334], Vakhania, Kvaratskhelia [971]) Let i be a probability
measure and let f € LP(u) be such that || f||zr(w) < C|fllLacu for some ¢ € [1,p)
and C > 1. Show that

[ ller gy < C¥ I flles

whenever 1 < s <r <p, where k =1if ¢ <s<r<p, k=qlp—s)(s(p—q))~"if
s<q<r<pr=plg—s)(s(p—q) tifs<r<gq
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HINT: the case ¢ < s < r < p follows at once by the monotonicity of the
function ¢+ || f|l ey Let s < g <7 < p and let

a=plg—s)ap—5)"", B=sp—a(ap—s) "
Then 0 < o, 3 < 1,a+3 = 1. Taket = p(ag)™'. Thent > land t = (p—s)(g—s)~ ",
t'=(p—s)(p—q) ', Bgt' = s. By Holder’s inequality

t —s —s —s —s s(p— —s
L ey el [ Sl 1 P

which yields ||f|lpau) < C(p(q_s)/(s(p_q))||f||Lsu). Since ||fllzry < [1fllze(w), we
arrive at the desired estimate. The remaining case is deduced from the considered
one.

2.12.100. (i) Let F be a partially ordered real vector space such that if z < y,
then tx < ty for all t > 0 and z + z < y + z for all z € E. Suppose that Ej is a
linear subspace in E such that, for each x € E, there exists an element zo € Eo with
x < xo. Let Lo be a linear function on Ey such that Lo(v) > 0 whenever v € Ey
and v > 0. Prove that Lo can be extended to a linear function L on E such that
L(xz) >0 for all z > 0.

(it) Deduce from (i) the existence of a nonnegative finitely additive function on
the class of all subsets of [0, 1] extending Lebesgue measure.

(iii) Deduce from (i) the existence of a generalized limit on the space m of all
bounded sequences, i.e., a linear function A on m such that A(z) > 0 for all x = (z,)
with z,, > 0 and A(z) = nlirrolo zn for all convergent sequences z = ().

HINT: (i) apply the Hahn—Banach theorem 1.12.26 to the function
p(z) = inf{Lo(v): v € Ep,z < v};

(ii) take for E the space of all bounded functions on [0,1] and for Ey the sub-
space consisting of measurable functions, define Lo on Ej as the Lebesgue integral;
(iii) take for Ey the subspace of all convergent sequences.

2.12.101. (S. Banach) (i) Prove that on the space L of all bounded functions
on [0,1) there exists a linear function A with the following properties:

(a) if f € L is Lebesgue integrable, then A(f) coincides with the Lebesgue
integral of f over [0, 1),

(b) if f € L and f > 0, then A(f) >0,

() A(f(-+s)) = A(f) forall f € L and s € [0,1], where f(t+s) = f(fr(t+s)),
fr(s) is the fractional part of s.

(ii) Construct a linear function on L that coincides with the integral on the set
of all Riemann integrable functions, but differs from the Lebesgue integral at some
Lebesgue integrable function.

HINT: (i) consider the function p from Example 1.12.27 on the space L of all
bounded functions on the real line with a period 1; on the linear subspace Lo in L
formed by integrable functions we set

AO(f):/Olfdm

Show that Ao(f) < p(f) by using the equality

/Olf(t+a)dt:/01f(t)dt
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for periodic functions; extend Ao to a linear function A on L with A < p and
verify the required properties by using that p(f) < 0 whenever f < 0 and that
p(f(-+h)) =p(f). In (ii), a similar reasoning applies.

2.12.102. (S. Banach) Prove that Lebesgue measure on [0, 1] can be extended
to an additive but not countably additive nonnegative set function v that is defined
on the class of all subsets of [0, 1] and has the following invariance property: v(E +
h) = v(E) for all E C (0,1] and h € (0, 1], where in the formation of the sum E + h
the numbers e + h > 1 are replaced by e + h — 1 (in this and the previous example
one can deal with the circle and rotations in place of (0,1] and translations).

HINT: consider v(E) = A(Ig), where A is the linear function on the space of
all bounded functions on (0, 1] from Exercise 2.12.101.

2.12.103. Let f € £L'(IR') and a > 0.
+oo
(i) Show that the series Y. f(n+a~'2) converges absolutely for a.e. x.

—+o0

(ii) Let g(z) = 3. f(n+a ') if the series converges and g(x) = 0 otherwise.

/Oag(x) dx = a/+00 f(z)dz.

—o0

Show that

(iii) Show that for a.e. x for each a > 0 one has lim n~®f(nz) = 0.

HINT: (i) observe that

+oo

5 [ it atolde=a [ ir(a) o

n=-—oo —0oo
(ii) use the monotone convergence theorem; (iii) observe that
oo 400
Znia/ |f(nz)| dx < oo,
n=1 -

by using the change of variable y = nz (see Chapter 3 about the change of variable).
2.12.104. Let f € £'(IR'). Prove the equality

'/_:o f(z)dz| = inf{/_:oli aif(@+a0) dx},

where inf is taken over all numbers z; € IR!, n € INand o; > 0 with a1+ - -+ = 1.
HINT: let the integral of f be nonnegative; then the right-hand side of the equal-
n

ity to be proven is not less than the left-hand side, since the integral of > o f(z+z;)

i=1
equals the integral of f; the reverse inequality is easily verified with the aid of the
Riemann sums in the case of a continuous function f with bounded support; in
the general case one can approximate f in the mean by continuous functions with
bounded support.

2.12.105. (Fréchet [320], Slutsky [889]) Let u be a probability measure on a
space X and let f be a u-measurable function. We call a number m a median of f
if u(f <ec)<1/2forall c<mand pu(f <c)>1/2 for all ¢ > m.

(i) Prove that a median of f exists, but may not be unique.
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(ii) Prove that a median is unique if f has a continuous strictly increasing
distribution function ®; and then m = @;1(1/2).

(iii) Suppose that measurable functions f, converge to f in measure p. Prove
that the set of medians of the functions f,, is bounded and that if m,, is a median
of f,, and m is a limit point of {m,}, then m is a median of f.

HINT: (i), (ii) take for a median any number in the interval between the numbers
sup{c: p(f < ¢) < 1/2} and sup{c: pu(f < ¢) < 1/2}. (iii) Take an interval [a, b]
containing all medians of f; then it is easily verified that for all sufficiently large n
all medians of f, are contained in [a — 1,b+ 1]; if ¢ < m, but u(f < ¢) > 1/2, then
there exists ¢1 < ¢ such that u(f < ¢1) > 1/2; then, for all sufficiently large n we
have ¢ < my and p(fn < ¢) > 1/2, which is a contradiction; similarly we verify that
u(f <c¢)>1/2 for all ¢ > m.

2.12.106. Let f be a nonnegative continuous function on [0, +o00) with the
infinite integral over [0, +00). Show that there exists a > 0 with >~ | f(na) = co.

HINT: see Sadovnichil, Grigoryan, Konyagin [839, Ch. 1, §4, Problem 46] and
comments in Buczolich [140].

2.12.107. (Buczolich, Mauldin) Prove that there exist an open set E C (0, +00)
and intervals I; and I in [1/2,1) such that ) >, Ig(nx) = oo for all z € I; and
Yoo i Ie(ne) < oo for all x € Is.

HINT: see references and comments in Buczolich [140].

2.12.108. Suppose we are given two measurable sets A and B in the circle
of length 1 having linear Lebesgue measures o and (3, respectively. Let B, be the
image of the set B under the rotation in the angle ¢ counter-clockwise. Show that
for some ¢ the set AN B, has measure at least 5.

HINT: observe that the integral of A(A N B,) in ¢ equals a3; see Sadovnichii,
Grigoryan, Konyagin [839, Ch. 4, §3, Problem 11].

2.12.109. Let f be an integrable complex-valued function on a space X with
a probability measure p. Prove that

/dep:(J

[+ zi@lde =
JX

precisely when

for all complex numbers z.
|1+ rexp(i0)f(z)] — 1

HinT: if this inequality is fulfilled, then one can use that .
tends to Re[(exp(if) f(z)] as 7 — 0+ for all § € R" and is majorized by |f(z)|; one

can take 6 such that
eXp(iQ)/ fdu= —‘/ fdu‘-
X X

2.12.110. Let {f»} be a sequence of integrable complex-valued functions on
[0, 1] such that

n—0o0

1 1
lim |[Refn(x)|de =1, lim / ‘1f|fn(x)\|dx:0.
0 e Jo

Show that N

lim |Im fr, ()| dz = 0.

n—o0 0
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HINT: see George [351, p. 250].

2.12.111. (Kakutani [481]) Let f and g be two nonnegative measurable func-
tions on [0, 1] having the following property: if the integral of f over some measurable
set F is finite, then the integral of g over E is finite as well. Prove that there exist a
constant K and a nonnegative integrable function h such that g(x) < K f(x) + h(x).

2.12.112° Suppose that increasing functions f, converge in measure on the
interval [a, b] with Lebesgue measure. Show that they converge almost everywhere.

HINT: there is a subsequence in { f,, } that converges almost everywhere on [a, b].
It is readily seen that there exists an increasing function f to which this subsequence
converges almost everywhere. It remains to verify that {f.} converges to f at every
continuity point of f.

2.12.113. (Lovdsz, Simonovits [623]) Suppose we are given lower semicontin-
uous integrable functions u; and uz on IR™. Prove that there exist a,b € IR"™ and
an affine function L: (0,1) — (0, +00) such that

1
/ ui((1—t)a+th)L(t)" ' dt >0, i=1,2.
0

HINT: see [623] and Kannan, Lovész, Simonovits [489)].

2.12.114. Suppose that a sequence of convex functions f, on a ball U ¢ IR is
uniformly bounded. Prove that it contains a subsequence convergent in L?(U) for
all p € [1,00).

HINT: it suffices to show that {f,} is uniformly Lipschitzian on every smaller
ball V' with the same center. To this end, it is sufficient to show that for every convex
function f on an interval [a, b] and every § > 0, one has | f/(t)| < 267" SUP, (a5 | (2)]
for a.e. t € [a+ §,b— §]. This estimate follows easily by the convexity: if f'(t) > 0,
then f'(¢)(b—t) < f(b) — f(t); the case f'(t) < 0 is similar.

2.12.115. Let u be a probability measure on a measurable space (X,.A), let
1< p< oo, and let f, € LP(u) be nonnegative functions such that
[ fnlleewy < Cllfnllo

with some constant C' (or, more generally, Hzgzl f"HLP(u) <oy, 1fnll L)

Prove that the series > | fn converges p-a.e. if and only if

nz::l/xfndu<oo.

HINT: in one direction the claim follows by the monotone convergence theorem.
Suppose that the series of the integrals of f,, diverges. By Proposition 2.11.7 and

the estimate HZQ’ZI In o < 25:1 | fullLe(u) one has

—q

N 1N N a||
M(ﬂﬂ: Z ful) 2 5 Z Hf”||L1(u)> z Q_Q(Z Hf"”““”) HZ Il o

N N
_ q —4q _ _
> 27 (3 Wallrgn) (30 Wallerin) 22797
n=1 n=1

Therefore, A}un > nei fn(x) = 00 on a positive measure set.
— 00
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2.12.116. (Kadec, Pelczyniski [476]) Let u be a probability measure on a mea-
surable space (X,.A) and let p > 1, € > 0. Set
M= {f e () plw: @) > el fllign) > <}

(i) Show that LP(u) = .o MZ.

(ii) Suppose that f € LP(u), where p > 1, and that ||f|lzru) < CllfllLr s
where r € (1,p). Show that f € M? with ¢ = cre/(p=1gp/(=p),

HINT: (i) Let E. = {z: |f(2)| > e||fllzr(u }- If p(E:) < & for all € > 0, then,
letting a := || f||Lr (), we obtain @ > 0 and p(z: |f(z)| < ea) > 1 — &, which yields
f =0 a.e., a contradiction.

(ii) Let ¢ = CP/(P=Vgp/(A=P) 1t f & MP, then pu(E.) < . Hence by Holder’s
inequality

/ 1" di < p(B) V2N oy + € 1 I r ey < 260721 F I 2o -
X

Since || fllzr ) = C|fllLe (), we obtain the desired bound.

2.12.117. (Sarason [845]) Let (X, A, u) be a probability space and let f > 0
be a p-measurable function such that

/ fd,u/ fldu<i+¢é
X X

for some ¢ € (0,1/2). Let J be the integral of f and let I be the integral of In f.
Show that

/\lnffan\d,ug&, /|1nffl|d,u§16c.
p's X

HINT: by scaling we may assume without loss of generality that J = 1 and thus
that the integral of 1/f is 14 ¢®. Let A:={z: (14+¢)™" < f(z) < 14 c}. Observe
that t+t7' > 14+c+(1+c) tift> (1 +c¢) P ort<14c Since f+ f'>2 we
obtain

2+¢° =/ (f+f71) dp > [Tet(140) T u(X\A) +2u(A) = 2+ (14+0) T p(X\A).
b
Hence pu(X\A) < c¢(1+4¢) < 2¢, s0o m(A) > 1 — 2¢. Therefore,

fdu=1- [ fdp<1-@ro a1 (1-200 407! <3
X\A A

/ f*ldu:1+c3—/ Fldp <1+ —(14¢) 'uA) < e

X\A A

On A we have |In f| < In(1+c¢) < c. Since |In f| < f + f~! everywhere, we obtain
/ \lnfldu§c+/ (F+F ") dp < sc.
JX X\A

It remains to use the estimate

1< [ fnfld
X



CHAPTER 3

Operations on measures and functions

Tepsas ¢opmy, rubuer Kpacora,
A ¢popma cTporo TpebyeT 3aKoHA.
B. Conoyxun. Benok comeros
Losing its form, beauty perishes,
and the form demands a law.
V. Solouhin. A wreath of sonnets.

3.1. Decomposition of signed measures

In this section, we consider signed measures. A typical example of a signed
measure is the difference of two probability measures. We shall see below
that every signed measure on a g-algebra is the difference of two nonnegative
measures. The following theorem enables one in many cases to pass from
signed measures to nonnegative ones.

3.1.1. Theorem. Let pu be a countably additive real-valued measure on
a measurable space (X, A). Then, there exist disjoint sets X, X+ € A such
that X~ UXT = X and for all A € A, one has

w(ANX") <0 and p(ANXt)>0.

PrOOF. A set E € A will be called negative if u(AN E) < 0 for all
A € A. By analogy we define positive sets. Let o = inf u(F), where the
infimum is taken over all negative sets. Let F,, be a sequence of negative sets
with lim w(E,) = a. It is clear that X~ := (J 2| E, is a negative set and

that u(X~) = a, since a < pu(X~) < u(E,). We show that Xt = X\ X~
is a positive set. Suppose the contrary. Then, there exists Ay € A such that
Ap € Xt and 1u(Ap) < 0. The set Ag cannot be negative, since the set X ~UAg
would be negative as well, but (X ~UAy) < «, which is impossible. Hence one
can find aset A; C Ap and a number k; € IN such that 4; € A, u(A1) > 1/kq,
and k7 is the smallest natural number &k for which Ag contains a subset with
measure not less than 1/k. We observe that u(A4p\A41) < 0. Repeating the
same reasoning for Ag\A; in place of Ay we obtain a set As in A contained
in Ag\A4; such that pu(As) > 1/ky with the smallest possible natural ky. Let
us continue this process inductively. We obtain pairwise disjoint sets A; € A
with the following property: A,11 C Ao\ U\, 4; and pu(A,) > 1/k;,, where
ky is the smallest natural number k such that Ag\ U;le A; contains a subset
with measure not less than 1/k. We observe that k,, — 400, since otherwise
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by using that the sets A,, are disjoint we would obtain that u(Ag) = +o0o. Let
B = Ao\ U;2, 4;. Note that u(B) < 0, since u(Ag) < 0, p(Use; A;) > 0 and
U2, Ai C Ap. Moreover, B is a negative set. Indeed, if C C B, C € A and
w(C) > 0, then there exists a natural number k& with u(C) > 1/k, which for
ky, > k contradicts our choice of k, because C' C Ao\ U, A;. Thus, adding
B to X, we arrive at a contradiction with the definition of . Hence the set
Xt is positive. O

The decomposition of the space X into the disjoint union X = Xt U X~
constructed in the above theorem is called the Hahn decomposition. It is clear
that the Hahn decomposition may not be unique, since one can add to X +
a set all subsets of which have measure zero. However, if X = X7 U X~ is
another Hahn decomposition, then, for all A € A, we have

wANX")=p(ANX") and p(ANXT)=pANnX"T). (3.1.1)
Indeed, any set B in A belonging to X~ N X+ or to X* N X~ has measure
zero, since pu(B) is simultaneously nonnegative and nonpositive.

3.1.2. Corollary. Under the hypotheses of Theorem 3.1.1 let

pt(A) = pu(AnX"), p (A):=—-uAnX"), AcA (3.1.2)
Then pu* and p~ are nonnegative countably additive measures and one has

the equality = pu* — p~.

It is clear that u(X™) is the maximal value of the measure u, and p(X ™)
is its minimal value.

3.1.3. Corollary. If p: A — R' is a countably additive measure on a
o-algebra A, then the set of all values of p is bounded.

3.1.4. Definition. The measures u™ and pu~ constructed above are called
the positive and negative parts of u, respectively. The measure

|l = p +p
is called the total variation of . The quantity
[l = [l (X)

is called the variation or the variation norm of .

The decomposition u = p* — p~ is called the Jordan or Jordan—Hahn
decomposition.

One should not confuse the measure |u| with the set function A — |u(A)|,
which, typically, is not additive (e.g., if ||u| > p(X) = 0).

We observe that the measures u™ and p~ have the following properties
that could be taken for their definitions:

p(A) =sup{u(B): BC A,Be A},
p~(A) =sup{—u(B): BC A,B¢c A}
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for all A € A. In addition,

ul(A) = sup{z (a1}, (3.1.3)

where the supremum is taken over all at most countable partitions of A
into pairwise disjoint parts from 4. One can take only finite partitions
and replace sup by max, since the supremum is attained at the partition
A = AnX*t Ay = AN X~. Note that |ul| does not coincide with the
quantity sup{\,u )|, A € .A} if both measures u* and pu~ are nonzero, but
one has the inequality

Il < 2sup{|u(A)]: A€ A} <2|ul. (3.1.4)
All these claims are obvious from the Hahn decomposition.

3.1.5. Remark. It is seen from the proof that Theorem 3.1.1 remains
valid in the case where p is a countably additive set function on A with values
in (—oo, +00]. In this case, the measure p~ is bounded and the measure pu™
takes values in [0, +00]. Thus, in the case under consideration, the bounded-
ness of u is equivalent to the finiteness of u(X).

If 4 is a signed measure, we set by definition LP(yu) := LP(|u|) and
LP(p) := LP(|p]). For any f € LY(Ju]) we set

fdu:= [ fl@)p(dz) = [ fz)p"(dz)— [ f(z)p (do
X X X X

Letting € be the function equal to 1 on X+ and —1 on X, we obtain

[ s@ntan) = [ 1@t ul(aa).

It is clear that with such a definition many assertions proved above about
properties of the integral are true in the case of signed measures. In partic-
ular, the Lebesgue dominated convergence theorem remains true for signed
measures. Certainly, there are assertions that fail for signed measures. For
example, the relation f < g gives no inequality for the integrals. In addition,
the Fatou and Beppo Levi theorems fail for signed measures.

3.2. The Radon—Nikodym theorem

Let f be a function integrable with respect to a measure p (possibly,
signed or with values in [0, +o0]) on a measurable space (X,.A). Then we
obtain the set function

A):/Afdﬂ, (3.2.1)

By the dominated convergence theorem v is countably additive on A. In-
deed, if sets A,, € A are pairwise disjoint, then the series > 7, I, (z)f(z)



178 Chapter 3. Operations on measures and functions

converges for every = to I4(x)f(x), since this series may contain only one
nonzero element by the disjointness of A,,. In addition,

> L, @)f @) < @) @)

Hence this series can be integrated term-by-term.

We denote v by f - u. The function f is called the density of the measure
v with respect to p (or the Radon—Nikodym density) and is denoted by the
symbol dv/du. It is clear that the measure v is absolutely continuous with
respect to p in the sense of the following definition.

3.2.1. Definition. Let p and v be countably additive measures on a
measurable space (X, A).

(i) The measure v is called absolutely continuous with respect to p if
|V|(A) = 0 for every set A with |p](A) = 0. Notation: v < p.

(ii) The measure v is called singular with respect to u if there exists a set
Q € A such that

() =0 and  |v[(X\Q) = 0.
Notation: v L p.

This definition makes sense for measures with values in [0, +00], too.

We observe that if a measure v is singular with respect to u, then p is
singular with respect to v, i.e., u L v. For this reason, the measures p and v
are called mutually singular. If v < p and p < v, then the measures p and
v are called equivalent. Notation: p ~ v.

The following result, called the Radon—Nikodym theorem, is one of the
key facts in measure theory.

3.2.2. Theorem. Let p1 and v be two finite measures on a space (X, A).
The measure v is absolutely continuous with respect to the measure pu precisely
when there exists a p-integrable function f such that v is given by (3.2.1).

PROOF. Since p = fi|u| and v = falv|, where |fi(x)| = |fo(z)] = 1, it
suffices to prove the theorem for nonnegative measures p and v. Let v < p
and let

f:z{feﬂl(u): fZO,/Afd,uSV(A) forallAEA}.

M::sup{/ fdu: fe]—'}.
X

We show that F contains a function f on which this supremum is attained.
Let us find a sequence of functions f, € F with the integrals approaching M.
Let g, (z) = max(fi(z),..., fo(x)). We observe that g, € F. Indeed, the

Set
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set A € A can be represented in the form A = (J;_, Ay, where Aj, € A are
pairwise disjoint and gy (z) = fr(x) for x € Ay. Then

n dp = ndp < v(Ag) = v(A).
/Ag 0 kz_l/Akg 1 ; k

The sequence {g, } is increasing and the integrals of g,, are bounded by v(X).
By the monotone convergence theorem the function f := lim g, is integrable.
—00

It is clear that f € F and that the integral of f with respect to the measure
w equals M. We show that f satisfies (3.2.1). The set function

n(4) = v(4)— [ Fau

is a nonnegative measure due to our choice of f and is absolutely continuous
with respect to . We have to show that n = 0. Suppose that this is not
the case. Let us consider the signed measures  — n~ ' and take their Hahn
decompositions X = X,FUX, . Let X; :=(\._, X,,. Then, by the definition
of X,;, we have n(X; ) <n~'u(Xy ) for all n, whence we obtain n(X; ) = 0.
Hence there exists n such that n(X,") > 0, since otherwise n(X) = n(X,,) for
all n and then n(X) = n(X;) = 0. For every measurable set E C X,I, we
have n~1u(E) < n(E). Hence, letting h(z) := f(x) + n‘llX:r (), we obtain
for any A € A

[du= [ papsnutanx) < [ fdusnanx)
A A A
:/ fdu+v(ANXH) <v(A\X])+v(ANX) =v(A).
A\X;F

Thus, h € F contrary to the fact that the integral of h with respect to the
measure /i is greater than M, since u(X;F) > 0. Hence n = 0. O

It is clear that the function dv/du is determined uniquely up to a set of
measure zero, since a function whose integrals over all measurable sets vanish
is zero a.e.

An alternative proof of the Radon—Nikodym theorem will be given in
Chapter 4 (Example 4.3.3).

We note that if two measures p and v are finite and nonnegative and
v < p, then v ~ p precisely when dv/du > 0 a.e. with respect to p. It is
readily verified (Exercise 3.10.32) that if we are given three measures p1, pa,
and ps with p1 << pe and pe < ps, then p; < ps and

dpa /dps = (dp /dpz)(dpe /dps).

The condition for the membership of the Radon—Nikodym density in the
space LP(u) can be found in Exercise 4.7.102. Exercise 6.10.72 in Chapter 6
contains a useful assertion about a measurable dependence of the Radon—
Nikodym density on a parameter.
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By using the Radon-Nikodym theorem one can obtain the following Le-
besgue decomposition.

3.2.3. Theorem. Let p and v be two finite measures on a o-algebra A.
Then, there exist a measure pg on A and a p-integrable function f such that

v=[f-p+po, polp.

PROOF. Let us consider the measure A := |u| + |v|]. By the Radon—
Nikodym theorem p = f, - A\, v = f, - A, where f,, f, € L*(\). Let us set
Y = {z: fu(z) #0}. If z € Y we set f(z) = fu(x)/fu(x). Finally, let
po(A) == v(AN (X\Y)). For the restrictions py and vy of the measures
@ and v to the set Y we have vy = f - uy. Hence we obtain the required
decomposition. (I

It is to be noted that if p is a finite or o-finite nonnegative measure
on a o-algebra A in a space X, then every finite nonnegative measurable
function f (not necessarily integrable) defines the o-finite measure v := f -
by formula (3.2.1). Indeed, X is the union of the sets {z: f(z) < n}NX,,
where p(X,) < oo, which are of finite measure. It is clear that in such
a form, the Radon—Nikodym theorem remains true for o-finite measures as
well. However, for the measures u({0}) = 1, v({0}) = oo (or u({0}) = oo,
v({0}) = 1) it is no longer true (with finite f); see also Exercise 3.10.31.
On the Radon—Nikodym theorem for infinite measures and the problems that
arise in this relation, see Halmos [404, §31].

3.3. Products of measure spaces

Let (X1,.A1, 1) and (Xao, As, ua) be two spaces with finite nonnegative
measures. On the space X1 x X5 we consider sets of the form A; x As, where
A; € A;, called measurable rectangles. Let g X pa (A X Ag) := p1(Ar)p2(Az).
Extending the function p1xpus by additivity to finite unions of pairwise disjoint
measurable rectangles we obtain a finitely additive function on the algebra R
generated by such rectangles. We observe that such an extension of p1 X s to
R is well-defined (is independent of partitions of the set into pairwise disjoint
measurable rectangles), which is obvious by the additivity of p; and ps. Fi-
nally, let A;®A45 denote the o-algebra generated by all measurable rectangles;
this o-algebra is called the product of the o-algebras A; and As.

3.3.1. Theorem. The set function pi X pe is countably additive on the
algebra generated by all measurable rectangles and uniquely extends to a count-
ably additive measure, denoted by j11 2, on the Lebesgue completion of this
algebra denoted by A1®As.

PROOF. Suppose first that C' = J;—; C,,, where
C=AxB, C,=A,xB,, A A,c A, B,B,cA,,
and the sets C), are pairwise disjoint. Let
fo(x) = pa(By) ifx e A, folzr)=0 ifxdA,.
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It is clear that f, is Aj-measurable and >~ | fu(2) = po(B) for all z € A.
By the monotone convergence theorem we obtain

;/Afndm :/AW(B)CZM = 1 x p2(C).

Since
/A Fodpiy = (B (An) = pia X piz(Co),

our claim is proven in the regarded partial case. Now let C = |J;—; D,, and
let C = U;\f:l Cj, where C; are pairwise disjoint measurable rectangles and

D, = Ui\iq D, i, where D, ; are pairwise disjoint measurable rectangles as
well. Set D, ;; = Dy ; N Cj. Then D, ;; are disjoint measurable rectangles
and Cj =, U; Dn.i,js Dn,i = Uj D,, ; ;. By using our first step we obtain

pa X p2(Cy) = Z Zﬂ(Dn,i,j)v p1 X pr2(D ;) = ZM(Dn,i,j)~
n 7 J

Since p1xug(C) = Zj pixp2(Cy),  paxpa(Dy) = >, pixpa(Dy ), we obtain
p1 X p2(C) =37, w1 x pa(Dy) by the previous equality. The assertion about
extension follows by the results in §1.5. ]

The above-constructed measure p ®us is called the product of the mea-
sures p1 and po. By construction, the measure p; ®pe is complete. Products
of measures are called product measures.

It should be noted that the Lebesgue completion of the o-algebra A;®A;
generated by all rectangles A; x As, A; € Ay, Ay € As, is, typically, larger
than this o-algebra. For example, if A; = Ajs is the Borel o-algebra of [0, 1],
and p; = ps is Lebesgue measure, then A; ® Ao coincides with the Borel o-
algebra of the square (any open set in the square is a countable union of open
squares). Obviously, there exist measurable non-Borel sets in the square. It
will not help if we replace the Borel o-algebra of the interval by the o-algebra
of all Lebesgue measurable sets. In that case, as one can see from the following
assertion, A; ® Ao will not contain any nonmeasurable subset of the interval
regarded as a subset of the square (clearly, such a set has measure zero in
the square and belongs to the completion of A;®.A4s). Certainly, the measure
111 ®ps can be considered on the not necessarily complete o-algebra 4; ®.A,.

The next result is a typical application of the monotone class theorem.

3.3.2. Proposition. (i) Let (X1,A1) and (X2, A2) be two measurable
spaces and let A1 @ As be the o-algebra generated by all sets A1 X As with
Ay € Ay, Ay € Ay. Then, for every A € Ai® Ay and every x1 € X1, the set

Awl = {1‘2 € Xy (Z‘l,xg) S A}
is contained in As. In addition, for every A1 ®As-measurable function f and
every x1 € X1, the function xo — f(x1,x2) is Ag-measurable.

(ii) For any finite measure v on Az, the function x1 — v(Ay,) on X1 is
A1 -measurable.
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Proor. (i) If A is the product of two sets from A; and Ag, then our
claim is true. Denote by £ the class of all sets A € A; ® Ay for which it is
true. Given sets A", one has (U, A") = Un_, A7, and similarly for the
complements. This shows that the class £ is a o-algebra. Hence we have
& = A1 ®As. The measurability of the function xo +— f(x1,x2) follows if we
apply the established fact to the sets {z2: f(x1,22) < c}.

(ii) The function fa(z1) = v(As,) is well-defined according to asser-
tion (i). Denote by & the class of all sets A € A; ® Ay for which it is
Aj-measurable. This class contains all rectangles A; x Ay with A; € A;.
Further, £ is a monotone class, which follows by the dominated convergence
theorem and the obvious fact that if the sets A7 increase to A, then the sets
Ag‘cl increase to A,,. Similarly, one verifies that £ is a o-additive class, i.e.,
& admits countable disjoint unions and E1\Ey € £ if Eq, Fy € £ and Ey C Ej.
Since the class of all rectangles of the above form is closed with respect to
intersections, assertion (ii) of Theorem 1.9.3 yields that the class £ coincides
with A; ®A,. O

3.3.3. Corollary. In the situation of assertion (ii) in the above proposi-
tion, for any bounded A1®As-measurable function f on X1xXs, the following
function is well-defined and A;-measurable:

Ty — f(z1,29) v(das).
X2
PROOF. It suffices to consider the case where f is the indicator of a
set A € A1 ®As, since every bounded A; ® As-measurable function can be
uniformly approximated by linear combinations of such indicators and the
corresponding integrals in v converge uniformly in z1. Hence our claim follows
from the proposition. O

The product of measures can be constructed by the Carathéodory method:
see §3.10(i) below.

By means of the Jordan-Hahn decomposition one defines products of
signed measures (this can be done directly, though). Let = p™ —p~, v =
vt -1, X=XTUX",Y =YTUY"~ be the Jordan-Hahn decompositions
of two measures p and v on the spaces X and Y. Set

HRU = ,u+®y+ +u QU — /ﬁ'@y_ — ,u_®y+.
Clearly, the measures pt®@vT +pu~®@ v~ and pT™® v~ + u~ @ vT are mutually
singular, since the first one is concentrated on the set (X xYT)U(X~xY ™)
and the second one is concentrated on the set (XTxY ") U (X~ xY™T).

By induction one defines the product of finitely many measures p,, on the
spaces (X, A,), n =1,...,N. This product is associative, i.e., one has the
equality

@ (p2®@us) = (1 @p2) @ 3.

Finally, let us define the product of two o-finite nonnegative measures p

and v on o-algebras A and B. Let X be the union of an increasing sequence of
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sets X, of finite u-measure and let Y be the union of an increasing sequence
of sets Y,, of finite v-measure. The formula

uev(E) = nh_}rr;o wlx, @vly, (BN (X, xYy,))

defines a o-finite measure on AQB.

One could reduce this case to finite measures by choosing finite measures
to and v such that u = g, - po, v = 9, - Vg, where g, and g, are nonnegative
measurable functions. Then one can set p®@v := (0,0,) - po®vp. It is readily
verified that this gives the same measure as before.

Let us note yet another fact related to products of measurable spaces,
which, however, does not involve measures.

3.3.4. Proposition. Suppose that (X, A) and (Y,B) are measurable
spaces and f: X — R' and g: Y — IR' are measurable functions. Then, the
mapping (f,g): XxY — IR? is measurable with respect to A®B and B(IR?).
In particular, the graph of the function f and the sets {(x,y): y < f(z)} and
{(z,y): y> f(z)} belong to ARB(IRY).

PROOF. Lemma 2.12.5 applies here, but a direct proof is easy. Namely,
for every open rectangle II = I x J the set {(x,y): (f(x)hq(y)) € H} is
the product of elements of A and B and belongs to A®B. The class of all
sets F € B(IR?) whose preimages with respect to the mapping (f,9) belong
to ARB, is a g-algebra. Since this class contains all rectangles of the indicated
form, it also contains the o-algebra B(IR®) generated by them. In the case
where (Y, B) = (R", B(IR")) and g(y) = y, we obtain the measurability of the
mapping (z,y) — (f(:c), y) from X xIR' to IR?, which yields the membership
in A®B(1R1) of the preimages of Borel sets. For example, the graph of f is
the preimage of the straight line y = x, and two other sets mentioned in the
formulation are the preimages of half-planes. O

Related to this subject are Exercise 3.10.52 and Exercise 3.10.53.

3.4. Fubini’s theorem

Suppose that p and v are finite nonnegative measures on measurable
spaces (X, .A) and (Y, B), respectively. For every set A C X xY, we define the
sections

Ao ={y: (wy) €A}, A, ={z: (x.y) € A},

3.4.1. Theorem. Let a set A C X XY be measurable with respect to
the measure p®v, i.e., belong to (AQB)ugy. Then, for p-a.e. x, the set A,
is v-measurable and the function x — v(A;) is p-measurable; similarly, for
v-a.e. y, the set A, is p-measurable and the function y — p(A,) is v-measu-
rable. In addition, one has

nev(A) = /

V(A ulde) = [ 4, v(dy). (3.4.1)
X

Y
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Proor. If A = BxC, where B € A, C € B, then our claim is true. Hence
it is true for all sets in the algebra R generated by measurable rectangles.
By Proposition 3.3.2(ii), for any A € A®B, the functions z — v(A,) and
y — p(Ay) are measurable with respect to A and B, respectively. Therefore,
one has two set functions on A®B defined by

Gi(4) = /X V(A plde),  Ga(A) = /Y H(Ay) v(dy).

If we are given pairwise disjoint sets A™ with the union A, then the sets
A" are pairwise disjoint and their union is A, for each x, whence we ob-
tain v(A,) = Yoo, v(A?). Integrating this series term-by-term against the
measure p by the dominated convergence theorem, we conclude that (; is
countably additive. Similarly, one verifies the countable additivity of (». The
measures (1, (2 and p®v coincide on the algebra R, hence also on AR B.

It remains to observe that the theorem is true for every set E of p®@uv-
measure zero. Indeed, there exists a set E € A®B that contains F and
has p® v-measure zero. Then E, C E, and V(Ex) = 0 for p-a.e. x by the
already-established equality

/ v(By) p(dz) = 0.
X

Similarly, u(E,) = p(E,) = 0 for v-a.e. y. d

3.4.2. Corollary. The previous theorem is true in the case where y and
v are o-finite measures if the set A has finite measure.

PROOF. Let us write X and Y as X = [J;2, X,,, Y = U, —, Yy, where
X, and Y,, are increasing sets of finite measure, then apply the above theorem

to X, XY, and use the monotone convergence theorem. O

3.4.3. Corollary. Let Y = IR', let X be Lebesque measure on R', and
let f be a nonnegative integrable function on a measure space (X, A, u) with
a o-finite measure . Then

[ san=wer({@a): 02y < f@)}). (3.4.2)

PROOF. The set A= {(z,y): 0<y< f(z)} is measurable with respect
to p®A by Proposition 3.3.4. It remains to observe that A(4,) = f(z). O

We observe that if p@v(A) > p(X)v(Y) —eu(X), then (3.4.1) yields the

estimate
pla: v(As) 2 v(Y) = Ve) 2 (1 - Ve)u(X).
Indeed, the integral of the function x — v(A;) against the measure p does
not exceed the quantity v(Y)u(E) + (v(Y) — &) (1(X) — u(E)), where we
set B ={x: v(4,;) >v(Y) — /e}. Hence
VY )u(X) — VE(X) + VEu(E) > p(X)n(Y) — p(X),

whence we obtain /eu(F) > (ve —e)u(X).
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The following important result is called Fubini’s theorem.

3.4.4. Theorem. Let ;1 and v be o-finite nonnegative measures on the
spaces X andY . Suppose that a function f on X XY is integrable with respect
to the product measure p@v. Then, the functiony — f(x,y) is integrable with
respect to v for p-a.e. x, the function x — f(z,y) is integrable with respect
to u for v-a.e. y, the functions

oo [ faa)vidy) ad g [ o)l
Y X

are integrable on the corresponding spaces, and one has

[ raen = [ [ ey = [ [ s )
(3.4.3)

PROOF. It is clear that it suffices to prove the theorem for nonnegative
functions f. Let us consider the space X xY xIR! and the measure p@v®\,
where A is Lebesgue measure. Set

A={(z,y,2): 0<2< fz,y)}.
Then by Corollary 3.4.3 we obtain

fd(uev) = p@reA(A).
XXY
Applying Theorem 3.4.1 and using Corollary 3.4.3 once again, we arrive at
the equality

ueven(a) = [ voanuan) = [ ([ st vian) uas).
Note that the measurability of all functions in these equalities is clear from
Theorem 3.4.1 and the equality f(x,y) = A(A(,y)). The second equality in

(3.4.3) is proved similarly. O

It is suggested in Exercise 3.10.45 to construct examples showing that the
existence and equality of the repeated integrals in (3.4.3) does not guarantee
the p® v-integrability of the measurable function f. In addition, it may
happen that both repeated integrals exist, but are not equal. Finally, there
exist measurable functions f such that one of the repeated integrals exists, but
the other one does not. However, there is an important special case when the
existence of a repeated integral implies the integrability of the corresponding
function on the product. This result is called Tonelli’s theorem.

3.4.5. Theorem. Let f be a nonnegative p®v-measurable function on
X XY, where i and v are o-finite measures. Then f € L*(u®v) provided that

/Y/Xf(w,y)u(dx)y(dykoq
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Proor. It suffices to prove our claim for finite measures. Let us set
fr. = min(f,n). The functions f, are bounded and measurable with respect
to u®v, hence are integrable. It is clear that f,, — f pointwise. By Fubini’s
theorem applied to f, one has

XXYf7ld(“®V)=L(/)(f7zdu> dué/y(/xfdu> v,

since fn(z,y) < f(z,y). By Fatou’s theorem f is integrable. O

It is to be noted that the existence of the repeated integrals of a function
f on X xY does not yield its measurability (Exercise 3.10.50).
Let us give another useful corollary of Fubini’s theorem.

3.4.6. Corollary. Let a function f on X XY be measurable with respect
to p®v, where both measures are o-finite. Suppose that for p-a.e. x, the
function y — f(x,y) is integrable with respect to v. Then, the function

o [ )i
Y
18 measurable with respect to .

PROOF. Suppose first that the measures p and v are bounded. Let
falz,y) = flz,y) i [f(2z,9)| <, folz,y) =nif f(z,y) 2 n, folz,y) = —n
if f(z,y) < —n. Then, the functions f,, are measurable with respect to p®v
and bounded, hence integrable. By Fubini’s theorem the functions

W, (z) = /Y fule, ) v(dy)

are p-measurable. Since f, — f pointwise and |f,| < |f], we obtain by the
dominated convergence theorem that ¥, (x) — ¥(z) for all those x for which
the function y — |f(x,y)| is integrable with respect to v, i.e., for p-a.e. x.
Therefore, ¥ is a p-measurable function. In the general case, we find an
increasing sequence of measurable sets X, xY,, C X XY of finite y®@v-measure
such that the measure p®v is concentrated on their union. Then we use the
already-known assertion for the functions

B, (x) = /Y f(,y) vldy)

and observe that ®,(z) — ¥(z) for p-a.e. x by the dominated convergence
theorem. g

It is clear that Fubini’s theorem is true for signed measures, but Tonelli’s
theorem is not.

As an application of Fubini’s theorem we shall derive a useful identity
that expresses the Lebesgue integral over an abstract space in terms of the
Riemann integral over [0, +00) (in the case p = 1 this identity has been verified
directly in Theorem 2.9.3).
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3.4.7. Theorem. Let f be a measurable function on a measure space
(X, A, ) with a measure p with values in [0,+00]. Let 1 < p < oo. The
function |f|P is integrable with respect to the measure u precisely when the
function

t— " u(z [f(z)] > t)
is integrable on [0,+00) with respect to Lebesgue measure. In addition, one
has

Jsrau=p [0 s @) > 0 e (3.4.4)

PROOF. Let p = 1. Suppose that the function f is integrable. Then
our claim reduces to the case of a o-finite measure, since p is o-finite on the
set {f # 0}. Further, due to the monotone convergence theorem, we may
consider only finite measures. Denote by A Lebesgue measure on [0, +00) and
set

S = {xy € X x[0,400): y <|f(x |}
The integral of |f| coincides with the measure of the set S with respect to
@A by Corollary 3.4.3. We evaluate this measure by Fubini’s theorem. For
each fixed ¢, we have

St:{x: xtES} {CC t<|f(z |}

Since the integral of p(S;) with respect to the argument ¢ over [0, +00) equals
the integral of |f|, we arrive at (3.4.4) with (z: |f(z)] > ¢) in place of
(z: |f(x)| > t). However, for almost all ¢, these two sets have equal p-
measures, since the set of all points ¢ such that p(z: [f(z)| =t) > 0 is at
most countable. Indeed, if it were uncountable, then for some k£ € IN, one
would have an infinite set of points ¢ with pu(z: [f(z)| = t) > k™!, which
contradicts the integrability of f.

Conversely, if the integral on the right in (3.4.4) is finite, then, for all ¢ > 0,
the sets (x: |f(z)| > t) have finite measures. Hence, for every natural n, the
function f,, = |f|I{,-1<|f|<n} is integrable. The functions f, have uniformly
bounded integrals due to the estimate

p(z: [fa(@)] > 1) < pla: |fz)] > )
and the case considered above. By Fatou’s theorem the function f is inte-
grable. The case p > 1 reduces to the case p = 1 by the change of variable
t = sP due to the equality (z: |f(z)[P > t) = (z: |f(z)| > t}/P). Here
it suffices to have the change of variable formula for the Riemann integral,
but, certainly, an analogous formula for the Lebesgue integral can be applied;
see (3.7.6) and a more general assertion in Exercise 5.8.44. (]

3.5. Infinite products of measures

Let (Xa, Aq, pto) be a family of probability spaces, indexed by elements
of some infinite set 2. The goal of this section is to define the infinite product
of measures u, on the space X = Ha X, that consists of all collections
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T = (Tq)aea, where z, € X,. Let @, Aq (or just @ A,) denote the smallest
o-algebra containing all products of the form [], As, where A, € A, and
only finitely many sets A, may differ from X,. In other words, & Aq is
the o-algebra generated by all sets of the form C x Hag{al,u.,an} X4, where
CeAy® --®A,,. Sets of such a form are called cylindrical or cylinders.

We start with countable products of probability measures p,, on measur-
able spaces (X,,, A,). Let A =@, A, be the o-algebra generated by sets
of the form Ay X+ X Ay x X1 X Xpyo X -+, where A; € A;. It is clear that
A is the smallest o-algebra containing all o-algebras

Ep = {A =CxXp1XXpgox---: C€ éAl}
i=1

The union of all £, is an algebra denoted by A°. On A° we have a set function
p: A=CxXpp1 X XpqoX- = Q- Quny(C), A€E&,.

This set function is well-defined: if A is regarded as an element of & with
k > n, then the value of u(E) is unchanged. This is seen from the equality
tn(Xy) = 1. By using the already-established countable additivity of finite
products we obtain the finite additivity of u. In fact, p is countably additive,
which is not obvious and is verified in the following theorem.

3.5.1. Theorem. The set function p on the algebra A° is countably
additive and hence uniquely extends to a countably additive measure on the
o-algebra A.

PROOF. Let Ay be decreasing sets in A° with the empty intersection.
We have to show that u(Ar) — 0. We suppose that p(Ax) > ¢ > 0 for all
n and arrive at a contradiction by showing that the intersection of the sets
Ay, is nonempty. Let A" denote the algebra of sets in [[;o 41 Xi defined
by analogy with A° and let u(™) be the set function on A" corresponding
to the product of the measures fi,11, fint2,.-.by analogy with p. By the
properties of finite products it follows that, for every set A € A% and every

fixed (z1,...,2,) € [[;=, X;, the section

0o
AT T — {(Zn+1, Zn42, .- ) € H X;: (iCl, ey Ty 2l .- ) € A}
1=n+1

belongs to A™ and the function
(10 ) o ) (A7)

is measurable with respect to @, A;. Denote by BY the set of all points z;
such that

nV (A7) > e/2.
Then BY € A; and yu (BY) > ¢/2, which follows by Fubini’s theorem for
finite products and the inequality pu(Ax) > e. Indeed, Ay = Cpy X Xpppp1 X+ -+
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for some m, whence one has p1(Ax) = Q;~, i(Crm). By Fubini’s theorem we
obtain

e < p(Ap) < (BY) + %ul(Xl\Bf) < (BF) + %

which yields the necessary estimate. The sequence of sets BF is decreas-
ing as k is increasing and has the nonempty intersection Bj, since p; is a
countably additive measure and uq (Bf) > ¢/2. Let us fix an arbitrary point
x1 € By and repeat the described procedure for the decreasing sets A;' in
place of Ag. This is possible, since /,L(l)(Aﬁ‘) > ¢/2. We obtain a point
zo € Xo such that pu® (A7) > ¢/4 for all k. We continue this process
inductively. After the nth step we obtain a collection (z1,...,z,) € [[\; X;
such that (™) (Ail"“’m") > 27" for all k. Therefore, our construction can
be continued, which gives a point z = (z1,...,Z,,...) belonging to all Ay.
Indeed, let us fix k and write Ay as Ay = CpuxXpp1%- - -. The set Ay "™ is
nonempty, i.e., there exists a point (zm41, Zm+2,.-.) € Hfimﬂ X; such that
(T15 s Ty Zmt1y Zmy2s - - ) € A Then (21, T, Tt 1, Timya, - - ) € Ag,
which is obvious from the above representation of Ay. O

We now extend the above result to arbitrary infinite products. This is
very simple due to the following lemma. To ease the notation we identify
all sets in the product [[ -, X,, of a part of spaces X, with subsets in the
product of all spaces X, by adding the spaces X, as factors for all missing
indices o’ € 2.

3.5.2. Lemma. The union of the o-algebras @, -, Aq, over all count-
able subsets A’ = {a,} C A coincides with the o-algebra @, Aa-

PROOF. It is clear that the indicated union (taking into account the above
identification) belongs to &), Aq. So, it suffices to observe that it is a o-
algebra. This is seen from the fact that any countable family of sets in this
union is determined by an at most countable family of indices, hence belongs
to one of the o-algebras that we consider in the above union. (I

It is clear from this lemma that on ), A, we have a well-defined count-
ably additive measure x that to any set A in a o-algebra @, | A,, assigns its
already-defined measure with respect to @, ; fta,, . The Lebesgue completion
of this measure will be called the product of the measures i, and denoted by
the symbol @&, fto- It is readily verified that if the whole set of indices 2 is
split into two parts 2, and 2, that yield the products p; = ®a69[1 Lo, and
12 = @ e, Has then p1®ps = @ e fla-

We have seen that the product of an arbitrary family of probability mea-
sures is countably additive. In the case where these measures have compact
approximating classes, this fact can be verified even more simply if we apply
the following lemma, which may be of independent interest. This lemma shows
that the product measure on the algebra of cylindrical sets has a compact ap-
proximating class that consists of countable intersections of finite unions of
cylinders with “compact” bases, hence by Theorem 1.4.3 is countably additive.
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3.5.3. Lemma. Suppose that, for every a € A, we are given a compact
class Ko, of subsets of the space Xo. Then, the class of at most countable
intersections of finite unions of finite intersections of cylindrical sets of the
form K, XHﬁ;ﬁa X5, Ko € Kq, s compact as well.

PRrROOF. According to Proposition 1.12.4 it suffices to verify the compact-
ness of the class of cylinders of the form C = K, xHﬁ;m Xg, Ko € K. Sup-

pose we have a countable family of such cylinders C; with bases K ((fi) € Ka,-
Their intersection has the form ([, cqQa) X (Hﬁgs Xj3), where S = {a;},
Qo = N i K&?. If this intersection is empty, then so is one of the
sets Q,. By the compactness of the class I, there exists n such that
KN .nK™ =. ThenC,N---NC, = 2. 0

3.5.4. Corollary. Suppose that the probability space (Xq, Aa, fta) has
a compact approrimating class K, for every a € 2A. Then, the measure
Raca la on the algebra of cylindrical sets is approvimated by the compact
class described in Lemma 3.5.3.

PRrROOF. For every set Ay X---x A,, where A; € A,,, and every ¢ > 0,
there exist sets K; € Ky, such that K; C A; and pq, (A;\K;) < ¢/n. Then
we have

(T TTe) T )
< Z@Nm ((Ai\Ki)X H Xj) = iﬂi(Ai\Ki) <E.

i=1 i=1 j<n,j#i
Along with the lemma this yields our assertion because every cylindrical set

can be approximated from inside by countable intersections of finite unions
of such products, which follows by Corollary 1.5.8. O

3.6. Images of measures under mappings

Suppose we are given two spaces X and Y with o-algebras A and B and an
(A, B)-measurable mapping f: X — Y. Then, for any bounded (or bounded
from below) measure p on A, the formula

poft: B u(f_l(B)>, BekB,

defines a measure on B called the image of the measure j under the mapping f.
The countable additivity of o f~! follows by the countable additivity of .

3.6.1. Theorem. Let u be a nonnegative measure. A B-measurable
function g on'Y is integrable with respect to the measure po f~1 precisely
when the function g o f is integrable with respect to . In addition, one has

/ o) o £~ (dy) = / 9(F(@)) u(de). (3.6.1)
Y X



3.6. Images of measures under mappings 191

PrOOF. For the indicators of sets in B, formula (3.6.1) is just the def-
inition of the image measure, hence by linearity it extends to simple func-
tions. Next, this formula extends to bounded B-measurable functions, since
such functions are uniform limits of simple ones. If g is a nonnegative B-
measurable function that is integrable with respect to g o f~!, then for the
functions g, = min(g, n) equality (3.6.1) is already established. By the mono-
tone convergence theorem, it remains true for g, since the integrals of the
functions g, o f against the measure p are uniformly bounded. Our reasoning
also shows the necessity of the p-integrability of g o f for the integrability of
g > 0 with respect to o f~1. By the linearity of (3.6.1) in g we obtain the
general case. ]

It is clear that equality (3.6.1) remains true for any function g that is
measurable with respect to the Lebesgue completion of the measure p o f~!
and is g o f~l-integrable. This follows from the fact that any such function
is equivalent to a B-measurable function. The hypothesis of B-measurability
can be replaced by the measurability with respect to the g-algebra

Al ={ECY: f7YE)ec A}

if we define the measure po f~* on A’ by the same formula as on B. However,
the reader is warned that the o-algebra A/ may be strictly larger than the
Lebesgue completion of B with respect to uo f~!. We shall discuss this
question in Chapter 7 in the section on perfect measures.

In the case of a signed measure p equality (3.6.1) remains valid if the
function g o f is integrable with respect to w (this is clear from the Jordan
decomposition for p). However, the integrability of g with respect to the
measure jo f~1 does not imply the u-integrability of go f (Exercise 3.10.68).

If we are given a B-measurable real function 1, then formula (3.6.1) en-
ables us to represent the integral of i o f as the integral of 1 against the
measure i o f~1 on the real line. For example,

[ VP utdz) = [ jer e .
X R
Let us introduce the distribution function of the function f:
Dp(t) == p(z: flz)<t), teR. (3.6.2)

It is clear that ®s(t) = po f~!((—00,t)), ie., @5 coincides with the dis-
tribution function Fj,z-1 of the measure po f —1. In the case where u is a
probability measure, the function ®; is increasing, left continuous, has right
limits at every point, and

] lir7n be(t) =0, thm q)f(t) =1.

Recalling the definition of the Lebesgue—Stieltjes integral (see formula (2.12.7)
in §2.12(vi)), we can write

/wmmmmz/wM@w (3.6.3)
X R
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The following interesting observation is due to A.N. Kolmogorov.

3.6.2. Example. Suppose that i is a probability measure and that f is
a p-measurable function with the continuous distribution function ®¢. Then,
the image of the measure y under the mapping ®¢ o f is Lebesgue measure A
on [0,1]. In other words, (uo f~1)o <I>J71 =\

PrOOF. We shall verify the second claim, which is equivalent to the first
one by the definition of go f~!. This reduces the general case to the case where
1 is an atomless measure on IR'. It suffices to show that o ESN0,t]) =t
for all t € [0,1), where F), is the distribution function of . We observe
that F;*([0,t]) = (—o0, s], where s is the supremum of numbers z such that
,u((—oo7 z]) =t. If F, is not strictly increasing, then the set of such numbers
z may be an interval. However, in any case u((—oo, s]) = t, which proves our
assertion. O

In particular, any Borel probability measure p on the real line without
points of positive measure can be transformed into Lebesgue measure on [0, 1]
by the continuous transformation F),. Moreover, it is seen from our reasoning
that if F), is strictly increasing, i.e., there are no intervals of zero p-measure,
then F), is a homeomorphism between R! and (0,1). In Chapter 9 such
problems are considered in greater detail.

In the study of images of measures one often encounters the problem of
measurability of images of sets. We shall later see that this is a rather subtle
problem. First we give a simple sufficient condition for measurability.

3.6.3. Lemma. Let F': IR™ — IR" be a mapping satisfying the Lipschitz
condition, i.e., one has |F(x) — F(y)| < L|x —y| for all x, y € R", where L is
a constant. Then, for every Lebesgue measurable set A C IR", the set F(A)
1s Lebesgue measurable.

PRrROOF. It suffices to prove the lemma for bounded sets. We observe that
A can be written as A = Ujoil K, J B, where the sets K; are compact and the
set B has measure zero. Since the set F(U;’;l K;) = Uj=, F(K;) is Borel
as the union of compact sets F'(K), it suffices to verify the measurability
of F(B). Let ¢ > 0. We can cover B by a sequence of cubes (); with edge
lengths 7; and the sum of measures less than €. By the Lipschitzness of F',
the set F(Q;) is contained in a ball of radius Ly/nr;, hence in a cube with
edge length 2L\/nr;. So the measure of the union of F(Q,) does not exceed
>0, L'n/2r? < L*n™/%e. Thus, F(B) has measure zero. O

3.6.4. Corollary. Every linear mapping L on R" takes Lebesgue mea-
surable sets into Lebesque measurable sets, and \,(L(A)) = |det L| A, (A)
for any measurable set A of finite measure. The preimage of every Lebesgue
measurable set under an invertible linear mapping is Lebesgue measurable.

PrOOF. The assertions about measurability follow by Lemma 3.6.3. If
L is degenerate, then the image of IR" is a proper linear subspace and has
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measure zero. Let det L # 0. It is known from the elementary linear algebra
that L can be written as a composition L = ULgV, where U and V are
orthogonal linear operators and Ly is given by a diagonal matrix with strictly
positive eigenvalues «;. Since |det L| = aq - - - @, and the mappings U and V
preserve Lebesgue measure, it remains to consider the mapping Lg. If A is a
cube with edges parallel to the coordinate axes, then the equality A, (Lo (A)) =
det Lo A, (A) is obvious. This equality extends to finite disjoint unions of such
cubes, whence one obtains its validity for all measurable sets. (I

In Theorem 3.7.1 in the next section we shall derive a change of variable
formula for nonlinear mappings.

Lemma 3.6.3 does not extend to arbitrary continuous mappings. In order
to consider a counter-example, we define first the Cantor function, which is
of interest in other respects, too (it will be used below in our discussion of
relations between integration and differentiation).

3.6.5. Proposition. There exists a continuous nondecreasing function
Cy on [0,1] (the Cantor function or the Cantor staircase) such that Cy(0) = 0,
Co(1) =1 and Cy = (2k — 1)2™™ on the interval Jp 1 in the complement of
the Cantor set C described in Example 1.7.5.

PRrOOF. Having defined C as explained on all intervals complementary
to C, we obtain a nondecreasing function on [0,1]\C. Let Cy(0) = 0 and
Co(z) = sup{Co(t): t ¢ C, t < z} for z € C. We obtain a function that
assumes all the values of the form k27". Hence the function Cy has no jumps
and is continuous on [0, 1]. |

3.6.6. Example. Let f(z) = 1(Co(z) + z), where Cj is the Cantor
function on [0,1]. Then f is a continuous and one-to-one mapping of the
interval [0, 1] onto itself, and there exists a measure zero set E in the Cantor
set C such that f(F) is nonmeasurable with respect to Lebesgue measure.

PROOF. It is clear that f is a continuous and one-to-one mapping of the
interval [0, 1] onto itself. On every interval complementary to C, the function
f has the form x/2 + const (where the constant depends, of course, on that
interval), hence it takes such an interval into an interval of half the length.
Therefore, the complement of C' is taken to an open set U of measure 1/2.
The set [0,1]\U of measure 1/2 has a nonmeasurable subset D. It is clear
that E = f~(D) C C has measure zero and f(E) = D. O

3.6.7. Remark. Let g be the inverse function for the function f in the
previous example. Then, the set ¢g~!(E) is nonmeasurable, although E has
measure zero and ¢ is a Borel function. This shows that in the definition
of a Lebesgue measurable function the requirement of measurability of the
preimages of Borel sets does not imply the measurability of preimages of
arbitrary Lebesgue measurable sets.
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We shall see below that it is the measurability of images of measure zero
sets that plays a key role in the problem of measurability of images of general
measurable sets.

3.6.8. Definition. Let F': (X, A,u) — (Y,B,v) be a mapping between
measure spaces. We shall say that F has Lusin’s property (N) (or satisfies
Lusin’s condition (N)) with respect to the pair (u,v) if v(F(A)) =0 for every
set A € A with u(A) = 0.

In the case (X, A, n) = (Y, B,v) we shall say that F' has Lusin’s property
(N) with respect to p.

Note that in this definition F is supposed to be defined everywhere.

3.6.9. Theorem. Let F': IR" — IR" be a Lebesgue measurable mapping.
Then F has Lusin’s property (N) with respect to Lebesgue measure precisely
when F takes all Lebesgue measurable sets to Lebesgue measurable sets.

ProOF. Let A C IR" be a Lebesgue measurable set. By Lusin’s theorem,
there exists a sequence of compact sets K; C A such that F' is continuous
on every K; and the set B = A\ U;’il K; has measure zero. Then the set
Uj=, F(K;) is Borel. Hence the measurability of F'(A) follows from the mea-
surability of F'(B) ensured by Lusin’s property. The necessity of this property
is clear from the fact that if B is a measure zero set and F'(B) has positive mea-
sure, then F(B) contains a nonmeasurable subset D. Hence E = BNF~(D)
has measure zero and the nonmeasurable image. O

Lusin’s property (N) is further studied in exercises in Chapter 5 and in
Chapter 9.

3.7. Change of variables in IR"

We now derive the change of variables formula for nonlinear mappings
on IR". Suppose that U is an open set in IR" and a mapping F: U — IR"
is continuously differentiable. The derivative F’(z) (an alternative notation
is DF(z)) of the mapping F' at a point x by definition is a linear mapping
on IR" such that F(z + h) — F(z) = F'(x)h + o(h). The determinant of
the matrix of this mapping is called the Jacobian of F' at the point x. The
Jacobian will be denoted by JF(z). Thus, JF(z) = det F'(x).

3.7.1. Theorem. If the mapping F is injective on U, then, for any
measurable set A C U and any Borel function g € L*(IR™), one has the
equality

/g(F(x))\JF(x)\dx:/ o(y) dy. (3.7.1)
A F(A)

PROOF. It has been shown that the set F'(A) is measurable, since the

mapping F' is locally Lipschitzian. It is clear that it suffices to prove (3.7.1)
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in the case where the function ¢ is the indicator of a Borel set B. By the
injectivity of F', this reduces to establishing the equality

M (F(E)) = /E JF(z)| da (3.7.2)

for all Borel sets E C U. Let E be a closed cube inside U. Without loss of
generality we may assume that ||F'(z)(h)|| < ||k]| for all x € E and h € IR".
Let us fix € € (0,1). By the continuous differentiability of F' there exists § > 0
such that whenever z,y € E and ||z — y|| < 6, we have

F(y) = F(x) = F'(x)(y —x) =r(z,y), r@yl<ely—zl.  (3.7.3)
Let us partition I/ into m"™ equal cubes E; with the diagonal length d < §.
Let z; be the center of E;. Set L;(x) = F'(z;)(x — z;) + F(x;) for x € E;.
Then one can write A; := A, (F(E;)) — A (L;(E;)), and in this notation one
has

M (F(B)) = Y Aa(F(E)) = Y- [Ma(Ly(B)) + 4]
= det F'(z) [ Aa(Bj) + 3 A
j=1 j=1

It is clear that if m is infinitely increasing, the first sum on the right-hand side
of this equality approaches the integral of |JF'| over E. Let us estimate Aj.
By (3.7.3) for all z € E; we have

[1F(x) = Lj(2)[| < eflx — ]| < ed.

Then F(E;) belongs to the neighborhood of radius ed of the set L;(E;). Since
we assume that L; is Lipschitzian with the constant 1, we obtain by Fubini’s
theorem that, denoting by C,, the number of all faces of the n-dimensional
cube, the measure of the ed-neighborhood of the set L;(E;) differs from the
measure of L;(E;) not greater than in 2C, e\, (E;). Thus,

Aj = M (F(E))) = M (L4 (E))) < 2Cneda(Ey),

whence we have

m"

D A <20 A (B)e.

=1
Let us now show that for some constant K, one has

n

3

Aj > =K\ (E)y/e.
1

<.
Il

To this end, we shall prove the estimate

M(Li(Ej) = M (F(E))) € KnVer(E)), j=1,...,m" (3.7.4)
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If | det F'(x;)| < /e, then (3.7.4) is fulfilled with K,, = 1. Let us consider the
case where |det F'(x;)| > \/e. Then the operator F’(z;) has the inverse G;,
and

IG;(h)|| < e Y2||h|, YhelR" (3.7.5)

Indeed, F'(z;) = TL, where T is an orthogonal operator and the operator
L has an orthonormal eigenbasis with positive eigenvalues aq,...,a,. Due
to our assumption we have a; < 1. Hence «; > 4/, whence it follows that

! < ¢=1/2 which proves (3.7.5). By (3.7.3) and (3.7.5) we conclude that
F(E;) contains L;(Q;), where @, is the cube with the same center as E; and
the diameter (1 — /€)d. Indeed, let y € E;. We may assume that 6 > 0 is so
small that ||(I — G;F'(x))h|| < ||h]|/2 whenever x € Ej and ||h|| < 1. Such a
choice is possible, since the mapping F” is continuous and G,jF'(zj) =1. The
equation F(z) = L;(y) is equivalent to the equation :vijF(x)JrGij (y) =z
By the above-established estimate we obtain that the mapping

V(z) =z - GF(x) + GiL;(y)
satisfies the Lipschitz condition with the constant 1/2. We observe that
V(zr)=2—GjF(z)+y—xz; +G;F(x;)
=y + (@ —2) + G (Flz)) = F@)) = y+ G (r(,2))).
Hence ||¥(z) — y|| < e7/2¢||x — x;|| and so ¥(x) € E;. Thus, the mapping
V: E; — Ej is a contraction. It is well known that there exists v € E; with

U(z) =z, i.e., F(x) = Lj(y). Therefore, in the case under consideration we
obtain

An(Lj(Ej)) = An(F(E;)) < An (L5 (Ej)) = M (L;(Q5))
|detF/(xj)||: (EJ) An (Qg)]
= | det F'(z;)[(1 = (1 = V&)") A\u(Ey),

which yields (3.7.4). Thus, formula (3.7.1) is established for cubes. The
general case easily follows from this. O

3.7.2. Corollary. Let F' be a strictly increasing continuously differen-
tiable function on a bounded or unbounded interval (a,b). Then, for any Borel
function g integrable on (F(a), F (b)), one has

b F(b)
/ g(F@))F'(t) dt = / g(s)ds. (3.7.6)

F(a)

In Chapter 5 we prove a change of variable formula for a broader class of
functions F'.

One can easily see from the proof of Theorem 3.7.1 that the following Sard
inequality is true (in fact, it is true under broader hypotheses, see Chapter 5).



3.8. The Fourier transform 197

3.7.3. Proposition. Let F: U — IR" be a continuously differentiable
mapping. Then, for any measurable set A, one has

M (F(A)) < /A |JF(2)| da. (3.7.7)

It follows by (3.7.7) that the image of the set {z: JF(z) = 0} under
the mapping F (called the set of critical values of F') has measure zero. This
assertion is the simplest case of Sard’s theorem. We observe that if we prove
first that the set of critical values has measure zero, then inequality (3.7.7)
can be easily derived from the statement of the theorem, without looking at
its proof. To this end, we consider the integral over the set, where JF # 0
and apply the inverse function theorem, which asserts that every point z with
JF(x) # 0 has a neighborhood where F is injective.

Finally, let us observe that according to (3.6.1), formula (3.7.1) can be
restated as the equality (|JF|- An|u) o F~1 = A\y|pu), where X, is Lebesgue
measure. Therefore, if |JF(x)| > 0, we obtain the equality

MlvoF™h =0 A\y|pw), where o(z) = ‘JF(F_I(I')H_l.

Indeed, for any bounded measurable function g on U, one has
_ —1
/ 9(F(z)) dz = / g(F(@)|JF(F'F(z))|  |JF(2)|dx
U U

- / o) JF(F~1 ()| " dy.
F(U)

3.8. The Fourier transform

In this section, we consider the Fourier transform of functions and mea-
sures: one of the most efficient tools in analysis.

3.8.1. Definition. (i) The Fourier transform of a function f € L'(IR™)
(possibly complez-valued) is the complez-valued function

J?(y) = W»/]R" e~ W) f(z) da.

The Fourier transform of an element f € LY(IR") is the function ffor an
arbitrary representative of the equivalence class of f.

(ii) The characteristic functional (or the characteristic function) of a
bounded Borel measure u on IR™ is the complex function

i) = [0 (o)

The necessity to distinguish versions of an integrable function when con-
sidering Fourier transforms will be clear below, when we discuss the recovery
of the value of f at a given point from the function f It is clear that if the
measure 4 is given by a density f with respect to Lebesgue measure, then
its characteristic functional coincides up to a constant factor with the Fourier
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transform of its density with the reversed argument. The above definition is
consistent with that adopted in probability theory of the characteristic func-
tional of a probability measure, which is also applicable in infinite-dimensional
spaces. On the other hand, our choice of a constant in the definition of the
Fourier transform of functions yields the unitary operator on L?(IR™) (see
(3.8.3)). Finally, the minus sign in the exponent is just a tradition. We shall
see below that changing the sign in the exponent we arrive at the inverse
transform.

In some cases, one can explicitly evaluate Fourier transforms. Let us
consider one of the most important examples.

3.8.2. Example. Let @ > 0. Then

Gos . esplitv )] esplolaf s = s exp [~ bl

PROOF. The evaluation of this integral by Fubini’s theorem reduces to
the one-dimensional case, where by the obvious change of variable it suffices
to consider the case & = 1/2. In that case, both sides of the equality to be
proven are analytic functions of y, equal at y = it, ¢t € IR, which follows by
Exercise 3.10.47. Hence these functions coincide at all y € IR. (]

3.8.3. Definition. A function ¢: R"™ — C is called positive definite if,
forally; eIR", ¢; €C,i=1,...,k, one has Zf,j:l cicio(ys —y;) > 0.

It follows by the above example that the function exp(—/3|y|?) on R" is
positive definite for all 5 > 0. We observe that the function

_ 1 |z
po(x) = o) 2 eXp(—%)
for any ¢ > 0 has the integral 1. A probability measure with density p, has
the characteristic functional exp(—o|y|?/2). The probability measure with
density p; is called the standard Gaussian measure on IR™. The theory of
Gaussian measures is presented in the book Bogachev [105].
Properties of positive definite functions are discussed below in §3.10(v).

3.8.4. Proposition. (i) The Fourier transform of any integrable func-

tion f is a bounded uniformly continuous function and | llim fly) =0.
yl—oo

(ii) The characteristic functional of any bounded measure 1 is a uniformly
continuous bounded function. If the measure u is nonnegative, then the func-
tion [ is positive definite.

Proor. (i) It is clear that |f(y)| < (2m)"2||fllzr. If f is the indicator
of a cube with edges parallel to the coordinate axes, then f is easily eval-
uated by Fubini’s theorem, and the claim is true. So this claim is true for
linear combinations of the indicators of such cubes. Now it remains to take a
sequence f; of such linear combinations that converges to f in L'(IR"), and

observe that the functions ]?J converge uniformly to f
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(ii) The first assertion is proved similarly to (i). The second one follows
by the equality

k k
> ity = w) = [ [S"egerw | o),
ij=1 R™j=1
which is readily verified. O

Let us consider several other useful properties of the Fourier transform.

3.8.5. Proposition. Let f be a continuously differentiable and integrable
Junction on IR"™ and let its partial derivative O, f be integrable. Then

O, f(y) = iy; [ ().

PRrROOF. If f has bounded support, then this equality follows by the inte-
gration by parts formula. In order to reduce to this the general case, it suffices
to take a sequence of smooth functions (; on IR"™ with the following proper-
ties: 0 < ¢ < 1, supy, [0x, (k| < C, Ce(w) = 1 if [z] < k. Then the functions
Crf converge in L'(IR") to f, and the functions d,, (¢ f) converge to 0, f,
since f0,,;(x — 0 in L'(IR"™) by the dominated convergence theorem. |

It follows that if f is a smooth function with bounded support, then its
Fourier transform decreases at infinity faster than any power.

3.8.6. Proposition. If two bounded Borel measures have equal Fourier
transforms, then they coincide. In particular, two integrable functions with
equal Fourier transforms are equal almost everywhere.

ProoF. It suffices to show that any bounded measure p with the iden-
tically zero Fourier transform equals zero. In turn, it suffices to prove that
every bounded continuous function f has the zero integral with respect to the
measure u (see Exercise 3.10.29). We may assume that ||| <1 and |f| < 1.
Let € € (0,1). We take a continuous function fy with bounded support such
that |fo] <1 and

/ (@) — fol@)| |ul(dz) < e.
-

Next we find a cube K = [—7k, wk|"™, k € IN, containing the support of fy such
that |u|(R™\K) < . By the Weierstrass theorem, there exists a function g of
the form g(z) = 77, ¢; expli(y;, )], where y; are vectors with coordinates
of the form I/k, such that |fo(x) — g(z)| < € for all z € K. By the periodicity
of g we have |g(z)] < 1+¢e <2 for all z € R". The integral of g against the
measure p vanishes by the equality = 0. Finally, we obtain

‘/”fdu‘§6+’/"fodu‘§g+‘/n[f0_g]du

sk+/ 9] dlu] < 4e.
R\ K
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Since € is arbitrary, our claim is proven. Note that one could also apply Theo-
rem 2.12.9, by taking for Hj the algebra of linear combinations of the functions
sin(y, z) and cos(y, z), and for H the space of bounded Borel functions hav-
ing the zero integral with respect to the measure pu. The second assertion
follows by the first one, since we obtain the equality almost everywhere of the
considered functions with the reversed arguments. (|

3.8.7. Corollary. A bounded Borel measure on IR" is invariant under
the mapping x — —x precisely when [ is a real function. In particular, an
integrable function is symmetric or even (i.e., f(x) = f(—x) a.e.) precisely
when its Fourier transform is real.

PrOOF. The necessity of the indicated condition is obvious, since sin x is
an odd function. The sufficiency is clear from the fact that the characteristic
functional of the measure v that is the image of 1 under the central symmetry
equals the complex conjugated function of p, i.e., coincides with that function,
since it is real. The coincidence of the characteristic functionals yields the
equality of the measures. O

It is natural to ask how one can recover a function f from its Fourier
transform determining the function up to a modification. For this purpose
one uses the inverse Fourier transform. For any integrable function f, the
inverse Fourier transform is defined by the formula

F(x) = (2m) 2 / S £(y) dy.

n

We shall see that if the direct Fourier transform of f is integrable, then
its inverse transform gives the initial function f. In fact, this is true even
without the assumption of integrability of fif one defines the inverse Fourier
transform for generalized functions (distributions). We shall not do this, but
only prove a sufficient condition for recovering a function at a given point from
its Fourier transform, and then we prove the Parseval equality, upon which
the definition of the Fourier transform of generalized functions is based.

3.8.8. Theorem. Suppose that a function f is integrable on the real line
and that at some point x it satisfies the Dini condition: the function

t[flz+1t) = fl2)l/t

is integrable in some neighborhood of the origin. Then the following inversion
formula is true:

R—+o0

R ~
f(z) = lim % /_ e i)y, (3.8.1)

In particular, this formula is true at all points of differentiability of f.

PROOF. Set

1 R
Jpi=—— [ " (y)dy,
== [ ey
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where R > 0. By using Fubini’s theorem and the change of variable z =t +«
we obtain

Jr = —/ f(z)/ eW(@=2) dy dz

27 —0o0 -R
1 [t 2sin(R(z — 1 [t in(R
= o [ PRI g L g

It is known from the elementary calculus that

T
. sint
lim —dt = .
T—+o00 _T

Let € > 0. Since the integral of sin(Rt)/t over [-T,T] equals the integral of
sint/t over [-RT, RT)], there exists 77 > 1 such that for all T > T3 and R > 1

one has
t
‘f / sin(Rt) dtff(x)’ <<
t 3
By the integrability of f, there exists To > T; such that

/ Mdté/ |f(z+1t)|dt <e.
{It|I>T2} |t] [>T

By our hypothesis, the function ¢(¢) = [f(z +t) — f(x)]/t is integrable over
[—T5,T3]. Hence the Fourier transform of the function @Ij_z, 1,] tends to zero
at the infinity. Therefore, there exists R; > 1 such that for all R > R; one

has
‘/TQ Sin(Rt)w dt‘ < %

—Ty

Taking into account the three estimates above we obtain for all R > Ry

= gt < o= LD [ SR

T
. ‘f /T2 sm(th) dt—f(x)’ < ‘JR _ f@) /T2 sin(th) dt‘ +§
O
‘/Jroo 51n(th) gt — _T2 f(a:)Sin(th) dt‘—l— €

7’/ £t + ) f(;z:)]sm (BE) dt‘

sin € € € 5
+—‘/ ft+z) (Bt dt‘+—<—+—+—<€.
|t\>T2} t 3 ™ Y

3

The theorem is proven. (I
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3.8.9. Corollary. Let f be an infinitely differentiable function on IR"™
with bounded support. Then

~

f(x) = (2m) 2 / ¢ Fy) dy. (3.8.2)

n

PrROOF. We recall that the function f decreases at infinity faster than
any power, hence it is integrable. So in the case n = 1 equality (3.8.2) follows
by (3.8.1). The case n > 1 follows by Fubini’s theorem. In order to simplify
notation we consider the case n = 2. Then, for any fixed x5, we have

1 oo
f(951,332) = E/ ezwlylgl(yhx2) dyr,

where y; — ¢1(y1,x2) is the Fourier transform of the function of a single
variable &1 — f(x1,x2). For every fixed y1, the function zo +— ¢1(y1,z2) is
infinitely differentiable and has bounded support. Hence

1 too 1 too
91(y1,2) = E/ﬂo emzyzﬁ/ﬂo e 222 gy (Y1, 22) dza dya

1 too +oo ptoo _ _
- W / elzzy2 [oo [oo 671y1Z171y222f(217 22) le dZZ dy27

— 00

which yields (3.8.2). O

3.8.10. Theorem. For all ¢, € L*(IR"), one has
/ oY dr = / gm/)de, Jpdr = Y de.

PROOF. We recall that $ and 1 are bounded functions. By applying
Fubini’s theorem to the equality

/n P dx = W/"/" e "V p(y)p(z) dy dz,

we obtain the first formula and the second one is similar. O

3.8.11. Corollary. Let o € LY(IR™). Then, for every infinitely differ-
entiable function ¥ with bounded support, the following Parseval equality is
true:

| ewi@ian= [ ewiw . (383

PROOF. As noted above, the function f := IZ decreases faster than any
power and is integrable. It remains to apply the inversion formula ¢ = f. O

The Parseval equality enables one to define the Fourier transform on L2
(see Exercise 3.10.76).
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3.8.12. Corollary. Let f € L'(R") and f € L'(R"). Then f has a
continuous modification fo and

folz) = (27r)_"/2/ ei(y’x)f(y) dy, VzelR".

n

Proor. By hypothesis, the function g := f is integrable. Hence its in-
verse Fourier transform fy is continuous. Let us verify that f = fy a.e. To this
end, it suffices to show that, for each smooth real function ¢ with bounded
support, one has

fodr = / fopdx.
R" R

By the Parseval equality we have

/fg;dxz/fédx.
/gédx=/fo<pdx,

whence the assertion follows. O

On the other hand,

Fubini’s theorem can also be applied to the product of two bounded Borel
measures p and v on IR™. This gives the following assertion.

3.8.13. Proposition. Let p and v be two bounded Borel measures
on IR"™. Then one has

| mwvtdn = [ 5@ uldo). (3.8.4)

3.8.14. Corollary. Let y and v be two Borel probability measures on IR™.
If the function v is real, then

~ 1 ~
p(z: v(z) <t) < =t )i [1—7(y)]v(dy), Vte(0,1), (3.8.5)
where the right-hand side is real.
PROOF. The left-hand side equals p(z: 1 —v(z) > 1 — t), which by
Chebyshev’s inequality is majorized by
1

=1 Ji [1 = 7(2)] p(dz).

Now we apply (3.8.4), which also shows that the right-hand side of (3.8.5) is
real. O

It should be emphasized that the function p itself may not be real; it is
only claimed that its integral against the measure v is real.
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3.8.15. Corollary. For any Borel probability measure . on IR™ one has

et MG EIC R TET N R

where 7 is the standard Gaussian measure on IR™.

p(z: |z >1t) <

PROOF. We know that J(x) = exp(—|z[*>/2). Let v, be the image of ~
under the mapping  +— x/t. Then ¥ (z) = exp(—t~2|z|?/2). Therefore, by
(3.8.5), we obtain

~ _ 1 -
plo: |z) > t) = p(e: Fi(z) <eV?) < 1 12 /}R [1 = E()]7e(dy).
The right-hand side of this inequality equals the right-hand side of (3.8.6) by
the definition of ~;. O

3.8.16. Corollary. Letr > 0 and let u be a probability measure on IR™.
Then one has

p(z: |z) >r72) <6nr*+ 3 sup |1 — f(z)). (3.8.7)
|z|<r

PROOF. The left-hand side of (3.8.7) is majorized by the integral of the
function 3|1 — fi(r?y)| against the measure =, since v/e(y/e — 1)1 < 3. The
integral over the ball of radius r~! is majorized by 3supy, <, |1 — pa(2)], as
|r2y| < rif |y| < r~!. By Chebyshev’s inequality one has

Y(y: lyl>r77) < r2/ [y[* v(dy) = nr.
Rn
It remains to observe that |1 — 1| < 2. O

3.9. Convolution

In this section, we apply Fubini’s theorem and Hoélder’s inequality to
convolutions of integrable functions.

3.9.1. Lemma. Let a function f on IR"™ be Lebesgue measurable. Then,
the function (x,y) — f(x —y) is Lebesgue measurable on IR*".

PROOF. Set g(x,y) = f(x — y) and consider the invertible linear trans-
formation F: (z,y) — (z — y,y). Then g(z,y) = fo(F(z,y)), where the
function fo(z,y) = f(z) is Lebesgue measurable on IR*". By Corollary 3.6.4

the function ¢ is measurable as well. ([l
3.9.2. Theorem. (i) Let f, g € LY(IR™). Then the function
fro@ = [ s =vat)dy (39.)

called the convolution of f and g, is defined for almost all x and is integrable.
In addition,

If *gllzrarey < [1fllr e gl qmey- (3.9.2)
Moreover, fx g = gx* [ almost everywhere.
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(ii) Let f € L>*(R"), g € LY(IR™). Then the function

frglz)= flx—y)g(y)dy
R

is defined for all © and

17 5 gll e rery < oo eyl ey (393
In addition, f xg(x) = g=* f(z).

PROOF. (i) We know that the function v¢: (z,y) — [f(x — y)g(y)| is
measurable on IR*". Since

[ e=allawiaear= [ ([5Gl sl <,

it follows by Theorem 3.4.5 that the function v is integrable on R?" and

19l L rzny < Nl @) llgllor (mny-

By Fubini’s theorem the function

p: xH/w(x,y)dy

is defined for almost all  and is integrable. Hence the function f % g is
integrable as well, for | f * g(z)| < ¢(x), and the measurability of f * g follows
by Lemma 3.9.1 and the assertion about measurability in Fubini’s theorem.
For all z such that the function f(x —y)g(y) is integrable in y, the change of
variable z = x — y yields the equality f * g(z) = g * f(x).

Assertion (ii) is obvious, since the function y — g(x — y) is integrable for
all z. O

3.9.3. Corollary. If f,g € LY(IR™), then f/:k\g(y) = (2ﬂ)”/2f(y)§(y)

PROOF. We already know that f * g € L'(IR"). By Fubini’s theorem we
have

ny 2 [ [ e e - g(e) deds
=m0 fuyg(z) ddu,

whence the desired formula follows. O

The next theorem generalizes the previous one and contains the important
Young inequality.

3.9.4. Theorem. Suppose that

1 1
1<p<qg<o0, —-=-+-—-1
q
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Then, for any functions f € LP(IR"™) and g € L"(IR"), the function f x g is
defined almost everywhere (everywhere if ¢ = 00), belongs to LT1(IR™) and one
has fx g = gx* f almost everywhere and

L (- (3.9.4)

PROOF. Let us consider the case 1 < p < ¢, 7 < q. By Lemma 3.9.1
and Fubini’s theorem, for almost every z, the function y — f(z — y)g(y) is
measurable. Then, for each fixed z with such a property, we can consider the
function

|z —y)g(y) = (lf(fv - y)lplg(y)V)l/qlf(r —y)|[* P g(y)[

of y and apply the generalized Holder inequality with the exponents

1f * gllaqwn)y < [ fllze ) llg]

-
1—r/q’

since p; ' +py 't +p3 = 1. Indeed,

pP1r=4q, p2= P3 =

_b
1-p/q’

1 —r — +rqg—r 1 1 1
7+q Jr(1 p_pgrrq P:7+777.
q rq pq rpq r - p g

Therefore,

1/q
Fegl < Ul elal ([ 1= nPlawray)

Thus, the function y — f(z — y)g(y) is integrable for all points x such that
it is measurable and the function |f|P x |g|" is defined, i.e., for almost all z
according to the previous theorem. Omne has f * g(z) = g * f(x), which is
proved by the same change of variable as in the previous theorem. Similarly,
we obtain that the function f * g is measurable. Finally, we have

£l < LA Nal [ [ 1@ = pPlal dyde = 112l

The remaining cases 1 = p < ¢ = r and p = ¢, r = 1 follow by the previous
theorem and Holder’s inequality applied to the function y — f(z —y)g(y) for
any fixed z. In particular, if ¢ = oo, then the integral of |f(z — y)g(y)| in y is
estimated by || f||,llg|l- due to Holder’s inequality, since in that case we have
p~lr =1 O

3.9.5. Corollary. Let g € LY(IR") and let a function f be bounded and
continuous. Then, the function f g is bounded and continuous as well. If, in
addition, f has continuous and bounded derivatives up to order k, then f x g
also does and

8% Oz, (fxg)= (83,1.1 Oz, f)*g
for allm < k.
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PrROOF. The continuity of f x g follows by the dominated convergence
theorem. If f has bounded and continuous partial derivatives, then by the
theorem on differentiation of the Lebesgue integral with respect to a parameter
(see Corollary 2.8.7) we obtain that the function f % g has partial derivatives
as well and O, (f * g) = 0O, f * g, moreover, these partial derivatives are
continuous and bounded. By induction, the assertion extends to higher-order
derivatives. (]

3.9.6. Corollary. Let f € LP(R"), g € LY(R™), p~ ! + ¢~ = 1. Then,
the function f = g defined by equality (3.9.1) is continuous and bounded.

PROOF. For any fixed z, the function y — f(z — y) belongs to LP(IR"),
hence by Hélder’s inequality the integral in (3.9.1) exists for every z and is a
bounded function. For any f € C§°(IR") the continuity of f * g is trivial. In
the general case, given p < oo we take a sequence of functions f; € C5°(IR™)
convergent to f in LP(IR™) (it suffices to approximate first the indicators of
cubes, see §4.2 in Chapter 4). By the estimate

|fi* g(x) — f*g(@)| < |fj = flleeawm)llgllLamny, Vo eR",

the functions f; * g converge uniformly on R™ to f *g. If p = 0o, then ¢ =1
and a similar reasoning applies. [

3.9.7. Example. Let A and B be two sets of positive Lebesgue measure
in R™. Then, the set

A+B:={a+b: ac Abe B}
contains an open ball.

PROOF. It suffices to consider bounded sets. By the continuity of I4*Ip,
the set

U= {x: Iy *Ip(x) >0}

is open. The integral of 14 x I equals the product of the measures of A and
B and hence is not zero. Therefore, U is nonempty. Finally, U C A + B,
since, for any « € U, there exists y € B such that x —y € A (otherwise
Ia(z —y)Ip(y) =0 for all y and then T4 x Ig(x) = 0), whence we obtain the
inclusionz =x—y+y € A+ B. (|

Exercise 3.10.98 contains a more general result.
Apart from convolutions of functions, one can consider convolutions of
measures.

3.9.8. Definition. Let pu and v be two bounded Borel measures on IR™.
Their convolution p * v is defined as the measure on IR™ that is the image of
the measure p®@v on R™ xIR"™ under the mapping (z,y) — z +y.
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It follows by definition and Fubini’s theorem that, for any B € B(IR"),
one has the equality

poer(B) = [ Ip(e+y)u(d) vidy (3.9.5)

[ Bt = [ (B o) ulao)

The right-hand side of this equality can be taken for the definition of
convolution. We note that the function z — wu(B — z) is Borel for every
B € B(IR™). This follows by Proposition 3.3.2.

It is clear that pu* v = v * 1 and that & * v = fiv, since

/ W) s v(dx) = / / ) pi(du) v(dv),
Rn n n

which yields the stated equality by Fubini’s theorem.

Finally, let us consider the convolution of a function and a measure. The
proof of the following assertion is similar to the above reasoning and is dele-
gated to Exercise 3.10.99. If p is absolutely continuous, then this result is
covered by the Young inequality with r =1, p = q.

3.9.9. Proposition. Let f be a Borel function in LP(IR™) and let u be
a bounded Borel measure on IR"™. The function

e / f(z — y) n(dy)

is defined for almost all x with respect to Lebesgue measure and

I1f * pllzorry < I f e @ey -

3.9.10. Example. Let p and v be probability measures on a measurable
space (X, A) such that ¥ < p and let o be a probability measure on a mea-
surable space (Y, B). Suppose that T: X xY — Z be a measurable mapping
with values in a measurable space (Z, ). Then

Vor = v®0) o T < pigr = (u@0) o T}

dvy
I i [ 2
MJT

for any p € [1,00) such that dv/du € LP(u)
In particular, if X =Y = Z = IR" and T(:r y) = = + y, one obtains
d(v o) ‘p

/nd(ﬂ*f’) il

d(pxo g/ —
) R" d/U,

PROOF. It is obvious that v®o <« u® o and d(v®c)/d(u®c) = f, where

f = dv/du is regarded as a function on X xY. Hence v, < po 7. Let

and

dis.
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g = dv,r/dper and ¢ = p/(p — 1). For every function ¢ € L>(p, 1), One
has by Hélder’s inequality

/g@gduc,’T:/(pduc,,T:/ (pOTd(I/®O'):/ poTfduxao)
z z Xxv Xxv

/a
<o ([ [ e ntda) o) = U Il s 1

which by Example 2.11.6 yields the desired inequality. In the case where
X =Y =27=R"and T(z,y) = z+y we have (u®0c)o Tt = px*xo
and similarly for v. For an alternative proof of a more general fact, see
Exercise 10.10.93 in Chapter 10. ([l

3.10. Supplements and exercises

(i) On Fubini’s theorem and products of o-algebras (209). (ii) Steiner’s sym-
metrization (212). (iii) Hausdorff measures (215). (iv) Decompositions of set
functions (218). (v) Properties of positive definite functions (220). (vi) The
Brunn—Minkowski inequality and its generalizations (222). (vii) Mixed vol-
umes (226). Exercises (228).

3.10(i). On Fubini’s theorem and products of o-algebras

In applications of Fubini’s theorem one should not forget that it deals with
sets in products of spaces (and with functions on them) which are known in
advance to be measurable with respect to the product measure. There exists
a Lebesgue nonmeasurable set in the unit square such that all intersections
of this set with the straight lines parallel to the coordinate axes consist of at
most one point (see Exercise 3.10.49). It is suggested in Exercise 3.10.50 that
the reader construct an example of a nonmeasurable nonnegative function
on the square such that the repeated integrals exist and vanish. Finally,
Exercise 3.10.51 provides an example of a bounded function (the indicator
of a set) such that one of the repeated integrals equals 0 and the other one
equals 1. However, the construction essentially uses the continuum hypothesis.
Moreover, Friedman [328] proved that it is consistent with the standard set
theory with the axiom of choice (ZFC) that if, for a bounded (not necessarily
measurable) function f on the square both repeated integrals exist, then they
are equal. The existence of the repeated integrals means that, for a.e. x, the
function f(z,y) is integrable in y, the function

/ f(z,y) dy

is integrable in x, and the same is true when we consider the variables in the
reversed order.

There exist rather exotic measurable sets, too. According to Fubini’s
theorem, for any set A of measure 1 in the square [0,1] %[0, 1], almost every
section by the straight line parallel to the first coordinate axis has the linear
measure 1. The surprising Example 1.12.25, due to Nikodym, shows that in
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this statement it is essential to consider a priori fixed axes: there exists a set
of full measure in the plane such that through every point of this set one can
pass a straight line meeting this set at the given point.

It is to be noted that the product of nonnegative measures p and v can
be defined in such a way that the initial equality p®@v(Ax B) = u(A)v(B)
will not be obvious and will require a justification, but the measures may not
be finite or o-finite. This approach is based on Carathéodory outer measures
(see §1.12). Suppose we are given two Carathéodory outer measures p* and
v* in the sense of Definition 1.11.1 (i.e., they are not necessarily generated by
the usual measures). Let p and v denote their restrictions to the o-algebras
M~ and M- (which are known to be countably additive measures). First
we define the set function p* xv* on the class of all subsets in X xY by the
formula

wxv*(E) = inf{i M(Ai)l/(Bi)}7
i=1

where inf is taken over all A; € M-, B; € M, with E C |J;2,(4;xB;). Then
the following theorem can be proved (see, e.g., Bruckner, Bruckner, Thomson
[136, Theorem 6.2]).

3.10.1. Theorem. The set function p* xv* is a regular Carathéodory
outer measure on X xY, and for all A € M, and B € M-, we have
AxB € M0 and p* xv*(AxB) = p*(A)v*(B).

If a function is integrable with respect to such a product measure, then
it vanishes outside some set on which the product measure is o-finite, hence
integration of this function reduces to integration with respect to a product of
two o-finite measures. In particular, Fubini’s theorem is true in this setting.
However, without additional assumptions such as o-finiteness any further de-
velopment of this approach is not very fruitful. For example, Tonelli’s theorem
may fail here (Exercises 3.10.58, 3.10.64, 3.10.65, 3.10.66, and 3.10.67 demon-
strate the subtleties arising here; see also Falconer, Mauldin [278]).

In most of applications, Fubini’s theorem is applied to measures that are
defined on product spaces equipped with products of o-algebras. However, in
some cases, a product space possesses other natural o-algebras. For example,
if X and Y are two topological spaces equipped with their Borel o-algebras
B(X) and B(Y'), then the space X xY has the product topology, hence it can
be equipped with the corresponding Borel o-algebra B(X xY’), which may be
strictly larger than B(X)®B(Y'). Such problems are addressed in Chapter 6
and Chapter 7. Here we only discuss the case where X and Y are nonempty
sets equipped with the o-algebras of all subsets; these o-algebras are denoted
by P(X) and P(Y). Clearly, these o-algebras coincide with the Borel o-
algebras corresponding to the discrete metrics on X and Y, i.e., the distances
between all distinct points are 1. Is it true that P(X)@P(Y) = P(X xY)?
We shall see in §6.4 that the answer is “no” if the cardinality of X and
Y is greater than c¢. The situation is more complicated if X and Y are of
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uncountable cardinality less than or equal to ¢. The following result was
obtained in Rao [784].

3.10.2. Proposition. Let Q be a set of cardinality corresponding to the
first uncountable ordinal wy and let P(2) be the set of all its subsets. Then

PQ)RP(Q) = P(QxQ).

Under the continuum hypothesis, the o-algebra generated by all products AxB,
A,B C [0,1], coincides with the class of all sets in [0,1] x[0,1].

PrROOF. We may deal with the ordinal interval Q = [0, w;) equipped with
its natural order <. Any function on € with values in [0, 1] is (P(€2), B([0, 1]))-
measurable, hence its graph belongs to P(Q)®B([0,1]). Since one can embed
Q into [0, 1], the graph of any mapping from 2 to © belongs to P(Q)@P ().
This yields that P(Q)®P(Q2) contains every set E € Q xQ such that all
sections Fy := {y: (z,y) € E}, x € Q, are at most countable. The same is
true for any set E such that all sections E, := {z: (z,y) € E}, y € Q, are at
most countable. The sets {a: a < ap} are at most countable for all ap < wy.
Hence P()®P(2) contains every subset of the set {(«, 3): a < S} and every
subset of the set {(«,3): 8 < a}. This proves our claim, since the union of
the two indicated sets is Qx Q. See also Kharazishvili [511, p. 201]; Mauldin
(659]. O

Now we see how this result along with Fubini’s theorem yields a shorter
proof of Theorem 1.12.40. Moreover, the following fact established in Banach,
Kuratowski [57] is true.

3.10.3. Corollary. There exists a countable family of sets A,, C 2 such
that the o-algebra o({A,}) contains all singletons, but carries no nonzero
measure vanishing on all singletons.

In particular, under the continuum hypothesis, there exists a countable
family of sets A, C [0,1] such that Lebesgue measure cannot be extended to
a countably additive measure on the o-algebra generated by all Borel sets and
all sets A,,.

PrOOF. We recall that Q = [0, w;) is well-ordered and that for any 8 €
the set {a: o < (8} is at most countable. By Exercise 3.10.38 and the above
proposition, the set M := {(a,8): o < (} is contained in the o-algebra
generated by some countable collection of products 4;xA;. We can consider
Y as asubset of [0, 1] and add to { A, } all sets QN (r, s) with rational r, s. Hence
we obtain countably many sets, again denoted by A,, such that o({A,})
contains all singletons in Q. Suppose that p is a probability measure on
the o-algebra A = o({A,}). Then M is measurable with respect to pu® pu.
This leads to a contradiction because by Fubini’s theorem the set M and
its complement have p® p-measure zero. Indeed, all horizontal sections of
the set M and all vertical sections of its complement are at most countable.
Finally, under the continuum hypothesis, there is a one-to-one correspondence
between Q2 and [0, 1]. O
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3.10(ii). Steiner’s symmetrization

In this section, we consider an interesting transformation of sets that
preserves Lebesgue measure \,. Let a,b € IR" and |a| = 1. The straight
line L,(b) having the direction vector a and passing through the point b is
determined by the equality L,(b) = {b+ ta: t € IR}. Let II, denote the
orthogonal complement of the straight line Ra.

3.10.4. Definition. For every set A in IR", Steiner’s symmetrization of
A with respect to the hyperplane 11, is the set

1
Su(A) = U {b+ta: It] < 5A;‘(AmLa(b))},
bEM,, ANL, (b)£D

where \y is the natural Lebesgue measure on the straight line Lq(b).

For example, let a be the vector e; in IR? and let A be the set under the
graph of a nonnegative measurable function f on [0,1]. The symmetrization
S,, takes A to the set bounded by the graphs of the functions f/2 and —f/2,
since for b € II, = IRe; the section of A by the line L,(b) is an interval of
length f(b). By Fubini’s theorem, it is clear that A and S,(A) have equal
areas.

In the general case, on the set Q4 :={b € Il,: Lo(b) N A # &} we define
the function f(b) = A\j (AN Lq(b)). Then S,(A) is the set between the graphs
of the functions f/2 and — f/2 on the set 4. If A is measurable, then Fubini’s
theorem yields that 24 is measurable with respect to the natural Lebesgue
measure Ar;, on the (n — 1)-dimensional subspace II, and the function f is
measurable on Q4. This shows the measurability of S,(A4). In addition, for
A, -almost all b € Q 4, the set AN L, (b) is measurable with respect to A;.

The diameter of a nonempty set A is the number diam A equal the supre-
mum of the distances between points in the set A; diam & := 0.

3.10.5. Proposition. For any set A, we have diam S, (A) < diam A. If
the set A is measurable, then A, (Sq.(A)) = A, (A).

PROOF. Since the closure of A has the same diameter as A, we may
assume in the first assertion that A is closed. Moreover, we may assume
that A is bounded (otherwise the claim is obvious). We take ¢ > 0 and
choose z,y € S,(A) with diam S,(A4) < |z —y| +e. Set b = x — (x,a)q,
¢=1y — (y,a)a. Then b,c € I1,. Let

my =inf{t: b+ta € A}, My =sup{t: b+ta € A},
me. =inf{t: c+ta € A}, M.=sup{t: c+ta € A}.
We may assume that M. — my > My — m.. Then

My — M. —
M, —mp > b mb+ ‘2
<

2
We observe that |(z,a) A (AN Ly(b))/2. This follows by the definition

|
of S4(A), since z = b+ (z,a)a € S,(A). Similarly, |(y,a)| < A1 (AN Ly(c))/2.

me %Al(AﬁLa(b)) + %Al(AmLa(c)).
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Therefore, M. — my, > |(z,a)| + |(y,a)| > |(x — y,a)|, whence we have
|diam Sy(A) —e” < o —y[* = b~ + [(z — y, a)
< b —c* +|M, —my|* = |(b+ mpa) — (c + Mea)]* < (diam A)?

because b + mpa, c + M.a € A by the assumption that A is closed. Since € is
arbitrary, we obtain diam S, (4) < diam A.

In the proof of the second assertion we may assume, by the rotational
invariance of Lebesgue measure, that a = e, = (0,...,0,1). Then we have
I, = R""'. The measurability of S(A) has already been justified. By
Fubini’s theorem, the function f(b) = A1 (AN La(b)) is measurable on R" !,
and its integral equals the measure of A. The same integral is obtained by
evaluating the measure of S, (A) by Fubini’s theorem, since, for each b € IR™ !
such that L,(b) N A # &, the section of the set S,(A) by the straight line
b+ Re,, is an interval of length f(b). O

The next result shows that among the sets of a given diameter, the ball
has the maximal volume. This is not obvious because a set of diameter 1 need
not be contained in a ball of diameter 1. For example, a triangle of diameter
1 may not be covered by a disc of diameter 1.

3.10.6. Corollary. For any set A C IR", one has

N(4) < a0 (Y

.10.1
5 (3.10.1)
where U is the unit ball.

PRrROOF. It suffices to consider closed sets, since the closure of a set has
the same diameter. We shall assume that A is bounded. Let us take the
standard basis eq, ..., e, and consider the consecutive symmetrizations A; =
Se (A)y. .. Ap = Se, (Ap—1). We know that A\, (A,) = A\, (A) and diam A4,, <
diam A. Hence it suffices to show that (3.10.1) is true for A,. If we show that
A, is centrally symmetric, then (3.10.1) will be a trivial consequence of the
fact that A, is contained in a ball of radius diam 4,,/2. Indeed, in that case
for any x € A,,, we have —x € A,,, whence we obtain |z| < diam 4,,/2.

It remains to show that A,, is centrally symmetric. To this end, we verify
that A, is symmetric with respect to the hyperplanes Il ;. It is clear that A; is
symmetric with respect to Il.,. Suppose that 1 < k < n and Ay is symmetric
with respect to Il¢;, j < k. The set Apy1 = Serir (Ax) is symmetric with
respect to Il ,,. Let j < k and let R; be the reflection with respect to Il.
Let us take b € Il , . By using that R;(Ay) = Ay we obtain

M(Ax N Le,,, (b)) = A1 (Ap N Le,,, (R;(D))).
This yields the equality
{t: b+tery1 € Apy1} = {t: Rj(b) +tegt1 € Agg}e

Hence R;j(Ary1) = Apy1, ie., Apyr is symmetric with respect to Ilc,. By
induction we obtain our claim. (Il
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Melnikov [679] proved that the above result remains valid for an arbitrary
(not necessarily Euclidean) finite-dimensional normed space, and his proof of
the following theorem is very elementary (only Fubini’s theorem is used) and
is almost as short as the above reasoning.

3.10.7. Theorem. Suppose that a set A in the space IR™ equipped with
some norm p has diameter 2 with respect to the norm p. Then the inequality
X(A) < A (U) holds, where U is the unit ball in the norm p.

Close to Steiner’s symmetrization is the concept of a symmetric rearrange-
ment of a set or function. The symmetric rearrangement of a measurable set
A C IR" is the set A* C IR" that is the open ball with the center at the origin
and the volume equal to that of A. The symmetric rearrangement of a func-
tion 14 is the function I4+, denoted by I. Now, for an arbitrary measurable
function f on IR", its measurable rearrangement is defined by the formula

f*(x)Z/O If 15y (@) dt.

It is clear that the function f* is a function of |z|. In Exercise 3.10.102, an
equivalent definition of the rearrangement of a function is given, according to
which the rearrangement is a function on the real line equimeasurable with
the given function on IR". A concise exposition of the basic properties of
symmetric rearrangements is given in the book Lieb, Loss [612]. So here we
only mention without proof several key facts. For any ¢ > 0, one has the
equality
{z: f*(x) >t} ={z: |f(x)] >t} .
Hence, for Lebesgue measure \,,, we obtain
An(z: fH(2) > t) = Aoz |f(2)] > 0).

This equality yields ||f*||z» = || fll,- In addition, || f* — ¢*|lr < [|f — 9llp-
The last inequality is a special case of a more general fact. Namely, let ¥
be a nonnegative convex function on the real line such that ¥(0) = 0 and let

f and g be nonnegative measurable functions on IR"™ with bounded support.
Then

[ vr@-g@)is< [ ¥ - o) do

R’!L
For all nonnegative measurable functions with bounded support one has

f@)g(z)de < [ [*(x)g"(x) dx.
R" R"

The following deep result is due to F. Riesz. For all nonnegative measurable
functions f, g, h on IR", one has

/ f(@)g(z —y)h(y) dzdy < / f(@)g™ (x — y)h*(y) dx dy.
o S o S

The above cited book contains proofs, references, and other related interesting
results.
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In Busemann, Petty [154], the following question was raised. Let B be
a unit ball centered at the origin in IR™ and let K be a centrally symmetric
convex set. Suppose that for every (n — 1)-dimensional linear subspace L
in IR", one has \,,_1 (K NL) < A\,—1(BNL). Is it true that \,(K) < A, (B)?
It turned out that this is true if n < 3, but for n > 4 this is false; see Gard-
ner [341], Gardner, Koldobsky, Schlumprecht [343], Zhang [1049], [1050],
Larman, Rogers [571]).

3.10(iii). Hausdorff measures

In this subsection, we discuss an interesting class of measures containing
Lebesgue measure: Hausdorff measures. As above, let diam C' denote the
diameter of a set C. We recall that the Gamma-function is defined by the
formula

T'(s) = / e~z tdr, s> 0.
0

Set a(s) = 7°/2/T(1 + s/2). Then «(n) is the volume of the unit ball in IR"
(see Exercise 3.10.83).

3.10.8. Definition. Let s € [0,+00) and let 6 € (0,+00). For any set
AC R, let

s . > diam Cj s > .
HE(A) = mf{;a(s)( : ) A c]!lc], diam C; < 5},
H?(A) = lim Hj(A) =sup H3 (A).

6—0 6>0

We note that the second equality in the definition of H? is fulfilled, since
Hj > Hj, whenever 0 < 0 < ¢'.

It is clear that Hj is the Carathéodory outer measure corresponding to the
set function 7(C) = a(s)27%(diam C')* on the family of all sets of diameter
at most J (see Example 1.11.5). Hence the set function Hj is countably
subadditive. We observe that in the definition of Hj one could use only
closed sets, since the diameter of the closure of C equals that of C.

3.10.9. Proposition. The set function H?® is a reqular Carathéodory
outer measure, and all Borel sets are measurable with respect to H®. In addi-
tion, the function H?® is invariant with respect to translations and orthogonal
linear operators.

PROOF. The countable subadditivity of H® follows by the countable sub-
additivity of Hf for 6 > 0. Let A, B C R"™ and dist(A4,B) > 0. We pick a
positive number ¢ < dist(A, B)/4 and take sets C; that cover AU B and have
diameters at most §. This cover falls into a cover of A by some of the sets
C; (which are denoted again by C;) and a cover of B by sets C]‘ such that
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(U(;il Cj) ﬂ(U;‘;l C'») = . Hence
H3(A) + H3 (B Z *(diam C}) Z *(diam C)*,

whence we obtain that H(‘; (A)+H3(B) < Hj (ALJB)7 which yields the estimate
H?(A)+ H*(B) < H*(AU B) as § — 0. By the countable subadditivity we
arrive at the equality H°(AU B) = H*(A) + H?(B). According to Theorem
1.11.10 all Borel sets are H®-measurable.

If H*(A) < oo, then, for every k € IN, one can find a cover of A by closed
sets C’]‘C with diameters at most k~1 and

Za dlaka) Hy ;. (A) + kL
j=1
The set B = (,2, U;2; C} is Borel and

1/x(B SZ *(diam C})* < 1/k(A)+k_17

whence one has H*(B) < H*(A) < H*(A). The last claim is obvious. O

We shall call H® the s-dimensional Hausdorff measure. It is clear that
H?*(A\A) = NH®(A), VYA>0.

In addition, HY(A) is just the cardinality of the set A (finite or infinite).

It is easily verified (Exercise 3.10.103), that if s < ¢t and H*(4) < oo,
then H'(A) = 0. If H(A) = 0 for some ¢ > 0, then H*(A) = 0.

If A is a bounded set in IR", then A is contained in some cube with the
edge length C and can be covered by (C/r)™ cubes with the edge length r.
Hence it can also be covered by n™/2(C/§)" balls of diameter §. Therefore,
H™(A) < oo (it is shown below that H™ is Lebesgue outer measure). It is
also clear that H°(A) =0 for s > n.

The Hausdorff dimension of A is defined as the number

dimp (A) :=inf{s € [0,400): H*(A) =0}.

3.10.10. Lemma. If s =n =1, then the set functions H' and H} are
equal for all § > 0 and coincide with Lebesgue outer measure.

Proor. If a set A is covered by closed sets C; of diameter at most 4,
then its outer measure does not exceed the sum of diameters of C;, whence
Ai(A) < H}(A). On the other hand, A can be covered by a sequence of disjoint
intervals C; with diameters less than ¢ such that the sum of diameters is as
close to the outer measure of A as we wish. Hence \j(A4) > H}(A). O

3.10.11. Proposition. If s = n, then the set function H™ coincides
with Lebesgue outer measure.
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PRrROOF. By the regularity of both outer measures, it suffices to verify
their equality on all Borel sets. Thus, we may deal further with the measures
H™ and A, on Borel sets. According to Exercise 1.12.74, the invariance with
respect to translations yields the equality H™ = ¢\, for some ¢ > 0. We show
that ¢ < 1. Otherwise for the open unit ball U we have H"(U) > A, (U). Let
us pick § > 0 with HY(U) > A\, (U). It follows by Theorem 1.7.4 that there
exist disjoint balls U; C U with radii at most § such that A, (U\ 52, U;) = 0.

Then - -
(0 v;) < (0 0y) =0,
j=1 j=1

Hence
o

Hy(U) = ZHS(UJ) < ZAn(Uj) =\ (U).
j=1 j=1
This contradiction shows that ¢ < 1. On the other hand, according to in-
equality (3.10.1), if U is covered by closed sets C; of diameter at most ,
then - -
M (U) < Z)\n(Cj) < Za(n)Q‘"(diam c;)"
j=1 j=1

and hence A\, (U) < Hy(U) < H"(U). O

It is proposed in Exercise 3.10.104 that the reader construct sets B, in
the interval [0, 1] with H¥(B,) = 1 for all @ € (0, 1) and show that the Cantor
set has a finite positive H®-measure for « =1n2/In 3.

3.10.12. Lemma. Let a mapping f: R"™ — IR™ satisfy the Lipschitz
condition with the constant A, i.e., |f(x) — f(y)| < Alx —y| for all z,y € R".
Then, for every s > 0 and every A C R", we have H*(f(A)) < A*H*(A).

PrOOF. We may assume that A > 0, otherwise the claim is obvious.
Suppose that A is covered by sets C; of diameter at most 6 > 0. Then
diam f(C;) < Adiam C; < AJ and the sets f(C;) cover f(A). Hence

H3s(£(A)) < A*D a(s)27*(diam C;)*,
j=1
so Hys(f(A)) < A*H(A). Letting § — 0 we obtain our assertion. O
In particular, orthogonal projections do not increase Hausdorff measures.

3.10.13. Corollary. Let A be a set in IR"™ of positive outer measure
and let f: R™ — IR™. Let us denote by G(f, A) the graph of f on A, i.e.,
G(f,A) = {(z,f(:r)),a: € A}. Then, the Hausdorff dimension of G(f,A) is
not less than n, and in the case where f is Lipschitzian, it is exactly n.

PRrROOF. By the above lemma the Hausdorff dimension does not increase
under projection, and the projection of the set G(f, A) to R™ is the set A,
which by our hypothesis has the Hausdorfl dimension n. If f is Lipschitzian,
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then G(f, A) is the image of A under the Lipschitzian mapping x +— (x, f(x)),
whence by the equality H*(IR"™) = 0 for s > n and the lemma we obtain the
second assertion. (]

Certain generalizations of Hausdorff measures on general metric spaces
will be considered in Chapter 7.

3.10(iv). Decomposition of set functions

It is shown in this subsection that any additive set function can be de-
composed in the sum of a countably additive measure and an additive set
function without countably additive components. Let X be a nonempty set.

3.10.14. Theorem. Let R be a ring of subsets of a space X and let
m: R — [0,+00] be a function with the following property of superadditivity:

for all disjoint Ay,..., A, € R.
(i) For all A € R we set

n n
Madd(A) = inf{Zm(Aj): A= U Aj,Aj €R, Aj are disjomt}.
=1 j=1
Then maqq s an additive set function, maqq < m, and Maqq > Vv for each

additive set function v: R — [0, +00] such that v < m.
(ii) Set

(o) (o)
mey(A) = inf{z m(4;): A= U Aj, A eR, Aj are disjomt}, AcR.
j=1 j=1
Then my is a countably additive set function, mys < m, and my, > v for each
countably additive set function v: R — [0, +00] such that v < m.

PROOF. (1) Let F1, Ey € R, E1NEy; = &. We show that madd(El UEQ) <
Madd(E1) + Maaa(E2). We may assume that the right-hand side is finite.
Let us fix ¢ > 0 and find disjoint sets E},...,E¥ € R and disjoint sets
E},...,E} € R with By =, Ef, B, =J}_, B, and

k n .
Zm(Ei) < madd(El) + ¢, Zm(E%) < madd(EQ) + €.
i=1 j=1
Then Ei and E% are disjoint, hence
k n
Maad(B1 U Ep) <3 m(E}) + > m(E]) < maaa(E1) + maaa(E2) + 2.
i=1 j=1
It remains to use that ¢ is arbitrary. Let us establish the opposite inequality.
Now we may assume that maqq(Eq1 U E3) < co. For any fixed ¢ > 0, we
write By U By as the disjoint union of sets A; € R, j = 1,...,n, such that
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Z?Zl m(A;) < maga(E1 U Es) + . Then we have E{ = ENA; € R,

Eg = FE> N A; € R and by the superadditivity of m we obtain

madd(ElUEg)-f—E > Zm(AJ) > Z[m(E{)—i—m(E%)] > madd(E1)+madd(E2).
j=1 j=1

Finally, if v: R — [0, 4o0] is an additive set function and v < m, then, for

any disjoint sets F1,..., FE, € R, we have

n

Zm(Ej) > ZV(Ej> =v(E),

whence one has mgqq > v.
The proof of (ii) is analogous. Given a countable collection of disjoint sets

E, € R, in order to obtain the estimate m, <Uflo:1 En> <> me(Ey), we

fix ¢ and take partitions of E, into sets E}, € R such that Y°22, m(Ej),) <
me(Ey) + 27", For the proof of the opposite estimate, we observe that
the finite superadditivity obviously implies the countable superadditivity:

m(U?il Aj) > 3772 m(4;) for disjoint A; € R with union in R. O

In the situation of the above theorem, we shall call m purely superadditive
if maqq = 0 and purely additive if m = maqq and m, = 0.

3.10.15. Corollary. Suppose that the function m in the above theorem
assumes only finite values. Then m = mg + m1 + m,, where the set function
mg := M—mMauqq s purely superadditive and the set function my := Maqq — Mo
is purely additive. If m = m{+m)+ma, where my > 0 is purely superadditive,
m} > 0 is purely additive and ma > 0 is countably additive, then m{ = my,
my =my, mg = m,.

PROOF. If mg is not purely superadditive, i.e., (1mg)ada 7 0, then one
has madd + (Mo)ada < m. Since the function Mmadqq + (Mo)add is additive, one
has Madqd > Madd + (Mo)aad- Since m assumes only finite values, the function
Madd also does. Hence (mg)aqqa = 0, which is a contradiction. Similarly, we
verify that mq is purely additive. If m{, m} and mq are functions with the
properties mentioned in the formulation, then one readily verifies that

Madd = (M()add + (M])add + (M2)ada = M} + ma

and my = (Madd)o = (M))s + ma. Hence m{; = mg, mj = my, mg =m,. O

In particular, every nonnegative real additive set function m on a ring R
can be written in the form m = m + ms, where ms is countably additive and
my is purely finitely additive, i.e., there exists no nonzero countably additive
measure majorized by mi. We note that the set function on IN in Example
1.12.28 is a nonzero purely additive function.

Earlier we considered total variations of measures. This concept is mean-
ingful for general set functions, too. Let F be some class of subsets of a
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space X containing some nonempty set. For a function m on F with values
in the extended real line we set

v(m)(A) = sup{z Im(A;)]: neIN,A; € F are disjoint and A; C A}.
=1

If no such A; exist, then we set v(m)(A) = 0. We shall call v(m) the total
variation of m. The function v(m) is defined on all sets A C X and takes
values in [0, +oc]. We observe that if @ € F and m(@) = 0, then in the
definition of v(m) one can take countable unions. It is clear that v(m) is
superadditive and m < v(m) on F. In a similar way we define the total
variation of a set function m on F with values in a normed space Y: in the
definition of v(m), the quantities |m(A,)| should mean ||m(A4;)], . For every
E e F set
+ _ — _ .
m™(E) = Fei‘?}EcEm(F)’ m~(E) = FG}_I}Ichm(F).

3.10.16. Proposition. Let R be a ring of subsets of X and let m be
an additive set function on R with values in (—oo,00]. Then, the function
v(m): R — [0,+00] is additive and m™ = (v(m) +m) /2.

The proof is left as Exercise 3.10.91.

3.10.17. Corollary. If in the situation of Proposition 3.10.16 the func-
tion v(m) is finite on R, then m = m* — m™, where m* and m™ are finite
nonnegative additive set functions on R.

This decomposition of m is called the Jordan decomposition.

3.10(v). Properties of positive definite functions

In Chapter 7 (§7.13) we shall prove Bochner’s theorem, according to which
the class of all positive definite continuous functions on IR"™ coincides with the
family of the characteristic functionals of bounded nonnegative Borel mea-
sures. In this subsection, we establish some general properties of positive
definite functions.

3.10.18. Proposition. Let ¢ be a positive definite function on IR™.
Then:

(i) ¢(0) = 0;

ii) p(=y) = (y) and |o(y)| < ¢(0);
iii) the functions @ and Re ¢ are positive definite;

(
(
EIV) lo(y) — ¢(2)|* < 20(0)[(0) — Rep(y — 2)];

v) the sums and products of positive definite functions are positive defi-
nite; in addition, exp ¢ is a positive definite function.

PROOF. Assertion (i) is obtained by letting ¢ = 1, ¢; = 1. The first claim
in (ii) is seen from the inequality

le1%(0) + |e2]0(0) + c1ezp(y) + caeip(—y) > 0
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for all ¢1,¢o € C, since if p(—y) # @, then one can pick ¢; and ¢y such
that we obtain a number with a nonzero imaginary part. The second claim
in (ii) follows from the first one by taking complex numbers ¢; and ¢y such
that |e1] = c2 = 1 and c1p(y) = —|¢(y)|. Assertion (v) and the positive
definiteness of P are obvious from the definition. Hence the function Re ¢ is
positive definite as well. The proof of (iv) is Exercise 3.10.92. O

3.10.19. Lemma. If ¢ is a measurable positive definite function on IR™,
then, for every Lebesque integrable nonnegative function f, one has

/ § / i ol —y)f(x)f(y)dedy > 0. (3.10.2)

If the function f is even, then

/ p(@)fxf(a)de = 0. (3.10.3)

In particular, for all a > 0 we have
/ o(x) exp(—alz|?) dz > 0. (3.10.4)

PROOF. Let k > 2. Then, for all vectors y; € R", j = 1,...,k, we
have ko(0) + 3, #(yi —y;) > 0. By using the boundedness and mea-
surability of ¢ we can integrate this inequality with respect to the measure
fy1) - f(yr) dyy - - - dyg. Denoting the integral of f against Lebesgue mea-
sure by I(f) and assuming that I(f) > 0, we obtain

beO(NF 4 k= DI [ [ o= pra)fw) dedy = 0

Dividing by k(k—1)I(f)* and letting k to the infinity, we arrive at the required
inequality. If the function f is even, then the left-hand side of (3.10.2) equals
the left-hand side of (3.10.3). Finally, the function g(z) = exp(—alz|?) can
be written as f * f, where f(z) = cexp(—2a|z|?) and c is a positive number.

This follows by the equalities §(y) = (20)""/2 exp[—|y|?/(4a)] and f*f =
(2m)"2(f)%. O

3.10.20. Theorem. Let ¢ be a Lebesgue measurable positive definite
function on IR™. Then ¢ coincides almost everywhere with a continuous pos-
itive definite function.

PROOF. Suppose first that the function ¢ is integrable. Let f = @. The
function f is bounded and continuous. We show that f > 0. Let us consider
the functions

pe(x) = (27t) "2 exp[—|z[?/(2t)], t> 0.

We observe that for every fixed z, the function z — expl[i(z, )] equals the
characteristic functional of Dirac’s measure at the point x, hence is positive
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definite (certainly, this fact can be verified directly). Therefore, the func-
tion z +— ¢(z)expli(z,x)] is positive definite too. By the Parseval equality,
Example 3.8.2 and (3.10.4), we obtain

pe* f(x / fW)pe(x —y)dy

= (277)7”/2/ i ©(2) exp[—i(z,x)] exp[—t|z|?/2] dz > 0.

By the continuity of f we have f p;/(x) — f(x). Hence f > 0. Let us now
show that the function f is integrable. To this end, we take a sequence of
functions vy (7) = exp[—k~1|z|?/2] and observe that the above equality with
xz =0 and t = k yields

f@)p(z) de = 71'"/2/ o(x)p1/k(x) de < 77”/2@(0)
R" R"

because p; is a probability density. Since ¢ (x) — 1 for each z, by Fatou’s the-
orem the function f is integrable. According to Corollary 3.8.12, the inverse
Fourier transform of f equals ¢ a.e.

In the general case, the function ¢(x)exp(—|z|?) is positive definite (as
the product of two positive definite functions) and integrable. We have shown
that it coincides almost everywhere with a continuous function. Hence the
function ¢ has a continuous modification ¥. We show that v is a positive
definite function. Indeed, by the continuity one has i (z) = }1_{% W * py(z) for

each . However, ¥ x p;(z) = ¢ x pi(x) for all z and ¢t > 0. It remains to note
that ¢ * p; is a positive definite function. Indeed,

o xpi(x) = lim - * (),

where . (z) = ¢(z)exp(—¢|z|?). We already know that ¢. coincides al-
most everywhere with the Fourier transform of some nonnegative integrable
function g.. Hence . * p; is the Fourier transform of the nonnegative func-
tion (27)"/%g.py, i.e., is positive definite. Thus, v is a continuous positive
definite function, almost everywhere equal to ¢. O

This theorem does not mean, of course, that a measurable positive definite
function is automatically continuous. For example, if p(0) =1 and p(z) =0
for x # 0, then ¢ is a discontinuous Borel positive definite function.

The reader is warned that there exist positive definite functions on the
real line that are not Lebesgue measurable (Exercise 3.10.116).

3.10(vi). The Brunn—Minkowski inequality and its
applications

In this subsection, we consider several classical inequalities, in which the
ideas of measure theory, geometry, and analysis are interlacing in an elegant
way.
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3.10.21. Theorem. Suppose that u,v,w are nonnegative Lebesque inte-
grable functions on R™ such that, for some t € [0,1], one has

w(te + (1= t)y) > u(x)v(y)' ™", Va,yeR" (3.10.5)

/nw(x) dz > </nu(x) dx)t(/ o(y) dy>1t. (3.10.6)

PRrOOF. It suffices to consider the case n = 1. The multidimensional case
reduces to the one-dimensional case by Fubini’s theorem. To this end, one
considers the functions

Then

+oo
wy(z') = / w(a', z,) dz,, ' € R",
— 00

and similarly defined uq,v;, where functions on IR"™ are written as functions
on R" ' xIR'. Then the functions wq, u;, and vy satisfy the conditions of
the theorem as well. Indeed,

“+oo
/ w(ta' + (1 =ty ) doy,

L ([T ([ )

by the one-dimensional case, since for fixed 2/,y’ € R™ ! we have
w(te’ + (1= 1)y tan + (1= yn) > u@’,z0) vy, yn) ™"
Thus, we shall deal with n = 1. In addition, it suffices to consider bounded
functions v and v because one can first establish our inequality for the cut-
off functions min(u, N) and min(v, N), which also satisfy our conditions. By
the homogeneity we may pass to the case supu = supv = 1 (if one of these
functions vanishes almost everywhere, then the assertion is trivial). For any
s €[0,1] let
A(s) == {z: u(z) > s}, B(s):={z: v(z) > s}, C(s) :={z: w(x)>s}.

Then, denoting Lebesgue measure by A\, we obtain by Theorem 2.9.3 that

/u(x) dx = /01 A (A(s)) ds, /U(m) dx = /01 A (B(s)) ds,
/ w(z) dz = /0 M (C(s) ds.

It follows by our hypothesis that tA(s) + (1 —t)B(s) C C(s) for all s € (0,1).
This yields the estimate

th(A(s)) + (1 — A1 (B(s)) < M (C(s)). (3.10.7)
Indeed, it suffices to verify that, for arbitrary compact sets K C tA(s) and
K' c (1 -1t)B(s), we have M\ (K) + A (K') < M(K + K'). Due to the
translation invariance of Lebesgue measure, we may assume that the point 0
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is the supremum of K and the infimum of K’. Then K UK’ C K + K’, hence
M(E)+ M (K) = M (KUK') < A\ (K +K'). Estimate (3.10.7) is established.
By this estimate we finally obtain

/w(m)dx:/o M (C(s)) ds
1 1
Zt/O Al(A(s))der(lft)/o A(B(s)) ds

:t/u(a:)dx+(1—t)/v(y)dy > </u(x) d:z:)t(/v(y) dy)l_t,

where the concavity of In (or Exercise 2.12.87) is used. O

3.10.22. Corollary. Let f and g be two nonnegative integrable Borel
functions on R™ and let o € (0,1). Set

M) = swp 7 () ()

11—«

Then h(f,g) is a measurable function and one has

11—«

h(f,g)(x) dz > ( f(@) dm)a ( / o) dm) . (3108)
R™ R" n
ProOOF. For all z,z € R" and y = (1 — a)z we have

h(f,g)(ax+(1—a)z)2f<am+(l;a)z_y)ag( y )1—(17

1—«a

which equals f(x)%g(z)!~®. In order to apply the above theorem, it remains
to observe that the measurability of h(f, g) follows by Corollary 2.12.8. If the
function h(f,g) is not integrable, then our inequality is trivial. O

We recall that, for any nonempty Borel sets A, B in IR" and any numbers
a,f > 0, the set aA + B := {aa + Bb,a € A,b € B} is Souslin, hence

measurable.

3.10.23. Corollary. Suppose that p is a probability measure on IR™ with
a density ¢ and there exists o € (0,1) such that

o(ox + (1 —a)y) = o(@)%(y)' ™, Va,y eR"

Then, for all nonempty Borel sets A and B, one has the inequality

p(aA+ (1 —a)B) > p(A)*w(B)' . (3.10.9)

PROOF. Let

u=0Ila, v=o0lp, w=0loat(1-a)B-

Let z € A, y € B. Then az + (1 — o)y € oA + (1 — ) B, hence
w(ow + (1= a)y) = e(oz + (1 - a)y) > o()o(y)' ~* = u(z) v(y)' .

In all other cases u(z)*v(y)!~® = 0. It remains to apply Theorem 3.10.21. [
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A function V defined on a convex set D(V) C IR™ is called convex if it
is convex on the intersections of D(V') with all straight lines. It is clear that
the condition in the above corollary is fulfilled if the density of u has the form
o(z) = eV where V is a convex function on IR™. For example, one can
take a function V(z) = Q(z) + ¢, where @ is a quadratic form with positive
cigenvalues and ¢ € IR'. A more general example: V(z) = §(Q(x)) + ¢, where
6 is an increasing convex function on [0, +00).

The next result is the classical Brunn—-Minkowski inequality.

3.10.24. Theorem. Let )\, be Lebesque measure on R"™. Then, for all
nonempty Borel sets A, B C R", one has

An(A+ B)Y™ > X\ (A)Y™ 4 N\, (B, (3.10.10)

PROOF. We shall assume that both sets have positive measures because
otherwise the assertion is trivial. Let us consider the sets Ag = A, (4)" /" A
and By = \,,(B)~'/"B and apply inequality (3.10.5) to the functions u = I 4,,
v=1Ip,, w=Iig,4(1-t)B, and the number

/\n( A)l /n
)\n(A)l/n + )\n(B)l/n'
Then A, (Ag) = A\ (Bo) = 1, and we obtain the inequality

An(tAg + (1 —t)Boy) > My(Ao) An(Bo)' ' =1,

t=

the left-hand side of which equals (A, (4)/"+X,,(B)'/") "\, (A+B), whence
we obtain (3.10.10). O

We note that the simple one-dimensional case of the Brunn—Minkowski
inequality was obtained and used in the proof of Theorem 3.10.21. One more
useful convexity inequality is given by the following theorem due to Ander-
son [24].

3.10.25. Theorem. Let A be a bounded centrally symmetric convex set
in R™ and let f be a nonnegative locally integrable function on R™ such that
f(x) = f(—x) and, for all ¢ > 0, the sets {x: f(x) > ¢} are conver. Then,
for every h € R"™ and every t € [0, 1], one has

/f(:r+th)d:c2/f(x+h)dx. (3.10.11)
A A

PRrROOF. Set Bs(z) = {z: f(x) > 2z} N(A—sh),z>0,s € [-1,1]. Then,
by Theorem 2.9.3, one has

/Af(:c—i—th)dx:/A_thf(x)dm:/Ooo )\n(Bt(z)) dz.

Hence Anderson’s inequality reduces to the following inequality for measures
of sets:

M (Bi(2)) = A (Bi(z)), Vz>0. (3.10.12)
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Let us set o = (t 4+ 1)/2 and observe that
aBi(z)+ (1 —a)B_1(z) C Bi(2).

Indeed, if x € A—h, f(x) > z,y € A+h, f(y) > z, then ax+(1—a)y € A—th
and f(ozx +(1- a)y) > z by the convexity of A, the equality 2a — 1 = ¢ and
the convexity of {f > z}. This inclusion and the Brunn—Minkowski inequality
yield

1/n 1/n

A (Bi(2)) " > adn (Bi(2)) " + (1 = a)An (B_1(2))

The sets By(z) and B_;(z) are the images of each other under the central
symmetry, hence have equal measures, which yields (3.10.12). O

3.10.26. Definition. A Borel probability measure on IR" is called convex
or logarithmically concave if, for all nonempty Borel sets A and B and all
a € [0,1], one has

p(eA + (1 —a)B) = p(A)*u(B) .

3.10.27. Theorem. (i) A probability measure p on R™ with a density
0 s convex precisely when there exists a convex function V' with the domain
of definition D(V) C R"™ such that 9o = exp(—=V) on D(V) and 0 = 0 out-
side D(V). (ii) A probability measure p on R"™ is convex precisely when it is
the image of some absolutely continuous convex measure on R*, where k < n,
under an affine mapping.

A proof is given in Borell [116]. For a recent survey on the Brunn-
Minkowski inequality, see Gardner [342].

3.10(vii). Mixed volumes

Let A and B be bounded nonempty convex Borel sets in IR™. The function
An(@A + BB) of two variables «, 8 > 0, where )\, is Lebesgue measure, is a
polynomial of the form

An(@A+ BB) = o™ *3*Clv, rk(A, B),
k=0

where the coefficients v,y (A4, B) are independent of a, 8 (see Burago, Zal-
galler [143, Ch. 4]). These coefficients are called Minkowski’s mixed volumes.
Note that one has v, 0(A, B) = A\ (A), vo,n(A, B) = A\ (B).

Let us establish the following Minkowski inequality for mixed volumes.

3.10.28. Theorem. Let A and B be two convex compact sets of positive
measure in IR"™". Then

Un-1,1(A, B)" > Ay (A)A(B)" 1,

where the equality is only possible if A and B are homothetic.
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PrROOF. Let B; = (1 —t)A + tB. By the Brunn—Minkowski inequality,
the function A, (B;)"/™ is convex. Hence the nonnegative function

F(t) = M (B)Y™ = (1 = )M (A)Y™ — tA,(B)V/™

is convex on [0, 1]. One has F(0) = F(1) = 0. Hence F’(0) > 0 and F'(0) =0
precisely when F' = 0. By the formula
n !
M(B) =S (1—tnkh (A B
( t) ’;O( ) (Tl*k)'k'v k,k?( 3 )
we deduce that
F'(0) = [n-1,1(A, B) = A (AN (A) /7 4\ (A" — X\, (B,

whence the desired inequality follows. The equality is only possible if F' = 0,
i.e., if one has the equality in the Brunn—Minkowski inequality, which implies
that A and B are homothetic (see Hadwiger [392, Ch. V]). O

Regarding mixed volumes, see Burago, Zalgaller [143].
3.10(viii). The Radon transform

Let us make a remark on the Radon transform. Suppose we are given an
integrable function f on IR? such that its restrictions to all straight lines are
integrable. Denote by £ the set of all straight lines in IR*. Every element
L € L is determined by a pair (z,e), where x is a point in L and e is a
directing unit vector (certainly, some pairs must be identified). The Radon
transform of the function f is the function R(f) on £ defined by the equality

R()(L) = / fds,

where we integrate the restriction of f to L with respect to the natural
Lebesgue measure on L. The question arises whether one can recover the
function f from R(f). In fact, we even have two questions: is the transfor-
mation R injective and how can one effectively recover f from R(f)? This
problem was solved positively in Radon [779] (where several earlier related
works by other authors were cited). Analogous problems arise in the case
of multidimensional spaces and nonlinear manifolds, when one has to obtain
some information about a function on the basis of knowledge of its inte-
grals over a given family of surfaces. Several decades after Radon’s work this
problem acquired considerable importance in applied sciences in relation to
computer tomography. At present, intensive investigations continue in this
field, see Helgason [419] and Natterer [708].

Knowing the integrals of a function over all straight lines, we can find
the integral of f over every half-space. For example, the integral over the
half-space {z < c} is obtained by integrating over (—oo, c] the integral of f
over the vertical line passing through the point x of the real axis (in fact, it
suffices to know the integral of f over almost every line with a given direction).
This shows that R is injective because a finite measure that vanishes on all
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half-spaces is zero. However, the established uniqueness gives no effective
recovery procedure. Explicit inversion formulae can be found in [419]. The
Radon transform is closely connected with the Fourier transform. Indeed, let
(z,y) = sw, where s € IR' and w is a unit vector. Evaluating the Fourier
transform in the new coordinates with the first basis vector w, we obtain

Flsw) = (2m)172 / exp(—ist)R(f)(w, ) dt,

where R(f)(w,t) is the integral of f over the line {u € R?: (u,w) = t}.
Hence f can be obtained as the inverse Fourier transform of the right-hand
side. However, the above-mentioned inversion formulae do not employ Fourier
transforms. On a closely related problem of an explicit recovery of a mea-
sure from its values on the half-spaces, see Kostelyanec, Resetnyak [543],
Hacaturov [390]. Zalcman [1047] constructed an example of a non-integrable
real analytic function f on IR? which has a zero integral over every straight
line. According to Boman [110], there exist a function f € C§°(IR?) that
is not identically zero and a positive smooth function (x, L) — pr,(x), where
z € R? and L € L (the set of pairs (x, L) has a natural structure of a smooth
manifold), such that the integral of fo;, over L vanishes for all L € L.

Exercises

3.10.29? Let p be a signed Borel measure on IR™ that is bounded on bounded
sets. Prove that if every continuous function with bounded support has the zero
integral with respect to the measure u, then p = 0.

HINT: p(U) = 0 for every bounded open set U, since the function Iy is the
pointwise limit of a uniformly bounded sequence of continuous functions f; vanishing
outside U (consider the compact sets K; = {z € U, : dist (z,0U) > j~'} and take
continuous functions f; such that f; =1 on K, f; = 0 outside U and 0 < f; < 1).

3.10.30. Let A be the algebra of all finite subsets of IR and their complements.
If A is finite, then we set

1(A) := Card(A N (—o0,0]) — Card(AN (0, +00)),

where Card(M) is the cardinality of M, and if the complement of A is finite, then
we set u(A) := —p(IR'\ A). Show that p is a countably additive signed measure on
the algebra A, but u has no countably additive extensions to the o-algebra o(A)
(even if we admit measures with values in [—o0, +00) or (—o0, +00]).

HINT: see Dudley [251] or Wise, Hall [1022, Example 4.17]. The countable
additivity is verified directly. The absence of countably additive extensions to o(A)
follows from the fact that the range of p on A is not bounded from below (nor from
above).

3.10.31. (i) Let u be a finite nonnegative measure on a o-algebra A in a space
X and let v be a countably additive measure on .4 with values in [0, +-00] such that
v &< p. Show that there exists a set S € A such that the measure v|s assumes only
the values 0 and +oo and the measure v|x\s is o-finite.

(ii) Deduce from (i) that, given o-finite measures ;> 0 and v > 0 with v < p
on a o-algebra A, for every sub-o-algebra B C A, there is a B-measurable function
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& such that v|p = £ - u|p for every B € B with p(B) + v(B) < co. Show that this
is not true for all B € B in the case where p is Lebesgue measure on R!, v = ¢ -
is a probability measure, and B is generated by all singletons.

HINT: consider the class S of all sets in A that have no subsets of finite nonzero
v-measure; observe that any set of infinite v-measure in S has positive p-measure
and show that there exists a set S € A such that X\S contains no sets in S of
infinite v-measure; verify that the measure v|x\g is o-finite by using that ; does
not vanish on sets of positive v-measure. See also Vestrup [976, §9.2].

3.10.32° Suppose we are given three bounded measures 1, p2, and ps on a
o-algebra A such that g1 < po and pe < ps. Show that one has p; < ps and
dpa /dps = (dpa /dpz)(dpz /dus).

3.10.33? Let u and v be two probability measures on a g-algebra A such that
for some a € (0, 1), one has ||ap — (1 — a)v|| = 1. Prove that p L v.

HINT: let p = f-0, v = g0, where 0 = (u + v)/2. Then the integral of
|af — (1 — a)g| against the measure o equals 1, which is possible only if fg = 0
o-a.e., since the integral of af + (1 — «)g equals 1.

3.10.34° Let p and v be two probability measures such that v < p. Show that
if a sequence of pu-measurable functions f, converges in measure p to a function f,
then it converges to f in measure v as well.

3.10.35° Let p and v be two probability measures and let f,, n € IN, and f
be pu®v-measurable functions such that for p-a.e. fixed z the functions fn(-,x)
converge to f(-,z) in measure v. Show that the functions f, converge to f in
measure u@u.

HINT: use Fubini’s theorem to show that the integrals of |fn, — f|/(|f — fnl +1)
with respect to u®v tend to zero.

3.10.36. Suppose that a sequence of measures p,, on a measurable space (X, .A)
converges in variation to a measure p and a sequence of measures v, converges in
variation to a measure v. Let v, = vi° + v;, v = v* 4+ v°, where vy¢ < pn,
Vp L pin, v < p, v° L p. Prove that A-measurable versions of the Radon—
Nikodym densities dv,°/du, converge to dv®°/dy in measure |u|. In particular, if
tn < pand vp < fn, then duvy, /dp, — dv/dp in measure |u.

HINT: Tt o = || + V] + 552, 27" (ltnl + [va)(llinl] + v ])~%; ome has
Pn = fn-0o, u=f-0,vp =gn-0, v=g-0, where f,,gn, f,g are A-measurable
functions from £'(o). Clearly, f,, — f and g, — g in L'(c), hence in measure o.
This yields convergence of the functions Iy, 2019n/fn to I{y2019/f in measure o,
hence in measure |pt|. These functions serve as the aforementioned Radon-Nikodym
densities.

3.10.37. (Nikodym [717]) Let u be a bounded nonnegative measure on a o-
algebra A in a space X, let G be a nonmeasurable set. Let 0 (AUG) be the o-algebra
generated by A and G, and let G and G be a measurable kernel and a measurable
envelope of G. Denote by 71 and =2 the Radon—Nikodym densities of the measures
A p(ANG) and A — p(A N G) with respect to p. Let v be a p-measurable
function such that v1 <y < 2. Show that the formula

u(B) = [ @ utda) + [ (1 =) n(da),

B
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where E = (ANG)U (BN (X\G)), A, B € A, defines a countably additive extension
of 11 to (AU G) and that every countably additive extension of i to o(AU G) has
such a form.

3.10.38° Let (X,.A) and (Y, B) be two measurable spaces. Show that every set
in A®B is contained in the o-algebra generated by sets A, x B,, for some at most
countable collections {A,} C A and {B,} C B.

HINT: see Problem 1.12.54.

3.10.39° Let (X,.A) and (Y, B) be two measurable spaces and let a mapping
f: A=Y be (A, B)-measurable. Show that the mapping ¢: = — (z, f(z)) from X
to X xY is (A, A®B)-measurable. Deduce from this that, given a measurable space
(Z,€) and a mapping g: X XY — Z measurable with respect to the pair (A®B, ),
the mapping « — g(z, f(z)) from X to Z is (A, £)-measurable.

HINT: the first claim is seen from the fact that ¢ '(AxB) = AN f}(B) e A
for all A € A, B € B, and A®B is generated by the products Ax B. The second
claim readily follows from this.

3.10.40. Let T = {(z,y) € [0,1]*: x —y € Q}. Show that T has measure zero,
but meets every set of the form Ax B, where A and B are sets of positive measure
in [0,1]. See also Exercise 3.10.63.

HINT: use that A — B contains an interval.

3.10.41° Suppose that a function f on [0, 1]? is Lebesgue measurable and that,
for a.e. x and a.e. y, the functions z — f(z,2) and z — f(z,y) are constant. Show
that f = c a.e. for some constant c.

HINT: otherwise there is a number r such that the measures of the sets {f < r}
and {f > r} are positive. By hypothesis and Fubini’s theorem, these sets contain
horizontal and vertical unit intervals and hence meet, which is a contradiction.

3.10.42. Let p and v be finite nonnegative measures on measurable spaces
(X, A) and (Y,B), A C X, B CY. Prove the equality (u®@v)*(AxB) = pu*(A)v*(B).
HINT: by considering measurable envelopes one obtains

(k@ V) (AxB) < p" (A" (B).

If u*(A)v™(B) = 0, then the claim is obvious. The general case reduces easily to
the case pu*(A) = v*(B) = 1; if (u®v)*(Ax B) < 1, then there exists £ € AQB
with AxB C E and p®v(F) < 1. By Fubini’s theorem there exists y € Y with
u(Ey) < 1, and it remains to observe that A C E,, whence p*(A) < 1, which is a
contradiction. One could also use Theorem 1.12.14 and extend the measures u and
v to the sets A and B in such a way that the extensions equal p*(A) and v*(B) on
A and B, respectively.

3.10.43. Let (X,.A) and (Y, B) be measurable spaces. Show that, for every
E € A®B, the family of sections E, = {y € Y: (z,y) € E} contains at most
continuum of distinct sets.

HiINT: by Exercise 3.10.38, the set E belongs to the o-algebra generated by sets
An X By, for some at most countable collections {A,} C A and {B,} C B; for every
x € X, we consider the sequence {I4, (z)} and verify that if I4, (1) = I, (z2) for
all n, then E,, = E,,; hence the cardinality of the family of distinct sections of E
does not exceed the cardinality of the family of all sequences of 0 and 1.
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3.10.44. Let (X, .A) be a measurable space of cardinality greater than that of
the continuum. Show that the diagonal D = {(x, ),z € X} does not belong to the
o-algebra AQA.

HINT: use Exercise 3.10.43.

3.10.457 Construct examples showing that (a) the existence and equality of the
repeated integrals in (3.4.3) do not guarantee the u®v-integrability of a measurable
function f; (b) it may occur that both repeated integrals exist for some measurable
function f, but are not equal; (c) there exists a measurable function f such that one
of the repeated integrals exists, but the other one does not.

3.10.46. (Minkowski’s inequality for integrals) Let (X, .4, u) and (Y, B,v) be
spaces with nonnegative o-finite measures and let f be an A®B-measurable function.
Prove that whenever 1 < p < ¢ < oo one has

[(/. |f<:c,yw<dx>)q/pu<dy>< ([(] If(%y)I"V(dy))p/qu(dw))m~

HiINT: it suffices to consider the case p =1, ¢ > 1; then the integral on the left
can be written by Fubini’s theorem as

/X./Y(/XU(CU,Z/)M(CZC”))(J1|f(Z,y)|u(dy)u(dz),

which by Holder’s inequality with the exponents ¢/(¢ — 1) and ¢ (applied to the
inner integral against v) is majorized by

/. [ /| ( /. f<m,y>|u<dx>)qu<dy)}(q_l)/q[ /| |f(Z,y)|qu(dy)]l/qu(dz)
~[L(frs@inan) van] ™ [ ] o]

3.10.472 Prove the equalities

1 [ 1, 1 [~ , 1,
— ex ——t)dtzl7 —/ t”ex <——t>dt:1.
V2r /70C p( 2 V271 J oo A3

HINT: evaluate the integral

//exp(—ﬂc2 —y?) dxdy

in two ways: by Fubini’s theorem and in polar coordinates. The second equality can
be derived from the integration by parts formula, since the derivative of exp(—t?/2)
is —t exp(—t>/2).

3.10.48° Let e1,...,e, be a basis in IR™. Prove that a Lebesgue measurable
set A C IR™ has measure zero precisely when it can be written in the following form:
A=A U---UA,, where the sets A; are measurable and, for every index j and
every x € R", the set {t € R: x + te; € A;} has measure zero on the real line (in
other words, the sections of A; by the straight lines parallel to e; have zero linear
measures).

HiNT: the sufficiency of the above condition is clear from Fubini’s theorem.
In the proof of necessity we may assume that {e;} is a standard basis and use
induction on n. By Fubini’s theorem, the set B of all points y € IR"~* such that the
set {t € R: y + te, € A} is not measurable or has nonzero measure, has measure
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zero in R~ ". For A, we take AN ((IR""'\B)xIRen), and represent B in the form
B1 U---U B,_1, where all sections of B; by the straight lines parallel to e; have
zero linear measures. Finally, let A; := AN (BjxRey) for j <n —1.

3.10.49. (Sierpinski [872]) (i) Show that in the plane (or in the unit square)
there exists a Lebesgue nonmeasurable set that meets every straight line parallel to
one of the coordinate axes in at most one point.

(ii) Show that in the plane there is a nonmeasurable set whose intersection with
every straight line has at most two points.

HINT: (i) use that the family of compacts of positive measure in the square
has cardinality ¢ of the continuum and write it in the form {K.,a < w(c)}, where
o are ordinal numbers and w(c) is the smallest ordinal number of cardinality of
the continuum; construct the required set A by transfinite induction by choosing
in every Ko a point (Za,ya) as follows: if points (zg,yg) € Kg are already chosen
for B < a < w(c) such that no two of them belong to a straight line parallel to
one of the coordinate axes, then Ko\ Uz.,{(73,ys)} contains a point (za, ya) such
that the straight lines £, xR and IR' Xy, contain no points from Us<al(®s,y5)}
(otherwise K, would have measure zero by Fubini’s theorem, since the cardinality
of the set {8 < a} is than ¢); finally, let A = {(za,ya),® < w(c)}. Example (ii) is
similar, see the cited paper.

3.10.50. Show that there exists a bounded nonnegative function f on the
square [0, 1]x[0, 1] such that it is not Lebesgue measurable, but the repeated integrals

1 1 1 1
/ / f(z,y)dzdy and / / f(z,y) dydz
0o JO Jo Jo
exist and vanish.

HINT: use the previous exercise.

3.10.51. (Sierpinski [873]) (i) Assuming the continuum hypothesis construct
a set S C [0,1]? such that all its vertical sections are at most countable and all its
horizontal sections have at most countable complements. Observe that the repeated
integrals of Is exist and are different.

(ii) Without use of the continuum hypothesis construct a measurable space X
with a probability measure p and a set S € X? such that the repeated integrals

/x/XIS(””’y)N(da?)M(dy) and /X/st(w,y)u(dy)u(dw)

exist and are not equal.
(iii) Under the continuum hypothesis construct a set E C [0,1]* such that its
indicator function Ig is measurable in every variable separately, the function

1
T / Ig(z,y)dy
0

is measurable, but the function

1
Y / Ip(z,y)dx
0

is not.

HINT: (i) by means of the continuum hypothesis one can find a linear ordering
of [0, 1] such that every point is preceded by at most countably many elements. Let
S be the class of all pairs (z,y) € [0,1]? such that = precedes y. (ii) Take for X
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the set of all ordinal numbers smaller than the first uncountable ordinal number,
consider the o-algebra A of all sets that are either at most countable or have at
most countable complements, and define the measure p on A as follows: u(A) =0
if A is at most countable and p(A) = 1 otherwise. Let S be the set of all pairs
(z,y) such that x < y. (iii) Take a nonmeasurable set D C [0,1] and consider
E :=5Sn([0,1] x D). The first function above is zero and the second one is Ip.

3.10.52? Prove that the graph of a measurable real function on a measure space
(X, A, ) with a finite measure p has measure zero with respect to p®X\, where X is
Lebesgue measure.

HINT: the claim reduces to the case of bounded f; then, for every n, the graph
of f is covered by a finite collection of sets of the form

f_l([m- —n 4 n_l) X [r; — n e+ n_l)),

and the measure of their union is at most 2||u|[n~'. An alternative reasoning: use

that the graph is measurable and apply Fubini’s theorem.

3.10.53° Let (X, Ax) and (Y, Ay) be measurable spaces and let f: X — Y
be a mapping. Construct examples showing that:

(i) even if f is (Ax,.Ay)-measurable, its graph may not belong to Ax @ Ay;

(ii) the graph f may belong to Ax ® Ay without f being measurable.

Prove that if the set {(y,y),y € Y} belongs to Ay ® Ay, then the graph of any
(Ax, Ay )-measurable mapping belongs to Ax ® Ay .

HINT: (i) consider the identity mapping from [0, 1] with the o-algebra generated
by singletons to the same space; (ii) consider the identity mapping from [0, 1] with
the standard Borel o-algebra to [0, 1] with the o-algebra of all Lebesgue measurable
sets. The last claim follows by the measurability of the mapping (z,y) — (f(z),v)
with respect to the pair (Ax®Ay, AyRAy ). See also Corollary 6.10.10 in Chapter 6.

3.10.54. Show that under the continuum hypothesis the plane can be covered
by countably many graphs of functions y = y(z) and x = z(y). In particular, there
exists a nonmeasurable graph among them.

HINT: consider the set S from Exercise 3.10.51(i); for every y, there exists an
at most countable set of points gn(y) with (gn(y),y) € S, for every z, there exists
an at most countable set of points fn(x) with (z, fn(z)) € S. If (z,y) € S, then
(z,y) belongs to the graph of © = gn(y) for some n, and if (z,y) € S, then (z,y)
belongs to the graph of y = f,(z) for some n.

3.10.55. (Fichtenholz [291]) There exists a measurable function f on [0,1]?
such that f is not integrable, but for all measurable sets A, B C [0, 1], the repeated

integrals
[ [ rewdzay ad [ [ty dyis
AJB BJA

exist, are finite and equal.

3.10.56. Let f be a Riemann integrable function on [0, 1]°.
(i) Prove that for almost every = € [0, 1], the function y — f(z,y) is Riemann
integrable and the function ¢: x +— ¢(z), where p(z) equals the Riemann integral

/Olf(ﬂmy)dy

if it exists and the lower Riemann integral otherwise, is Riemann integrable.
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(ii) Prove that if at all points « where the Riemann integral in y does not exist,
we redefine ¢ to be zero, then the obtained function may not be Riemann integrable
(although it remains Lebesgue integrable and its Lebesgue integral is unchanged).

HINT: see Zorich [1053, Ch. XI, §4].

3.10.57. (Fichtenholz [285], Lichtenstein [611]) Let f be a bounded function
on the square [0, 1] x [0, 1] such that, for every fixed y, the function z — f(z,y) is
Riemann integrable, and, for every fixed z, the function y — f(z,y) is Lebesgue
integrable.

(i) Prove that the function

Fie) = /0 f(z,y) dy

is Riemann integrable, the function

Fa(y) = /Olf(ﬂ:,y) dx

is Lebesgue integrable, and their respective integrals are equal.

(ii) Prove that if the function y — f(z,y) also is Riemann integrable for every z,
then the repeated Riemann integrals of f exist and are equal. Note, however, that
in this situation f may not be Lebesgue integrable over the square.

HINT: the function F>(y) is the pointwise limit of the functions

n
-1
k=1
hence is measurable; let J be its Lebesgue integral; for any partition of [0, 1] into
finitely many intervals [a;, a;t+1), 1 <4 < n, and any choice of points z; € [a;, ait1),

the functions Ty, (y) = > f(xi,y)(ai+1—as) converge to Fz(y) as max(ai+1—a;) — 0,
1=1

hence by the dominated convergence theorem one has

lim Z Fi(z:)(ait1 — a;) = lim Tn(y)dy = J;

i=1

thus, F1 is Riemann integrable and J is its integral; the last claim follows from

the already-proven facts. The indicator of the set from Exercise 3.10.49 gives an
example of a nonmeasurable function with the required properties.

3.10.58. Let X =Y = [0, 1], let A" be Lebesgue outer measure, and let v*(A)
be the cardinality of a set A. Show that the diagonal D of the square [0,1]? is
measurable with respect to A* xv™ in the sense of Theorem 3.10.1, but the repeated
integrals of Ip against dv*d\* and d\*dv™ equal, respectively, 1 and 0.

HiNT: for the verification of measurability use that by Theorem 3.10.1 all open
rectangles are measurable.

3.10.59. (i) (Davies [206]) Let E C IR? be a Lebesgue measurable set of finite
measure. Then, there exists a family L of straight lines in IR? such that the union
of all these lines is measurable and has the same measure as F and every point
FE belongs to at least one line from L. A multidimensional analog is obtained in
Falconer [276].

(ii) (CsOrnyei [195]) Prove that the assertion analogous to (i) is true for every
o-finite Borel measure on the plane.
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3.10.60. (Falconer [276]) Let A be a set of Lebesgue measure zero in IR™ and
let 1 < k < n. Denote by G, i the space of all k-dimensional linear subspaces in
IR™ equipped with its natural measure (see Federer [282]; for the purposes of this
exercise it suffices to embed G, . into IR*™ and consider the corresponding measure).
Prove that, for almost all II € Gy, x, all sections of A by the planes parallel to II
have k-dimensional measure zero.

3.10.61. (Talagrand [931, p. 115]) Let (X, .4, u) and (Y, B,v) be probability
spaces and let £ € AQB, u®v(E) = e > 0. Show that there exists a set A € A with
the following property: pu(A) > 0 and for every k € IN there exists €, > 0 such that
y(ﬂle E.,) > e for all z1,...,ax € A, where E, := {y: (z,y) € E}.

3.10.62. (Erdé8s, Oxtoby [271]) Let (X1,.41, 1) and (X2, A2, u2) be probabil-
ity spaces with atomless measures. Show that there exists a set A € A1RA3 such that
/L1®/1,2(A) > 0andif 4; € A; and M1 (Al)/,LQ(A2) > 0, then /J,1®u2((141 XAz)\A) > 0.

3.10.63. (i) (Brodskii [130], Eggleston [264]) Let a set E C [0, 1] x [0, 1] have
Lebesgue measure 1. Prove that there exist a nonempty perfect set P C [0,1] and
a compact set K C [0, 1] of positive measure such that Px K C E.

(if) (Davies [208]) Suppose that every union of less than ¢ Lebesgue measure
zero sets has measure zero (which holds, e.g., under the continuum hypothesis or
Martin’s axiom). Prove that every measurable set E C [0, 1]? of Lebesgue measure 1
contains a product-set X XY such that X and Y in [0, 1] have outer measure 1.

3.10.64. Let (X, A, pn) and (Y, B,v) be measure spaces, where p and v take
values in [0, +00]. Denote by Apmaz the measure corresponding to the Carathéodory
outer measure generated by the set function 7(Ax B) = u(A)v(B) on the class of
all sets Ax B, where A € A, B € B. Let A be the domain of definition of Aez
according to the Carathéodory construction. Let A.,i, denote the set function on A
with values in [0, +o0] defined by the formula

Amin(L) = sup{ Amaz (LN (AXB)): A€ A, p(A) < oo, B € B, v(B) < oo}.

(i) Show that A®B € A and Apae(AXB) = u(A)v(B) for all A € A, B € B.

(ii) Show that Apin(AXB) = p(A)v(B) if A€ A, B € B and pu(A)v(B) < oo.

(iii) Show that Amin(E) = Amac(E) if Amaz(E) < o0.

(iv) Let X be a measure on A®B with values in [0, +00] such that A(Ax B) =
w(A)v(B) for all A € A, B € B. Show that Apin(E) < AME) < Amae(E) for all
Ec A®B.

(v) Show that the measures Amin and Amaqs possess equal collections of inte-
grable functions and the corresponding integrals coincide.

HINT: see, e.g., Fremlin [327, §251].

3.10.65. Let p, v, Amin, and Apqr be the same as in Exercise 3.10.64. Show
that the following conditions are equivalent: (i) Amin = Amaz, (i) Amae 18 semifinite,
(iii) Amae is locally determined.

3.10.66. Let u, v, Apmin, and A\pqz be the same as in Exercise 3.10.64.

(i) Let p and v be decomposable measures. Prove that the measure Apin is
decomposable.

(ii) Show that there exist a Maharam measure p and a probability measure v
such that the measure A\,.:n is not Maharam.

HINT: see Fremlin [327, 251N, 254U].
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3.10.67. (Luther [639]) Let X =Y = [0,1], let A = B([0,1]), and let the
measure p = v with values in [0, +00] be defined as follows: we fix a non-Borel set F;
then every point z is assigned the measure 2 or 1 depending on whether x belongs
to E or not, finally, the measure extends naturally to all Borel sets (in particular,
all infinite sets obtain infinite measures). Let 7 be the Carathéodory extension of
the measure p®v. Prove that the measure 7 is semifinite, u = v is semifinite and
complete, but for the diagonal D in [0, 1] x [0, 1] the function v(D;) = Ig(x) + 1 is
not measurable with respect to p.

3.10.68° Construct a signed bounded measure p on IN, a mapping f: IN — IN
and a function g on IN such that g o f~ = 0, but the function go f is not integrable
with respect to u (although g is integrable against the measure po f~1).

HINT: let p(2n) =n"2, u(2n —1) = —n"2, f(2n) = f2n — 1) =n, g(n) = n.

3.10.69. Let f € £'(IR'). Prove that the function f(z —z~!) is integrable and

one has
+o0 +oo
/ f(a:—xil)da::/ f(x)dx.
HINT: change the variable y = —z~' on the left and observe that the integral

on the left equals half of the integral of the function f(z — z~')(1 + 2~2), then use
the change of variable z =  — 2!, which gives the integral on the right.

3.10.70. Prove that there exists a continuous function f on [0, 1] that is con-
stant on no interval, but f(x) is a rational number for a.e. x.

HINT: let p be a probability measure on [0,1] concentrated on the set of
all rational numbers. It is easily verified that there exists a continuous function
f:[0,1] — [0,1] such that g = Ao f~* (in §9.7 a considerably more general fact is
established). Hence the set F of all continuous functions f: [0,1] — [0, 1] such that
pw = Ao f~! is nonempty. This set is closed in the space C[0, 1] of all continuous
functions, which is complete with the metric d(¢, ) = sup|¢(t) — ¢(t)|. Hence F
itself is a complete metric space with the above metric. If F' contains no function
that is nonconstant on every interval, then F' is the union of a countable family of
sets F), each of which consists of functions assuming some rational value r on some
interval (p, ¢) with rational endpoints. By Baire’s theorem (Exercise 1.12.83), there
exists Fj, containing a ball U with some center fo and some radius d > 0. This leads
to a contradiction, since one can find in U a function ¥ € F nonconstant on (p, q).
To this end, it suffices to find a continuous function : [0,1] — [0,1] such that
P(t) = fo(t) for t & [p— 9, p+ 0] for sufficiently small § > 0, () — fo(t)| < d for all
other ¢, ¥(p) < r, and such that ) transforms Lebesgue measure A on [p — §,p + d]
to the measure A|j,_s 45 © fo '

3.10.71° Let E be a set of finite measure on the real line and let a,, — +o0.
Prove that
lim [ (sina,t)®dt = A\(E)/2.

n—oo | m

HINT: 2(sin Oént)Z =1 — cos 2ant, the integral of cos(2ant)Ig tends to zero.

3.10.72° Let a sequence of real numbers o, be such that f(z) := lim sin(anx)

exists on a set E of positive measure. Prove that {a,} has a finite limit.
HINT: consider the case where the measure F is finite and {ax,} has two finite
limit points a and 3 and observe that the functions sin ax and sin Bx cannot coincide
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on an uncountable set; show that {a,} cannot tend to 400 or —oo because then f =
0 a.e. on E, since the integral of g(x) sin(anx) approaches zero for every integrable
function g; now the limit of the integrals of (sin apz)? over E must vanish, but this
limit is A(E)/2.

3.10.73° Prove that there exists a Lebesgue measurable one-to-one mapping f
of the real line onto itself such that the inverse mapping is not Lebesgue measurable.

HINT: the complement to the Cantor set C' can be transformed onto [0, c0) by
an injective Borel mapping, and C' can be mapped injectively onto (—oo, 0) such that
some compact part of C' is taken onto a nonmeasurable set. Since C' has measure
zero, one obtains a measurable mapping.

3.10.74. Prove that there exists a Borel one-to-one function f: [0,1] — [0,1]
such that f(z) = « for all x, with the exception of points of a countable set, but the
inverse function is discontinuous at all points of (0, 1].

HINT: see Sun [922, Example 27].

3.10.75. (Aleksandrov [14], Ivanov [451]) Let K be a compact set in IR™ such
that the intersection of K with every straight line is a finite union of intervals (possi-
bly degenerate). Prove the Jordan measurability of K, i.e., the equality A\, (0K) = 0,
where A, is Lebesgue measure.

3.10.76° Let f € L£*(IR"™), where we consider the space of complex-valued
functions. Let f;(z) = f(z) if |z;] < j,i=1,...,n, fj(z) = 0 at all other points.

(i) (Plancherel’s theorem) Show that the sequence of functions f; converges
in L?(IR™) to some function, called the Fourier transform of f in L?(IR™) and denoted
by f. R

(ii) Show that the mapping f — f is a bijection of L?(IR™) and

f(@)g(z)de = f(2)g(@)dz for all f,g € L*(R").
R7 R

(iii) Show that the Fourier transform defined in (i) is uniquely determined by
the property that on L*(IR") N L'(IR™) it coincides with the previously defined
Fourier transform and satisfies the equality in (ii).

(iv) Show that there exists a sequence j; — oo such that fjk (z) — A(m) a.e.

HINT: use the Parseval equality and completeness of L2. It is to be noted that
in (iv) one actually has a.e. convergence for the whole sequence (see, e.g., Fremlin
[327, §286U]).

3.10.77° The Laplace transform of a complex-valued function f € L?[0,4-00)
is defined by

Lf(s) = /OOO et ft)dt, s> 0.

Show that Lf € L?[0,4o00) and that ||Lf|l2 < /7| f|l2-

HINT: suppose first that f vanishes in a neighborhood of the origin. By the
Cauchy—Bunyakowsky inequality
ILF(s))? < / e ()2 ? dt/ e T2t = \/Es*”/ e ()22 dt.

0 0 0

Integrating this inequality in s over [0, +00), interchanging the order of integration
and using that the integral of e™*'¢!/2571/2 in s is equal to 7, we find that || Lf||3 <
7| f||3. The general case follows by approximation.
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3.10.78° Give an example of a function f € L*(IR') such that its Fourier
transform is neither in L'(IR') nor in L?(IR'), and an example of a function g in
L?(IR') such that its Fourier transform does not belong to L'(IR').

3.10.79. Find a uniformly continuous function f on IR! that satisfies the con-

dition | llim f(x) = 0, but is not the Fourier transform of a function from L'(IR').
Z[—0o0

HINT: consider the odd function equal to 1/Inz for > 2; see Stein, Weiss
[908]. The very existence of functions with the required properties can be estab-
lished without constructing concrete examples, e.g., by using the Banach inverse
mapping theorem that states that the inverse operator for a continuous linear bi-
jection T: X — Y of Banach spaces is continuous: we take X = L'(IR') and the
space Y of continuous complex functions tending to zero at infinity equipped with
the sup-norm, next we find smooth even functions f; such that 0 < f; < Ij_1 1,
fi(xz) — f(x) = I;_1,1)(x). The sequence of functions ¢; = fj is not bounded in L*
because f¢ L'. However, the sequence of functions @; = f; is bounded in Y.

3.10.80° For f in the complex space £L2(IR') we set

+oo
Hof(z) =1 / Y fle—y)dy.

T ) oo Y te?

Show that there exists the limit Hof := lin(l) H.f in L? (IRl) as € — 0; then H.f is
called the Hilbert transform of f. In addition, one has Ho = F ' MUF, where F is
the Fourier transform in L?(R') and Mg(z) = i(27)~"/*(signz)g(x).

HINT: let gc(y) = 7 'y/(y* +€2), then FH. f = . f; use that F is an isometry
of L*(IR') and . (z) = i(2r) ~*/?(signz) exp(—|ez|).

3.10.81. Suppose that f € L'(IR'), ¢ € L®(IR') and that, for some 3 > 0
and all z, we have p(z + 8) = —¢(x) (e.g., p(z) =sinz, f = 7). Show that

+oo
lim f(@)p(nz)dz = 0.

n—oo
— 00

HINT: observe that it suffices to prove the claim for functions f that are finite
linear combinations of the indicators of intervals, which reduces everything to the
case where f is the indicator of the interval [0, a]. We have

/Oa p(nz)de = L /Om e(y) dy.

n D

The right-hand side is O(1/n) because the integral of ¢ over every interval of length
20 vanishes, which is easily seen from the equality of the integrals of ¢(z) and
—p(z+ pB) over [T,T + (]

3.10.82. Let us define the standard surface measure o,—1 on the unit sphere
S™"~1 in IR™ by the equality

On-1(B) :==nn(z: 0< |z| < 1,2/|lz| € B), BeBIS" ).
Show that o,_1 is a unique Borel measure on S™ ! that satisfies the equality

"l dr®omn_1 = Ay 0 <I>71,
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where ®: IR™\{0} — (0,00) x S™ !, ®(z) = (|z|,z/|z]). In particular, if f is
integrable over IR™, then one has

dr= [ nt n1(dy) dr.
[ t@de= [T e

HiINT: verify the equality of the measures r" Ydr®o,_1 and A, 0 ®~ ! on all
sets of the form (a,b]x E, where E € B(S"™1).

3.10.83° (i) Show that ¢, (S" 1) = 22™/2/T(n/2).
(ii) Let cx be the volume of a ball of radius 1 in IR*. Show that

en =72 )T(14n/2), cor=a"/k!, capsr = 22T kIxF /(2K + 1)1

HINT: the answers in (i) and (ii) are easily deduced one from the other. In
order to get (ii), apply Fubini’s theorem, which gives the relation ¢, = cn—1bn,
where b, is the integral of (1 — 22)("~Y/2 over [~1,1] or the doubled integral of
sin™ 6 over [0, 7/2].

3.10.84. (Schechtman, Schlumprecht, Zinn [850]) Let o be a probability mea-
sure on the unit sphere S in IR" that is proportional to the standard surface measure
and let v be a probability measure on (0, +00). Let us consider the measure u = vRo
on IR™ (more precisely, p is the image of v®o under the mapping (¢,y) — ty). Let
U,, be the group of all orthogonal matrices n x n with its natural Borel o-algebra
and a Borel probability measure m with the following property: for each Borel set
B C Uy, and each U € U, letting Ly and Ry be the left and right multiplications
in Un by U, we have m(Lu(B)) = m(Ru(B)) = m(B) (the existence of such a
measure — Haar’s measure — is proved in Chapter 9). Prove that, for all centrally
symmetric convex Borel sets A and B in IR", one has the inequality

| wanu®) m@v) = waus).

In particular, if B is spherically symmetric, then pu(A N B) > p(A)u(B). These
inequalities are true for any probability measure pu with a spherically symmetric
density.

HiNT: verify that, for every ¢ € S, the image of the measure m under the
mapping U — U1 coincides with o according to Exercise 9.12.56 in Chapter 9;
show that

j(A) = / V(Ag)oldg), u(B)= / v(By) o),

| wtanv@)mav) = [ [ via, 080 ot o).

Uy S JS

where A, = {r > 0: rp € A}; finally, one has v(A, N By) > v(A,)v(By), since
A, N By is either A, or By,.

3.10.85. (Sard’s theorem) Let U C IR" be open and let F': U — IR" be
continuously differentiable. Prove that the image of the set of all points where the
derivative of F' is not invertible has measure zero.

HINT: a more general result can be derived from Theorem 5.8.29.

3.10.86. Let f be a continuously differentiable function on IR™ that vanishes
outside a cube ) and let

/ f(z)dxz = 0.
Q
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Show that there exist continuously differentiable functions fi,..., fr on IR"™ such
that f; = 0 outside Q and f =", O, fi.

HINT: it suffices to prove the claim for the cube [0,1]". Use induction on n. If
the claim is true for n, then, given a function f of the argument = = (y,t), y € R",
t € R, we set

g(y) = /_oo f(y,t)dt.

The integral of g vanishes, hence g = Y | 0,,9:, where the functions g; on IR"™ are
continuously differentiable and vanish outside [0, 1]". Let
t

fn+l(y7 t) = / [f(y7 S) - C(s)g(y)] dS, fl(y7 t) = gl(y)g(t)7 1< n,
where ¢ is a smooth function with support in [0, 1] and the integral 1. It is verified
directly that we obtain the required functions.

3.10.87. Let U be a closed ball in IR™ and let F': U — IR"™ be a mapping that
is infinitely differentiable in a neighborhood of U. Suppose that y ¢ F(0U), where
OU is the boundary of U. Let W be a cube containing y in its interior and not
meeting F(OU), and let g be a nonnegative smooth function vanishing outside W
and having the integral 1. Show that the quantity defined by the following formula
and called the degree of the mapping F' on U at the point y is independent of our
choice of a function ¢ with the stated properties:

d(F,U;y) ::/UQ(F(x))JF(w)dw, JF = det F'.

HiINT: use Exercise 3.10.86; if a smooth function g has support in W and its inte-
gral vanishes, then the integral of 8zlg(F(m)) JF(x) over U vanishes by the integra-
tion by parts formula. For example, in the case n = 2 we have Bmlg(F(x))JF(:c) =
0z, (g 0 F)(2)0py Fo(z) — Ouy(g © F)(2)0s, F2(x), where F' = (F1, F2); in the general
case, see Dunford, Schwartz [256, Lemma in §12, Ch. V].

3.10.88. Show that if the point y in the previous exercise is such that Ffl(y) =
{z1,..., 2k}, where JF(z;) # 0, then d(F,U;y) = Ele sign JF(x;).

HINT: use the inverse function theorem and the change of variables formula for
a sufficiently small neighborhood W.

3.10.89. (i) Show that in Exercise 3.10.87 the number d(F,U;y) is an integer
for ally ¢ F(OU) and that this number is locally constant as a function of y. Deduce
that the degree of the mapping at y is unchanged if one replaces F' with F; with
|F(z) — Fi(z)|| + |[JF(z) — JF1(z)| < €, where € > 0 is sufficiently small. (ii) Let
F: U — U be continuous. Prove that there exists x € U with F(z) = z.

HINT: (i) use Sard’s theorem, the inverse function theorem, and the previous
exercise. (ii) If F' is infinitely differentiable, but has no fixed points, then for G(z) =
x — F(z) we have d(G,U;0) = 0 contrary to (i), since for G¢(z) = = — tF(x),
0 <t <1, wehave 0 ¢ G¢(dU), d(Go,U;0) = 1. For continuous F', we find smooth
Fy: U — U uniformly convergent to F. There exists xx with Fj(zx) = zx. A limit
point of {z}} is a fixed point of F'.

3.10.90. (Faber, Mycielski [274]) (i) Let P C IR™ be a compact set that is a
finite union of compact n-dimensional simplexes and let f: P — IR be a smooth
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function in a neighborhood of P such that f vanishes outside P. Show that

2
[ (s, ) et =0

Construct an example showing that an analogous assertion for a ball P may fail.

(ii) Let B C IR™ be a compact set and let F: B — IR"™ be a smooth map-
ping in a neighborhood of B such that F/(9B) has measure zero and the connected
complement. Show that

/ det(F'(z)) dow = 0.

B

3.10.91. Prove Proposition 3.10.16.

3.10.92. Prove that if a function 1) is positive definite, then

[ (y) = (2)]* < 20(0)[(0) — Re(y — 2)].

3.10.93. Prove that if a function 1 on IR" is positive definite and continuous
at the origin, then it is continuous everywhere.
HINT: apply the previous exercise.

3.10.94. Prove that a complex function ¢ equals the characteristic functional of
a nonnegative absolutely continuous measure precisely when there exists a complex
function ¢ € £?(IR™) such that

w(x) = Yz +y)(y) dy.

]1’{71
HinT: if f € L'(IR") and f > 0, then h := /f € L*(IR"), whence we have

f= (277)7"/212 « h, and f;(—x) = h(zx); the converse is proven similarly, taking into
account that |g|*> € L' (IR™) and [g]® > 0.

3.10.95. Let p be a probability measure on the real line with the characteristic
functional /i and let F(t) := p((—00,1)).
(i) Prove that, for every ¢, the limit

1T .
Tlgnooﬁ/_T exp(—its)pu(s) ds

exists and equals the jump of the function F), at the point .
(ii) Let {t;} be all points of discontinuity of F, and let d; be the size of the
jump at ¢;. Prove the equality

1T —

. — N2 2

Am 57 /_T‘“(s)| ds =2 dj.
Jj=1

Deduce that a necessary and sufficient condition for the continuity of F}, is that the

limit on the left be zero.

HINT: see Lukacs [628, §§3.2, 3.3].

3.10.96° Let f be a Lebesgue integrable function on IR™ such that, for every
orthogonal linear operator U on IR"™, the functions f and f o U coincide almost
everywhere. Prove that there exists a function g on [0, 00) such that f(z) = g(|z|)
for almost all x.

HINT: let o-(y) = €~ "4(]y|/e), where ¢ is a smooth function on the real line
with bounded support such that ¥ (|y|) has the integral 1; verify that the smooth
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functions f * p.(x) are spherically invariant and hence f % p-(x) = g-(|z|) for some
functions g. on [0, 4+00). Now one can use the fact (see Theorem 4.2.4 in Chapter 4)
that the functions f * g, converge to f almost everywhere for a suitable sequence
er — 0, which gives convergence of the functions g., almost everywhere on [0, +00)
to some function g. See also Exercise 9.12.42 in Chapter 9.

3.10.97. Prove that a bounded Borel measure on IR" is spherically invariant
precisely when its characteristic functional is a function of |z|.

3.10.98. Let A and B be two sets of positive measure in IR™ and let C be a
set in IR?" that coincides with the set A x B up to a measure zero set. Show that
the set D :={z+y: z,y € R", (z,y) € C} coincides up to a measure zero set with
a set that contains an open ball.

HINT: deduce from the equality Ic(z,y) = Ia(x)Ig(y) a.e. that for a.e. z we
have the equality

IaxIp(x) = /IC(LE —¥,y) dy;
if such a point = belongs to the nonempty open set U = {I4 * Ig > 0}, then = € D.
3.10.99. Prove Proposition 3.9.9.

3.10.100. Let f € £'(IR'). Prove the equalities
+oo
[ i@

1 oo 400 N
/0‘ _}_: f(x—l—n))dzzl\}iinoo/_oo N+ Y S+ de

n=—N

+oo T
— 3 -1
= lim ‘(QT) /_Tf(ert)dt

T —+oco s

dx,

HINT: if f has support in the interval [—k, k], then the first equality is verified
directly. Indeed, let T' > k. The integration in x on the right in the first equality
is taken in fact over [T — k,T + k], and for all z € [-T + k,T — k] the absolute
value of the integral of f(x + t) in ¢t over [—T, 7] equals the absolute value of the
integral of f, whereas the integral over the interval of length 2k multiplied by 7"
approaches zero as T' — +400. The general case reduces to this special one by means
of approximations of f by functions with bounded support due to the observation
that on the right in the equality to be proven one has the integral of | f * ¥r|, where
Y = (2T) ' I_7 1), and that |[¢r||;1 = 1. The second equality is verified in much
the same way.

3.10.101. Let (X, A, ) be a probability space and let v be a bounded nonnega-
tive measure on A. Prove that, for every € > 0, the family A. := {4 € A: p(A) <e}
contains a set A. such that v(A.) is maximal in the following sense: if B € A, and
w(B) < u(Ae), then v(A:) > v(B).

HINT: Rao [788, Proposition 7, p. 266].

3.10.102. Let (X, u) be a space with a nonnegative measure p and let f be a
p-measurable function. The nonincreasing rearrangement of the function f is the
function f* on [0, 400) with values in [0, +00] defined by the equality

[ (@) =inf{s > 0: p(z: [f(z)] >s) <t}, where inf@ = +o0.
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(i) Show that if f assumes finitely many values 0 < ¢1 < -+ < ¢, on measurable
sets Ao, A1,..., A, and 0 < p(4;) < o0 if 1 <4 < n, then

F = eiluB, B &) =Y biTiouis,) (1),
j=1 Jj=1
where Bj = An+17j U---u An, By =2, bj = Cpn+1—j — Cn—j, CO = 0.
(ii) Show that f*(t) = sup{s > 0: p(z: |f(x)| > s) > t}.
(iii) Show that if measurable functions f, monotonically increase to |f|, then
the functions f,; monotonically increase to f*.
(iv) Show that the functions f and f* are equimeasurable, i.e., one has

p(z: [f(z)] >s) = A(t: f7(t) > s),
where ) is Lebesgue measure.
(v) Prove the following Hardy and Littlewood inequality:

/X ol du < /0 F(H)g" (8) dt,

where f and g are measurable functions.
HINT: see Hardy, Littlewood, Polya [408, Ch. X].

3.10.103. Let us consider the measures H; and H® from §3.10(iii). Verify that
if s < ¢t and H*(A) < oo, then H*(A) = 0, and if Hj(A) = 0 for some § > 0, then
H°(A) =0.

3.10.104. (i) Show that, for every a € (0, 1), there exists a set B, C [0, 1] with
the Hausdorff measure of order « equal to 1.

(ii) Show that for the Cantor set C' and @ =In2/1n3 we have 0 < H*(C) < oo.

HINT: see Federer [282, 2.10.29], Falconer [277, §2.3].

3.10.105. Let H® be the Hausdorff measure on IR™. Prove that the H®-measure
of every Borel set B C IR" equals the supremum of the H®-measures of compact
subsets of B.

HiNT: if H°(B) < o0, then this is a common property of Borel measures on
the space IR", and if H°(B) = oo, then, for any C > 0, one can find § > 0 with
H$(B) > C; in B we find a bounded set B’ with Hj(B’) > C, next in B’ we find a
compact set K with H5(K) > C, which yields H*(K) > C.

3.10.106. Let H® be the Hausdorff measure on IR" and let K C IR" be a
compact set with H°(K) = co. Prove that there exists a compact set C C K with
0< H*°(C) < 0.

HINT: see Federer [282, Theorem 2.10.47].

3.10.107. (Erdds, Taylor [272]) Let A, be Lebesgue measurable sets in [0, 1]
with A(A,) > € > 0 for all n € IN. Show that, for every continuous monotonically
increasing function ¢ with ¢(0) = 0 and tliI&_ p(t)/t = 400, there exists a sub-
sequence ny such that the set ﬂ;o:l Ay, has infinite measure with respect to the
Hausdorff measure generated by the function .

3.10.108. (Darst [204]) Prove that there exist an infinitely differentiable func-
tion f on the real line and a set Z of Lebesgue measure zero such that the set fﬁl(Z)
is not Lebesgue measurable.
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3.10.109. (Kaufman, Rickert [497]) (i) Let p be a complex measure with
[lu]] = 1 (see the definition before Proposition 3.10.16). Prove that there exists a
measurable set E such that |u(E)| > 1/7.

(ii) Prove that in (i) one can pick a set E with |u(E)| > 1/m precisely when the
Radon—Nikodym density f of the measure p with respect to |u| satisfies the equality

/ FOF ul(dt) = 0

for all k € {—1,1,—2n,2n}, n € IN.
(iii) Let u be a measure with values in IR"™ such that ||u|| = 1. Prove that there
exists a measurable set E such that

()] > (n/2) (2v/70 (0 +1)/2)) .

3.10.110. (i) Suppose that the values of two Borel probability measures p and
v on IR™ coincide on every half-space of the form {z: (z,y) < ¢}, y € R", c € R'.
Prove that y = v. Prove the same for open half-spaces.

(ii) (Pték, Tkadlec [771]) Suppose that the values of two Borel probability
measures 4 and v on IR™ coincide on every open ball with the origin at the boundary.
Prove that p = v.

(iii) Prove the analog of (ii) for closed balls.

HINT: in the case n = 1 the assertion is trivial, since the values of p and v
coincide on all intervals (a,b]. Hence in the case n > 1 the measures p and v have
equal images under the mappings 7y : z +— (z,y), whence by the change of variables
formula we have

u(y) = / exp(it) pom, '(dt) = / exp(it) v o m, ' (dt) = U(y).
R! R!
(ii) Let f(z) = z/[z|?, |z| > 0, f(0) = 0; then po f~(f(U)) =vo f'(f(U)) for
every open ball U with the origin at the boundary, i.e., the values of the measures
pof~tand vo f~! coincide on every open half-space whose closure does not contain
the origin. Hence go f~' = vo f~', whence one has u = v. (iii) Observe that
1(0) = v(0) and use the same reasoning.

3.10.111° Let a function ® be strictly increasing and continuous on [0, 1]. Prove
that for every bounded Borel function f one has

1 o(1) )
/0 f(x) d(z) = / R CR O

with the Lebesgue—Stieltjes integral on the left and the Lebesgue integral on the
right.

3.10.112. Let p be a Borel (possibly signed) measure on [0, 1] with the following
property: if continuous functions f, are uniformly bounded and converge to zero
almost everywhere with respect to Lebesgue measure A, then

/fn dp — 0.
Prove that p < A.

HINT: let K be a compact set with A(K) = 0. Let us take a uniformly bounded
sequence of continuous functions f, convergent to Ix almost everywhere with re-
spect to the measure |u| + A. Then f, — 0 X-ae. and f, — Ik p-a.e., which
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yields

w(K)= lim [ fandp=0.
n—00

3.10.113. (i) Let (X, A, ) and (Y,B,v) be complete probability spaces, let
A C X be a set that is not measurable with respect to u, and let B C Y be a set
such that AXx B is measurable with respect to u®v. Prove that v(B) = 0.

(i) Let (Xn, An, pin), where n € IN, be complete probability spaces and let sets
A, C X, be such that [] 7, A, is measurable with respect to @, , pin. Prove
that either every A, is measurable with respect to pun or u(I]7, An) = 0 and then
i [T, pi () = 0.

HINT: (i) by Fubini’s theorem the set C' of all points y such that (AxB), is not
measurable with respect to p, has v-measure zero. In addition, B C C, since one
has (Ax B), = A for all y € B. (ii) If among the sets A,, there are nonmeasurable
ones and their product has a nonzero measure, then by (i) the product of all non-
measurable sets A,, is measurable. Hence we may assume that all the sets A, are
nonmeasurable. Their product has measure zero, since by (i) the product of all A,
with n > 1 has measure zero. Then we obtain nlin;o [T, ni(As) = 0. Indeed, by

Theorem 1.12.14, there exist probability measures v, on the o-algebras A, obtained
by adding the sets A, to A, such that v,(An) = un(An) and vy|a, = pin. Let us
consider the measure v := @7, vn on @, A;,. There exists a set E € @77, A,
such that p(F) =0 and [][72, A, C E. Then v(E) = p(E) = 0, since v coincides
with 1 on @77, An. Hence [[07, va(An) = (], An) =0.

3.10.114. Let (X, Ao, ita), where o € A and A # &, be measurable spaces
with complete probability measures and let £, C X, be such that £ = Hae A Ea
is measurable with respect to ®a e, but does not belong to ®a A.. Prove that
[Taca #a(Ea) =0, ie., there exists an at most countable family of indices a, such
that the product of numbers p},, (Aa, ) diverges to zero.

HINT: Let A1 = {a: pi(Ea) =1}, A2 = A\A1. If Az is uncountable, then, for
some q < 1, there exist infinitely many indices a with ujs(Es) < ¢, which proves
the assertion. Let As be finite or countable. Let II; = Haem E,, I, = HaEAQ E,.
We may assume that Eo 7# X, for all @. The same reasoning as in assertion (ii)
in the previous exercise shows that II; cannot have measure zero with respect to
T o= ®aeA1 ta. Hence by assertion (i) in the previous exercise the set Il is
measurable. If its measure equals zero with respect to m2 := ®a€A2 o, then, by
the previous exercise, the product of pa(Ea) with a € Ao diverges to zero. If one
has 72 (II2) > 0, then all sets Eo, o € A2, are measurable, and the set II; is m;-
measurable. As it has already been noted, 71 (I11) > 0, whence it follows that A;
is at most countable. Indeed, otherwise IT1 would not contain nonempty sets from
R e A, Aa, since such sets depend only on countably many indices and Eo # Xa.
Then, by the previous exercise, whenever a@ € A1, the set E, is po-measurable,
which leads to a contradiction by the completeness of the measures piq.

3.10.115° Let u be a Borel probability measure with a density o on IRZ.
(i) Show that the distribution of f(z,y) = = +y on (IR?, 1) has the density

o1(t) = /+0<> o(t — s, s)ds.

—o0
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(ii) Show that the distribution of g(x,y) = z/y on (IR?, 1) has the density

+oo
02(t) = / |s|o(ts, s) ds.

— 00

HINT: for every bounded Borel function ¢, by using the change of variables
r+y=t,y=sone has

| T ewewa= [ [ et oty arar= [ oo uo s a

—o0

For g2 the proof is similar.

3.10.116. Let ¢(x) = exp(il(x)), where [ is a nonmeasurable additive function
on the real line (such a function is easily constructed by using a Hamel basis). Show
that ¢ is positive definite and ¢(0) = 1.

HINT: Let ¢; € C, z; € R and a; = ¢; exp(il(xj)). Then we obtain the
equality ¢;crp(z; — zk) = a;ax, since (z; — xx) = exp(il(z;)) exp(—il(zk)).

3.10.117. (i) Let p be a probability measure on IR". Prove that
0<1-Rep(2y) <4(1—Rep(y)), yeR"

(ii) Show that if 1i(y) = 1 in some neighborhood of the origin, then p is Dirac’s
measure at the origin.

HINT: (i) observe that 1 — cos2t = 2(1 — cos®t) < 4(1 — cost); derive from (i)
that 1(y) = 1 for all y.

3.10.118. (Gneiting [364]) Let E C IR be a closed set symmetric about the
origin and let 0 € E. Show that there exist probability measures p and v on IR such
that f(t) = v(t) for all t € E and p(t) # v(t) for all t ¢ E.

3.10.119. Let p and v be two Borel probability measures on the real line.
Prove that

//(:E + y)2 u(dz)v(dy) < oo precisely when /x2 wu(dz) + / y2 v(dy) < oo.

HiNT: if the double integral is finite, then there exists y such that
[+ ntda) < o,

whence the p-integrability of 22 follows.

3.10.120. (Gromov [381]) Suppose that in IR™ we are given k < n + 1 balls
B(x;,r;) with the centers z; and radii r; and k balls B(y;,r;) with the centers y;
and radii r; such that |z; — x;| > |y; — y;| for all ¢, j. Then the following inequality
holds: A\, (ﬂle B(:ci7r¢)) < An (ﬂle By, m)), where A, is Lebesgue measure.

As far as I know, the following question raised in the 1950s by several authors
(M. Kneser, E.T. Poulsen, and H. Hadwiger; see Meyer, Reisner, Schmuckenschlager
[685]) remains open: suppose that in IR" we are given k balls B(z;,r) of radius
r centered at the points x1,...,zx and k balls B(y;,r) of radius r centered at
the points y1,...,yr such that |z; — z;| < |y; — y;| for all 4,j; is it true that

An(Uizy B(wi ) < An (Ui Blyirm))?
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3.10.121. (i) Let (X;,.As, pi), 2 = 1,...,n, be measurable spaces with nonneg-
ative o-finite measures and let f; be nonnegative ®?:1 wi-measurable functions on
[T}, Xi such that f; is independent of the ith variable. Prove the inequality

(/fl“'fndm"'dun)n_l Sﬁ/ﬁ“l [T -

i
(ii) Let E be a Borel set in IR? and let F; be its orthogonal projection to the
coordinate plane z; = 0. Prove the inequality \3(E)? < Ao(E1)A2(E2)A2(E3).
HINT: (i) use induction on n; let

gi = /finildﬂla I = /fZF1 Hdﬁ%
J#i
and let I be the integral of fi---f, with respect to p1---pun. By applying the

generalized Hélder inequality and the usual Hélder inequality with exponents p =
n—1and ¢ = (n—1)/(n—2), we have

= / frgy/ TV g Y Ay - dp,

< 111/(7171)(/ g;/(n—z),,,grll/mf?) dps -+ - dpin

It remains to use the inductive hypothesis and the fact that

Ii:/gi H ;.-

J=2,j7#i

)(nQ)/(nl)

(ii) Observe that Ig(z1,z2,23) < Ig, (21, 22)IE, (T2, 23) B, (21, 23).

3.10.122. (i) (T. Carleman) Suppose we are given a sequence of numbers o,
with 3>, 02_,3/(2”) = 00. Prove that two probability measures p and v on the real
line coincide if they have equal moments

—+oo —+oo
/ t" p(dt) = / t"v(dt) =on, VYneN.

—o0 —o0

(ii) Prove that for all n one has
/ z" exp(—a:l/4) sin(a:l/4) dr = 0.
0

Deduce the existence of two different probability measures on the real line with
equal moments for all n.

(iii) (M.G. Krein) Show that a probability density ¢ on the real line is not
uniquely determined by its moments in the class of all probability measures precisely
when the function (1+ z*)~" min(In g(x), 0) has a finite integral over IR'.

HINT: see Ahiezer [5].

3.10.123. Let f and g be nonnegative Lebesgue measurable functions on IR™
and let the mapping f * g with values in [0, +00] be defined as follows: f * g(x) is
the integral of the function y — f(z — y)g(y) if it is integrable and f * g(z) = +o0
otherwise. Show that f * g is Borel measurable.

HINT: observe that f x g(z) = nh—>Holo min(f, n) * (min(g, n)I;_p n))-
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3.10.124. Let B be an open ball in IR" and let f: B — IR be a measurable

function such that
/ [f(z) = F()l
sJp lz—y/"t!
Prove that f = c a.e., where ¢ is a constant.
HiINT: it is clear that f is integrable on B; the assertion reduces to the case of
a smooth function, since letting f. := f * ge, ge(x) = £ "g(x/e), we obtain that f.
satisfies the above condition in a smaller ball. The function

(@) = f(y) = ' )@ = y)l/|lz —y"*
in the case of smooth f is integrable on BxB by Taylor’s formula. Hence the function
If (y)(x —y)|/|x —y|™ " is integrable as well. If f is not constant, then there exists
a point y such that f'(y) # 0 and the function = — |f'(y)(z — y)|/|z — y|™ " is
integrable on B, which is false (we may assume that y = 0 and consider the polar
coordinates). A proof based on the theory of Sobolev spaces is given in Brezis [126].

dzx dy < oo.

3.10.125. (Kolmogorov [531]) Let E be a Lebesgue measurable set on the
real line. Let L(FE) be the supremum of lengths of the intervals onto which F can
be mapped by means of a nonexpanding (i.e., Lipschitzian with the constant 1)
mapping. Show that L(F) coincides with Lebesgue measure of E.

HINT: let f(z) = A(E N (—oco,z)). Then f is nonexpanding and f(E) =
[0, \(E)], whence one has L(E) > A(F). The reverse inequality follows by consider-
ing the covers of £ by sequences of disjoint intervals.



CHAPTER 4

The spaces [” and spaces of measures

When communicating our knowledge to other people, we do
one of the three things: either, being well aware of the subject,
we extract from it for other persons only that what we take for
the most essential; or we rush to present everything what we
know; or, finally, we communicate not only what we know, but
also what we do not know.

N.I. Pirogov. Letters from Heidelberg.

4.1. The spaces LP

In this section, we study certain normed spaces of integrable functions.
We recall that a linear space L over the field of real or complex numbers
equipped with a function z ~ [|z|, > 0 is called a normed space with the
norm || - ||, if:

(i) |z||, = O precisely when x = 0;

(ii) ||Az||, = |||z, for all z € L and all scalars X;

(i) [l +yll, <llzll, +[lyl, forall z, y € L.

If only conditions (ii) and (iii) are fulfilled, then || - ||, is called a seminorm.
For example, the identically zero function is a seminorm (but not a norm if
the space L differs from zero). It is easily verified that the normed space
L equipped with the function d(z,y) := ||z — y||, is a metric space. If this
metric space is complete (i.e., every fundamental sequence has a limit), then
the normed space L is called complete. Complete normed spaces are called
Banach spaces in honor of the outstanding Polish mathematician Stephan
Banach.

Let (X, A, ut) be a measure space with a nonnegative measure y (possibly
with values in [0, +o0]) and let p € [1,400). As in §2.11 above, we denote
by LP(u) the class of all p-measurable functions f such that |f|P is a u-
integrable function. In order to turn these classes into normed spaces with
the integral norms, one has to identify p-equivalent functions (without such
an identification the norms defined below do not satisfy condition (i) above,
and the classes £P(u) are not linear spaces, as explained in §2.11). The sets
LP (1) are equipped with their natural equivalence relation: f ~ g if f =g
p-a.e., as already mentioned in §2.11.

Denote by L? (1) the factor-space of £P (1) with respect to this equivalence
relation. Thus, LP(u) is the space of equivalence classes of u-measurable
functions f such that |f|P is integrable. In the case of Lebesgue measure
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on IR™ we use the notation LP(IR™), and in the case of a subset E C IR"™
the notation LP(E). In place of L ([a,b]) and LP([a,+00)) we write L?|a, b]
and LP[a, +00).

Tt is customary to speak of LP(u) as the space of all functions integrable
of order p, which is formally incorrect, but convenient. Certainly, it is meant
that functions equal almost everywhere are regarded as the same element.
The Minkowski inequality yields that the function || - ||, (see §2.11) defines a
norm on LP ().

The same notation is employed for complex-valued functions, but we shall
always give a special note when considering complex spaces.

In a special way one defines the spaces £%°(u) and L*(u). The set £%°(u)
consists of bounded everywhere defined p-measurable functions. Let L™ (u)
denote the factor-space of £°(u) with respect to the equivalence relation
introduced above. However, one cannot take for a norm on L*(u) the func-
tion sup,¢ y | f(«)| with an arbitrary representative f of the equivalence class,
since unlike the integral norm, the sup-norm depends on the choice of such a

representative. For this reason the norm || - || on L>(u) is introduced as
follows: R
[ lloo := [fll s uy := inf sup [f(z)],
frefreX
where inf is taken over all representatives of the equivalence class of f. On
the space £°(u) we thus obtain the seminorm || - ||s. It is to be noted that
the same seminorm can be written as
[flloc :=esssup,ex|f(#)| ;== ~ inf — sup|f(z)], fe€LZ(n)

Q: p(X\Q)=0 zeQ
The quantity esssup,cy|f(z)| is also called the essential supremum of the

function |f|. Thus, ||f|lc = esssup,ex|f(z)|, where f is an arbitrary repre-
sentative of the equivalence class of f.

4.1.1. Lemma. For all \ € R', f, g € LP(1), we have
IAfllp = (ALl [+ gllp < Lfllp + [lgllp-

PRrROOF. If f € £P(y) and A € RY, then Af € £P(u) and | Af|l, = [ [|£]lp-
Let g € LP(u). For p = oo the inequality || f +g/oc < ||f]loo + /9]l is obvious.
For p € [1,400) we apply the Minkowski inequality from §2.11. O

If the space X contains a nonempty set of measure zero, then the function
| - ||p is not a norm on the linear space of finite everywhere defined functions
from LP(u), since it vanishes at the indicator of that set.

For every f € LP(u), let || f|l, = ||f||p, where f is an arbitrary representa-
tive of the equivalence class of f. Clearly, || f||, does not depend on our choice
of such a representative.

The space LP(u) has a natural structure of a linear space: the sum of
two equivalence classes with representatives f and g is the equivalence class
of f+ g. It is clear that this definition does not depend on our choice of rep-
resentatives in the classes containing f and g. The multiplication by scalars
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is defined analogously. One may ask whether instead of passing to the factor-
space we could simply choose a representative in every equivalence class in
such a way that pointwise sums and multiplication by constants would corre-
spond to the above-defined operations on equivalence classes. This turns out
to be possible only for p = oo (see Theorem 10.5.4 on liftings and Exercise
10.10.53 in Chapter 10).

4.1.2. Corollary. The function || - ||, is a norm on the space LP(p).

4.1.3. Theorem. The spaces LP(u) are complete, i.e., are Banach
spaces.

PROOF. Suppose first that the measure p is finite. Let a sequence {f,}

be fundamental in the norm || - ||,. We shall also denote by f,, arbitrary rep-
resentatives of equivalence classes and deal further with individual functions.
In the case p = 0o we set € 1 = || fn, — fillo and obtain the set

Q= (a: [fal2) - fu(@)] < eni}
n,k

of full measure. The sequence {f,} is uniformly fundamental on 2 and hence
is uniformly convergent. Let p < co. By Chebyshev’s inequality, one has

p(we 1fale) = @) 2 ¢) < P fa = fill

which yields that the sequence {f,} is fundamental in measure, hence con-
verges in measure to some function f. We observe that the fundamentality
in the norm || - ||, implies the boundedness in this norm. Hence by Fatou’s
theorem with convergence in measure (see Theorem 2.8.5), one has the inclu-
sion f € LP(n). Let us show that || f — fn|[, — 0. Let ¢ > 0. We pick a
number N such that || f, — fz|l, < € for n, k > N. For every fixed kK > N, the
sequence |f, — fx| converges in measure to |f — fx| as n — oo. This follows

by the estimate ’\fn — fel = 1f = fxl| < |fn — f|- Applying Fatou’s theorem
once again, we obtain ||f — fx|l, < e. The case of an infinite measure reduces

at once to the case of a o-finite measure, which in turn reduces easily to the
case of a finite measure, as explained in §2.6. (]

We note that the spaces LP(u) can also be considered for 0 < p < 1,
but they have no natural norms, although can be equipped with metrics (see
Exercise 4.7.62).

Finally, if 4 is a signed measure, then for all p > 0 we set by definition

L? () = LP(|ul) and £7() := L7 (|u]).

4.2. Approximations in LP

It is useful to be able to approximate functions from L? by functions
from more narrow classes. First we prove an elementary general result that
is frequently used as a first step in constructing finer approximations.
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We recall that a metric space is called separable if it contains a countable
everywhere dense subset.

4.2.1. Lemma. The set of all simple functions is everywhere dense in
every space LP (1), 1 < p < co.

PROOF. Let f € LP(u) and p < oco. By the dominated convergence
theorem, the functions f,, = fI;_,<y<n) converge to f in LP(u). Hence it
suffices to approximate bounded functions in LP(y). In the case of a finite
measure it suffices to approximate bounded functions by simple ones. In the
general case, we need an intermediate step: we approximate any bounded
function f € LP(u) by functions of the form fIy,-1<|sy with some n € IN,
which is also possible by the dominated convergence theorem. Now everything
reduces to the case of a finite measure because the measure of the set where
our new function is not zero is finite. O

The set of measurable functions with finitely many values (such functions
are simple in the case of a finite measure) is everywhere dense in L°°(u1), which
is proved by the method explained in §2.1.

In §4.7(vi), we present additional results on approximations in LP for
general measures. In many cases simple functions can be approximated by
functions from various other classes (not necessarily simple). For example, in
the case where p is a Borel measure on IR™ that is bounded on bounded sets,
every measurable set of finite u-measure can be approximated (in the sense
of measure of the symmetric difference) by sets from the algebra generated
by cubes with edges parallel to the coordinate axes. This means that linear
combinations of the indicators of sets in this algebra are dense in LP(u) with
p < o0 (e.g., in the case n = 1, the set of step functions is dense in LP(u)).
In turn, every such function is easily approximated in LP(u) by continuous
functions with bounded support (it suffices to approximate the indicator of
every open cube K, which is easily done by taking continuous functions equal
to 0 outside K, equal to 1 in a close smaller cube and having a range in
[0,1]). Finally, continuous functions with bounded support are uniformly
approximated by smooth functions. This yields the following conclusion.

4.2.2. Corollary. Let a nonnegative Borel measure pn on IR™ be bounded
on bounded sets. Then, the class C§°(IR™) of smooth functions with bounded
support is everywhere dense in LP(u), 1 < p < oo. In particular, the spaces
LP(u), 1 < p < oo, are separable.

In the case of Lebesgue measure (and some other measures) a very efficient
method of approximation of functions is based on the use of convolution. Let
o0 be a function integrable over IR"™ such that

/n o(x)dx = 1.

Set ge(z) = e "o(x/e), € > 0.
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4.2.3. Lemma. Let f € LP(IR"), 1 < p < co. Then, the mapping
Ty R = I(RY), Ty(0)(@) = fla+ o)
s continuous and bounded.

PROOF. For any v € R", we have

1Tl = [ 1@t opr e =151,

If the function f is continuous and vanishes outside some ball, then we have
as v; — v

IT5(0) =Tyl = [ 15 +0) = fla+ o) de =0,

since the functions z — f(z + v;) vanish outside some ball and uniformly
converge to the function  — f(x + v). In the general case, there exists a
sequence of continuous functions f; with bounded support convergent to f
in LP(IR™). As shown above, the mappings T, are continuous. They converge
to Ty uniformly on IR"™, since

I750) = Tp @)l = [ 1o+ )~ fule+ o) de
— [ 1#@) - AP da =117 - A,

Hence the mapping 7 is continuous as well. O
4.2.4. Theorem. Let f € LP(IR"), 1 < p < co. Then one has
tim £ % 0. — £, = 0.
In particular, on every ball, the functions f * p. converge to f in measure.
PROOF. Let
Gly) = [ 1f(e) = fla =)l da.

By Lemma 4.2.3, the function G is bounded and G(ey) — 0 for all y as e — 0.
We have by Holder’s inequality

If e~ flg= [
<ol [ [ 1@ = @ =)o)l dy e

= It [ Glevlot)ld.

By the dominated convergence theorem, the right-hand side of this estimate
tends to zero as € — 0. (I

p

/ (@) — fla—ey)lo(y) dy| do

4.2.5. Corollary. If f is a bounded measurable function, then, on every
ball, the functions f * o. converge to f in the mean and in measure.
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PRrROOF. If f vanishes outside some ball, then the theorem applies. We
may assume that |f| < 1. Denote by B; the ball of radius j centered at the
origin. Suppose we are given a ball B = By and § > 0. Set f; = fIp,. We
find m such that the integral of g over IR™\ B, is less than §/4. For j > m+k
and all € € [0,1], we have f;(x +ey) = f(zx+¢ey) if x € B, y € B,,. Hence

If = f*ollerm = Ifj — f* ol

)
<Nfi = fixoecllormy +I(f5 = f) xocllersy < f5 — fi* el + 7

It remains to apply the theorem to the function f;. O

Convergence in measure yields the existence of a sequence ¢, — 0 for
which one has convergence almost everywhere. Under some additional as-
sumptions on g, one has convergence almost everywhere as ¢ — 0 (see Chap-
ter 5).

By choosing for p a smooth function with bounded support and unit
integral, we obtain constructive approximations of functions in LP(IR™) by
smooth functions with bounded derivatives (see Corollary 3.9.5).

Completing this section, we observe that there exist bounded measures
p such that the spaces LP(u) are not separable. As an example we mention
the product of the continuum copies of the unit interval with Lebesgue mea-
sure. In this case, the family of all coordinate functions has cardinality of
the continuum and the mutual distance between these functions in L!(u) is
one and the same positive number. Hence one has the continuum of disjoint
balls and no countable everywhere dense sets exist. The spaces L™ (u) are
nonseparable (excepting trivial cases) even for nice measures. For example,
the space L>[0, 1], where the interval is equipped with Lebesgue measure, is
nonseparable because the distance between the functions Ijg ) and I|g 5 with
0<a<fB<1equals 1.

4.3. The Hilbert space L2

Let u be a measure with values in [0, +oc]. The space L?(u) is distin-
guished among other LP(u) by the property that it is Euclidean: its norm is
generated by the inner product

(f,9) = /X fgdp.

It is clear that fg € L'(u) whenever f, g € L?(u), since |fg| < f? +¢%. In
the case of the complex space L%(u) the inner product is given by the formula

(f.9) = /X fadp.

In order not to forget the complex conjugation over g, it is useful to remember
that the inner product in C is given by the expression z1Zs, but not by zj 29,
which at z; = 25 may be negative.
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We recall that a linear space L is called Euclidean if it is equipped with
an inner product, i.e., a function (-, - ) on LxL with the following properties:

1) (z,z) > 0 and (x,2) = 0 precisely when 2 = 0;

2) (z,y) = (y,z) in the case of real L and (z,y) = (y,z) in the case of
complex L;

3) the function x +— (z,y) is linear for every fixed vector y.

Every Euclidean space L has the following natural norm:

2] = V/(x, z).

The fact that this is a norm indeed is easily verified by means of the following
Cauchy—Bunyakowsky (or Cauchy—Bunyakowsky—Schwarz) inequality:

@9 < Nzl llyll- (4.3.1)

In turn, for the proof of (4.3.1) it suffices to observe that the discriminant of
the nonnegative second-order polynomial ¢t — (z + ty, x + ty) is nonpositive
(in the complex case one can replace x by 0z with |§] = 1 such that (0x,y) is
real).

Two vectors x and y in a Euclidean space are called orthogonal, which is
denoted by = L y, if (z,y) = 0.

A Euclidean space that is complete with respect to its natural norm is
called a Hilbert space in honor of the outstanding German mathematician
David Hilbert. Thus, L?(u) is a Hilbert space. It is shown below that every
infinite-dimensional separable Hilbert space is isomorphic to L?[0, 1]. Finite-
dimensional Euclidean spaces are isomorphic to spaces L?(u) as well, but in
that case one should take measures p concentrated at finite sets.

4.3.1. Proposition. Let Hy be a closed linear subspace in a Hilbert
space H. Then Hy :={x € H: x L h¥h € Hy} is a closed linear subspace
in H and H = Hy ® Hy-. Hence for every h € H, there is a unique vector
ho € Hy with h — hy € Hd‘. In addition,

|h = hol| = inf{||h — z||: =€ Ho}.
PROOF. Let us set d = inf{[|h — z|: @ € Hp}. Then, for any n € N,

there exists a vector x,, € Hp such that |h — z,]|?> < d*> + n~!. We show that
the sequence {z,} is fundamental. To this end, it suffices to observe that

o — sl € o=+ -
! “ VoV
Indeed, there exists a scalar ¢ such that h — (xn +t(xg — xn)) 1z, —xp. Set
p=zy, + t(xy —x,). Then
[h = pll < [[h = zall, [l —pl < [Ih— x|
It remains to apply the estimate

1
lzn =il < Nz =Pl + llox —pl < Z2+ =2

-
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which follows from the equality (the Pythagorean theorem)
Ih = zn]l* = I = p|* + llzn — pl®

and the estimates ||h — p||> > d?, ||h — z,|* < d* + n~!, and analogous
relations for k. Since H is complete and Hy is closed, the sequence {z,}
converges to some element hyg € Hy. One has ||h — hg||? < d?, whence we
obtain ||h — hg|| = d. Clearly, h — hg L x for all x € Hy, since otherwise
one can take the vector p = hg + (hg — h,x)z, which gives the estimate
[ = pll <[k = hol|.

It is easily seen that Hg is a closed linear subspace. If a vector hjy € Hy
is such that h — h{, € Hg", then hg — h{, L hg — hj), hence h{, = hgy. This shows
that H = Ho @® Hy . O

The vector hg constructed in the previous proposition is called the or-
thogonal projection of the vector h to the subspace Hy. As a corollary we
obtain the Riesz theorem on the representation of linear functionals on Hilbert
spaces. This theorem yields a natural isomorphism between a Hilbert space
H and its dual H*, i.e., the space of continuous linear functions on H.

4.3.2. Corollary. Let f be a continuous linear function on a Hilbert
space H. Then, there exists a unique vector v such that

f@) = (z,v) forallxe H.

PROOF. By the continuity and linearity of f the set Hy = {z: f(z) =0}
is a closed linear subspace in H. For the identically zero functional our claim
is trivial, so we assume that there is a vector w such that f(u) = 1. Let ug
be the orthogonal projection of u to Hy and let v = |lu — ug||~2(u — uo).
We show that f(z) = (x,v) for all z € H. Indeed, z = f(x)u + z, where
z =z — f(x)u € Hy, ie, z L u—wup. Hence (z,v) = f(x)(u,v) = f(z)
because

(u,v) = |Ju — uo|| 7% (u, u — up) = ||u — uo|| (v — up, u — ug) =1
by the orthogonality of u — ug and ug. O

Riesz’s theorem can be used for an alternative proof of the Radon—Niko-
dym theorem.

4.3.3. Example. Let ;4 and v be two finite nonnegative measures on
a measurable space (X, A) and let v < pu. Let us consider the measure
A = g+ v. Then, every function v that is integrable with respect to A is
integrable with respect to p and its integral against the measure p does not
change if one redefines 1 on a set of A-measure zero. In addition,

[ wlan< [ wlan

Therefore, the linear function

L(p) =/X<pdu
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is well-defined on L?(\) (is independent of our choice of a representative of ¢)
and, by the Cauchy—Bunyakowsky inequality, one has

IL(o)] < /X ol dA < 11z lellzz oy

The estimate [L(yp1 —2)| < [[1]z2(x) |01 — w2/ 22(n) yields the continuity of L.
By the Riesz theorem, there exists an A-measurable function ¢ € £2(\) such
that

/ pdu = / Ppd\  for all p € L2(N). (4.3.2)
b'e X

Therefore, p = YA, v = (1—1)\, since one can take ¢ = I4, A € A. We show
that the function (1 — )/4 serves as the Radon-Nikodym derivative dv/dp.
Let Q = {z: ¢(x) < 0}. Then Q belongs to A. Substituting in (4.3.2) the
function ¢ = I, we obtain

1(€) :/dexgo,

whence p(2) = 0. Let Q1 = {z: ¥(z) > 1}. By using that p(Q1) < M),
we obtain in a similar way that the set 21 has u-measure zero, since

Q1
Then the function f defined by the equality
1)

f(x) @) ifedgdQ, fle)=0 ifzeQ,

is nonnegative and A4-measurable. We observe that the function f is integrable

with respect to the measure p. Indeed, the functions f, = fly>1/n) are
bounded and increase pointwise to f such that

/ fndp :/ Typ>1/my (1 — ) dA =/ Tiyp>1my dv < v(X).
X X X

Hence the monotone convergence theorem applies. In addition, we obtain
convergence of {f,} to f in L'(x). Finally, for every A € A, we have
Iglpy>1/ny — 1o p-ace., hence v-a.e. (here we use the absolute continu-
ity of v with respect to ). Hence

v(A) = lim IAI{wZI/n} dv = lim / IAI{wzl/n}fd,u:/ fdu

n—oo
by convergence of {f,} to f in L'(u).
We now turn to orthonormal bases.

4.3.4. Corollary. There exists a family of mutually orthogonal unit
vectors eq in L?(pn) such that every element f in L*(p) is the sum of the
following series convergent in L*(p):

f= anea, (4.3.3)
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where at most countably many coefficients c, may be nonzero. In addition,
one has

ca=(frea)s IFIP =2 leal® (4.3.4)

The family {e} is called an orthonormal basis of the space L?(w). If L*(p)
is separable, then its orthonormal basis is finite or countable.

PROOF. Suppose first that L?(u) has a countable everywhere dense set
{fn}- Let ||f1]l > 0 and let e; = f1/||f1||. We pick the first vector f;, that
is linearly independent of e; and denote by go the orthogonal projection of
fi, to the linear span of e;. Set es = (fi, — g2)/|| fio — 921|. We continue the
described process by induction. Suppose that we have already constructed
a finite family eq,...,e, of mutually orthogonal unit vectors. If the linear
span L, of these vectors contains {f,}, then it coincides with L?(u1) because
otherwise we could find a nonzero vector h orthogonal to all f,, but such a
vector is not approximated by the elements f,, due to the relation

1B = full® = IR + (| full® > (IRl
If L,, does not contain {f,}, then we take the first vector f; ., & Ly, denote

by gn41 the orthogonal projection of f; ., to L, (which exists, since L, is
finite-dimensional) and set

Cn41 = (fin+1 - gn+1)/|‘fin+1 - gn+1||'

As a result we obtain either a finite basis or an orthonormal sequence {e,},
the linear span L of which coincides with the linear span of {f,,}. Let us show
that, for all f € L?(u), the series > > (f,en)e, converges to f. Let & > 0.
There is a function f,, satisfying the inequality || f — f,.|| < e. We pick N such
that f, is contained in the linear span of e1,...,en. Let kK > N. It is easily
seen that the vector hy = f — Zle(f, e;)e; is orthogonal to the vectors e;,
i < k. By the Pythagorean theorem, ||f — f,||? = ||h&||® +||hx — fn||?, whence
|lhi]l < e. This shows that the sums Zle(f, ei)e; converge to f in L%(p).

If the space L?(1) has no countable everywhere dense sets, then the exis-
tence of an orthonormal basis is established by means of Zorn’s lemma. Let
us consider the set M consisting of all orthonormal systems. We have the
following natural partial order on M: U <V, i.e., the orthonormal system U
is majorized by the orthonormal system V if U is a subset of V. It is clear that
U<Uandthat U<W if U <V and V < W. In addition, U =V if U <V
and V' < U. Suppose that Mg is a linearly ordered part of M (i.e., every
two elements in My are comparable). Then the system formed by all vectors
belonging to systems in M, is orthonormal. Indeed, if a vector u comes from
a system U and a vector v comes from a system V', then one of the two sys-
tems is contained in the other (for example, U C V) and hence u L v. By
Zorn’s lemma, there exists a maximal orthonormal system {e, }, i.e., a system
such that there is no unit vector orthogonal to all its vectors. It follows by
Proposition 4.3.1 that the linear span of the vectors e, is everywhere dense
in L2(u) (otherwise one could find a unit vector orthogonal to its closure).
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Now let f € L%(u). There exists a sequence of finite linear combinations of
the vectors e, convergent to f. Hence f belongs to the closure of the linear
span of an at most countable collection {e,, }. By the first step we obtain
[ =>,"_.(f €a,)eq,- It is clear that our reasoning applies to any Hilbert
space. U

It is seen from the proof that in the separable case most important for ap-
plications an orthonormal basis is obtained by means of the orthogonalization
of an arbitrary sequence with a dense linear span. If {e,} is an orthonor-
mal basis in L?(u), then the numbers ¢, = (¢,e,) are called the Fourier
coefficients of the function ¢ € L?(u). By using an orthonormal basis every
separable infinite-dimensional Hilbert space can be identified with the space
1% of all sequences x = (z,,) with Y 0, |z,]* < oo, where in the real case
(z,y) := >_.° | Tnyn. Thus, all such spaces turn out to be isomorphic to the
space L?[0,1] (an isomorphism of Hilbert spaces is a linear bijection preserv-
ing the inner product). An obvious corollary of the completeness of L?(u) is
the following Riesz—Fischer theorem.

4.3.5. Theorem. For any orthonormal system {@,} in L*(1) and any

sequence {c,} € 12, the series Y o | cnipn converges in L?(p).

The reader will easily derive the following simple, but important result.

4.3.6. Theorem. Let {¢p,} be an orthonormal sequence in L?(u). Then,
for all f € L?(u), the following Bessel inequality holds:

n=1

If f belongs to the closed linear span of {¢on} (and only for such f), then one
has the Parseval equality

DA en)l = 1F 1720
n=1

In particular, this equality is true if {pn} is an orthonormal basis.

It is easily seen that the above results are true for complex functions as
well. In the following example we consider real spaces.

4.3.7. Example. (i) The sequence 1/v/27, cos(nz)/\/7, sin(nz)/\/7,
where n € IN, is an orthonormal basis in L?[0,27] (in the complex case an
orthonormal basis is formed by the functions exp(inz)/v/2m, n € Z).

(ii) The orthogonalization of the functions 1, x, 2%, ... in L?[—1,1] leads to
the Legendre polynomials L, (z) = ¢, %( 2-1)", where ¢, are normalization
constants and Lo = 1.

(iii) In the space L?(y), where v is the standard Gaussian measure on the

real line with density exp(—2/2)/v/2m, an orthonormal basis is formed by
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the Chebyshev—Hermite polynomials

_ (_1)71 x2/2 dr —z2/2
H,(z)= i et e .

(iv) The functions (27)~'/*H,, () exp(—2/4) form an orthonormal basis
in the space L?(IR').

PROOF. (i) It is easily verified that the trigonometric system is orthogo-
nal, and its completeness, i.e., the fact that its linear span is dense, follows,
for example, from the Weierstrass theorem, which enables one to approxi-
mate uniformly any continuous 27-periodic function by linear combinations
of trigonometric functions (see Zorich [1053, Ch. XVI, §4]). (ii) The com-
pleteness of the Legendre system also follows by the Weierstrass theorem, and
the indicated formula for them is left as Exercise 4.7.47. (iii) The fact that
the Chebyshev-Hermite polynomials are orthonormal is verified by means of
the integration by parts formula. Since H,, has the degree n, it follows that
exactly these polynomials (up to a sign) are obtained after the orthogonal-
ization of 2". The completeness of {H,} in L?(y) is proved as follows. Let
f € L3(y) and f L 2" for all n. The function

“+o0
o(z) = / exp(izz) f(z) exp(—x?/2) dx

— 00

is holomorph in the complex plane (it can be differentiated in z by the dom-

inated convergence theorem). Then (™ (0) = 0 for all n = 0,1, ..., whence
¢(z) = 0 for all z. Therefore, f(z)exp(—22/2) = 0 a.e. Finally, (iv) follows
from (iii). O

If {¢,,} is an orthonormal basis in L?(u), then for all ¢ € L?(u) the series
© = >0 (¢, ¢n)pn, called orthogonal, converge in L?(y). It is natural
to ask about their convergence almost everywhere. By the Riesz theorem
one can find a subsequence of partial sums convergent almost everywhere.
However, the whole series may not converge almost everywhere. It was shown
by L. Carleson that in the case of the trigonometric system in L]0, 27| one has
convergence almost everywhere for all ¢ € L2[0, 27] (later R.A. Hunt extended
Carleson’s theorem to LP[0,27] with p > 1). A detailed proof can be read
in Arias de Reyna [36], Jgrboe, Mejlbro [471], Lacey [564], and Mozzochi
[702]. On the other hand, the Fourier series with respect to the trigonometric
system can be considered for functions ¢ € L[0,27]. Set

1 2m 2
ap, = —/ o(x) cosnx dx, by := —/ o(x) sinnx dz. (4.3.5)
0 0

T
Then, the formal series
% + nzl[an cosnx + by, sin nz|
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is called the Fourier series of the function ¢ with respect to the trigonometric
system. A.N. Kolmogorov showed that there exists a function ¢ € £]0, 27]
such that its Fourier series with respect to the trigonometric system diverges
at every point. We shall see in Chapter 5 that if one is summing such a
series not in the usual sense, but in the Cesaro or Abel sense (see below),
then its sum coincides almost everywhere with ¢. In the study of convergence
of trigonometric Fourier series the following representation of partial sums is
useful, which is obtained by the identity

sin %z

1
— 4+ cosz+cos2z+ - +coskz = ——=—
2 251n§

and elementary calculations:

Sp(x): = % + Z[ak cos kx + by, sin kx|
k=1

l /027r ©(t) E + écos k(t — ac)] dt (4.3.6)

™

dt.

s 2sin 152

This formula is a basis of several sufficient conditions for pointwise conver-
gence of Fourier series (for example, Dini’s condition, Exercise 4.7.68). For
improving convergence of series the Cesaro method of summation is frequently
used. Given a series with the terms «,, and the partial sums s, = 22:1 ay,
one considers the sequence o, := (s1 + -+ + s,)/n. If the series Zf;l Qay,
converges to a number s, then the sequence o, converges to s as well, but the
described transformation may produce a convergent sequence from a divergent
series (for example, o, = (—1)"). One more method of summation of series is
called Abel’s summation. Let us consider the power series S(r) := >0 | a,r™
for r € (0,1). If the sums S(r) are defined and have a finite limit s as r — 1,
then s is called the sum of the series > v, in Abel’s sense. If a series is
Cesaro summable to a number s, then it is summable to s in Abel’s sense
(Exercise 4.7.51). When applied to the Fourier series of ¢, the Cesaro sum-
mation leads, by virtue of the equality ZZ;& sin(2k + 1)z = sin? nz/sin 2, to
the following Fejér sums (see Theorem 5.8.5):

1 [ sin 2EXL (¢ — 1)
! / oty 2 Y
0

2m
0
where the function ) )
.onz, . z
D,(2) = p— (bln 7/ sin 5)

is called the Fejér kernel. Regarding trigonometric and orthogonal series, see
Ahiezer [4], Bary [66], Edwards [263], Garsia [346], Hardy, Rogosinski [409],
Kashin, Saakian [495], Olevskii [730], Suetin [920], and Zygmund [1055],
where one can find additional references.



262 Chapter 4. The spaces L? and spaces of measures

4.4. Duality of the spaces LP

The norm of a linear function ¥ on a normed space E is defined by the
equality [|[W|| = supj, < [¥(v)]. If [[¥]| < oo, then ¥ is called bounded. Note
that ¥ is bounded if and only if it is continuous. Indeed, |¥(u) — ¥(v)| =
|[¥(u—v)| < ||¥|[|Jlu — v||; on the other hand, the continuity of ¥ implies its
boundedness on some ball centered at the origin, hence on the unit ball. The
space E* of all continuous linear functions on F is called the dual to E. It
is easily verified that E* is complete with respect to the above norm. The
general form of a continuous linear function on L? is described by the following
theorem due to F. Riesz. We recall that we often identify the elements of LP(u)
with their representatives from £P(u).

4.4.1. Theorem. Suppose that a nonnegative measure i on a o-algebra
A in a space X 1is finite or o-finite and that 1 < p < co. Then, the general
form of a continuous linear function on LP(u) is given by the formula

w(f) = /X fodp, (4.4.1)

where g € LY(pn), p~' + ¢~ = 1. In addition, |¥| = ||g|l,-

PrROOF. Let p > 1 and g € L9(u). By Holder’s inequality, the right-
hand side of equality (4.4.1) gives a linear function ¥ on LP(u) and |¥(f)] <
Il fllpllgllq; whence we obtain the continuity of ¥ and the estimate | ¥|| < ||g|lq-
If ||g|lg = 0, then ¥ = 0. In the case ||g||; > 0 we set f =signg |g\Q/p/||g||g/p.
Then || f|l, =1 and

U(f) = IIQIIJ"/”/X 1919 dp = llgllg " llglld = llglly.

Therefore, | ¥|| = ||g|lq- For p = 1 we obtain ¢ = co. In this case, one has
the obvious inequality ||| < [|g]loo- On the other hand, in the case of a
nonzero measure g (for 4 = 0 the assertion is trivial), for every e > 0, the
set B :={x: |g(z)| > ||gllec — €} has positive measure, which enables one to
construct a nonnegative function f with ||f||; = 1 that vanishes outside E.
Then U(fsigng) > ||g|lcc — €. Since ||fsign gl = 1, we obtain | ¥] > ||g/c-

Suppose now that ¥ is a continuous linear function on LP(u). Suppose
first that the measure p is finite. Set

v(A)=U(l,4), A€ A
If sets A,, in A are pairwise disjoint and their union is A, then the series
>0 Ia, converges in LP(u) to I4. This follows by the dominated con-
vergence theorem because ZnNZI I4,(x) — Ia(x) for each = and we have

|ij:1 14, (ac)‘ < |[I4(x)|. Hence v is a countably additive measure. Since
[74]l, = p(A)Y/?, the estimate

(A < ([ W]|u(A)?
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yields the absolute continuity of v with respect to u. By the Radon-Nikodym
theorem, there exists an integrable function ¢ such that

\II(IA):/gdu, VAec A
A

This means that equality (4.4.1) is valid for all simple functions f. Since
any bounded measurable function is the uniform limit of a sequence of simple
functions, (4.4.1) remains true for all bounded measurable functions f. Let
us show that g € L9(p). Indeed, let ¢ < oo and A4,, = {|g| < n}. Let us set
fn = |g|%/P14,signg. Then f, is a bounded measurable function, hence

1/p
[ ol dn=ws) < 11150, = 191 (/ ngdu> .
A, Ay

Therefore, ||g1a, |lq < ||[¥]. By Fatou’s theorem, g € L%(p) and ||g|l, < [T
If ¢ = oo, then the set A := {z: g(z) > ||¥||} has measure zero because
otherwise U(I4/pu(A)) > [|¥||. Similarly, the set A := {x: g(x) < —||¥|}
has measure zero. It remains to observe that the continuous linear functional
generated by the function g on LP () coincides with ¥ on the everywhere dense
set of simple functions, whence we obtain the equality of both functionals on
all of LP(u). The case of a o-finite measure is readily deduced from the proven
assertion. O

This theorem does not extend to the case p = co. For example, on the
space L>°[0, 1], where [0, 1] is equipped with Lebesgue measure, there exists
a continuous linear function ¥ that cannot be represented in the form of
(4.4.1). To this end, we define ¥ on the space C|0, 1] of continuous functions
with the norm || f|| = sup | f(¢)| by the formula ¥(f) = f(0) and extend ¥ to a
continuous linear function on L*°[0,1] by the Hahn-Banach theorem 1.12.26.
It is clear that even on continuous functions ¥ cannot be represented by
formula (4.4.1). In fact, even without constructing concrete examples, the
existence of such a function ¥ follows by the fact that L>°[0, 1] is nonseparable
and the space L1[0, 1] is separable. Exercise 4.7.87 outlines another method of
proof of Theorem 4.4.1 for arbitrary infinite measures in the case 1 < p < oc.
However, for p = 1 the above formulation of the theorem does not extend to
arbitrary measures: it suffices to consider the measure p on the class of all sets
in [0, 1] that equals zero on the empty set and is infinite on all nonempty sets.
Then only the identically zero function is integrable and the dual of L' (u)
is {0}. Yet, in this example the unique continuous linear function on L!(u)
is represented in the form of (4.4.1). Exercise 4.7.89 contains a construction
of an example of a continuous linear function on L!(x) that does not admit
representation (4.4.1). Exercise 4.7.93 deals with the dual to L' () for infinite
measures. The above proof yields the following assertion.

4.4.2. Proposition. Let p be a finite nonnegative measure. A contin-
uous linear function ¥ on L*°(pn) has the form (4.4.1), where g € L'(u),
precisely when the set function A V(14) is countably additive.
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We recall the well-known Banach-Steinhaus theorem (also called “the
uniform boundedness principle”), which we formulate along with its corollary.

4.4.3. Theorem. (i) Let F be a Banach space and let a set M C E* be
such that sup;cy, [I(z)| < oo for all x € E (for real E this is equivalent to the
condition sup;e; l(x) < 0o for all x € E). Then M is norm bounded.

(ii) A set in a normed space is bounded if every continuous linear function
is bounded on it.

PROOF. (i) Let us consider the sets
E,:={z€E: ||(z)] <nforallle M}

Since M consists of continuous functions, the sets F, are closed. By hy-
pothesis, their union is E. Therefore, by the Baire category theorem (see
Exercise 1.12.83), there is n such that E, contains a closed ball B(z,r) of
radius 7 > 0 centered at a point z. Since the family M is uniformly bounded
on B(z,r) and consists of linear functions, it is uniformly bounded on the ball
B(0,r), hence on the ball B(0,1).

(ii) It is readily verified that the space E* of continuous linear functions
on a normed space F is a Banach space with the norm

I£1l:= sup |f(x)].
o<1

Every vector x € E generates a continuous linear function F, on E* by
the formula F,(I) := I(z). One has ||F,| = ||z|| because |F.(1)] < ||I||||l=]|
[zl = supsep- <1 |f(2z)| according to a simple corollary of the Hahn-
Banach theorem: the functional ¢tz + t|z|| on the line IR*x can be extended
to an element f € X* of unit norm. It remains to apply assertion (i) to the
functionals F}, where z runs through the given set. (]

Applying this theorem to the spaces LP (for definiteness, real), we arrive
at the following result.

4.4.4. Proposition. Let y be a nonnegative finite or o-finite measure
on a space X. A set F is bounded in LP(u), where p € [1,400), precisely
when

sup/ fgdu < oo for all g € LP/P=1 ().
ferJx
4.4.5. Corollary. Let p be a nonnegative finite or o-finite measure and

let p~t 4+ ¢ ' =1, where 1 < p < co. Suppose that a measurable function f
is such that fg € L*(pn) for all g € L9(u). Then f € LP(u).

PROOF. Set f,(x) = f(x) if | f(z)| < n and f,(z) =0 if |f(x)| > n. For
all g € L9(p), we have |f,g| < |fg| and fg € L'(u). Hence the integrals of
fng converge to the integral of fg. This yields the uniform boundedness of
integrals of | f,, |7, hence f € LP(u). O
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The next theorem strengthens the uniform boundedness principle for L!.
The previous proposition says that a set F C L'(u) is bounded if

sup/fgdu<oo for every g € L>®(u).
feFJX

It turns out that the boundedness is guaranteed by a yet weaker condition: it
suffices to take for g only the indicators. As usual, we consider the real case
(in the complex case one has to consider the absolute values of the integrals).

4.4.6. Theorem. A family F C L'(u), where the measure yi takes values
in [0, +00], is norm bounded in L*(p) precisely when for every A € A one has

/Afd,u‘ < 00.

PROOF. Suppose first that the measure y is finite. The necessity of the
above condition is obvious. Its sufficiency will be established if we show that

/Afdu‘<oo.

Suppose that this is not true, i.e., there exist two sequences A, € A and

{fn} C F with
/ fn du‘ > n.
An

We show that this leads to a contradiction. The idea of our reasoning is
to apply Baire’s category theorem to the complete metric space A/p (see
§1.12(ii)). According to this theorem, if A/u = |-, M,, where M, are
closed sets, then at least one of the sets M,, contains a ball of positive radius.

Set
/ fidu
A

Here we identify sets in A with their equivalence classes. It is clear that the
sets M, are closed in A /p and their union is A/u. By Baire’s theorem, there
exist m, ¢ > 0, and B € A such that for all ¢ one has

sup
fer

sup sup
AcA feF

Mn:{AGA:

<mn, Vi}.

/ fi d,u‘ <m whenever (A A B) <e. (4.4.2)
A

According to Theorem 1.12.9 we can decompose X into measurable sets
Xi,..., Xk such that p(X;) <eforalli=j...,pand the sets X,11,..., Xx
are atoms with measures greater than e. On any atom the function f; coincides
a.e. with a constant, hence there exists C' > 0 such that, forall j =1,...  k—p
and all 7, one has

/ |fz'dﬂ=‘/ fidM‘SG
Xt Xptj
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Now let A be an arbitrary set in A and let A; = ANX;. Forallj=1,...,k—p
we have for each i
I,

Let j=1,...,p. We observe that
Since BA (BUA;) = A;j\B and B A (B\A;) = BN A;, one has
W(BA(BUAY) < pu(A)) <e, p(BA(B\A) < plA;) < e.
According to (4.4.3) and (4.4.2), for all 4 and j = 1,...,p, we obtain
i dM’

/fidli‘z/ fidu—/
A; BUA; B\A;

/ fidu‘ 4 ‘/ fidu‘ <om.
BUA,; B\A;

fidu‘ s/ fildu < C.

p+i p+3i

<

Thus,

/ fidM’ <2mp+ C(k—p) foralliand A € A.
A

In particular, this estimate is true for A = A;, which is a contradiction.
It remains to reduce the general case to the case of a bounded measure.
We observe that the measure p is o-finite on the set

Xo= J{a: 1ful@)] #0}.

Thus, Xo = U, —; X, where (X,,) < oo and the sets X,, are pairwise dis-
joint. We replace the measure p by the finite measure pg = g - u, where
0=2""(1+pu(X,)) " on X, and ¢ = 0 outside X,. Set g, = fn/0. Then,

for any A € A, we have
[ oo = [ guan
A A

One has ||gn |21 (uo) = | fnllz1(n). Thus, the functions g,, on (X, A, po) satisfy
the same conditions as the functions f, on (X, A, u). By the first step we
conclude that the theorem is true in the general case. O

4.5. Uniform integrability

In this section, we discuss the property of uniform integrability, which is
closely connected with the property of absolute continuity and limit theorems
for integrals.

Let (X, A, p) be a measure space with a nonnegative measure g (finite or
with values in [0, +00]).
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4.5.1. Definition. A set of functions F C Ll(u) (or F C Lt(p)) is
called uniformly integrable if

lim sup/ |fldp = 0. (4.5.1)
Omteo rer J{if1>03

A set consisting of a single integrable function is uniformly integrable by
the absolute continuity of the Lebesgue integral. Hence, for any integrable
function fo, the set of all measurable functions f with |f| < |fo| is uniformly
integrable. It is clear that in the case of an infinite measure, a bounded
measurable function may not be integrable, although (4.5.1) is fulfilled for such
functions. In the literature, one can encounter other definitions of uniform
integrability that are equivalent to the one above in the case of bounded
measures, but, in some respects, may be more natural for infinite measures
(see Theorem 4.7.20(v) and Exercise 4.7.82).

4.5.2. Definition. A family of functions F C LY(u) (or F C L' (u))
has uniformly absolutely continuous integrals if, for every € > 0, there exists
6 > 0 such that

/|f|d,u<5 for all f € F if u(A) < 4.
A

4.5.3. Proposition. Let u be a finite measure. A set F of p-integrable
functions is uniformly integrable precisely when it is bounded in L'(u) and
has uniformly absolutely continuous integrals. If the measure p is atomless,
then the uniform integrability is equivalent to the uniform absolute continuity
of integrals.

PRrROOF. Suppose that F is uniformly integrable. Let € > 0. We can find
C > 0 such that

[ fldu<s vrer
{1f1>C} 2

Set § = (2C)~ L. Let u(A) < §. Then, for all f € F, we have
Ce ¢
[ 1stau= | Slau+ [ Sl E e
A AN{|f]<C} An{|f|>C} 20 2

In addition,
€
[ildn<cncos [ ifldu< cu + 5.
b'e {lfI>c}
Suppose now that a set F is bounded in L' (x) and has uniformly absolutely
continuous integrals. Let € > 0. We take § from the definition of the uniform

absolute continuity of integrals and observe that by Chebyshev’s inequality,
there exists C'y > 0 such that

p({lf1>CY) < CTMfllergn <
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for all f € F and C' > (. Finally, if u is atomless, then the uniform absolute
continuity of integrals yields the boundedness in L' (1) because, for € = 1, the
space can be partitioned into finitely many (say, N(4)) sets with measures
less than the corresponding ¢, which gives || f||z1(,) < N(0) forall f € F. O

If © has an atom (say, is the probability measure at the point 0), then
the uniform absolute continuity of integrals does not imply the boundedness
in L'(p), since the values of functions in F at this atom may be as large as
we wish.

The next important result is called the Lebesgue—Vitali theorem.

4.5.4. Theorem. Let i1 be a finite measure. Suppose that f is a p-
measurable function and {f,} is a sequence of u-integrable functions. Then,
the following assertions are equivalent:

(i) the sequence {f,} converges to f in measure and is uniformly inte-
grable;

(ii) the function f is integrable and the sequence {f,} converges to f in
the space L*(p).

PROOF. Suppose that condition (i) is fulfilled. Then the set {f,} is
bounded in L'(y). By Fatou’s theorem applied to the functions |f,|, the
function f is integrable. For the proof of convergence of {f,} to f in L'(u),
it suffices to show that each subsequence {g,} in {f,} contains a subsequence
{gn, } convergent to f in L'(u). For {g,,} we take a subsequence {g,} con-
vergent to f almost everywhere, which is possible by the Riesz theorem. Let
e > 0. By Proposition 4.5.3, there exists § > 0 such that

NS
A
< J. Applying Fatou’s theorem, we obtain

(4)
/ fldu<e
A

whenever p(A) < 6. By Egoroff’s theorem, there exists a set A with pu(A) < §
such that convergence of {g,,} to f on X\A is uniform. Let N be such that
Supx\ 4 |gn, — f| < e for k > N. Then

for any n and any set A with

/ lgne — fldn < ep(X) + / (e | dpt + / fldu < e(2 + p(X),
X A A

whence we obtain convergence of {gy,, } to f in L'(u).

If condition (ii) is fulfilled, then the sequence {f,} is bounded in L (1)
and converges in measure to f. In view of Proposition 4.5.3, it remains to
observe that the sequence {f,,} has uniformly absolutely continuous integrals.
This follows by the estimate

Jifdus [ 18~ fldu [ 171

and the absolute continuity of the Lebesgue integral. (Il
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Now we can transfer this theorem to infinite measures; the proof of the
following corollary is left as Exercise 4.7.67.

4.5.5. Corollary. Let p be a measure with values in [0,+00] and let
functions fn, f € LY(u) be such that f,(z) — f(x) a.e. Then convergence of
{fn} to f in L' (u) is equivalent to the following:

lim su / du =0
(Ym0 np . | fn| dp
and, for every e > 0, there exists a measurable set X such that p(X.) < oo
and

n

Sup/ |fnldp <e.
X\ X,

4.5.6. Theorem. Suppose that a measure y is finite or takes values
in [0, 4+00] and a sequence of u-integrable functions f, is such that for every

set A € A, the sequence
/ fn dp
A

has a finite limit. Then, the sequence {f.} is bounded in L'(u) and has
uniformly absolutely continuous integrals (in the case of a finite measure, it is
uniformly integrable). In addition, there exists an integrable function f such
that the above limit coincides with

/Afdu

PROOF. First we observe that the general case, as in Theorem 4.4.6,
reduces to the case of a finite measure. Indeed, as in the cited theorem,
the measure y is o-finite on the set Xo = U~ {z: [fu(z)| # 0}. Thus,
Xo = Uz Xk, where p(Xy) < oo and Xj, are pairwise disjoint. Now we
replace the measure p by the finite measure pg = o - 1, where

o=27"F(1+ /QL(Xk))f1 on X, and ¢ = 0 outside X.
Set g, = fn/0. Then, for every A € A, we have

/gnduo=/ fndp.
A A

One has ||gn | L1 (1) = ||fullL1 (). Hence the functions g, on (X, po) satisfy the
same conditions as the functions f,, on (X, ). So, if we prove our claim for g,,,
then we obtain the theorem in the general case. In particular, if g € L' (o)

and
/gduo: lim /gnduo,
A n—oo A

then the function f = gp can be taken for f. Thus, we assume that the
measure u is bounded. By Theorem 4.4.6, the sequence {f,} is bounded
in L'(11). We show that the functions f,, have uniformly absolutely continuous

for every set A € A.
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integrals. As in the proof of Theorem 4.4.6, we consider the complete metric
space A/u and, given £ > 0, we set

Mi.m = {A cA: ‘/(fk —fm)d,u‘ < 8}, k,m € IN.
A

The corresponding sets of equivalence classes in .A/p will be denoted by My,
as well. It is clear that these sets are closed in A/u. Therefore, the sets
M, = ﬂk’mZn M, are closed. By the hypothesis of the theorem, one has

A/:u = U M.,
n=1
since, for every A € A, the integrals of the functions f; over A differ in at
most ¢ for all sufficiently large k. By Baire’s theorem (see Exercise 1.12.83)
some M,, contains a ball, i.e., there exist B € A and r > 0 such that for all
k,m > n we have

/A(fk = fm) du‘ <e ifu(AAB)<r. (4.5.2)

Let us take a positive number § < r such that, whenever p(A) < §, one has

/ fjdu‘ <eg J=1,...,n

A

We observe that
w(BA(AUB)) =pu(A\B) <6 <, (4.5.3)
u(B A (B\A)) =pu(ANB)<d<r. (4.5.4)

For all j > n we have

Aﬁszmw+Am—mw

= [ pns [ G- gan= [ -
By (4.5.2), (4.5.3), (4.5.4) we obtain

e

for all j, whence the uniform absolute continuity of {f,} follows. In the case
of a bounded original measure, we obtain the uniform integrability according
to Proposition 4.5.3.
Now let us consider the set function
v(A)= lim [ f,du, A€ A
n—oo A
Let us show that v is a countably additive measure that is absolutely contin-
uous with respect to p. By the additivity of the integral we have the finite
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additivity of v. Let A,, € A, A,41 C A, and (), A, = &. Let € > 0. One
can take § > 0 such that

/fndﬂ’ <e forall nif u(B) < 0.
B

Next we pick N such that p(A,) < § for all n > N. Then, for all n > N,
we obtain |v(A4,)| < e, whence the countable additivity of v follows (see
Proposition 1.3.3). The absolute continuity of v with respect to y is obvious.
By the Radon-Nikodym theorem v = f - u, where f € L'(p). O

4.5.7. Corollary. If in the situation of the above theorem the functions
fn converge a.e., then their limit coincides a.e. with f and

nh_)néo ||fn - fHLl(;t) = 0.

PROOF. The assertion reduces to the case of a o-finite measure and sub-
sequently to the case of a bounded measure as we usually do. In the lat-

ter case, letting g(z) := lim f,(z), by the uniform integrability we obtain
nlingo Ifn = 9llr(u) = 0, whence g(x) = f(z) a.e. O

It is the right place to remark that according to a nice theorem due to
Fichtenholz, if integrable functions f and f,, n € IN, on the interval [a, b] are
such that

lim fn dﬂc:/ fdx
U U

n—oo

for every open set U C [a,b], then this equality is true for every measurable
set in [a, b]. Generalizations of this theorem are discussed in §8.10(x).

4.5.8. Corollary. Suppose that a measure 1 on the o-algebra of all
sets in a countable space X = {xy} is finite or takes values in [0, +o0] and
that a sequence of functions f, € L'(u) is such that for every A C X there
exists a finite limit of the integrals of f, over A. Then, the sequence {f,}
converges in L'(p). In particular, if, for every n, we are given an absolutely
convergent series Z;il oy j such that, for every A C IN, there exists a finite
limit nhl%o > jea Qnj, then, there exists an absolutely convergent series with

the general term o such that

o0
lim Y fan,; — ;] =0.

Jj=1

PROOF. Let us consider the measure y on IN that assigns the value 1 to
every point. Then absolutely convergent series become functions in L!(yu),
and convergence on one-element sets in A becomes pointwise convergence.
Therefore, we obtain not only convergence of the integrals on every set, but
pointwise convergence as well, whence we obtain convergence in L'. (Il
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We now establish a useful criterion of uniform integrability, which is due
to Ch.-J. de la Vallée Poussin. When applied to a family consisting of a single
function it yields a useful “improvement of integrability”.

4.5.9. Theorem. Let u be a finite nonnegative measure. A family F
of p-integrable functions is uniformly integrable if and only if there exists a
nonnegative increasing function G on [0,4+00) such that

lim %:oo and sup/G |f(z dx) < oo. (4.5.5)
t—too 1 JeF

In such a case, one can choose a convex increasing function G.

PROOF. Let condition (4.5.5) be fulfilled and let M majorize the integrals
of the functions G o |f], f € F. Given € > 0, we find a number C such that
G(t)/t > M/e if t > C. Then, for every f € F, we have the inequality
|f(@)| < eG(|f(z)])/M whenever |f(z)] > C. Therefore,

/ |f] due <—/ Go|f|d,u<—M—€
(f1>C} {f1>cy M

Thus, the family F is uniformly integrable.
Let us prove the converse. The function G will be obtained in the form

60 = [ gts) s

where ¢ is an increasing nonnegative step function tending to +oo as t — +oo
and assuming the values a,, on the intervals (n,n + 1], where n = 0,1,.... In
order to pick appropriate numbers «,,, we set for every f € F

1 (f) = nas |f(@)] > n).

By the uniform integrability of F, there exists a sequence of natural numbers
C), increasing to infinity such that

sup/ |fldp <27™. (4.5.6)
FeF J{|fI>Cn}
We observe that

d (e .
/{flzcn}m p> > gu(r: j<|f(x) <j+1) zk; i (f)

j=Cn n
It follows by (4.5.6) that

oo

> uk(f) <1 forall feF.
1k=C,

Now let o, = 0 if n < Cy. If n > C, we set

apn, = max{k € N: Cj <n}.

n
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It is clear that o, — +o00. For any f € F, we have

[ 6056 utao)

<ap(z: 1<|f(@)] <2) 4+ (a1 +ag)p(z: 2<|f(z)] <3)+...

=Y anma(f) =D > mlf)
n=1 n=1k=C,

It remains to note that the function G is nonnegative, increasing, convex, and
G(t)/t — 400 as t — +o0. O

4.5.10. Example. Let p be a finite nonnegative measure. A family F
of p-integrable functions is uniformly integrable provided that

sup / FIn | f]dye < oo,
feF

where we set 0In 0 := 0. In order to apply the criterion of de la Vallée Poussin,
we take the function G(t) = tlnt for ¢t > 1, G(¢) = 0 for t < 1, and observe
that G(|f|) < |f|In|f] + 1. Another sufficient condition: for some p > 1 one
has

sup/\f|pd,u<oo.
fer

4.6. Convergence of measures

There are several modes of convergence of measures, frequently used in
applications. The principal ones are convergence in variation, setwise conver-
gence, and, in the case where the space X is topological, weak convergence.
In this section, we discuss the first two modes of convergence.

Let (X, .A) be a space with a o-algebra and let M(X,.A) be the space of
all real countably additive measures on A. It is clear that this is a linear space.
We observe that the variation (see Definition 3.1.4) is a norm on M (X, A).
This is obvious from expression (3.1.3) for ||u||.

4.6.1. Theorem. The space M(X,A) with the norm p — || is a
Banach space.

PROOF. If a sequence of measures p, in the space M(X, A) is fundamen-
tal in variation, then, for every A € A, the sequence {u,(A4)} is fundamental
and hence has some limit p(A). Let us show that the set function A — u(A)
is countably additive and ||p, — p|| — 0. The additivity of p is obvious from
the additivity of the measures u,,. We observe that

nlingo sup{|u(A) — pn(A)|: A€ A} =0. (4.6.1)

Indeed, let € > 0 and let ng be such that ||p, — prl| < € for all n, k& > ng. Let
A e A. We pick k > ng such that |pu(A) — pk(A)| < e. Then, for all n > ny,
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we obtain

[1(A) = pn(A)] < [1(A) = pr(A)] + [k (A) = pn(A)]
S+ flue — pnll < 2,

which proves (4.6.1). Now let {A;} be a sequence of pairwise disjoint sets
in A and let € > 0. We find ng such that

sup{|u(A) — pn(A)]: A€ A} <e for all n > ny.
Next we find kg such that

o U 4)

i=k+1

<e forall k> k.

Then |N(U§ik+1 Al)| < 2¢ for all k > kg. By the additivity of p we finally

obtain
i=1 i=1 i=k+1

which gives the countable additivity of u. Finally, relation (4.6.1) yields that
s — ponll — 0. O

< 2,

It should be noted that M(X,.A) can also be equipped with the norm
p— sup |p(A)],
AcA

equivalent to the variation norm (see (3.1.4)).

We now turn to setwise convergence of measures. This is a weaker mode
of convergence than convergence in variation. For example, the sequence of
measures i, on [0, 2] given by the densities sin nx with respect to Lebesgue
measure converges on every measurable set to zero. This follows by the
Riemann-Lebesgue theorem, according to which

2
lim f(z)sinnzdx =0
n—oo 0

for every integrable function f (Exercise 4.7.79).

4.6.2. Definition. Let M be a family of real measures on a o-algebra A.
This family is called uniformly countably additive if, for every sequence of
pairwise disjoint sets A;, the series Y .o u(A;) converges uniformly in p € M,
i.e., for every e > 0, there exists n. such that ‘Z;’in ﬂ(Ai)| <€ foralln > n,
and all p e M.

The next important result unifies two remarkable facts in measure the-
ory: the Nikodym convergence theorem and the Vitali-Lebesgue-Hahn—Saks
theorem.
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4.6.3. Theorem. Let a sequence of measures [, in the space M(X, A)
be such that lim p,(A) exists and is finite for every set A € A. Then:
n—oo

(i) the formula u(A) = lim u,(A) defines a measure p € M(X, A);

(ii) there exist a nonnegative measure v € M(X,A) and a bounded non-
decreasing nonnegative function o« on [0,400) such that }iH(l) a(t) =0 and

sup lun(A)| < a(v(A)), VAeA (4.6.2)

In particular, sup,, ||1n] < oo and the sequence {pn} is uniformly countably
additive;

(ili) ¢f a nonnegative measure A € M(X, A) is such that p, < X for alln,
then

}% sup{pn(A): A€ A, XNA) <t,neIN} =0.

PROOF. Let v = >"°7  ¢p|pn|, where ¢, = 27™(1 4 ||un])) 7. It is clear
that p, < v for all n. By the Radon—Nikodym theorem u,, = f, - v, where
fn € L' (v). One has ||pn|| = || fnll22 ()- By Theorem 4.5.6, the sequence { f, }
is bounded in L!(v) and there exists a function f € L!(v) such that

lim fndyz/fdy, VAec A
A A

n—oo

Letting p = f - v we obtain a measure with the property mentioned in (i).
According to Theorem 4.5.6, the functions f,, have uniformly absolutely con-
tinuous integrals, whence it follows that

a(t) zsup{/A|fnd1/: Ae A v(A) <tne ]N}

tends to zero as t — 0. It is clear that a is a nonnegative nondecreasing
bounded function. Hence assertion (ii) is proven. The uniform countable
additivity of w, follows by (ii). Finally, for the proof of (iii) it suffices to
observe that the previous reasoning applies to A in place of v. O

4.6.4. Corollary. Let measures p, € M(X,A) be such that for every
set A € A one has sup,, |pn(A)| < co. Then sup,, ||pn.|| < oo.

PROOF. If our claim is false, we can pass to a subsequence and assume
that ||pn|| > n. The measures pu,//n converge to zero at every set in A.
Hence sup,, ||ptn/v/n]| < oo, which is a contradiction. 0O

Some conditions that are equivalent to the uniform countable additivity
are collected in the following lemma.

4.6.5. Lemma. Let M be a family of bounded measures on a o-algebra A.
The following conditions are equivalent:

(i) the family M is uniformly countably additive;

(ii) one has Zhj& sup,,e s [(Ai)| = 0 for every sequence of pairwise dis-

joint sets A; € A;
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(iii) for every decreasing sequence of sets A; € A with (\;=, A; = &, one
has lim p(A4;) =0 uniformly in p € M;

11— 00

(iv) if a bounded nonnegative measure v is such that p, < v for all n,
then

%inésup{u(A): peEM, Ae A v(A) <t}=0.

PROOF. The equivalence of conditions (i) and (iii) is verified exactly as
in the case of a single measure taking into account that, for any sequences of
increasing sets A;, the sets A;1\A4; are disjoint. It is clear that (i) yields (ii).
In addition, (iv) yields (ii) and (iii). Let us verify that (ii) implies (iv). If this
is not the case, there exists a bounded nonnegative measure v with respect to
which all the measures p,, are absolutely continuous such that, for some ¢ > 0
for every € > 0, there exist an index m. and a set A, € A with v(A.) < ¢
and |pm, (Ae)] > ¢. We construct disjoint sets B; € A and indices k; with
|per; (B;)| > ¢/2, which will lead to a contradiction with (ii). To this end, we
set B11 = A; and k1 = mq. Next we find &1 > 0 such that |ug, |(E) < ¢/4
for all E € A with v(E) < §. Let kg := me,, Ba1 := B11\A:,, Ba2 = A;,.
Then |uk, (B2,1)| > ¢ — ¢/4. Suppose that for every ¢ < n, we have already
found indices k; and sets B;; with j = 1,...,14, such that B; ; C B;_y; if
]SZ—]., Biyiji’kZQifj#k, and

ik, (Big)l > ¢ —c/d = - —c/4'

if j < i. One can take £, > 0 such that |ux,|(E) < ¢/4"*! for all i < n
whenever v(E) < e,,. Finally, we set

kn+1 = Me,,, Bn+1,n+1 = Asna Bn+17j = Bn,j\A&w,'

The sets B; := (-

n—1 Bn,i are the required ones. O
An interesting generalization of this lemma is given in Theorem 4.7.27.
The proof of Theorem 4.6.3 gives in fact a stronger assertion (obtained

by Saks [841]), namely, that the conclusion of the theorem remains true if

one has convergence of p, (E) for all sets E from some class S of sets that is a

second category set in the space A/v, where v is a nonnegative finite measure

such that p, < v, p < v. As already noted, Fichtenholz [288], [290] proved
that if the integrals of functions f,, € L'[0,1] over every open set converge
to zero, then the integrals over every measurable set converge to zero as well

(generalizations of this result to topological spaces are given in Chapter 8).

G.M. Fichtenholz raised the question about a characterization of classes S of

sets with the property that convergence to zero of integrals over the sets in S

yields convergence to zero of integrals over all measurable sets. This problem

was studied in Gowurin [376], where it was shown that S may even be a first
category set in the metric space of all measurable sets in [0, 1] (see Exercises

4.7.134, 4.7.135).
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4.7. Supplements and exercises

(i) The spaces LP and the space of measures as structures (277). (ii) The weak
topology in LP (280). (iii) Uniform convexity (283). (iv) Uniform integrability
and weak compactness in L' (285). (v) The topology of setwise convergence
of measures (291). (vi) Norm compactness and approximations in LP (294).
(vii) Certain conditions of convergence in LP (298). (viii) Hellinger’s inte-
gral and Hellinger’s distance (299). (ix) Additive set functions (302). Exer-
cises (303).

4.7(i). The spaces LP and the space of measures as structures

We recall that an upper bound of a set F' in a partially ordered set (F, <)
is an element m € E such that f < m for all f € F (regarding partially
ordered sets, see §1.12(vi)). An upper bound m is called a supremum of F if
m < m for every other upper bound m of the set F'. By analogy one defines
the terms lower bound and infimum. A partially ordered set (F, <) is called a
structure or a lattice if every pair of elements x, y € F has a supremum denoted
by x Vy, and an infimum denoted by A y. A supremum is unique provided
that the relations x < y and y < z yield that z = y. A structure F is called
complete if every subset of F with an upper bound has a supremum. If this
condition is fulfilled for all countable subsets, then E is called a o-complete
structure. A supremum of a set F in a lattice E is denoted by \/ F.

The set £°(11) of real g-measurable functions is a structure with its natural
ordering: f < gif f(x) < g(z) p-a.e. For fVgand f A g one takes max(f,g)
and min(f, g), respectively. It is clear that the classes of real functions £P(u),
p € (0,00], and the corresponding spaces LP(u) of equivalence classes are
structures with the same ordering. Note that the relations f < g and g < f
imply the equality f = ¢ in the classes LP (1) unlike the classes £P(u).

4.7.1. Theorem. Let (X, A, ) be a measure space with a o-finite mea-
sure pi. Then, the sets LO(u) and L°(u) are complete structures with the
above-mentioned ordering. In addition, if a set F C L%(u) has an upper
bound h, then there exists an at most countable set {f,} C F such that

f<supf,<h foradl felF.

PRrROOF. It suffices to consider finite measures. The first claim is a corol-
lary of the last one, which we now prove. Suppose first that there exists a
number M such that 0 < f < M for all f € F. Let us add to F all func-
tions of the form max(fa,,--., fa,), where fo, € F. The obtained family
is denoted by G. It is clear that max(gy,...,gx) € G for all g; € G. Any
upper bound of the family F is an upper bound for G. Hence it suffices to
prove our claim for G. The integrals of functions in G have a finite supre-
mum /. We can assume that the family G is infinite. Let us take a sequence
of functions g, € G the integrals of which approach I. One can assume that
gn(2) < gni1(z), passing to the sequence g/, = max(gn,9,_1), g1 = g1- Set
g (x) = HILH;O gn(x) = sup,, gn(x). Then the integral of ¢g* equals I. Let us
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show that g(z) < ¢g*(x) a.e. for all g € G (then ¢g* < h for any upper bound h
of the family G). Indeed, otherwise there exists g € G with g(z) > g*(x) on a
set E of positive measure. Then

/gduz/g*dqus, where £ > 0.
E E

Let us take n such that
gndp>1—c¢.
X

Letting ¢ := max(g,, g) € G, we have

/wduz/ gndu+/g*du+€2/gndu+€>l
b'e X\E E p'e

contrary to the definition of I. In the case where the functions in F are
nonnegative, it suffices to apply, for every fixed n, the above-proven assertion
to the family of functions min(n, f), f € F. It is clear that it suffices to have
the estimate f > C, f € F, for some C. Finally, in the general case, we fix
fo € F and partition X into disjoint sets Xy := {x: k < fo(z) < k+ 1},
k € Z. On every X our claim is true, since one can apply what we have
already proven to the family max(f, fo), f € F. If frn, n € IN, is a sequence
in F corresponding to the set X}, then the countable family of functions fy ,,,
k,n € IN, is the required one for the whole X. O

4.7.2. Corollary. The sets LP(u) and LP(p), where the measure p is
o-finite and p € [0,+00], are complete structures with the above-mentioned
ordering. In addition, if a set F C LP(u) has an upper bound h, then its
supremum in LP(u) coincides with the supremum in LO(n), and there exists
an at most countable set {f,} C F such that f <sup f, < h forall f € F.

PROOF. The case p = 0 has already been considered. This case and
Fatou’s theorem yield the assertion for p € (0, +00). The assertion for p = co
follows directly from the assertion for p = 0. ]

4.7.3. Corollary. Let p be a finite nonnegative measure on a space
(X, A) and let Ay, t € T, be a family of measurable sets. Then, it contains an
at most countable subfamily { Ay, } such that u(A\ U5~ Ar,) =0 for every t.

ProOOF. The function 1 majorizes the indicators of A;. By the above
theorem, there exists an at most countable family of indices ¢,, such that, for
every t, we have I, < sup,, [4, a.e. Hence a.e. point x from A; is contained
. o0
inJ,_; A, O

It is to be noted that a supremum \/ F of a set F in £P(u) may not
coincide with the function sup ¢+ f(z) defined pointwise. For example, let F°
be a set in [0,1]. For ¢t € F, we set fi(s) =1if s =t, fi(s) =0 if s # ¢, where
s € [0,1]. Then sup,cp fi(s) = Ir(s), although the identically zero function
is a supremum of the family {f;} in £7[0,1]. If F' is not measurable, then the
function sup,cp fi(s) = Irp(s) is nonmeasurable as well. As an example of an
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incomplete structure one can indicate the space C|0, 1] of continuous functions
with its natural order f < ¢. In this structure, the set of all continuous
functions vanishing on [0,1/2) and majorized by 1 on [1/2,1] has an upper
bound 1, but it has no supremum. If the set of all measurable functions
on [0,1] is equipped with the partial order corresponding to the inequality
f(z) < g(x) for each z (in place of the comparison almost everywhere used
above), then we also obtain an incomplete structure.

It is worth mentioning that the above results do not extend to arbitrary
infinite measures, although there exist non-o-finite measures for which they
are true (see Exercise 4.7.91).

As an application of the above results we prove the following useful as-
sertion from Halmos, Savage [405].

4.7.4. Theorem. Let u;, t € T, be a family of probability measures
on a o-algebra A absolutely continuous with respect to some fized probability
measure (1 on A. Then, there exists an at most countable set of indices t,, such
that all measures p; are absolutely continuous with respect to the probability
measure Y o1 27"y,

PROOF. By hypothesis, u; = f; - p, where f; € L*(u). Let us consider
p-measurable sets X; = {x: fi(z) # 0} and apply Theorem 4.7.1 to the
family of indicators Iy, (they are majorized by the function 1). By the cited
theorem, there exists an at most countable family of indices t,, such that, for
every t, we have Ix,(z) < sup,, Ix, (v) p-a.e. This means that on the set
{: >0 27" f, (z) = 0} we have fi(z) = 0 for p-a.e. z. Therefore, the
measure p; is absolutely continuous with respect to the probability measure

Z’ZO:]. 27”#“/71,' |:|

Let us now show that the space M(X, A) of all bounded signed measures
on A is a complete structure. One has the following natural partial order on
M(X, A): p<vif and only if u(A) < v(A) for all A € A.

For any p,v € M(X, A), we set
)+

pVvi=p+ -t pAvi=p— (v —p)”

If 1 and v are given by densities f and g with respect to some nonnegative
measure A (for example, A = |u| + |v|), then

wVv=max(f,g) -\, pAv=min(f, g)- A\

It is readily seen that pVv is the minimal measure majorizing p and v. Indeed,
if a measure 7 is such that y < n and v < 5, then we take a nonnegative
measure A such that y = f- A\, v =¢g-A, n=h-A One has h > f and
h > g Ma.e., whence h > max(f,g) A-a.e. Thus, M(X, A) is a structure.
It is obvious that suprema and infima of subsets of M(X,.A) are uniquely
defined.

4.7.5. Theorem. The structure M(X, A) is complete.
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PROOF. Suppose that a set M C M(X, A) is majorized by a measure p.
Let us show that M has a supremum (which is uniquely defined in M (X, A)).
Suppose first that all measures in M are nonnegative. Then, for each m € M,
we have m < p and by the Radon—Nikodym theorem m = f,, - u, where
fm € L*(u). The condition m < p means that f,, <1 p-a.e., i.e., the family
{fm} is majorized by the function 1 and by the above results has a supremum
fin L' (u). It is clear that the measure f -y is the supremum of M. The case
where there exists a measure pg such that pg < m for all m € M, reduces to
the above-considered situation, since the set M — g consists of nonnegative
measures and is majorized by the measure p — pg. If v is the supremum of
M — pg, then v + pg is the supremum of M. Let us consider the general
case and fix mg € M. The set My = {m V mo,m € M} consists of measures
majorizing the measure mg. In addition, m VvV mg < p for all m € M, since
mo < u and m < p. As we have established, M has a supremum v. Let us
show that v is the supremum of M. Indeed, m < mV mqg < v for all m € M.
Suppose that 7 is a measure such that m < n for all m € M. In particular,
mg < n, whence nV mg =n. Then mVmy <nVmy=nforall me M, ie.,
7 is an upper bound for My, whence we obtain v < 1. Thus, v is the smallest
upper bound, i.e., it is the supremum. (I

4.7(ii). The weak topology in L?

In applications one frequently uses elementary properties of the weak
topology in the space LP, which we briefly discuss here. We recall that a
sequence of vectors x,, in a normed space FE is called weakly convergent to a
vector x if I(z,,) — l(x) for all | € E*, where E* is the space of all continuous
linear functions on E. If, for every | € E*, the sequence [(x,,) is fundamental,
then {z,} is called weakly fundamental. This convergence can be described
by means of the so-called weak topology on E, in which the open sets are all
possible unions of sets of the form

Ula,ly,....lne1,...,60) = {z: |h(z—a)| <er,...,[ln(z—a) <en},
ac€FE, l;eE" >0, nelN,
and also the empty set. It is seen from the definition that in any infinite-
dimensional space FE, every nonempty set that is open in the weak topology
contains an infinite-dimensional affine subspace, for U(0,11,...,ln,€1,...,€n)
contains the intersection of the hyperplanes I;” 1(0). Hence such a set is not
bounded, whence we conclude that in any infinite-dimensional space F the
weak topology is strictly weaker than the topology generated by the norm.
However, it may occur that the collections of convergent (countable) sequences
are the same in the weak topology and norm topology. As an example
we mention the space [ of all real sequences x = (z,) with finite norm
llz|| = Y-, |zn|. This space can be regarded as the space L'(IN,v), where
v is the measure on IN assigning the value 1 to every point. The fact that
weak convergence of a sequence in ! yields norm convergence is clear from
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Corollary 4.5.8. However, in every space LP[a,b], 1 < p < oo, one can find a
sequence that converges weakly, but not in the norm. For example, if {e,} is
an orthonormal basis in L?[a, b], then e,, — 0 in the weak topology, but there
is no norm convergence.

It is worth noting that the weak topology is a special case of the topology
o(E,F), where E is a linear space (not necessarily normed) and F is some
linear space of linear functions on E separating the points in E (i.e., for
every x # 0, there exists | € F with [(z) # 0). The topology o(E, F) is
called the topology generated by the duality with F' and is defined by means
of the same sets Ul(a,l1,...,ln,€1,...,6,) as above, with the only difference
that now I; € F. Letting FF = E* in the case of a normed space E we
arrive at the weak topology. It is readily verified that if a linear function
[ on FE is continuous in the topology o(E,F), then | € F (details can be
found in Schaefer [848, Ch. IV]). Thus, the dual (the set of all continuous
linear functions) to the space E with the topology o(E, F) is exactly F. In
particular, in spite of the fact that the weak topology of a normed space is
weaker than the norm topology, it yields the same collection of continuous
linear functions.

Let p be a nonnegative (possibly infinite) measure on the space (€2,.4).
By the Banach—Steinhaus theorem (see §4.4) we obtain the following result.

4.7.6. Proposition. Fvery weakly convergent sequence in LP(u) is norm

bounded.

We know that any continuous linear function on LP(u) with 1 < p < o0
is generated by an element of L?(u), where ¢ = p/(p—1) (we have considered
above the case of a finite or o-finite measure, and the case of an arbitrary
measure is considered in Exercise 4.7.87). Hence convergence of a sequence
of functions f,, to a function f in the weak topology of LP(u), 1 < p < oo, is
merely the relation

i [ fugdn= [ fodu. ¥y L),
n—ooJa Q

The properties of the weak topology in L' and LP with p > 1 differ
considerably. Here we give several results in the case p > 1; the case p =1
will be considered separately.

It follows by the above results that the spaces LP(u) with 1 < p < oo are
reflexive in the sense of the following definition.

4.7.7. Definition. A Banach space E is called reflexive if, for every
continuous linear functional f on E*, there exists a vector v € X such that
f() =1(v) foralll e X*.

The reflexivity of a space F is written concisely as the equality E** = E.
The reader is warned that this equality is not the same as the existence of an
isometry between E** and E!
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4.7.8. Theorem. Fither of the following conditions is equivalent to the
reflexivity of a Banach space E:

(i) the closed unit ball in the space E is compact in the weak topology;

(ii) every continuous linear functional on E attains its mazimum on the
closed unit ball.

See Diestel [222] for a proof.

4.7.9. Corollary. In the spaces LP(u) with 1 < p < oo, all closed balls
are compact in the weak topology. In addition, every norm bounded sequence
of functions f, contains a subsequence that converges in the weak topology to
some function f € LP(u).

We note that for separable spaces LP(u), the last assertion has a trivial
proof: one takes a countable everywhere dense set of functions g; in L7(u)
and picks a subsequence f,, such that the integrals of f,,, g; converge for
each i. The general case can be reduced to this one (passing to the o-algebra
generated by {f,,}), but it is simpler to apply the following Eberlein-Smulian
theorem (a proof can be found in Dunford, Schwartz [256, Ch. V, §6]), which
we shall also use in the case p = 1.

4.7.10. Theorem. Let A be a set in a Banach space E. Then, the
following conditions are equivalent: (i) the closure of A in the weak topology
is compact; (i) every sequence in A has a subsequence that converges weakly
in E; (ili) every infinite sequence in A has a limit point in E in the weak
topology (i.e., a point every neighborhood of which contains infinitely many
points of this sequence).

One more useful general result about weak convergence is the following
Krein—-Milman theorem (see Dunford, Schwartz [256, Ch. V, §6]).

4.7.11. Theorem. Suppose that a set A in a Banach space E is com-
pact in the weak topology. Then, the closed convexr envelope of A (i.e., the
intersection of all closed convex sets containing A) is compact in the weak

topology.

The next result characterizes weak convergence in LP for sequences con-
vergent almost everywhere or in measure. We emphasize, however, that weak
convergence in LP does not yield convergence in measure.

4.7.12. Proposition. Let 1 < p < oo and let functions f, € LP(u) con-
verge almost everywhere (or in measure) to a function f. Then, a necessary

and sufficient condition for convergence of {fn} to f in the weak topology of
LP(u) is the boundedness of {fn} in the norm of LP ().

PROOF. The boundedness in the norm follows by weak convergence. Let
{fn} be bounded in LP(u). By Exercise 4.7.76 it suffices to verify conver-
gence of the integrals of f, g to the integral of fg for every simple p-integrable
function ¢ (the function g is nonzero only on a set of finite measure). This
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convergence takes place indeed by convergence of f,g to fg almost every-
where (or in measure), since all these functions are nonzero only on a set of
finite measure and are uniformly integrable due to the boundedness of {f,g}
in LP(u). O

In the case p = 1, almost everywhere convergence and norm boundedness
do not yield weak convergence. Indeed, otherwise we would obtain the uniform
integrability of f,, hence convergence in the norm, but it is easily seen that
the functions f,(z) = nl(g,1/n(x) have unit norms in L'[0,1] and converge
pointwise to zero.

In connection with the above proposition, see also Proposition 4.7.30.

For p = 1 weak convergence in L'(u) along with almost everywhere con-
vergence yield convergence in the norm by Corollary 4.5.7. For p > 1 this is
not true (Exercise 4.7.78).

One more interesting property of weak convergence in LP is given in Corol-
lary 4.7.16 below.

Another important special case of a topology of the form o(FE, F) is the
weak™ topology on the dual space E* of a normed space E. This topology
is denoted by o(E*, E') and defined as the topology on E* generated by the
duality with the space F regarded as the space of linear functions on E*: every
element © € E generates a linear function on E* by the formula [ — I(x).
Convergence of functionals in the weak® topology is merely convergence at
every vector in F. For a reflexive Banach space F, the weak® topology on
E* coincides with the weak topology of the Banach space E*. An important
property of the weak™ topology is expressed by the following Banach—Alaoglu
theorem (see, e.g., Dunford, Schwartz [256, Ch. V, §4]).

4.7.13. Theorem. Let E be a normed space. Then, the closed balls in
E* are compact in the weak™ topology.

If F is separable, then the closed balls in E* are metrizable compacts
in the weak* topology. In this case, every bounded sequence in E* contains
a weakly® convergent subsequence (of course, the last claim can be easily
proved directly by choosing a subsequence that converges at every element
of a countable everywhere dense set). However, in the general case this is
not true. For example, if £ = [°°, then the sequence of functionals [,, € E*
defined by I,(x) = x, has no weakly* convergent subsequences (otherwise
such a subsequence would be weakly* convergent to zero, which is impossible).
Thus, for the weak* topology (unlike the weak topology) compactness is not
equivalent to sequential compactness.

4.7(iii). Uniform convexity of L?

4.7.14. Definition. A normed space E with the norm || - || is called
uniformly convez if, for every € > 0, there exists § > 0 such that
whenever ||z|]| =1, ||yl =1 and ’:CT—i—y

H >1-90, onehas ||z—y| <e.
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Let 1 be a nonnegative measure (possibly with values in [0, +o00]) on a
measurable space (X, A).

4.7.15. Theorem. For 1 < p < oo, the spaces LP(u) are uniformly
convez.

ProOOF. We observe that, for every £ > 0, there exists 6 = d(p,e) > 0
such that, for all a,b € IR, we have
a+b |al” + |6
2 2 '
Indeed, it suffices to show that such § exists for all real numbers a and b
with 1 < a? + b2 < 2, since for every nonzero vector (a,b) in the plane one
can find ¢ > 0 such that the vector (ta,tb) belongs to the indicated ring, and
both inequalities in (4.7.1) are then multiplied by ¢tP. By the compactness
argument it is clear that in the absence of a required J, there exists a vector
(a,b) such that

5%MW+HM)§Ma7MPéw V§<1*® (4.7.1)

a+bp S lal? + |b|P
2 - 2 '
The last inequality is only possible if a = b, which is obvious from the con-
sideration of the graph of the function |z|? with p > 1. Now the first two of
the foregoing inequalities are impossible. This contradiction proves (4.7.1).
Let € > 0 and let functions f and g have unit norms in L”(x) and satisfy
the inequality || f — g||zr(u) > €. Let us consider the set

= {o: (@I +l()P) < 4lf () - (@)}
By (4.7.1) we obtain

f(z) +g(x) "’
2

1<a?+b* <2, (|alP + bP) < 4]|a — b|?,

< (1 U st

VaeqQ. (4.7.2)

It is clear that
eP eP
/ |f—glPdu < —/ FP+ 1glP] dp < =,
X\Q 4 Jx 2
whence one has v
€
/ [f = glPdp = <.
Q

Taking into account the estimate (|f|P + |g|?)/2 — |(f + ¢)/2[" > 0 and in-
equality (4.7.2) we obtain

/}((lflpglgp_‘f;rg"’)duz/goflp;rlglp_’f;rgmdu

p p P
25/—|f| gl du252*p*1/|ffg|”du>§€—~
Q 2 Q

T 420
P P
/’ﬂ‘ du§1_§5_7
o2 420

Therefore,
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which means the uniform convexity of LP(u). The theorem is proven. (]

4.7.16. Corollary. Suppose that a sequence of functions f, converges
weakly to a function f in LP(u), where 1 < p < co. Assume, in addition, that

i [ fallze g = (1 l]ze (-
Then nh_,Holo | fo = fllzo(uy = 0.

PROOF. If we have no norm convergence, then, passing to a subsequence,
we may assume that || f — f, | zr(,) > € > 0. In addition, we may assume that
the functions f,, have unit norms. By the uniform convexity of LP(u), there
exists § > 0 such that || fn, + flLr(u) < 2(1 —6) for all n. Let ¢=* +p~! = 1.
There is g € L(u) with ||g||za(,) = 1 and

/fgdu: 1.

/ Mgduﬁ 1,
x 2

which leads to a contradiction, since by Holder’s inequality we obtain

Then

/fﬁfgduS’M‘ <14

x 2 2 Mzeg

It is seen from the proof that the established property holds for all uniformly
convex spaces. (Il

This corollary fails for p = 1 (Exercise 4.7.80).

4.7.17. Corollary. For any p € (1,400), the space LP(u) has the
Banach—Saks property, i.e., every norm bounded sequence { [} in LP(u) con-
fn1 + e + fnk

tains a subsequence {fn,} such that the sequence 3

converges

in the norm.

ProOOF. All uniformly convex Banach spaces have the Banach—Saks prop-
erty: see Diestel [222, Ch. 3, §7]. O

The Banach—Saks property implies the reflexivity of a Banach space FE
by Theorem 4.7.8. Hence L'[0,1] does not have this property (which is also
obvious from the consideration of nljg 1/y,]). A partial compensation is given
by Theorem 4.7.24.

4.7(iv). Uniform integrability and weak compactness in L!

In this subsection, we consider only nonnegative measures on a measurable
space (X, A).

4.7.18. Theorem. Let p be a finite measure and let F be some set of
w-integrable functions. The set F is uniformly integrable precisely when it has
compact closure in the weak topology of L'(1).
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PROOF. Let F be uniformly integrable. Then it is bounded in L'(u).
Denote by H the closure of F in the space (LC’O(M))’k equipped with the
weak* topology U(L°° (u)*, L™ (u)) By Theorem 4.7.13, the set H is compact.
Since L!(u) is linearly isometric to a subspace in L>(u)* (we recall that
every Banach space E is isometric to a subspace in E** under the natural
embedding into this space, see the proof of Theorem 4.4.3), the topology
o(L>(p)*, L>°(p)) induces on L'(u) the topology o(L*(u), L>(p)). Let us
show that H C L'(u). By construction, every element F € H is a continuous
linear functional on L (x) that equals the limit of some net of functionals

Fa(g)=/Xfagdu, g € L= (p),

where f, € F, i.e., there is a partially ordered set A such that, for each
a, B € A, there exists v € A with « < and 8 < v, and, for every g € L (u)
and € > 0, there exists v € A with |F,(g9) — F(g)| < € for all & > ~. The set
F has uniformly absolutely continuous integrals (Proposition 4.5.3). Hence,
for any € > 0, there exists § > 0 such that

F(I4) <limsup F,,(14) < 1imsup/ |fal dp < & whenever p(A) < 4.
a « A

According to Proposition 4.4.2, the functional F' is generated by a function
f € LY(u). Suppose that F has compact closure in the weak topology, but
is not uniformly integrable. Then, there are n > 0 and a sequence {f,} C F

such that
/ |faldp =n
{lfnl>n}

for all n > 1. By the Eberlein-Smulian theorem 4.7.10, the sequence {f,}
contains a subsequence {f,, } convergent to some function f € L!(x) in the
weak topology o(L', L°). In particular, for every u-measurable set A we have

lim / Fo dpt = / f i,
k—oo A A

which leads to a contradiction with Theorem 4.5.6. O

4.7.19. Corollary. Suppose that {fn} is a uniformly integrable sequence
on a space with a finite measure p. Then, there exists a subsequence f,, that
converges in the weak topology of L*(p) to some function f € L*(u), i.e., one
has

n—0o0

i [ fugdi= [ fodn, Vg€ 1=

PROOF. As shown above, the sequence {f,} has compact closure in the
weak topology. By the Eberlein-Smulian theorem, it contains a weakly con-
vergent, subsequence.

Let us give an alternative reasoning that employs the weak compactness
of balls in L?. Set f,, = Jnl{if.1<ky> 7k € IN. For any fixed k, the sequence
of functions {f, x} is bounded in L?(u), hence contains a subsequence that
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is weakly convergent in L?(u). By the standard diagonal argument one can
obtain a sequence {n;} such that, for every k, the functions f,,, » converge
weakly in L?(p) to some function gy € L?(p): one takes a subsequence {n; ;}
for k =1, a subsequence {ns ;} C {n1;} for k = 2 and so on; then one takes
n; := n; ;. We observe that

lgr — gl 1) = /(gk — qi)sign(gr — g1) dp

- Jlggo/(fnjk — [ 0)8ign(gr — g1) dp
< iminf | fo; = fo,allorg — 0

as k,l — oo by the uniform integrability of { f,}. Hence the functions g con-
verge in L (u) to some function f. The sequence { fn, } converges to f weakly

in L'(11). Indeed, for every bounded measurable function g and every & > 0,

there exists a number k such that ||fn — foxllzin < e(suplg(z)| + 1)_1

for all n (which is possible by the uniform integrability) and the integral of
|g(f — gr)| does not exceed £, next we find a number j; such that for all j > j;
the integral of |g(gr — fn, r)| does not exceed . It remains to use the fact
that the integral of [g(fn,; r — fn,)| does not exceed ¢. O

4.7.20. Theorem. Let (X, A, 1) be a measure space, where the measure
p takes values in [0,+00], and let F C L'(u). The following conditions are
equivalent:

(i) the closure of F in the weak topology of L*(u) is compact;

(ii) F is norm bounded and the measures f-u, where f € F, are uniformly
countably additive in the sense of Definition 4.6.2;

(iii) the closure of the set {|f|: f € F} in the weak topology of L'(u) is
compact;

(iv) F is norm bounded, the functions in F have uniformly absolutely
continuous integrals and, for every e > 0, there exists a measurable set X
such that p(X.) < oo and

/ |fldp < e forall feF,

X\ X,

(v) for every € > 0, there exists a p-integrable function g such that
/ |fldp <e forall feF.
{IfI>g}

PRrROOF. For bounded measures the equivalence of the listed conditions
follows by Theorem 4.7.18, Proposition 4.5.3, and Lemma 4.6.5. It is clear
from the Eberlein-Smulian theorem and the definition of the uniform count-
able additivity that it suffices to prove the equivalence of (i)—(iii) for countable
sets F = {f,}. Hence the general case reduces at once to the case where the
measure /1 is o-finite because there exists a set Xy € A on which our measure
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is o-finite and all functions f,, vanish outside Xy (see Proposition 2.6.2). Next
we find a finite measure po such that

M(A)Z/AQde Ac A,

where ¢ > 0 is a measurable function. Now everything reduces to the finite
measure o and the functions g, = f,/0. Indeed, the sequence of functions
Gn, € L'(uo) weakly converges to g in L' (ug) precisely when the sequence
gn, /0 weakly converges to g/o in L'(u). The situation with the absolute
values of these functions is analogous. Condition (ii) for the functions f,
and the measure p is equivalent to the same condition for the functions g,
and the measure pg. It is seen from the above reasoning that condition (iv)
implies (i)—(iii) in the general case, too. We now verify that (iv) follows from
(i)—(iii) for infinite measures. It is clear that due to the already-established
facts for finite measures, we have only to verify the second condition in (iv).
If it is not fulfilled, then, for some € > 0, one can find a sequence of increasing
measurable sets X,, and a sequence of functions f, € F such that f, = 0
outside the set Y = J -, X,, u(X,) > n and

X\ X

We consider the measures p, := f, - ¢ and obtain a contradiction with
Lemma 4.6.5. The equivalence of (v) to all other conditions follows from
Exercise 4.7.82. O

In the case where a finite measure p has no atoms, the norm boundedness
of F in condition (iv) follows by the uniform absolute continuity (Proposi-
tion 4.5.3).

4.7.21. Corollary. Let u be a bounded nonnegative measure and let a
set M C L*(u) be norm bounded. The closure of M in the weak topology is
compact if and only if for every sequence of p-measurable sets A, such that
Apt1 C A, and (N, Ap = @, one has

lim sup |fldp = 0.
n—00 fef A,
ProoF. This condition is necessary by condition (v) in the theorem. It
is sufficient by condition (ii) and Lemma 4.6.5. O

If the measure u is separable, then the weak topology on weakly compact
sets in L'(p) is metrizable (Exercise 4.7.148).

Unlike the case p € (1,+00), in general, the spaces L(x) do not have
the property that any bounded sequence contains a weakly convergent sub-
sequence (see Corollary 4.7.9 and Exercise 4.7.77). The next assertion gives
partial compensation.
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4.7.22. Lemma. Let (X, A, u) be a space with a finite nonnegative mea-
sure, let {f,} C L*(n), and let sup,, || fnllL1(u) < 00. Then, for every e > 0,
one can find a measurable set E., a number § > 0, and an infinite set S C IN
such that p(E.) < e and, for any set A C X\E. with u(A) <6, one has

/|fk|du<s, VEkeS.
A

PROOF. Suppose the contrary. Then, for some ¢ > 0, whatever is our
choice of a set F with u(F) < ¢, a number § > 0, and an infinite set S C IN,
there exist A C X\E and k € S such that u(A) < § and

JNAED
A

Let us show that, for every set C' with u(C) < e and every infinite part
S C IN, there exist a set A C X\C and an infinite subset T C S such that
#(AUC) < € and

/WW@& VkeT.
A

To this end, we set S; = S and take a positive number §; < (e — pu(C))/2.
Next we find B; C X\C with u(B;) < d1 and ky € S such that

/ |fk1|dlu’25'
B,

We continue this process inductively so as 6; < d;—1/2 and
S; = {k €Si_1: k> ki—1}~

Letting A = ;= B;, T = {k;}, we obtain the required objects.

By using the established fact we shall arrive at a contradiction. To this
end, we describe one more inductive construction: let us apply the above fact
to C = @ and S = IN. We obtain sets A1 € X and 73 C IN such that
(A1) < e and

/ |frldu >e, VkeTy.
Ay

Next we apply our auxiliary result to C = A; and S = T3, which yields an
infinite part 75 C T and a set Ay C X\ A; such that p(A; U A2) < € and

[ Adda= [ inddus [ Apldez e vEeTn
A1UAs A1 Az

Next we deal with C' = A; U Ay and S = Tp. Let N > e tsup,, || fnllz2 (-
After N steps we obtain disjoint sets Aj, ..., Ay and a number k£ such that
the integral of |fy| over Ay U---U Ay is greater than ||fy|z1(.), which is
impossible. The possibility of continuation of our inductive construction is
provided by the property that u(A; U---U A,) < ¢ at all previous steps. O

Now we are able to prove Gaposhkin’s theorem on subsequences that
converge “almost weakly in L'”.
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4.7.23. Theorem. Let i be a finite nonnegative measure on a measur-
able space (X, A, p), let {fn} C LY(n), and let sup,, || fnll11(n) < 0o. Then,
one can find a subsequence {ny} and a function f € L'(u) such that {fn,}
converges to f almost weakly in L*(u) in the following sense: for everye > 0,
there exists a measurable set X, such that u(X\X.) < e and the functions
fnlx. converge to f|x. in the weak topology of the space L*(u|x.).

PROOF. We apply the above lemma to construct a subsequence f,,; such
that there exist sets Y, with u(X\Y,) < 27" on each of which the sequence
{fn,} has uniformly absolutely continuous integrals. Then it will contain a
further subsequence that is weakly convergent in L' on every set Y,,. For Y,,
we take the set X\ Uy—; Fz(n,k), where e(n, k) > 0 is chosen as follows:

e(n, k) = mim(2_k_"7 §(n, k —1)),

and the number §(n, k — 1) corresponds to e(n, k — 1) according to the lemma,
where e(n,1) = 27". By the lemma we have an infinite part 5, C {f,}
with uniformly absolutely continuous integrals on Y,,. Moreover, it is clear
from our reasoning that these parts can be chosen in such a way that we have
Fn+1 C Fn, whence one easily obtains the existence of a subsequence with
uniformly absolutely continuous integrals on every Y,,. O

Let us consider one more remarkable property of bounded sequences in L',
established by Komlés [538]. In Chapter 10, where the proof of the first part
of the following theorem is given, some additional results can be found.

4.7.24. Theorem. Let i be a finite nonnegative measure on a space X,
let {fn} C LY(n), and let

sup || fullL1 () < o0.
n

Then, one can find a subsequence {gn} C {fn} and a function g € L*(u) such
that, for every sequence {hn} C {gn}, the arithmetic means (hy +---+hy)/n
converge almost everywhere to g.

One can also obtain the following: for every e > 0, there exists a set X,
such that p(X\X.) < e and the functions (hy + -+ hy)/n converge to g in
the norm of L*(Xc, u).

PRrROOF. The most difficult part of Komlds’s theorem is the existence of a
subsequence with the arithmetic means of all subsequences convergent a.e. to
some function g € L'(u). This part will be proved in Chapter 10 (see §10.10)
by using the techniques of conditional expectations discussed there. If this
part is already known, then we apply it to the subsequence { f,,, }, obtained in
Theorem 4.7.23, that converges almost weakly in L' (1) to some function f. It
is clear that the arithmetic means of any subsequence {h, } in {f,,} converge
in the same sense to the same limit f. It remains to observe that if these
arithmetic means converge almost everywhere to a function g, then f = g a.e.
Indeed, the fact that the sequence of functions n=1(hy + --- + hy,,) converges
almost weakly in L!(u) yields that, given ¢ > 0, there exists a set X. such
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that p(X\X:) < € and on X, this sequence is uniformly integrable. By the
Lebesgue—Vitali theorem, it converges to g on X, in the norm of L'(X., ),
hence in the weak topology. Therefore, f = g a.e. on X., whence one has the
equality f = g a.e. on X. In addition, we obtain convergence in L' (X, u). O

4.7(v). The topology of setwise convergence of measures

Setwise convergence of measures, considered in Theorem 4.6.3, can be de-
fined by means of a topology. Namely, this convergence is exactly convergence
in the topology o(M,F), where M = M(X, A) is the space of all bounded
countably additive measures on A and F is the linear space of all simple A-
measurable functions. A fundamental system of neighborhoods of a point g
in this topology consists of all sets of the form

Wa,...a, (o) = {u e M(X,A): |p(4;) —po(A)| <e, i=1,... ,n},

where A; € A and € > 0 (see §4.7(ii) about the definition of this topology).
If the o-algebra A is infinite, then the topology (M, F) is not generated by
any norm (Exercise 4.7.115). One more natural topology on M is generated
by the duality with the space B(X,.A4) of bounded .A-measurable functions,
i.e., this is the topology U(M,B(X, .A)) If the o-algebra A is infinite, then
this topology is strictly stronger than the topology o(M,F). But, as it fol-
lows from Theorem 4.6.3, for countable sequences convergence in the topology
o(M,F) is equivalent to convergence in the topology (M, B(X,A)) (for
the proof one should also use that every function in B(X,.A) is uniformly
approximated by simple functions).

Finally, since M is a Banach space, one can consider the usual weak
topology o (M, M*) of a Banach space (see §4.7(ii)), which in nontrivial cases
is strictly stronger than the topology o(M, F), but is strictly weaker than the
topology generated by the variation norm (Exercise 4.7.116). We shall now
see that convergence of countable sequences in the topology o(M, M*) is the
same as in the topology of setwise convergence. In addition, both topologies
possess the same families of compact sets.

4.7.25. Theorem. For every set M C M(X, A) the following conditions
are equivalent. (1) The set M has compact closure in the topology o(M, M™*).
(ii) The set M is bounded in the variation norm and there is a nonnegative
measure v € M(X,A) (a probability if M # {0}) such that the family M is
uniformly v-continuous, i.e., for every e > 0, there is 6 > 0 with the property
that
|u(A)| <e  forall p € M whenever A € A and v(A) <.

In this case, all measures from M are absolutely continuous with respect to v,
the closure of the set {du/dv: p € M} is compact in the weak topology
of L'(v), and v can be found in the form Y .o | cy|un| with some finite or
countable collection {un} C M and suitable numbers ¢, > 0.

(iii) The set M is bounded in the variation norm and uniformly countably
additive.



292 Chapter 4. The spaces L? and spaces of measures

(iv) The set M has compact closure in the topology of setwise convergence.
This is also equivalent to the compactness of its closure in the topology of
convergence on every bounded A-measurable function.

(v) Every sequence in M has a subsequence convergent on every set in A.

PRrROOF. First we observe that, for every nonnegative measure v on A,
the space L!(v) is embedded as a closed linear subspace in M(X, A) if we
identify f € L'(v) with the measure f -v. With this identification, the
topology o(M, M*) induces on L'(v) the topology o (L', L>). This follows
by the Hahn—Banach theorem (or by the fact that (L!(v))* = L*>(v)).

Let (i) be fulfilled. We show first that, for every ¢ > 0, there exist ¢ > 0
and a finite collection p1, ..., u, € M such that

|p(A)| <e for all g € M whenever A € A and |u;|(A) < § for all i < n.

Suppose the contrary. Then by induction one can construct a sequence of
measures f, in M and a sequence of sets A,, in A such that

ltns1(An)l > €, |ui|(An) <277, Vi<n.

Let =307 27 ||| 7 ptn|. Then pn = fo - g, fo € L'(p). It is clear by
the remark made above that the sequence {f,} has compact closure in the
weak topology U(Ll(p),Loo(p)). By Theorem 4.7.18 and Proposition 4.5.3
this sequence has uniformly absolutely continuous integrals, which leads to
a contradiction, since p(A,) < n27"+ 327 127" — 0 and pinq1(4,) > €.
Thus, our claim is proved.

Now, for every n, we find a number ¢, > 0 and measures uf,...,u;
corresponding to ¢ = n~!. Let us take numbers Cn,; > 0 such that the
measure v = »_ o, Z?Zl cn,j|1}| be a probability (if all the measures uf
are zero, then M consists of the zero measure). Let ¢ > 0. Pick n such that
n~! < e. Thereis § > 0 such that |u}[(A) <6, forall j =1,..., k,, whenever
v(A) < 4. Then, by our construction, |u(A)] < n~! < e. Thus, one has (ii).

Let (ii) be fulfilled. If (iii) does not hold, then, for some e, there exist
increasing numbers n; and measures u, € M such that ’E;’;nk uk(Aj)‘ >e
for all k. Since uy = fx - v, where fr € L'(v), we arrive at a contradiction
with the fact that, according to Theorem 4.7.18 and Proposition 4.5.3, the
functions fr have uniformly absolutely continuous integrals.

Let (iii) be fulfilled. Let us show that every sequence {u,} C M con-
tains a subsequence convergent in the topology o(M, M*). Then, by the
Eberlein-Smulian theorem, we obtain (i), which yields (iv), since the topol-
ogy o(M, M*) is stronger than the topology of setwise convergence. Let us
fix a nonnegative measure v with u, = f, - v, f, € L'(v). According to
what has already been proven, it suffices to show that the measures pu,, are
uniformly v-continuous. But this follows at once by Lemma 4.6.5. Since the
topology of convergence on bounded .4-measurable functions is weaker than
o(M, M*), it has the same compact sets.
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Let (iv) be given. The topology of setwise convergence and the topology
of convergence on bounded .4-measurable functions coincide on M, since M is
bounded in variation and every bounded .A-measurable function is uniformly
approximated by simple functions. Suppose we are given a sequence {pu,}
in M. We take a probability measure v on A such that pu,, = f, - v, where
fn € L'(v). Taking into account that any continuous linear functional on
L'(v) is generated by a bounded .A-measurable function, we obtain that the
set {f»} has compact closure in the weak topology of L' (v). By the Eberlein—
Smulian theorem this yields (v).

Finally, the implication (v)=-(i) follows by the Eberlein-Smulian theorem.
Indeed, suppose we have a sequence of measures u, € M. As above, we take
a measure v > 0 such that pu, = f, v, f, € L*(v). It is clear that M
is bounded in variation. Then, by (v), {f.} contains a subsequence that is
weakly convergent in L!(v). It is seen from the observation made at the
beginning of the proof that the corresponding subsequence of measures in
{pn} converges in the topology o(M, M*). O

One more condition of compactness in the topology of setwise convergence
is given in Exercise 4.7.130.

4.7.26. Corollary. A sequence of measures p, € M(X, A) converges in
the topology o(M, M*) precisely when it converges on every set in A.

We observe that if the measure v in assertion (ii) of the above theorem
has no atoms, then the boundedness of M in variation follows automatically
by the uniform r-continuity. Indeed, for every € > 0, we find § > 0 such
that |w(E)| < e if v(E) < 6, E € A. It is clear that |u|(E) < 2¢, since
|u(E")| < e for all B/ C E, E' € A. It remains to observe that the whole
space can be partitioned into finitely many parts with measures less than §
(see Theorem 1.12.9). Therefore, if all measures in M have no atoms, then in
(ii) we need not require the boundedness in variation. In the general case this
is not possible. For example, if X consists of the single point 0 and §(0) = 1,
then the measures nd are uniformly J-continuous and uniformly countably
additive, but are not uniformly bounded.

We recall once again that on more general sets of measures all three
topologies considered in the above theorem are distinct.

In connection with the Vitali-Lebesgue-Hahn—Saks theorem and Lemma
4.6.5 one can naturally ask whether it would be enough to verify the required
conditions only for sets in some algebra generating A in place of the whole A.
For example, dealing with a cube IR", for such an algebra it would be nice
to take the algebra of elementary sets. Simple examples show that this may
be impossible for some of the conditions that are equivalent in the case of
a o-algebra. More surprising is the following result, found by Areshkin [33]
for nonnegative measures, extended by V.N. Aleksjuk to signed measures and
given here with the proof borrowed from Areshkin, Aleksjuk, Klimkin [34].

Let R be a ring of subsets in a space X and let & be the generated o-ring.
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4.7.27. Theorem. Suppose we are given a family of countably additive
measures iy, « € A, of bounded variation on &. The following conditions are
equivalent.

(i) The measures o, are uniformly additive on R in the following sense:
for every sequence of pairwise disjoint sets R, in R, one has

oo
lim Z to(Ri) =0  uniformly with respect to a € A.
n—oo
k=n
(il) For every sequence {pa, } C {Ha} and every sequence of pairwise
disjoint sets R,, € ‘R, one has
lim g, (R,) =0.

(iii) The family {pa} is equicontinuous on R in the following sense: for
every sequence of sets R, € R with R,+1 C R, and ﬂ;o:l R, = @, one has
lim po(Ry) = 0 uniformly in o € A.

(iv) Conditions (i)—(iii) (or any of these conditions) are fulfilled on &.

PRrROOF. The equivalence of conditions (i)—(iii) in the case where & is a
o-algebra has already been established (see Lemma 4.6.5). The case of a o-
ring is analogous (in fact, this can be proven by elementary reasoning without
any category arguments). In particular, the equivalence of (i) and (ii) for a
ring is verified in Exercise 4.7.136. The equivalence of (i) and (iii) is obvious.
We now show that (ii) yields (iv). Suppose that this is not the case. Say, let
(ii) be false for & in place of JR. Then, there exist measures u,, in the given
family and disjoint sets S,, € & such that |u,|(S,) > € > 0. According to
Exercise 4.7.137(ii), there exist sets R,, € R such that

lue|(Sn A Ry) <e27™/4, ke IN. (4.7.3)

Then |ps|(Ry) > 3¢/4. Let By = Ry, E, = Rn\U?;ll R;. The sets E,, are
disjoint. For distinct k£ and j by the disjointness of Sj and S; we have

RN R; € (Sk A Ry) U (S; A Ry),
whence
|| (Re N Rj) < |pn|(Sk A Ri) + |1n|(S; A Ry).

Hence |, |(Re\(R1U---UR;_1)) < &/2, whence |uy|(Er A Ri) < €/2. Thus,
|in|(Eyn) > /4, which leads to a contradiction with (ii) for . O

4.7(vi). Norm compactness and approximations in LP

Let (X, A, 1) be a space with a nonnegative measure (possibly with values
in [0, +o00]) and let IT be the set of all finite collections m = {Ey,...,E,} of
disjoint sets of finite positive measure. The set II is partially ordered by the
relation m; < 7o defined as follows: every set in w1 up to a measure zero set is
a union of sets in my. For every w1, mo € 11, there exists 73 € IT with m < 73,
mo < w3, i.e., ITis a directed set and one can consider nets of functions indexed
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by elements of II. For any function f that is integrable on all sets of finite
p-measure we set

1 n
E™ f(x) :M(Ei)/Eifd'u ifreE;, E"f(xr)=0ifz¢U,_, Es.

It is clear that
B 5o = Yo ute) |
j=1

Note that in the case of a probability measure, IE™ f is the conditional expec-
tation of f with respect to the finite o-algebra generated by the partition m
(see Chapter 10 about this concept).

The following criterion of compactness is due to M. Riesz [810].

| fdu) I, ().

J

4.7.28. Theorem. Let i be a countably additive measure on a space X
with values in [0,+00] and let 1 < p < co. A set K C LP(u) has compact
closure in the norm of LP(u) precisely when it is bounded and

lim sup |[IE™ f — f|lLr(u) = 0. (4.7.4)
T fex

In particular, if the measure p is finite and F C L' () is a bounded set, then
F is norm compact in LP(u) if and only if, for every e > 0, there exists a
finite partition m of X into disjoint sets of positive measure such that, for
every function f € F, one has

1f =B fllpr <e (4.7.5)
Proor. By Holder’s inequality we have

P
/ fdu Su(Ej)p’l/ |7 dps,

E; E;

which yields that |[IE™ f||z» () < ||f]lzeu) for all f € LP(u). For any simple
integrable function f that is constant on disjoint sets E,..., E,, one has
E"f = f whenever m > my, mp = {F1,..., FE,}. The necessity of the above
condition is easily derived from this. Indeed, if K has compact closure, then,
given € > 0, one can find functions f1,..., f,, forming an ¢/4-net in K, i.e.,
every point in K lies at a distance at most €/4 from some of the points f;.
Next we find simple functions ¢; € LP(u) with ||f; — @;llze(u) < €/4. Let
us take a collection 7y = (Aq,...,A,) € II on the elements of which all
functions ¢; are constant. Let m > my. For every f € K, we find j with
Ilf —@jllLe(u) < €/2. On account of the equality IE"p; = ¢; we obtain

1f =" fllouy < IIf = @jllr + 0 = E 0l o)
+ IE"p; —E" fllLeu < 2[1f — ¢jllor <e
It is clear that in the case where the measure p is finite, one can take for 7 finite
partitions of X into disjoint sets of positive measure. The sufficiency of the
above conditions follows from the fact that IE™(L?(y)) are finite-dimensional
linear subspaces, hence their bounded subsets have compact closure. ([l
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The operators IE™ constructed above are linear and continuous on LP(u)
and have finite-dimensional ranges, on which they are the identity mappings.
So it is appropriate to call them finite-dimensional projections (in the case
p = 2 they are orthogonal projections). A useful property of such projections
is that they provide simultaneous approximations by simple functions for all
functions from a given compact, and not only approximations of every indi-
vidual function as was the case in §4.2. Yet, these projections still depend on
a given compact, but in the case of a separable LP(1) one can easily get rid of
this dependence. Namely, assuming for simplicity that p(X) < oo, let us take
a countable family of measurable sets A; such that finite linear combinations
of their indicators are dense in LP(u) (which is possible due to the separability
of LP(u)). Now let us consider the partitions 7, generated by A1, ..., A,; the
elements of 7, are disjoint finite intersections of the sets A;, i < n, and their
complements. It is clear from the above proof that IE™ f — f uniformly in f
from any compact set in LP (). Another method of approximation in a sepa-
rable space LP(u) employs Schauder bases. We recall that a Schauder basis in
a Banach space Z is a sequence of vectors e,, such that, for every x € Z, there
exists a unique sequence of numbers x,, with x = lim Z?Zl x;e;. It is known

that every separable LP(u) has a Schauder basis; this is clear from Corollary
9.12.27 in Chapter 9 on isomorphisms of the spaces L? if we observe that in
[P = LP(IN,v), where v(n) = 1 for all n, a natural Schauder basis consists
of the functions h, = I,}, and in L?[0, 1] a Schauder basis is formed by the
Haar functions (Exercise 4.7.59).

Let u > 0 be a finite measure on a measurable space (X, A), let f € L(p),
and let A be a set of positive y-measure. The quantity

oscfla = )™ [ |- w0 [ 1w u(dy)‘u(dm)

A
is called the average oscillation of the function f on A.

4.7.29. Theorem. Suppose that a set F in L'(u) has compact closure
in the weak topology. Then, the closure of F is compact in the norm of
LY(p) precisely when F satisfies the following condition (G): for every ¢ > 0
and every set A of positive pi-measure, there exists a finite collection of sets
Ay,..., A, C A of positive measure such that every function f € I has the
average oscillation less than € on at least one of the sets A;.

PROOF. If the closure of F' is norm compact, then it is weakly compact
and (4.7.5) is fulfilled. It is clear that for any f € F estimate (4.7.5) yields
that f has the average oscillation less than € on at least one of the sets A;.

Conversely, suppose that condition (G) is fulfilled. One can assume that
1 is a probability measure. First we observe that, for every fixed function
h € LY (u), the set F+h = {f + h: f € F} satisfies condition (G) as well.
Indeed, let € > 0 and p(A) > 0. It is clear that there exists a set B C A of
positive measure such that the function h is uniformly bounded on B. Next
we find a simple function g such that sup,cx |h(z)Ip(z) — g(z)| < e/4. The
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intersection of B with at least one of the finitely many sets on which g is
constant is a set C of positive measure. Since F' satisfies condition (G), there
exists a finite collection of sets C; C C' of positive measure such that every
function f € F has the average oscillation less than /2 on at least one of
these sets, say, Cp,. It remains to observe that since g is constant on C,,, and
|h(z) — g(z)| < e/4 on Cy, C B, one has

[ foen= (74 1)
(f+g)*/c (f+g)du‘du+/c

S /
c 'm m
S /
Cm

Suppose now that the closure of F' is not norm compact. Then, there exists a
weakly convergent sequence { f,} C F without norm convergent subsequences.
According to what we have already proved, one can shift the set F’ and assume
that { f,} weakly converges to 0. Moreover, passing to a subsequence, one may
also assume that {|f,|} weakly converges to some function f. It is clear that

m

(h*g)*/c (hg)du‘du

m

m

f—/ fdu‘du+2u(0m) sup [h(z) — g(z)| < ep(Crm).

Cm zeCp,

J >0ae and o := | f|lL1(,) > 0 because otherwise we would obtain norm
convergence. Let € := a/4 and A = {z: f(z) > 3a/4}. Then pu(A) > 0.
Suppose now that Aj,..., Ay are arbitrary subsets of A of positive measure.

We show that our sequence contains a function fy whose average oscillation
is greater than € on every A;. To this end, by using weak convergence of { f,, }
to 0 and weak convergence of {|f,|} to f, we pick N such that

[ w i Jorau= [ ilan] <ot i=t
A; A; A,

J
Then, for every A;, we obtain

pay™ [

J

< en(Ay),

fy=na) [t du’ dy

> M(Aj)*l/ | |fnldp— p(A;)

J

/A‘ de#’

>t [ fdp-eeze
Aj
since one has the inequality
/ fdu > 3ep(4;)
Aj

due to the estimate f > 3¢ on A; C A. Thus, we arrive at a contradiction
with condition (G). O

Exercise 4.7.129 gives a compactness criterion for the space L°(u) of all
measurable functions with the topology of convergence in measure.
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4.7(vii). Certain conditions of convergence in L?

We shall prove several useful results linking diverse modes of convergence
in LP. A result of this type has already been given in Corollary 4.7.16. The
next one is taken from Brézis, Lieb [127].

4.7.30. Proposition. Let p be a measure with values in [0, +00]. Sup-
pose that a sequence {fn} C LP(u), where 0 < p < oo converges almost
everywhere to a function f and sup,, || fn|lLr(w) < co. Then

nlgr;o|||fn|p_ |fn_f|p_|f‘pHL1(H) :Oa (476)
i (1l = 1o = PPy ) = 11 (4.7.7)

If, in addition, || fullzew) — I1fleecy, then || fn — flleuy — 0.

PrOOF. It is easily verified that, for every € > 0, there exists a number
C(p,€) > 0 such that

[la+ 0P — |a|’| < elal’ + C(p,e)b]’, Va,beR. (4.7.8)

Set gn,e = max<‘|fn\p—|fn—f\p—|f\p‘ —€\fn—f|p,0>. Then nli_}rrgognﬁg(x) =0
a.e. By (4.7.8) with a = f,, — f and b = f we have

gne S max(|[ful? =1 = ful?| + |F1 = el fa = 17,0)

< max(elfu = fI? + Cp, ) [P + | = &l fu = F17,0)
< [C(p.2) + 1]I11P.

By the dominated convergence theorem we obtain that, for every fixed € > 0,
the integrals of g, . converge to zero as n — oco. Therefore, there exists IV
such that ||gn.c||z1(u) < € for all n > N. Then, as one can easily verify, for all
n > N, we have

/ fal? = f = 117 = 17| it < ellfn — £ + =

By the uniform boundedness of || fy||z»(,) We obtain convergence of the se-
quence of functions |f,|? — |f, — fIP — |f|P to zero in L'(u), which yields
convergence of their integrals to zero. (I

4.7.31. Proposition. Let u be a probability measure and let

{&y c L), &l <C, ¥neIN.
Suppose that, for every fized integer k > 0, the functions

gn,k(x) = fn(x)l[fk,k] (gn(x))
weakly converge in L*(u) to a function nmy. as n — oo. Then, there exists a
function n € LY (u) such that

li = .e. li — 1) = 0.
Jim () = n(z) ae. and  Jim o =l =0
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PRrROOF. Let 19 = 0 and (, := 0y — Np—1. Then n, = >_7_; (k. We show
that

S ki < € +1. (4.7.9)
k=1

By Fatou’s theorem, this yields a.e. convergence of the series Y ;- |Ci(z)|
which gives a.e. convergence of the sequence 7, (x). In addition, convergence
of the series >_p ; |¢x| in L* (1) shows that the sequence {n,, } is fundamental in
L'(p1) and hence converges in L' (1) to the same function to which it converges
almost everywhere. For the proof of (4.7.9) it suffices to obtain the estimate

> liminf |, — Enk-1lli(y < C+1, (4.7.10)
k=1
since the general term of the series in (4.7.9) is majorized by the general term
of the series in (4.7.10) due to Exercise 4.7.85 and the fact that the functions
&k — En k—1 weakly converge to ny —nr—1 = (; as n — oo. Let us fix N € IN.
It is clear that there exists m = m(N) € IN such that

N N

> liminf €k = ngtllagn € D 1€mk = Empllrgy + 1. (47.11)
k=1 k=1

The right-hand side of (4.7.11) is majorized by ||{n||r1(,) + 1. Indeed, we

have |&,(2)] = Y &m k() — Em k—1(x)|, since whenever |, ()| > 0, there

exists an integer number k = k(x) > 0 such that k < |, (x)] < k+ 1, which

yields &, j(x) =0 for all j <k and &, j(x) = &n(z) for all j > k+ 1. O

The proof of the following result can be found in Saadoune, Valadier
[837]. It is instructive to compare it with Theorem 4.7.23.

4.7.32. Theorem. Let i1 be a probability measure on a space (X, A) and
let {fn} be a sequence of p-measurable functions. Then, there exist a subse-
quence {fn,} and a measurable set E such that {fn,} converges in measure
on E, but, for every set A C X\E of positive measure, {f,,} contains no
sequences convergent in measure on A.

The next result is obtained in Visintin [978].

4.7.33. Theorem. Let i be a o-finite measure on a space X and let a
sequence {f,} converge to f in the weak topology of L*(u). If, for a.e. x, the
point f(x) is extreme in the closed convex envelope of the sequence {fn(x)},

then nh_)rr;o If = fallLi(w = 0.

4.7(viii). Hellinger’s integral and Hellinger’s distance

Let 1 and v be two probability measures on a space (X,.A). Let us take
some finite or o-finite nonnegative measure A on A such that p < A and
v < M. For example, one can take A = p+ v or A= (u+v)/2.



300 Chapter 4. The spaces L? and spaces of measures

4.7.34. Definition. Let « € (0,1). Hellinger’s integral of the order o of
the pair of measures pu and v is the quantity

= [ ()" (3

4.7.35. Lemma. The quantity H,(u,v) is independent of our choice
of a measure \ with respect to which p and v are absolutely continuous. In
addition, one has

0 < Hy(u,v) = Hi_o(v,p) < 1. (4.7.12)

PROOF. The estimate H, (i, ) < 1 follows by Holder’s inequality:

Ha(,u,u)<</ Z/\d/\) (/ Z—;dA) 7a:1.

The equality in (4.7.12) is obvious from the definition. Let us consider the
measure \g = i + v. Then A\g < A for any measure \, with respect to which
p and v are absolutely continuous. Therefore, du/d\ = (du/dNg)(dAg/dN),
dv/dX = (dv/dX\o)(dAo/dN). Hence one has

/(Zﬁ) (_ 1 Car= / d>\0 d/\o)l QC?AOCM’

which proves that Hellinger’s integral is independent of our choice of A\. [

We observe that if u = pg + /', where pg < v and p’ L v, then letting

A =v -+, we obtain
dpo\
Ho(uv) = | (222 aw.
o= [ ()

Hellinger’s integral of the order 1/2 is most frequently used. Let us set
H(p,v) := Hyo(p,v). It is clear that H(u,v) = H(v,p). Let

1/2
ro(p, V) := (1 — H(p, I/)) . (4.7.13)
By using a measure A with respect to which p and v are absolutely continuous,
one can write

ro(p, v)? = 1/ ‘\/d,u/d/\ - \/du/dArd)\. (4.7.14)
2 Jx

4.7.36. Lemma. The function ro given by equality (4.7.13) (or (4.7.14))
18 a metric on the set of all probability measures on A.

PROOF. The equality ro(u, v) = ro(v, 1) is obvious. If ro(p, v) = 0, then,
letting A = 1+ v, we observe that the inner product of the functions /du/dA
and /dv/d\ in L?(\) equals 1. Since these functions have unit norms, they
are proportional, whence it follows that they coincide A-almost everywhere.
Hence p = v. The triangle inequality for ro follows by the triangle inequality
in L2()\) taking into account the fact that for any three measures y, v, and 7
one can find a common dominating measure A (for example, their sum). O
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The metric 75 is called Hellinger’s distance (metric). As we shall now see,
Hellinger’s integral is connected with the variation distance.

4.7.37. Theorem. For arbitrary probability measures u and v on (X, A)
the following inequalities are true:

21— H(u,)] < Il — vl < 29/T— H, )2, (4.7.15)

203 (n,v) < lu = vll < V8ra(u,v), (4.7.16)

21— Halpt, )] < i — vl < car/T— Halir), @ €(0,1).  (4717)
PRrROOF. Inequality (4.7.16) follows from (4.7.15) by definition and the

estimate 1 + H(u,v) < 2. Let f =du/d\, g = dv/d\, where A = + v. For
the proof of the first inequality in (4.7.15), it suffices to sum the inequality

1=t = [ VIV -vais [ 1f —glay

{r=
and the symmetric inequality

L= Hu) < [ g flax
{r<g}
The same reasoning proves the first inequality in (4.7.17). The second in-
equality in (4.7.15) is deduced from the Cauchy—Bunyakowsky inequality (see
(2.11.3)) as follows:

J v =slan= [ 1VF = ViV + viax
< (2-2/}(\/5&)1/2(2”/}(\/5@)

In order to obtain the second inequality in (4.7.17), we observe that, for any
a € (0,1/2), one can take p = p(a) = (2)~! > 1 and then k, > 0 such that
1— 57 > k(1 — s) for all s € [0,1]. Then by Holder’s inequality applied to
the measure g - A, on account of the equality pa = 1/2 we obtain

1/p
/ fagl—a d)\ < (/ fl/le/Z d)\> ,
X X
1 —/ Fog' T dN > kg (1 —/ f2gh2 dA).
X X

Due to (4.7.15) this leads to (4.7.17) with ¢, = V/8kq. O

1/2

whence

Hellinger’s integral H, (u,v) can also be considered for a > 1, however,
this expression may be infinite. The case where it is finite for a = 2 was
considered by Hellinger [420], which became a starting point of the study of
the concepts in this subsection. An abstract definition of Hellinger’s integral
for o = 2 is this. Let a measure v on a space (X,.A4) be absolutely continuous
with respect to a probability measure pu on (X,.A4) and let f = dv/du. The
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supremum of the sums > ,_, v(Ay)?/u(Ax) over all finite partitions of the
space into disjoint measurable sets of positive py-measure is called Hellinger’s

integral and denoted by
/ v2(dw)
p(dz)

This quantity is finite if and only if f € L?(u) and in that case it coincides with
”szL?(#) (see Exercise 4.7.102). According to the same exercise, the member-

ship of f in LP(u) with some p > 1 is characterized by the boundedness of
analogous sums S r_, v(Ag)Pu(Ax)' 7.

Finally, let us point out a relation between Hellinger’s distance H (p,v)
and Kullback’s divergence defined by the following formula in the case of
equivalent probability measures p and v:

d dp/d
K(nw) = [ wiaufar)da = [ B LR

Here, as above, \ is an arbitrary probability measure with u < A and v < A,
for example, A = (p+v)/2; it is easily seen that the corresponding expression
is independent of our choice of A, so that one can also take A = v, which
shows that K (u, ) equals the entropy of du/dv with respect to the measure v.
According to (2.12.23) we have K(u,v) > 0, where K (u,v) may be infinite.
We observe that K (u, ) may not be symmetric.

4.7.38. Proposition. For any equivalent probability measures p and v
we have

ra(u,v)? < K(uv) and [l —v|]* < 2K (p,v).

PRrROOF. Let f = dv/du. Since In(l + ) < z, one has the estimate
Inf=2In(1++f-1)<2(/f—1),ie,Inf~t>2-2{/f which gives the
first inequality after integrating with respect to the measure u. The second
one follows by Theorem 2.12.24 (with the constant 4 in place of 2 it follows
from the first inequality). a

4.7(ix). Additive set functions

Let A be a o-algebra of subsets in a space X and let ba(A) be the space of
all finitely additive bounded functions m: A — IR' equipped with the norm
|lmll1 := |m|(X), where for every A C A we set

ml(4) = sup{ 3 m(4)1 )
i=1

where sup is taken over all finite partitions of A into disjoint sets 4; € A. It
is readily verified that ba(X,.A) is a Banach space with the norm || - ||;. Let
B(X,A) be the space of all A-measurable bounded functions with the norm
|| flloe :=sup,ex |f(x)|. The integral of a function f € B(X,.A) with respect
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to the set function m € ba(X, A) is defined as follows: for a simple function
f =" cila,, where the sets A; are disjoint, we set

/ fdm:= iczm(AZ)
X i=1

This integral is linear and is estimated in the absolute value by || f||oo|/m]]1-
Now the integral extends by continuity to all functions f € B(X,.A) with
the preservation of the indicated estimate and linearity. Simple details of
verification along with the proof of the following assertion are left to the
reader as Exercise 4.7.121.

4.7.39. Proposition. The space ba(X,.A) can be identified with the dual
space to B(X, A) by the mapping m — I, where

lm(f)=/xfdm and |mlly = il

Let us mention the following lemma due to Rosenthal [824]; its proof is
delegated to Exercise 4.7.122.

4.7.40. Lemma. Let {m,} C ba(X, A) be a uniformly bounded sequence.
Then, for every e > 0 and every sequence of disjoint sets A; C A, there exists
a sequence of indices k, such that |mkn|(U‘#n Akj) < € for all n.

Finally, let us mention the Phillips lemma [752] (Exercise 4.7.123).

4.7.41. Lemma. Let A be the o-algebra of all subsets in IN and let
{mn} C ba(IN, A) be such that lim m,(A) =0 for all A C IN. Then

Jim S jma ({71 =0,

where {j} is the set consisting of a single element j.

Exercises

4.7.42° Let f € LP(IR') and f € LY(IR'), where p < ¢. Prove that f € L"(IR")
for all 7 € [p, q].
HINT: consider the sets {|f| < 1} and {|f] > 1}.

4.7.43° Let f be a bounded measurable function on a space with a nonnegative
measure f. Prove that || f||ze (. = inf{a > 0: p(z: [f(z)| > a) = 0}.

4.7.44? Show that || f|| ooy = lim ||f||zr(y) if the measure p is bounded and
p—oo
feL>(p).

HiINT: verify the assertion for simple functions, approximate f uniformly by
a sequence of simple functions f; and observe that ||f — fj||Le(u) is majorized by

1Ll ze gy llf = fill oo -
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4.7.45° Let u be a probability measure and let f be a measurable function such
that sup,>, ||fllr(u) < co. Prove that f € L (u).
HiNT: use Chebyshev’s inequality.

4.7.46° Let A C IR! be a set of positive Lebesgue measure. Prove that the
spaces LP on the set A equipped with Lebesgue measure are infinite-dimensional.

HINT: construct a countable sequence of pairwise disjoint intervals whose in-
tersections with A have positive measures.

4.7.47° Prove the formula for the Legendre polynomials in Example 4.3.7.

4.7.487 Prove that the functions /2/7sinnt, n € IN, form an orthonormal
basis in L?[0, 71]. Prove the same for the functions /1/7, \/2/7 cosnt, n € IN.

HINT: it is verified directly that both systems are orthonormal. If the first
system is not complete, then there is a nontrivial function g € L? [0, 7] orthogonal
to it. Let h(t) = g(t) if t € [0, 7], h(t) = —g(—t) if ¢ € [=m,0]. Then h is orthogonal
to all sinnt in L?[—m,x]. Since h is an odd function, one has h L cosnt for all
n=20,1,..., hence h =0 a.e.

4.7.49° Let p be the measure on (0,+00) with density e™® with respect to
Lebesgue measure. Prove that the Lagguere polynomials obtained by the orthogo-
nalization of the functions 1,z,z?,..., form an orthonormal basis in L? ().

HinT: if g € L?(p1) and ¢ > 1/2, then the function g(x) exp(—cx) is pu-integrable,
which yields the analyticity of the Fourier transform of g(z)e™ in a strip.

4.7.50° (i) Let (X, A,u) and (Y,B,v) be two probability spaces. Suppose
that for some p € [1,400) sets F C LP(u) and G C LP(v) are everywhere dense.
Show that the set of linear combinations of products fg, where f € F, g € G, is
everywhere dense in LP(u®v). Prove that if {f,} and {g»} are orthonormal bases
in L?(u) and L?(v), respectively, then {fngx} is an orthonormal basis in L*(u®v).

(ii) Let (Xa,Aa, pia) be a family of probability spaces. Suppose that for some
p € [1,400) and every «, we are given an everywhere dense set Fy C LP(i1o). Show
that the set of linear combinations of products fo, - - - fa,, where fo, € Fq,, is ev-
erywhere dense in L*(Q)_, p«). Deduce that if, for every «, we have an orthonormal
basis { fa.s} in L?(ita ), then the elements fo, g, - - fan,.8,, Where the indices a; are
distinct, form an orthonormal basis in L*(@®,, fta)-

HINT: (i) observe that the set of simple functions is dense in L”(u®v), hence
the set of linear combinations of indicators of measurable rectangles is dense as
well. Given A € A and B € B, we can find sequences {f,} C F and {gn} C G
convergent to T4 and Ip in the corresponding LP-norms. It follows by the equality
frngn — Ialp = (fn — Ia)gn + La(gn — IB) and Fubini’s theorem that fngn — Ialp
in L?(u®v). Applying this assertion in the case p = 2 and noting that the elements
frngr have unit norms and are mutually orthogonal, we obtain the second claim.
The reasoning in (ii) is much the same.

4.7.51° Prove that if a series is Cesaro summable to a number s, then it is
summable to s in the sense of Abel (see §4.3).

4.7.52. Let {p,} be an orthonormal basis in L?[0, 1].
(i) Prove that there exist numbers ¢, n > 2, such that the sums 25:2 Cnpn(T)
converge to (1 in measure.
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(ii) Prove that, for every € > 0, there exists a set E. with measure greater
than 1 — € such that the linear span of the functions ., n > 2, is everywhere dense
in L?(E.), where E. is equipped with Lebesgue measure.

(iii) Prove that there exists a positive bounded measurable function 6 such that
the linear span of the functions 8¢, n > 2, is everywhere dense in the space L? [0,1].

HINT: (i) it suffices to show that, for every fixed k, the set of finite linear
combinations of the functions ¢,, n > k, is everywhere dense in the space LO[O, 1]
with the metric defining convergence in measure. Otherwise L° [0,1] would contain
a linear subspace of finite codimension closed in the indicated metric, which is
impossible by Exercise 4.7.61. (ii) Applying (i) and the Riesz and Egoroff theorems
one can find a set E. with measure greater than 1 — ¢ on which ¢; is the uniform
limit of a sequence of finite linear combinations of the functions ¢,, n > 2. Then
E. is the required set, since otherwise one could find a function g € L? (E.) with

/ gpndr =0
Ee

for all n > 2. Since g1 on E. is the uniform limit of linear combinations of ¢,

n > 2, we obtain
/ gp1dx =0,
Ee

i.e., letting g = 0 outside E. we obtain a function that is orthogonal to all ¢,,, whence
g = 0 a.e. (iii) There is a positive bounded function 6 such that the function ¢;/6
does not belong to L?[0, 1]. If we had a function g € L?[0,1] orthogonal to all f¢pn,
n > 2, then we would obtain gf = cy;1 for some number c¢. Then ¢ = 0 due to our
choice of 0, whence g =0 a.e.

4.7.53° Let >.>° | a2 = oo. Prove that there exist numbers 8, such that
S Br < ocand Y07 anfin = 0.

4.7.54° Let o, > 0 and Zf:’:l o, = 0o. Prove that there exist numbers ¢, > 0
such that Y °° | ancn =00 and > 07 anc? < .

HINT: in the case of a bounded sequence ., one can partition IN into finite
intervals Ir with 2°~! < Zielk a; < 2% and for n € I take ¢, = 27’“; for an

increasing sequence {an, } take cn, = o k"

4.7.55° Let A C IR' be a set of infinite Lebesgue measure. Prove that there
exists a function f € L?(IR') that is not integrable on A.

HINT: denote by o, the measure of the set AN[n,n+1), n € Z, apply Exercise
4.7.54 and let f = ¢, on the above set.

4.7.56° Let f € L'(R), f > 0. Prove that 1/f ¢ £'(IR).
HINT: apply the Cauchy—Bunyakowsky inequality to f~'/2f'/2.
4.7.57° Prove that the set of nonnegative functions is closed and nowhere dense
in the space L'[0, 1].
4.7.58. (Miintz’s theorem) Suppose we are given a sequence of real numbers
pi > —1/2 with lim p; = +oo0. Prove that >, pi#0 1/p; = oo precisely when the
1— 00 T

linear span of the functions aPi is everywhere dense in L?[0, 1].
HINT: see Ahiezer [4, Ch. 1].
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4.7.59. Prove that the Haar functions h, form a Schauder basis in L?[0, 1] for
all p € [1,400). The Haar functions h, are defined as follows: for all n > 1 and
1 S 7 S 2” we set h2"+i(t) = [[(Qi—Q)/2"’+1,(2i—1)/2”’+1](t) — I((Qi—l)/2"+1,2i/2"+1](t)'

HINT: see Kashin, Saakyan [495, Ch. 3].

4.7.60° Let u be a finite nonnegative measure on a space X. For f,g € L°(u),
we set

inf.o) = [ T g [ s - g1

Prove that do and d; are metrics, with respect to which L° () is complete, and that
a sequence converges in one of these metrics precisely when it converges in measure
(similarly for fundamental sequences).

HINT: the triangle inequality follows from the triangle inequality for the metrics
|t — s]/(1+ |t — s|]) and min(|t — s|,1) on the real line. By Chebyshev’s inequality,
one has (|f — gl > &) = u(|f — gl/(L+1f — gl) = ¢/(1+2)) < do(f. 9)/=. Finally,
do(f,9) <eu(X)+ p(|f —g| > €). For di one has a similar estimate.

4.7.61. (Nikodym [719]) Prove that on the space L°[0, 1] of all Lebesgue mea-
surable functions equipped with the metric

d(ﬁg)z/o F—gl/(L+|f —gl)da

corresponding to convergence in measure, there exists no continuous linear function
except for the identically zero one. Extend this assertion to the case of an arbitrary
atomless probability measure.

HINT: if L is such a function, then the set V := L™*(—1,1) is not the whole
space and contains some ball U with the center 0 and radius r > 0 with respect to
the above metric. The set V' is convex and hence contains the convex envelope of U.
A contradiction is due to the fact that the convex envelope of U equals L°[0,1].
Indeed, let f be an arbitrary measurable function. Then, for every n, we have
f=(fi+ -+ fa)/n, where fi(t) = nf(t)lj(k=1)/n,k/n)(t). It is clear from the
definition of the metric d that if n~=! < r, then all the functions fi belong to U.

4.7.62. Let u be a nonnegative measure, 0 < p < 1, and let L?(u) be the set
of all equivalence classes of p-measurable functions f such that |f|P € L' (u).
(i) Prove that the function

dp(f, 9) ::/\f—g\”du

is a complete metric on the space LP(u).

(ii) Prove that LP(u) is a linear space such that the operations of addition and
multiplication by real numbers are continuous on LP(u) with the metric d, (i.e.,
LP(u) is a complete metrizable topological vector space).

(iii) Prove that in the case where p is Lebesgue measure on [a, ], there is no
nonzero linear function on the space L?(u) continuous with respect to the metric dp.
In particular, convergence in the metric d, cannot be described by any norm.

4.7.63° Show that a probability measure p on a o-algebra A is separable if and
only if all spaces LP(u), p € (0,+00), are separable, and the separability of either
of these spaces is sufficient.

HINT: use that the set of simple functions is everywhere dense in each of these
spaces and that a subspace of a separable metric space is separable.
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4.7.64. Let A be a countably generated o-algebra (i.e., generated by a count-
able family of sets) and let ¢, t € T', be some family of probability measures on .A.
Prove that this family is separable in the variation norm precisely when there exists
a probability measure p on A such that us < p for all t € T.

HINT: in the case of a countably generated o-algebra the space L' (w) is separa-
ble; if a sequence of measures i, is everywhere dense in a given family of measures
in the variation norm, then one can take the measure p1= >0 ;27" py,,.

4.7.65° Let u be a probability measure and let f € LP(u). Show that the
function 6: 7+ In || f||7+,) is convex on [1,p], i.e., O (tr+(1—t)s) < t0(r)+(1—t)0(s)
forall 0 <t < 1andrsé€]llp].

HINT: apply Holder’s inequality with the exponents 1/¢ and 1/(1 — ¢t).

4.7.66. Let ¥ be a positive function on [1, 400) increasing to the infinity. Prove
that there exists a positive measurable function f on [0, 1] such that || f|l, < ¥(p)
for all p > 1 and lim ||f|, = cc.

p—00

HINT: see George [351, p. 261].
4.7.67. Prove Corollary 4.5.5.

4.7.68° Suppose that a function f € L£[0,27] satisfies Dini’s condition at a
point z (see Theorem 3.8.8). Prove that its Fourier series at « converges to f(z).
HINT: apply formula (4.3.6).

4.7.69. (W. Orlicz) Let {e,} be an orthonormal basis in the space L*[a,b].

(i) Prove that
> [ lento)f o= oc
n=174

for every set A C [a, b] of positive measure. (ii) Prove that > 27, [en(z)|* = 0o a.e.

HINT: (i) take an infinite orthonormal basis {¢x} in the space L?(A) by Exer-
cise 4.7.46, show that (Iaen,laen) = > 7, (en, ©r)? by using the relations Tae, =
Yorei(Taen, or)or, Iapr = @i. (ii) Apply (i) to the sets {x: > len(z)]? < M}

4.7.70. Let R be a semiring in a o-algebra A with a probability measure p.
Show that the set of linear combinations of the indicator functions of sets in R is
everywhere dense in L'(u) precisely when, for every A € A and € > 0, there exists
a set B that is a union of finitely many sets in R such that pu(A A B) < e.

4.7.71. Suppose that a sequence of p-integrable functions f, (where u takes
values in [0, +00]) converges almost everywhere to a function f and that there exist
integrable functions g, such that |f.| < g, almost everywhere. Prove that if the
sequence {gn} converges in L' () (or the measure p is finite and {g,} is uniformly
integrable), then f is integrable and {f,} converges to f in L'(u).

HINT: in the case of a finite measure we observe that the sequence {f,} is
uniformly integrable; the general case reduces to the case of a o-finite measure p,
then to the case of a finite measure po with a positive density ¢ with respect to p.
Alternatively, one can apply Young’s theorem 2.8.8.

4.7.727 Let (X,.A, u) be a probability space and let integrable functions f,
converge in measure to an integrable function f such that

lim \/1+f%du:/\/1+f2d,u.
X X

n—o0



308 Chapter 4. The spaces L? and spaces of measures

Prove that f, — f in L'(u).
HINT: apply Young’s theorem 2.8.8 and the estimate |fn| < /14 f2.

4.7.73. (Klei, Miyara [522]) Let (X, A, 1) be a probability space and let M
be a norm bounded set in L* (). The modulus of uniform integrability of M is the
function

nore) =sup{ [ 1fldus femae A ua) <el.

Set n(M) := lin% n(M,e). It is clear that the equality n(M) = 0 is equivalent to the

uniform integrability of M. Let f, € L'(u), fn > 0, be such that the sequence of
the integrals of f, is convergent. Prove that

/ liminf f, du < lim / frdw—n({frn})-
X nToo n—oo Jx

Show that under the above conditions the equality occurs precisely when {f,.} con-
tains a subsequence convergent a.e. to the function li;n iolgf fn-

4.7.74. (Farrell [279]) (i) Let (X, A, 1) be a probability space and let F be
an algebra of bounded measurable functions such that, for every measurable set A,
there exists f € F with f > 0 a.e. on A and f < 0 a.e. on X\A. Prove that for
all p € [1,00) the algebra F is dense in LP(u). Moreover, the same is true if the
hypothesis is fulfilled for every set A in some family £ C A with the property that
the linear space generated by Ig, E € &, is dense in L' (u).

(ii) Let p be a Borel probability measure on the real line and let f be a strictly
increasing bounded function. Show that the algebra of functions generated by f
and 1 is dense in LP(p), 1 < p < oo.

HINT: (i) let A € A, let f € F be the corresponding function, and let |f| < N;
there is a uniformly bounded sequence of polynomials P, such that lim P,(t) =1

forall t € (0, N] and nlirr;o P,(t) =0forallt € [-N,0]; then P,of € F, Poof — Ia
a.e. and in LP(u). Hence every simple function belongs to the closure of F. In the
case of the more general assumption involving £, the above reasoning shows that the
closure of F in L”(y) contains all functions of the form max(—N,min(g, N)), where
g is a linear combination of indicators of sets in £, N € IN. Take a sequence {gx}
of such linear combinations convergent in L' () to a bounded function . Then
the functions max(—N, min(gxr, N)) with N > sup |p(z)| converge to ¢ in LP(p).
Assertion (ii) follows by applying (i) to the family of rays.

4.7.75. (G. Hardy) Let f € L?(0,4+00), where p > 1. Show that the functions

o0 =1 [ soa v@ = [ I0a

belong to LP(0,+o00) as well.
HINT: see Titchmarsh [947, p. 405].

4.7.76° Let G be an everywhere dense set in L9(u), p~* +q ' =1, ¢ > 1, and

let a sequence {f.} be bounded in the norm of L?(u). Prove that this sequence
weakly converges to f € LP(u) precisely when the integrals of f,g converge to the
integral of fg for every g € G.
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4.7.77° Give an example of a sequence of functions f € L'[0, 1] that is bounded
in the norm of Ll[O, 1] and converges a.e. to 0, but has no subsequence convergent
in the weak topology of L'[0, 1].

HINT: consider the functions f(t) = nljg,1/n-

4.7.78° Let 1 < p < co. Construct an example of a sequence of functions f,
that weakly converges to zero in the space LP[0,1] and converges to zero almost
everywhere on [0, 1], but does not converge in the norm of LP[0, 1].

HINT: consider f,(z) = nl/p[[oyl/n] (z); use Exercise 4.7.76 applied to the set
G =L>[0,1].

4.7.79? (i) (Riemann-Lebesgue theorem) Show that

27
lim f(z)sinnzdr =0
n—oo 0
for every Lebesgue integrable function f.
(ii) Let u be a probability measure and let {¢,} be an orthonormal system in
L?(u) such that |¢,| < M, where M is a number. Show that

lim [ fondu=0
n—o0
for every p-integrable function f.

HINT: (i) observe that this is true for piecewise constant functions, then approx-
imate f by such functions. Alternatively, one can refer to Proposition 3.8.4. (ii) For
bounded functions f the assertion follows by Bessel’s inequality, in the general case
we approximate f in L'(u) by bounded functions.

4.7.80. Give an example of a sequence of nonnegative functions f, that weakly
converges in L'[0,1] to a function f and ||fulp1 — [fllz1, but {f.} does not
converge in the norm of L'[0, 1].

HINT: consider the functions f,(z) =1+ sin(2wnz) and f(z) = 1.

4.7.81. Show that there exists a sequence of positive continuous functions f,
on [0,1] and a continuous function f such that for all a,b € [0,1] one has

n—oo

im [ Fult) dt = /b F(t)dt,

but there is a measurable set F such that the integrals of f,, over E¥ do not converge.
HINT: see Example 8.2.12 and the subsequent note.

4.7.82. Let p be a measure with values in [0, +00] on a space (X,.A). The
following terminology is used in the books Hunt [448] and Bauer [70]: a set M in
LY () (or in L' () is called uniformly integrable if

Ve>03ge L (u): / |fldu<e, VfeM. (4.7.18)
{lf1>g}
With such a definition, any integrable function is uniformly integrable.
(i) Show that (4.7.18) yields the existence of a measurable set E such that the
measure i on F is o-finite and every function f € M vanishes a.e. outside FE.
(ii) Show that for finite measures (4.7.18) is equivalent to the uniform integra-
bility in our sense.
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(iii) Show that (4.7.18) is equivalent to the following property: the set M is
bounded in the norm of Ll(u) and, for every € > 0, there exist a nonnegative
integrable function h and a number § > 0 such that, whenever A € A and

/hws&
A

/|f|d,u§5 for all f € M.
A

(iv) Let the measure p be o-finite and let h > 0 be a p-integrable function.
Show that (4.7.18) is equivalent to the property that, for every € > 0, there exists
C > 0 such that

one has

[ dese vrem.
{IfI>Ch}

In addition, (4.7.18) is equivalent to the following: the set M is bounded in the
norm of L'(u) and, for every e > 0, there exists a number § > 0 such that if A € A

and
/h@g&
A

/|f|d,u§€ for all f € M.
A

(v) Prove that (4.7.18) is equivalent to the following: M is bounded in L' (1), the
functions in M have uniformly absolutely continuous integrals and, for every € > 0,
there exists a measurable set X, such that u(X.) < co and

/ |fldu <e forall fe M.
X\ Xe

then

HinT: (i) take functions g, corresponding to €, = n~' and the set E =
Us2,{gn > 0}. (ii) Use the uniform integrability of g. (iii) In order to deduce
(4.7.18) from (iii), observe that every function f € M vanishes a.e. on the set
{h = 0}, hence one can pass to the space Xo := {h > 0} with the finite measure
v := h - u; the functions f/h, where f € M, belong to L'(v) and have uniformly
absolutely continuous integrals (with respect to v), therefore, they form a uniformly
integrable set in L'(v). This shows that for g one can take Ch with some C. The
same reasoning proves (iv), and (v) reduces easily to the case of a finite measure.

4.7.83. Let 0 < p < ¢ < oo and let pu be a countably additive measure with
values in [0, +o0]. (i) Prove that LP(u) ¢ L?(u) precisely when there exist sets of
arbitrarily small positive u-measure. (ii) Prove that LY(u) ¢ LP(u) precisely when
there exist sets of arbitrarily large finite p-measure.

HINT: (i) observe that if a series of ¢, > 0 converges, then one can find b, in-
creasing to 400 such that the series of ¢, b5, converges and the series of ¢, b}, diverges;
(ii) is similar; see Romero [819], Subramanian [918], and also Miamee [687].

4.7.84. Let f and g be integrable on [0, 1] and let |f(z)| < g(x). Prove that
there exists a sequence of integrable functions f, such that, for every measurable
set E C [0,1], one has

lim fndx—/fdx, hm / |fn\d1:7/gdx
HINT: see Zaanen [1043, 45.6].
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4.7.857 Suppose that functions f, weakly converge in L?(u) to a function f,
where p > 1. Show that ||f||, < liminf || f]|p-

4.7.86° Let 1 < p < oo, p 4+ ¢ ' =1, let 4 > 0 be a o-finite measure,
and let ¥ be a continuous linear function on LP(u). Let f € LP(u) be a function
such that || f||, = 1 and ¥(f) = ||¥| > 0. Prove that ¥ is given by the function
g = signf - |f|””' € L%u) by formula (4.4.1) and that g is a unique function
generating W.

HINT: take g € LI(p) generating ¥ by formula (4.4.1) and observe that

/ fgdu=0(f) = 9] = llglls = [ £llplglla:

whence the assertion follows by Exercise 2.12.89.

4.7.87. Let pu be a countably additive measure on a c-algebra with values
in [0,+0o0]. (i) Show that for any nonzero continuous linear function ¥ on LP(u)
with 1 < p < oo, there exists f € LP(u) with ||f|l, =1 and ¥(f) = || ¥||.

(ii) Prove that in the case 1 < p < oo the dual to LP(u) can be identified with
L(u), ¢ =p/(p— 1), in the same sense as in Theorem 4.4.1.

(iii) Extend the assertion of Exercise 4.7.86 to the case of an arbitrary (not
necessarily o-finite) countably additive measure with values in [0, +-o0].

HINT: (i) use the Banach—Saks property (which follows by the uniform convexity
of L?(u)) or the reflexivity of uniformly convex spaces. (ii) If ¥ is a continuous linear
function on L?(u) and ||¥|| = 1, then by (i) one has f € L?(u) with ||f||, = 1 and
U(f) = 1. Then g = sign(f)|f|?~" € LI(u) and ||g||lq = 1. Next one verifies that

¥~'(0) = L, where
L= {h: /hgdp = 0}.

To this end, we observe that if one has h € L\¥~!(0), then one can take a measurable
set () outside of which f and h vanish and the restriction of the measure p to € is a
o-finite measure. The restriction of ¥ to LP(), 1) is a continuous linear functional
with unit norm, hence, by Exercise 4.7.86, it is given by the function g, which yields
TH0)NLP(Q,p) = LN LP(Q, p).

4.7.88. Let p be a nonnegative measure, 1 < p < oo, and let L be a linear
function on LP(u) such that L(f) > 0 whenever f > 0. Prove the continuity of L.

HINT: if L is discontinuous, then there exists a sequence f, such that || fn], — 0
and L(fn) > 1. One may assume that ||fn], < 47", passing to a subsequence. Let
p < oo. The series > | 2P| f,|P converges a.e. to an integrable function g. Then
G = ¢'? € LP(u) and, for every k, we have Ei:l Ifnl = D202, 27727 fu] <

(>, 2_"’”)1/p G, whence the uniform boundedness of the numbers >°%_ | L(|f,|)
follows, which leads to a contradiction. In the case p = co the reasoning is similar.

4.7.89. Construct an example of a countably additive measure p with values in
[0, +00] defined on a o-algebra A such that there exists a continuous linear function
¥ on L'(p) that cannot be written in the form indicated in Theorem 4.4.1.

HINT: let X = [0, 1] be equipped with the o-algebra A of all sets that are either
at most countable or have at most countable complements; let p be the counting
measure on A, i.e., u(A) is the cardinality of A; then every function f € L'(u) is
nonzero on an at most countable set {t,} and the functional f — > ., _, , f(tn)
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is continuous, but it is not generated by any function from L°°(u), since such a
function would coincide with Ijg1/2], which is not p-measurable; see also Federer
[282, Example 2.5.11].

4.7.90. (i) Construct a space (X, A, 1) with a countably additive measure p
with values in [0, +o0] and an A-measurable function f that belongs to no LP(u)
with p € [1,+00), but fg € L*(p) for every function g € Ugs1 L4 (w)-

(ii) Show that if a space (X, A, u) with a countably additive measure p with
values in [0, +o0o] and an A-measurable function f are such that p is o-finite on the
set {f # 0} and fg € L' () for every function g € L(u), where 1 < ¢ < oo, then
f € LP(n), where p™' 4+ ¢t = 1.

(iii) Let a measure p on a measurable space (X, .A) be semifinite in the sense of
Exercise 1.12.132, let f be an A-measurable function, and let p~! + ¢~ = 1, where
1 < p < co. Suppose that fg € L'(u) for every function g € L9(n). Show that
feLP(p).

HINT: (i) consider the measure p assigning +oo to every nonempty set in [0, 1]
and f = 1; (ii) apply Corollary 4.4.5; (iii) show that u(|f] > ¢) < oo for all ¢ > 0; to
this end, prove that assuming the contrary and using that the measure is semifinite,
one can find a function g € L9(p) such that gI{ s >¢; does not belong to L' (x).

4.7.91. (Segal [861]) (i) Let p be a measure with values in [0, +00]. Prove that
1t is semifinite precisely when the embedding L>(p) — (L'(u))" is injective.

(ii) Let p be a semifinite measure. Prove that p is Maharam (or localizable) in
the sense of Exercise 1.12.134 precisely when, for every L € L*(u)*, there exists a
unique element gz € L (p) with

L(f) = /fgL dp  for all f € L'(u).

In this case, L — g1, is an isometry between L'(u)* and L*(u).

HINT: (i) if p is semifinite and f,g € L®(p) are not equal, then there exists
a set of finite positive measure on which f and g differ; conversely, if there is a
measurable set F£ without subsets of finite positive measure, then all functions flg,
f € L*(u), generate the zero functional on L'(p). (ii) See Fremlin [322, Ch. 6],
Rao [788, p. 288], Zaanen [1043].

4.7.92. Let X = R? p(A) = +oo if A is uncountable, u(A) = do(A) if A
is at most countable, where o is Dirac’s measure at the origin. Show that p is a
countably additive measure on the o-algebra of all sets in IR? with values in [0, 4+-o0]
that is neither localizable nor semifinite. Verify that L'(u) = LP(u) # L (u) for
all p € [1,400) and || f||zr(w) = |f(0)] for all f € LP(w).

4.7.93. Let (X, A, 1) be a space with a complete countably additive measure
p with values in [0,+o0c]. Denote by No.(u) the class of locally zero sets, i.e.,
sets E such that u(E N A) =0 for all A € A with pu(A4) < co. Next, denote by
LiS. () the class of all y-measurable functions f with || f]|co,i0c < 00, where we set
| flloo.toe = inf{a: {z: |f(x)] > a} € Nioc(1r)} and identify functions that are not
equal only on a set from N (u).

(i) Prove that Lj;.(¢) is a Banach space with the norm || - ||co,i0c-

(ii) Prove that for all f € L{5.(u) one has

1 Flloooc = sup{\ [ o
X

Nglligw = 1},
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and the mapping Lj5.(u) — (Ll(,u))* is injective and preserves the distances.
(iii) Let P be the class of all simple p-integrable functions and let a p-measurable
function f be such that fg € L*(u) for all g € P and

sup{‘/ fgdu‘: g €P, gllprn = 1} < 0.
X

Prove that f € Li5.(u).

(iv) Let a measure u be decomposable in the sense of Exercise 1.12.131. Prove
that every continuous linear functional on L' () is generated by a function from the
class L. (u), i.e., (Ll(,u))* is naturally isomorphic to Ljs.(u).

4.7.94. Let p and «y be the measures with values in [0, +00] defined in Exercise
1.12.137 and let

l(f)=/fd% f e L ().

Prove that [ is a continuous linear functional on L'(y), but there is no function
g € L{5. (1) such that

I(f) = /fgd,u for all f € L*(p).

4.7.95° Let fn, f € L*[a,b]. Prove that the following conditions are equivalent:
(i) one has

/ fu(@)g(z) dz — / f@)g(x) de, Yg e L'a,b;

(ii) one has sup,, || fal|lz < 0o and

/: fu(z)de — /: fx)dz, Vzé€la,b).

HINT: use the Banach—Steinhaus theorem and the fact that the linear space
generated by the indicators of intervals is dense in L'[a, b].

4.7.96° Let f be a measurable function on the real line with a period 1.
(i) Prove that if f € L'[0,1], then

1

lim g(z)f(nz)dx = /0 g(z) d:v/o f(z)dx (4.7.19)

n—0o0 0

for all g € C|0, 1] (where n € IN).
(ii) Prove that if f is bounded, then the above relation is true for all g € L'[0,1].
HINT: subtracting from the function f its integral over [0,1], we may assume
that this integral vanishes; then observe that

1
/ f(nz)dx =0
0
for all n € IN and derive that
/ f(nx)dx:nfl/ fly)dy — 0, Vzel01].
0 0

Finally, observe that (4.7.19) for smooth g follows by the integration by parts for-
mula; in the general case, we consider suitable approximations (uniform for contin-
uous g and in L'[0, 1] for integrable g).
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4.7.97° Let f be a bounded measurable function on the real line with a period 1.
Show that if a sequence of functions f(nz) has a subsequence convergent on a set
of positive measure, then f a.e. equals some constant.

HiINT: apply the previous exercise.

4.7.98. Prove that the functions |sin wnz| converge weakly in L?[0, 1] and find
their limit.
HINT: {|sin7nz|} converges weakly to 2/7 by Exercise 4.7.96.

4.7.99. Suppose a sequence of functions f, converges weakly in L'[0,1] to a
function f. Is it true that the functions |f,| converge weakly to |f|?
HINT: no; see Exercise 4.7.98.

4.7.100. Prove that for every irrational number «, there exist infinitely many
rational numbers p/q, where p, ¢ are integers, such that |a — p/q| < q 2

HINT: consider n + 1 numbers 0,« — [@],...,n — [na], where [z] is the integer
part of z, and n intervals [j/n, G+ 1)/n), j=0,1,...,n — 1. Then, one of these
intervals contains at least two of the above numbers, say, n1a—[n1a] and nea—[n2q],
n1 < n2. Set ¢ =n2 — n1, p = [n2a] — [n1a]. Then ¢ < n and

lgoe — p| = [n2cv — [n2a] — mia + [nia]| < 1/n,

ie., | —p/ql < (ng)”' < ¢~2. Suppose that the regarded collection of ratio-
nal numbers consists of only finitely many numbers p1/q1,. .. ,pm/gm. Letting € =
min;<m, |o —pi/qi|, we pick n such that 1/n < e. Then, as shown above, we can find
p/q with ¢ < n and |a — p/q| < (ng)™", which is estimated by € as well as by ¢ 2,
contrary to our choice of e.

4.7.101. Let f be a measurable function on [0, 1), extended periodically to the
whole real line and having the integral I(f) over [0, 1]. For every n € IN, we consider
the Riemannian sum

Snf(z) :=n"" Zf(x—i— k/n), z€]l0,1).
k=0

(l) Prove that ||SanLp[0,1) < ||f||Lp[()’1) for all f € LP[O, 1), S [1,00), and
that [[1(f) — SnfllLrio,1) — 0 as n — oo.

(ii) Show that, for every function f € L'[0, 1), there exists a sequence n, — oo
such that Sy, f(x) — I(f) for almost all x € [0,1) (in fact, one can take ny, = 2™,
see Example 10.3.18 in Chapter 10).

(iii) Give an example of an integrable function f with a period 1 such that
Snf(xz) — I(f) only on a measure zero set. Verify that if f(z) =z~ for z € (0, 1),
where r € (1/2,1), then one has the equality limsup,, . S, f(z) = +oo almost
everywhere.

(iv) Show that in (iii) one can take for f the indicator of an open set.

HINT: (i) use that

[ s mide= [ i@l

if f has a period 1; then verify convergence for continuous function; (ii) use the
Riesz theorem; (iii) use Exercise 4.7.100 and observe that S, f(a) > ¢*"; (iv) see
Besicovitch [84], Rudin [833].
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4.7.102. Let p be a probability measure and let f € L'(u). Prove that f
belongs to LP(u) with some p € (1, 00) precisely when there exists C' > 0 such that

nu(A P fdp

for every finite partition of the space into disjoint measurable sets Ax of positive
measure. In addition, the smallest possible constant C' equals || f||5.

HINT: if f € LP(u), then the left-hand side of the above inequality is estimated
by ||f||5 by Holder’s inequality. Conversely, if there exists such a number C, then
the assertion reduces to f > 0 (by considering separately the sets where f > 0 and
f < 0). The corresponding estimate is true for every function fx = min(f, N). By
choosing for Ay the set {cx < fnv < cr + ¢} with a sufficiently small € > 0, one can
obtain in the left-hand side of our inequality the values that are arbitrarily close
to || fn||5; hence ||fn |5 < C for all N, whence || f||5 < C.

4.7.103. Let f € £'[0,1] and
F(:c):/ozf(t) dt.

Prove that f € LP[0,1] with some p € (1,+00) precisely when there exists C' > 0
such that

P
<C

pPACOETC IR

Tp — Th—1)P"L T

for every finite partition 0 = z¢p < 1 < --- < x, = 1, and the smallest possible C
coincides with || f||7.

Hint: if f € £P[0,1], then the above estimate is a special case of Exer-
cise 4.7.102; on the other hand, this estimate shows that

[ sada] < il

for every function g that equals ¢i on [zk, Tr+1), which follows by Holder’s inequality.
By the Riesz theorem, there exists a function fo € £P[0, 1] with

/Olfogda::/olfgdx

for all g of the indicated form; then f = fo a.e.
4.7.104° Let f € £L*(IR'). (i) Show that if €, — 0, then

+oo

lim |f(x+en) — f(z)|dx = 0.
(ii) Show that

+oo +o0

G [T - falde =2 [ @) de,
(iii) Let f, — f in L'(IR') and a, — a in IR'. Show that
“+oo
lim |fr(z 4+ an) — f(x + a)|dz =0,
+oo +oo
Jim [ et alde= [ i+ alde
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HinT: in (i) and (ii) consider first f € C§°(IR'), then take f; € C§°(IRY)
convergent to f in L'(IR'); (iii) apply (i) to €, = a, — a and use the translation
invariance of Lebesgue measure.

4.7.105? (Young [1035]) Suppose that integrable functions f, on a space with
a finite measure p converge a.e. to a function f and

/fndpﬂo asn — oo, u(E) — 0.
E

Prove that f is integrable.
HINT: observe that this condition implies the uniform absolute continuity of
the integrals of f,.

4.7.106. Construct a sequence f, € £'[0,1] with lfnllLijo,1) < 1 that is uni-
formly integrable on no set F of positive measure (in particular, the closure of this
sequence in the weak topology of L'(E) is not compact).

HINT: see Ball, Murat [48].

4.7.107° Let (X, A, ) be a probability space. Prove that a set F C L' (u) is

uniformly integrable precisely when

lim sup/ max(|f] — M,0)du = 0. (4.7.20)
M —+o0 feFJx

HINT: (4.7.20) yields

lim sup/ max(|f| — M,0)du =0,
M=oo fer Jy|fiz2m}

hence MliIE sup e Mu(|f| > 2M) = 0. Therefore,

lim sup/ |fldu = 0.
Moo per Jy|fiz2m}
It is clear that the uniform integrability yields (4.7.20).

4.7.108. (see Bourgain [120]) Show that a set F C L*[0, 1] has compact closure
in the weak topology if and only if, for every € > 0, there exists a number C such
that, for every function f € F', there is a measurable set Sy C [0, 1] such that

/ |f()]dt <e and |f(t)] < C for all ¢t € [0,1]\S;.
Sf

HINT: observe that F' with the indicated property is bounded and uniformly
integrable.

4.7.109. Let A be a nonempty set. Suppose that for every n € IN and « € A,
we are given a function fn o € L?[0,1] such that, for every function g in L?[0,1],
one has lim (fu.a,g) = 0 uniformly in & € A. Prove that, for every g € L2[0, 1] and

e > 0, there exists IV such that for every interval I C [0,1] one has

[ @ o) do

1

<e, Vn>N,ac€ A

Prove the analogous assertion for functions on a cube in IR".
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HINT: by the Hahn-Banach theorem we obtain sup,, ., || fn,all2 < oo; hence by
the Cauchy—Bunyakowsky inequality and the absolute continuity of the Lebesgue
integral, there exists 6 > 0 such that

[ @ o) do

I

<e/d

for every set I with measure less than J; next we partition [0, 1] into equal intervals
Ji,...,Ji of length less than § and take N such that

/ fr,agdx
J.

i

<e/(2k) foralli=1,...,k,n> N and o € A;

the integral of f,, g over any interval I is the sum of m < k integrals over intervals
J; and two integrals over intervals of length less than §. The case of a cube is similar
(cf. Gaposhkin [338, Lemma 1.4.1]).

4.7.110° Let u be a finite nonnegative measure and let 1 < p < co. Prove that
aset K C LP(u) has compact closure in L” (1) precisely when the set {|f|?: f € K}
is uniformly integrable and every sequence in K contains a subsequence convergent
in measure.

HINT: use the Lebesgue—Vitali theorem.

4.7.111. Let 1 < p < oo and let K be a bounded set in LP(IR™).
(i) (A.N. Kolmogorov; for p = 1, A.N. Tulaikov) Prove that the closure of K in
LP(IR™) is compact precisely when the following conditions are fulfilled:
(a) one has
sup lim |f(z)P dz =0,
fex €= Jiz>c
(b) for every ¢ > 0, there exists r > 0 such that sup ;¢ ||f — Srf|lp < €, where
Sy f is Steklov’s function defined by the equality

8,4(@) =2 (Ban) " [ sy,
B(z,r)
B(x,r) is the ball of radius r centered at x.
(ii) (M. Riesz) Show that the compactness of the closure of K is equivalent also
to condition (a) combined with
(b’) one has
sup lim [f(z+h) — f(x)]Pdz = 0.
fexh=0Jgrn
(iii) (V.N. Sudakov) Show that conditions (a) and (b) (or (a) and (b)) yield
the boundedness of K in LP(IR™), hence there is no need to require boundedness in
advance.
HiNT: (i) if K has compact closure, then K is bounded and, for every € > 0, has
a finite e-net (a set whose e-neighborhood contains K); hence the necessity of (a) and
(b) follows from the fact that both conditions are fulfilled for every single function f.
For the proof of sufficiency we observe that S, (K) has compact closure. Indeed, S is
the operator of convolution with the bounded function g = I(o,r)/An (B(0,7)). For
any § > 0, one has a function gs € C§°(IR™) with ||gs — g||1 < ¢, which by Young’s
inequality reduces everything to the operator of convolution with gs. Then, the
functions gs * f, f € K, are equicontinuous on balls, whence one can easily obtain
that every sequence in this set has a subsequence convergent in LP. Condition (b’)
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yields (b), hence (ii) follows from (i). Finally, (iii) is verified in Sudakov [919]
by means of the following reasoning: if a linear operator S is compact (or has a
compact power) and 1 is not its eigenvalue, then I — S is invertible, hence the
estimate ||f — Sf|| < 1, f € K, yields the boundedness of K. In our case the
verification reduces to proving that if an integrable function f with support in a
ball U agrees on U with S, f, then f = 0.

4.7.1127 Let p be a signed measure on a measurable space (X, .A) such that
u(X) = 0. Prove that ||u|| = 2sup ¢4 |#(A)|. In particular, for probability mea-
sures p1 and pg, we have [|p1 — pa|| = 2sup 4 4 |(11 — p2)(A4)].

HiNT: use that ||u|| = w(X1) — u(X ™) and u(X*) = —u(X7), where X =
X+ U X~ is the Hahn decomposition.

4.7.113. Construct a sequence of bounded signed countably additive measures
on some algebra such that this sequence is uniformly bounded on every set in this
algebra, but is not bounded in the variation norm.

HINT: consider the algebra of finite subsets of IN and their complements and
take the measures p,(A4) = aneAm[l """ n) Cnis where ¢, are terms of a convergent
series that is not absolutely convergent.

4.7.114. Find a sequence of nonnegative countably additive measures that has
a finite limit on every set in some algebra A, but does not converge on some set
in o(A).

HINT: consider the measures f, - A\, where X is Lebesgue measure on [0, 1] and
fn are the functions from Exercise 4.7.81.

4.7.115. Prove that if a o-algebra A is infinite, then the topology of conver-
gence of measures on all sets in A cannot be generated by a norm.

HINT: use that the dual to the space of measures with the topology of setwise
convergence coincides with the linear space L of simple functions; the dual to a
Banach space is Banach; if A is infinite, then L cannot be complete with respect to
a norm g, since for all A, € A, the function > °° 27 "q(la,) "I, belongs to L,
which is impossible because there exist sets A, such that this function assumes
countably many values.

4.7.116. Let A be the Borel o-algebra of [0,1]. Show that on the space M
of all countably additive measures on A4 all three topologies considered in §4.7(v),
i.e., the topology of setwise convergence, the topology generated by the duality with
the space of all bounded .A-measurable functions, and the topology o(M, M™),
are distinct, although the collections of convergent countable sequences in these
topologies are the same.

HiNT: the dual spaces to M with the first two topologies are identified, re-
spectively, with the space of all simple functions and the space of all bounded .A-
measurable functions, but these two spaces are distinct for any infinite o-algebra. If
one takes a non-Borel Souslin set A, then the functional y +— p(A) belongs to M™,
but is not generated by any .A-measurable function.

4.7.117. Let A be an algebra of sets and let {u,} be a uniformly countably
additive sequence of bounded measures on the generated o-algebra o(A). Prove
that if, for every A € A, there exists a finite limit lim u,(A), then the same is true

for every A € o(A).



4.7. Supplements and exercises 319

4.7.118. (Drewnowski [237]) (i) Let A be a g-algebra and let ;1: A — R be a
bounded additive function. Suppose that A, € A are disjoint sets. Prove that there
exists a sequence {ny} such that u is countably additive on the o-algebra generated
by {Ank }

(ii) Show that if in (i) we are given a sequence of bounded additive functions
wi on A, then one can choose a common sequence {n;} for all p;.

HINT: see Drewnowski [237], Swartz [924, §2.2].

4.7.119. (P. Antosik and J. Mikusiriski) Suppose that for all 7, j € IN we have

numbers x;; such that, for every j, there exists a finite limit z; = lim z;;, and that
11— 00

every sequence of natural numbers m; possesses a subsequence {k;} such that the
oo . . .
sequence )7 T, converges to a finite limit as i — co. Prove that z; = lim z;;
1— 00
uniformly in j € IN, lim x;; = 0 uniformly in ¢ € IN, and lim z;; = 0.
J— 00 J—0o0
HINT: see Swartz [924, §2.8].

4.7.120. (i) Deduce Theorem 4.6.3 from Exercise 4.7.119.

(ii) Prove that Corollary 4.6.4 remains valid in the case where u,, is a bounded
finitely additive set function on a o-algebra A.

HINT: (ii) use Exercise 4.7.118; see Diestel [223, p. 80].

4.7.121. Prove Proposition 4.7.39.

4.7.122. Prove Lemma 4.7.40.

HINT: we may assume that [mn|(J; A;) < 1; let us partition IN into infinitely
many disjoint infinite parts X,. If there is p such that for every k € ¥, one has
Imie (Ujes;\ xy A7) < €, then X is a required subsequence. If there is no such p,

then for every p there is k, € 3, with ‘mkp|(Uj€Ep\{kp} Aj) > e. Since

U Ajc:(LJ‘4n>\<LJ14kn) and hth(LJ‘4n) <1,
Jj€Zp\{pr} n n n

one has |mx, |(U,, Ak,) < 1—¢ for all p. Let us pass to mj, = mg, and Aj, = Ay,
Now |my,|(U, An) < 1 —e. We repeat the described step. If we still have no
required ¥, then we obtain a subsequence k, with |mj, |(U, A%,) < 1 — 2¢ for

all p. In finitely many steps we obtain a desired subsequence. One could also use
Exercise 4.7.118.

4.7.123. Prove Lemma 4.7.41.
HINT: use Exercise 4.7.120 and 4.7.122 and suppose the contrary; see Diestel
[223, p. 83].

4.7.124. (Kaczmarz, Nikliborc [474]) Let ¢ be a continuous even function on
the real line with the following properties (a): ¢(t) > 0 if ¢ # 0 and there exist A
and a such that ¢(t) > A if |t| > a. Let u be a probability measure on (X, .A) and
let f, be p-measurable functions.

(i) Suppose that

/ o(frn — fm)dp — 0 asn,m — co.
Jx

Prove that there exists a p-measurable function f such that

/ o(f — fu) dp — 0.
X
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(ii) Let ¢ satisfy the following additional condition (3): there is N such that
p(t+s) < Ne(t) + No(s). Suppose that the functions ¢ o f, are integrable. Show
that in (i) one has

/Xw(fn)duﬂ/XsO(f)du»

(iii) Suppose that the functions f, converge a.e. to some function f and there
exists a function ¢ with the properties () and (3) and finite integrals ¢ o f,. Show
that there exists a continuous even function v with the properties () and () such
that ‘tl‘im P(t)/p(t) = 0 and

/ W(f — fu) dp— 0.
X

In particular, since one can always take a bounded function for ¢, there exists an
unbounded function v with the aforementioned properties.

4.7.125. Let ¢: [0,00) — [0, 00) with ¢(0) = 0 be either an increasing concave
function or a convex function with p(2z) < Cyp(x). Let (X,.A, u) be a probability
space and let measurable functions f,, converge in measure to f. Suppose that

wol|fl,polfn] € L' (1) and
/‘Po‘fn|dﬂ_>/<,00|f|d,u.
X X

/W°|fn—f|dﬂ—’0
X

and that the functions ¢ o |f,| are uniformly integrable.
HINT: the uniform integrability follows by Theorem 2.8.9; one has ¢(z + y) <

Chle(z) + ¢(y)], C1 = max(C/2,1); then o |fn — f| < Cilpo|fn] +po|f|]. The
second case is analogous.

Prove that

4.7.126. Let p be a nonnegative measure and let ¢: [0, +00) — [0, +00) be a
continuous increasing convex function such that ¢(0) = 0, ¢(x) > 0 if z > 0. For
any measurable function f, we set

170 i=int{a > 0: [ p(1fl/a)du< 1)

and denote by £¥(u) the set of all f with |||, < co. Show that:

(i) L£? is closed under sums and multiplication by scalars and the corresponding
linear space L¥(u) of the equivalence classes is complete with respect to the norm
I - |l (the Orlicz space); (ii) if f and g are equimeasurable, then ||f|l, = ||g]le-

HINT: see Krasnosel’skil, Rutickil [546], Rao [788].

4.7.127. Let p be a finite nonnegative measure. For every measurable func-
tion f, we set
f7(@t) =inf{s >0: p(z: |f(z)] >s) <t}
and for all p, g € [1,00) we define the Lorentz space L”%(u1) as the set of all equiva-
lence classes of measurable functions f such that

/mtl/Pfl[f*(t)]th < co.

0
Show that LPP(u) = LP(u). On Lorentz classes, see Stein, Weiss [908], Nielsen
[714], Zaanen [1043].
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4.7.128° (Tagamlickil [930]) Let u be a probability measure and let a sequence
of p-integrable functions f, converge in measure to a function f. Prove the equiva-
lence of the following conditions:

(i) f € L(u) and fo — f in L} (u);

(ii) for every subsequence {fn,}, there exists a function ¢ € L'(u) such that,
for infinitely many values k, one has |fn, (z)| < ¢(z) a.e.

HINT: if f — fin L' (u), then [fy, | < |f|4+ 3252, [fr; — f], where k; is chosen
in such a way that || fx; — fllz1(.) < 277; for a subsequence the reasoning is similar;
(i) follows from (ii) by the dominated convergence theorem.

4.7.129. (Fréchet [316], Veress [974]) Let p be a probability measure on a
space X and let M be some set of yu-measurable functions. Prove the equivalence
of the following conditions:

(i) the set M has compact closure in the metric of convergence in measure
(Exercise 4.7.60);

(ii) every sequence in M contains an a.e. convergent subsequence;

(iii) for every € > 0 and o > 0, there exists a finite collection of measurable
functions 1, ...,%, such that, for every function f € M, one can find an index
i <nwith p(z: |f(z) —¢i(z) > €) < o

(iv) for every e > 0, there exist a number C' > 0 and a finite partition of the
space into disjoint measurable parts F1, ..., E, such that, for every function f € M,
there exists a measurable set E¢ with the following properties:

n(Er) <e, sup |f(z)] <C, sup |f(z)—fly)l<e
z€X\Ey z,yEE;\Ef
forall fe Mandi=1,...,n.
HINT: see Dunford, Schwartz [256, Theorem IV.11.1].

4.7.130. Let A be a o-algebra of subsets of a space X. Prove that a set M in the
space of all bounded measures on A has compact closure in the topology of setwise
convergence precisely when for every uniformly bounded sequence of .A-measurable
functions f, converging pointwise to 0, one has the equality

lim frndu=0
n—oo Jx
uniformly in p € M.
HINT: if M is compact, then we apply Theorem 4.7.25(ii) and Egoroff’s theorem.
If the above condition is fulfilled, then condition (ii) in Lemma 4.6.5 is satisfied, so

Theorem 4.7.25(i) applies.

4.7.131. (Areshkin [29]) Suppose that bounded countably additive signed mea-
sures [, on a o-algebra A in a space X converge to a measure £ on every set in A.
Let X = XTUX™, X = X;FUX,, be the Hahn decompositions for y and p,,. Prove
that the measures |un| converge to |u| on every set in A precisely when

lim pn (Xt NX, )= lim po (X~ NX,)=0.

4.7.132. (Areshkin [31]) Suppose that bounded nonnegative countably addi-
tive measures u, on a o-algebra A in a space X converge to a measure p on every
set in A and that we are given A-measurable functions f, and f.

(i) Suppose that the functions f, converge to f p-a.e. Prove that, for every
6 >0, one has nlirréouyL(x: |f(@) = falz)] > 6) = 0.
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(ii) Suppose that for every § > 0, one has lim pn(z: |f(x) — fa(z)] >6) =0
and that the functions f,, are uniformly bounded. Prove that

lim fn dpiy, :/ fdu. (4.7.21)
X X

n—oo

(iii) Suppose that f,(2z) — f(z) p-a.e., fn € L'(un) and that, for every e > 0,
there exists § > 0 such that

/Efn diin

Prove that f € L'(u) and (4.7.21) holds.
(iv) Deduce from (ii) that if the functions f, are nonnegative and converge
p-a.e. to f, then

< e whenever F € A and p,(F) < 4.

/fd,ugliminf/ frndpn.
b'e n—ee Jx

(v) Suppose that the functions f, converge p-a.e. to f and that there exist
A-measurable functions g, convergent p-a.e. to a function g such that |fn| < gn,
gn € L' (un), g € L' (), and

/gdu: lim/gndun.
X n—oo X

Deduce from (iv) that (4.7.21) holds.

HINT: in (i)—(iii) use Egoroff’s theorem and the uniform absolute continuity of
the measures p,. In (iv) consider min(f,, k) with fixed k and let k¥ — oo. In (v)
consider the nonnegative functions g, — fn and gn + fn.

4.7.133. (Areshkin, Klimkin [35]) Suppose that a sequence of measures j, on
a o-algebra A converges on every set in A to a measure p and let A-measurable
functions f, converge pointwise to a function f, where f,, € £L*(u»). Prove that the
following conditions are equivalent:

(a) f € L£'(w) and

/ fdp= lim / fndun for every A € A;
A n—o0 A

(b) for every & > 0, there exists 6 > 0 such that

‘/A I dpin

HINT: take a probability measure v such that p, = gn-v, p = g-v. If (a)
is fulfilled, then we can use the uniform v-integrability of {fngn} and Egoroff’s
theorem for v. If we have (b), then one can use the uniform v-integrability of {g»}.

<e whenever A € A and |u,|(A4) <6.

4.7.134. (Gowurin [376]) Let X be the space of all equivalence classes of
Lebesgue measurable sets in [0, 1] equipped with the metric d(4, B) = A\(A A B),
where A is Lebesgue measure. Let S(Eo,7) = {E € X: d(E, Eo) = r} be the sphere
of radius r € (0,1) with the center Ey € X. Suppose that this sphere does not
contain the element corresponding to the empty set. Prove that if f, € L'[0,1] and

n—oo

lim fndz =0 forall E € S(Eo,r),
E

then the same is true for every measurable set E C [0, 1].
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4.7.135. (S. Saks, see [376]) Prove that the class of all open sets is a first
category set (a countable union of nowhere dense sets) in the space X’ from the
previous exercise.

HINT: let {U,} be all intervals (open, semi-open or closed) in [0, 1] with rational
endpoints. Every open set in [0,1] is a finite or countable union of disjoint intervals
in {Up}. For fixed k € IN, we consider the class M}, of all open sets U C [0,1] such
that there exist Un,,...,Un, C U with A(U\ UL, Un;) < A(U)/4. The set My is
nowhere dense in X'. Indeed, it is easily verified that given an open ball B(C,r) C X
of radius r > 0 with the center C that is represented as a finite union of p = 2q > 8k
equal intervals Upm,,...,Un, with disjoint closures, one can find § > 0 such that
the ball B(C,d) does not meet M. To this end, we take 6 < A(C)/4 smaller
than the minimal distance between the intervals U, ..., Ump constituting C. If
U € My belongs to this ball, then we take intervals Un,,...,Un, C U such that
the measure of their union is at least 3A\(U)/4. Clearly, each U,, cannot meet
more than one Un,, since otherwise U would contain an interval of length greater
than § contrary to the estimate A(U A C') < §. Therefore, more than ¢ intervals
U, do not meet (J¥_, U,,, which shows that A\(C' A JY_, Un,) > A(C)/2. Hence
AMC AU) > X(C)/4, a contradiction. Clearly, every open ball in X' contains a point
C of the indicated form with a sufficiently large p.

4.7.136. Verify the equivalence of (i) and (ii) in Theorem 4.7.27.

HINT: Let (i) be fulfilled, but (ii) not. Then there exist disjoint sets R, € R
and measures p, in the given family with |[p,(Rn)| > € > 0. Set Sp = Uz~,, Rk.
Take an increasing sequence of indices ny such that |pn, [(Sn,,,) < /2. Hence

5 s o] 2 b o) =l (U ) > <72

i=k+1

contrary to condition (i). Conversely, if (ii) is fulfilled, but (i) is not, then there
exist disjoint R, € R and € > 0 such that, for each k, there is a number n(k)
with !Z;’;k fin(i)(R;)| > €. By using that |un|(UJ°im R;) — 0 as m — oo, we pick
strictly increasing numbers my and pr such that one has my < pr < mry1 and
|ty (U?i:nlk R;)| > /2, which contradicts (ii).

4.7.137. Let u, be real measures of bounded variation on the o-ring & gen-
erated by a ring . Suppose that lim p,(R,) = 0 for every infinite sequence of
disjoint sets R,, € R.

(i) Let Ax = Uj2, A%, By = Ujo, B}, where A¥, BY € R, and let the sets
E), = A\ Bj, be pairwise disjoint. Prove that lim |u,|(Fn) = 0.

(if) Prove that, for every S € & and ¢ > 0, there exists a set R of the form
R=j2, R; with R; € % such that |u,|(S A R) < ¢ for all n.

HINT: (i) otherwise we may assume that |un|(E,) > € > 0. The sets A¥ can
be made disjoint for every fixed k. The same can be done with the sets BJ’-“. By
Exercise 4.7.136, there exist indices px such that

|,un|< G A?)<527k/8, |un|( D Bf)<627k/8 for all n.

Jj=pr+1 Jj=pr+1



324 Chapter 4. The spaces L? and spaces of measures

Let Cy = (U%E, AF)\(UPE, BY). Then

Cr € R, CkAEkc( [j A?)\( [j B}“),

Jj=pr+1 Jj=pr+1

whence |p,|(Cx A Ex) < €27%/4 for all n and k. Tt is clear by the definition of Cy
that C; NC; C (Ci A E;) U (C; A Ej). Therefore, for all n, i, j one has

in|(Cs N Cy) < %(2—" +279), (4.7.22)

Let us consider the sets D, = Cy\ U;.Hll Cj, where Cyp = @. Then
n—1
Co ADy = | J(CanCy)
j=1
and by (4.7.22) we obtain |pn|(Crn A Dy) < /2. Hence |un|(En A Dy) < 3¢/4.
Therefore, |pn|(Dn) > €/4, which leads to a contradiction.
(ii) Let vp = |p1| 4+ -+ + |en]- One can find sets E, € R with

vn(SAE,) <e27"/4, nelN.

Let D,, = U;’in E;. The sets D,, are decreasing to &, and the sets D,\Dn41 are
disjoint and have the form indicated in (i). It is easy to deduce from assertion (i)
that there exists p such that |un|(Dp\D»n) < €/2 for all n > p. Indeed, otherwise
we find numbers p1 < n1 < p2 < n2 < ... such that |un,|(Dp;\Dn;) > /2, which
contradicts (i). If n < p, then we have |u,|(S A Dp) < e/4. If n > p, then we obtain

1 l(S A Dy) < |l (S & D) + |nl(Do A D) < .
The set D, has the required form.

— =

4.7.138. (Dubrovskil [249]). Let {¢o} be a uniformly bounded family of
countably additive measures on a o-algebra M dependent on the parameter «
from some set A. For every sequence of disjoint sets E,, € M we let 6({E,}) =

nh—>Holo [81613 ol (Une s Ek)] Denote by A the supremum of the numbers §({E,})

over all possible sequences of the indicated type. Suppose that there exists a non-
negative measure g on M such that oo < p for all a. Set fo := dpa/du. Prove
that A coincides with the quantity

li o| = N dpl.
NPW[EZE/{IMDN}[U | ] u]

In particular, the latter is independent of p.

4.7.139. (M.N. Bobynin, E.H. Gohman) Suppose A is a o-algebra, A, € A,
Apny1 C An and (02, A = &. Let pn be measures on A (possibly signed or
complex-valued) such that pn(An) # 0 for all n. Prove that there exists a set
A € A such that one has [pn(A)| > 1|pn(An)| for infinitely many indices n.

HINT: see Bobynin [100, Lemma 1].

4.7.140. Let p and v be bounded measures on a o-algebra A. Show that
wVv(A) =sup{u(B)+v(A\B): BE A,BC A}, VA€A
puAv(A) =inf{u(B) +v(A\B): B€ A,BC A}, VAc A
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HiNT: let p = f- A, v = g- A, where ) is a nonnegative measure; then the
integral of max(f,g) over A with respect to A equals the sum of the integral of f
over AN{f > g} and the integral of g over AN {f < g}; similarly for u A v.

4.7.141. Let u be a nonnegative measure and let f,g € LP(u), 1 < p < 0.
Show that the function

F©) = [ 17 +19 d
is differentiable and

F'(0) = p/ |72 fgdp.

4.7.142. Let 1 < p < co. Show that, for every € > 0, there exists 6 > 0 such
that if f7g € Lp[07 1]7 ||g||P = 17 ||f||P < 67 and

[ #@dz=o,

[ 1@+ sl dody < 142171,
HINT: see Fremlin [327, §273M].

then

4.7.143. (Carlen, Loss [167]) Let p be a probability measure on a space X
and let u € L?(p1) have unit L?(p)-norm and zero integral.
(i) Prove that for every a € [0,1] and p > 2, letting f = au + /1 — o2, one has

a’p
Wy < (1= 0?2 + 2O D o e,
provided that u € LP(u).
(ii) Let u?In(u®) € L'(u). Prove that

/f In(f*)dp < 2a° + o' +a / u® In(u?) dp.

X
4.7.144. (i) (Clarkson [183]) Prove the following inequalities for f,g € LP(u):

f*ng 1 p, 1 p
< = + = 2 < 00
H 2 - 2||f||p 2“9”;)7 <p< s

C < (R Sa] T 1< <2y = 2
> 2 p 2 P ) > 4, p—l

Hanner [407]) Prove the following inequalities for f,g € LP(u), where

=i
INZ

(if) (
1<p<2:

1f +gllp + 11 = allp = (f 1l + lalle)” + (111 = llglls|",

(1f + gllp + 1f = gllo)?” +[If + glls = 1f = gllo[* < 2" fllp + llgllp)”-

Prove the reversed inequalities in the case 2 < p < oco.
HINT: (i) see Sobolev [893, Ch. III, §7], where one can find a generalization,
and Hewitt, Stromberg [431, Ch. 4, §15]; (ii) see Lieb, Loss [612, §2.5].

4.7.145. (Douglas [235]) Suppose that (X, .A) is a measurable space, M™(A)
is the set of all finite nonnegative measures on A, F is some linear space of real
A-measurable functions. Let € M (A) and F C L£'(p1). Set

- {ye/W(A): Fc Ly /fdz/—/fdp foraufef}
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(i) Prove that F is dense in L' (i) precisely when y is an extreme point in E*,
i.e., there are no measures ui, u2 € E* and t € (0,1) such that one has 1 # p and
p=tur + (1 = t)ps.

(ii) Let B be a sub-o-algebra in A. Prove that p is an extreme point in the set
of all measures v € M (A) such that v|g = u|s precisely when, for every A € A,
there exists B € B with u(A A B) = 0.

HINT: (i) if F is not dense, then there exists g € L*(p) with 0 < ||g|| <1 and

/gfdu:O for all f € F.

Then g = (w1 + p2)/2, where 1 := (1 +g)-pn € E*, p2 := (1 —g) - p € E*.
Conversely, let = tp1 + (1 — t)u2, where t € (0,1), p; € E*. Then u; < p, hence
Wi = gi - b, gi € L*(p). Since the integrals of the functions (g1 — 1) f, where f € F,
against the measure p vanish, it is easily verified that g1 — 1 belongs to the closure
of F only in the case g1 = 1. Then g2 = 1. (ii) One can take for F the space of all
bounded B-measurable functions. It is dense in L'(ut) precisely when B is dense in
the measure algebra A/p.

4.7.146. Let X be an infinite-dimensional normed space. (i) Prove that the
weak topology on any ball is strictly weaker than the norm topology. (ii) Prove that
X with the weak topology is not metrizable.

HINT: (i) every weak neighborhood of the center meets the sphere. (ii) If a
metric d generates the weak topology, then the balls {z: d(z,0) < n~'} contain
neighborhoods U(0,ln,1,. .., ln,k,,En) With [, ; € X*. Hence X* is the linear span
of all I,,,;, which is impossible because X ™ is a Banach space.

4.7.147. Prove that every weakly compact set in I* is norm compact.
HINT: apply the results of §4.7(iv).

4.7.148. (i) Let u be a separable finite nonnegative measure. Show that every
uniformly integrable subset of Ll(,u) is metrizable in the weak topology. In partic-
ular, every weakly compact subset of L'(z) is metrizable in the weak topology.

(ii) Let A be a countably generated o-algebra. Show that every compact subset
of the space M of all bounded measures on A with the setwise convergence topology
is metrizable.

HINT: (i) M has compact closure K in the weak topology; there is a countable
family {@,} C £°°(u) with the following property: if f,g € £'(u) are such that the
integrals of fy, and gy, are equal for all n, then f = g a.e. The functions

£ [ fondn

are continuous on K in the weak topology and separate the points. Hence K is
metrizable (see Exercise 6.10.24 in Chapter 6). (ii) The same reasoning applies with
the functions p — wu(An) on M, where a countable family {A,} generates A.

4.7.149. (i) Let f € £*(IR'). Show that the set F of all functions of the
form Y;_, cuf(x + 0k), where n € IN, ¢, 0 € IR', is everywhere dense in L*(IR")
precisely when the set of zeros of the Fourier transform of f has measure zero.

(i) Let f € £'(IR"). Show that the set F indicated in (i) is everywhere dense
in L*(IR') precisely when the Fourier transform of the function f does not vanish.
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(iii) (Segal [860]) Show that if 1 < p < 2, then the a.e. positivity of the Fourier
transform of a function f € LP(IR') does not imply that the set indicated in (i) is
everywhere dense in LP(IR").

HINT: (i) observe that the Fourier transform of the indicated sum is the function
> p—1 Ck exp(—idkz) f(z). If f € £L2(IR') and f = 0 on a compact set A of positive
measure, then the inverse Fourier transform of the function I4 is orthogonal to F.
Let f # 0 a.e. If F is not dense, then there exists a nontrivial function g € £2(IR")
that is orthogonal to all shifts f(- —y), v € R'. By the Parseval equality for the
Fourier transform in L?, the Fourier transform of the function fz\ vanishes, hence
g = 0, which is a contradiction. In (ii), a similar reasoning applies.

4.7.150° Suppose that a sequence of functions f, € L'(u) converges weakly
to a function f and a sequence of functions g, € L'(u) converges weakly to a
function g and |fn(x)| < gn(z) for all n. Show that |f(z)| < g(z) a.e. Construct
an example demonstrating that the estimates |f,(x)| < |gn(z)| do not imply that

|f(@)] < lg(z)| ae.

HiINT: for any measurable set A, one has

/ fldp= lim / fusignf dp,
A n—oo A

which is estimated by the integral of gI4. To construct an example take [0, 1] with
Lebesgue measure, set f, = 1 and choose a sequence of functions g, with |gn(z)| =1
that is weakly convergent to zero.

4.7.1512 Let p be a bounded nonnegative Borel measure on an open cube in V'
in IR™. Show that the set C§°(V) of infinitely differentiable functions with support
in V is everywhere dense in LP(u), 1 < p < oo.

HiINT: it suffices to approximate the indicators of cubes K C V; given € > 0
there are a closed cube Q@ C K and an open cube U with K C U C U C V and
uw(U\Q) < e. Take f € C5°(V) such that 0 < f <1, flo =1, f =0 outside U.

4.7.152. Let p be a probability measure and let M be a convex set in L*(p)
that consists of probability densities and is closed with respect to convergence in
measure. Show that M is compact in the weak topology.

HiNT: it suffices to show that M is uniformly integrable. If not, by Corollary
4.7.21 one can find decreasing measurable sets A, with empty intersection and
functions f, in M such that, for some a > 0, the integral of f,, over A,, is greater than
a for every n. By the Komlds theorem we obtain a sequence Sy := (fn, +- -+ fn,)/k
that converges a.e. to some f. Then f € M by hypothesis, hence Sy — f in L'(u).
The integral of Sy over Ay, is greater than or equal to a. Since the integrals of f
over A, tend to zero, one arrives at a contradiction.

4.7.153. Let (X, A, u) be a probability space and let {f.} be a sequence of
probability densities convergent u-a.e. to a function f. Let A € L°(u)* be a limit
point of { f»} in the x-weak topology of L>(u)* (which exists by the Banach—Alaoglu
theorem). Then A corresponds to a nonnegative additive set function Ag on A. Show
that Ao = f - p + Aq, where A, is a nonnegative additive function on 4 without
o-additive component.

HINT: we know that Ag = A, + v, where v is a nonnegative o-additive mea-
sure on A and A, is a nonnegative additive set function on A without o-additive
component. Clearly, v < p, hence v = g - u, where p > 0 is u-integrable. For any
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A € A, we have
fd < timint [, du < o(4),
A n—oo A
ie, f+-u < Ap. On the other hand, By Egoroff’s theorem, given £ > 0 we can find
a set £ C X such that [(f + o) - p](X\E) < € and {f»} converges to f uniformly
on E. Hence for every set A € A contained in E one has

lim fndp= / fdu.
A A

n—oo

Note that the left-hand side equals Ag(A). Hence the restriction of A, to E coincides
with the measure f - pu — o -, which means that this restriction vanishes. Thus,
f(x) = o(z) for p-a.e. x € E. This yields that f = ¢ p-a.e.

4.7.154. Construct probability densities f, on [0,1] with Lebesgue measure A
that converge to 0 in measure but where the constant function 1 belongs to the clo-
sure of {f,} in the weak topology o(L', L°°). In particular, in the previous exercise,
one cannot replace convergence almost everywhere by convergence in measure.

HINT: for every n € IN, we partition [0, 1] into 4™ equal intervals J, k. Let
Cn,m € [0,4"] be such that cpmi1 — cnym = 87", cn1 = 0, m < (32)" + 1. For
each n, denote by F, the collections of all functions f on [0,1] that are constant
on each J, i, assume only values c¢,,m, have integral 1, and satisfy the condition
A{f > 0}) < 27". Clearly, F, is finite. Next we write the functions from all F,
in a single sequence { f,} such that the elements of F,, 11 follow the elements of F,.
By construction, f, — 0 in measure. Let us show that every neighborhood U of 1
in the topology o (L', L>) contains a function from {f,} distinct from 1. We may
assume that

Uz{(p: ’/Olwi(gofl)dx <&, z’:l,...,n},

where the functions 1; assume finitely many values. This can be easily reduced to
the case where each v; is the indicator function of a measurable set A; of positive
measure and the sets A; are pairwise disjoint. In that case, in each A; we pick a
density point a;, i.e., letting A; = [a; — J, a; + d], one has ;ii% AAiNA)/AA) =1

(see Chapter 5). We can assume that ¢ < 1/2 and n > 1. Let us take § < en™'/2
such that the intervals A; are disjoint and A(A; N A;) > (1 — e/4)A(A;). Next we
observe that each A; can be replaced by a slightly smaller interval FE; C A; such
that E; is a finite union of some of the intervals J,, x, where 2™ < e(4n)~' and
m is common for all ¢ = 1,...,n, and A(A; N E;) > (1 — ¢/4)\(E;). For every i,
one can find ¢; € {¢m,1,,.-.,Cm,sm+1} such that | A(E; N A;) — M(Ai)] < e(4n) L.
This is possible because A(E; N A;) > 2A(E;) > 4™ M(A)/ME; N A;) < 4™ H
e(4n) " /A(EiNA;) > 274 ™ > 87™. Finally, let f = ¢11p, + - -+cunlg, . Clearly,
f €{fn}. We show that f € U. We have the estimates ¢;A\(F;) < 2¢;A(A; N E;) <
e(2n)™t + 2X(A;). Note that for every j # i one has A(E; N A;) < eA(E;)/4,
since A; N A; = @ and A(E; N A;j) > (1 —e/4)A(E;). Therefore, we arrive at the
estimates ¢; A(E;NA;) < ecjA(E;)/4 < e/(8n)+eX(A;)/2. This gives the inequality
|CZ)\(E7, M AZ) — )\(Al)| + qu/c]')‘(Ej N Al) < E. ThHS, f S U.



CHAPTER 5

Connections between the integral and
derivative

All those who wrote on the theory of functions of a real vari-
able know well how difficult it is to be simultaneously rigorous
and brief in such matters.

N.N. Lusin.

5.1. Differentiability of functions on the real line

Let us recall that a function f defined in a neighborhood of a point z € R!
is called differentiable at this point if there exists a finite limit

o L@ ) = @)

h—0 h
which is called the derivative of f at the point x and denoted by f/(z). The
developments of mathematical analysis, in particular, the integration theory,
are closely connected with the problem of recovering a function from its deriv-
ative. The fundamental theorem of calculus — the Newton—Leibniz formula
— recovers a function f on [a,b] from its derivative f’:

f@) = @)+ [ " ) dy. (5.1.1)

For continuously differentiable functions f the integral in formula (5.1.1)
exists in Riemann’s sense, hence there is no problem in interpreting this iden-
tity. The problems do appear when one attempts to extend the Newton—
Leibniz formula to broader classes of functions. There are essentially three
problems: in what sense the derivative exists, in what sense it is integrable,
and, finally, if it exists in a certain sense and is integrable, then is equality
(5.1.1) true? In order to show the character of potential difficulties, we con-
sider several examples. First we construct a function f that is differentiable
at every point of the real line, but f’ is not Lebesgue integrable on [0, 1].

5.1.1. Example. Let

mzsinw—l2 if x #0,
0 ifx=0.

The function f is everywhere differentiable, but the function f” is not Lebesgue
integrable on [0, 1].
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Proor. The differentiability of f outside the origin is obvious and the
equality f'(0) = 0 follows from the definition by the boundedness of sine. One

has
f(x) = 2xsin ! 2— cos !
N 2 T 2
if z # 0. It suffices to show that the function

1 1
P(x) = —cos—

is not Lebesgue integrable on [0, 1]. Suppose the contrary. Then the function
% oS # is integrable as well, which is verified by using the change of variable

y= V2. Therefore, the function

is integrable, too. Since ¥(x) = 2p(x) — =1, we obtain the integrability
of =1, which is a contradiction. ([l

The function f’ in the above example is integrable in the improper Rie-
mann sense. However, it is now easy to destroy this property as well. Let
us take a compact set K C [0, 1] of positive Lebesgue measure without inner
points (see Example 1.7.6). The set [0, 1]\ K has the form [ J;~, (an, b, ), where
the intervals (a,, b, ) are pairwise disjoint. Let us take a differentiable function
0 such that f(x) = 1if £ < 1/2 and 8(x) =0 if x > 1. Set g(z) = 6(z) f(x)
if 2 >0 and g(x) = 0 if z < 0. We observe that ¢’(0) = ¢’(1) = 0 and
lg(z)| < Cmin{z?, (1 — z)?} for some C.

5.1.2. Example. We define a function F' by the formula

F(z) = i(bn —an)Qg( R )

bn*an

n=1
The function F is everywhere differentiable and its derivative F’ is not Le-

besgue integrable on [0, 1] and is discontinuous at every point of the set K.
In particular, F’ has no improper Riemann integral on [0, 1].

PROOF. It is clear that the series defining the function F' converges uni-
formly because the function g is bounded. It suffices to show that F'(x) =0
at every point & € K, since on the interval (a,,b,) the function F' equals the
function (b, — an)?g(x — an/(by — an)). By our construction, F(z) = 0 if
xe€K. Let¢ h>0. Ifx+he€ K, then F(x+h)— F(z)=0. f e+ h ¢ K,
then we can find an interval (ay,b,) containing « + h. Then x +h — a, < h
and hence

F(z +h) —F(SL‘)‘
h

[F = 0wl

(b, — an)? h?
< p—
- h C(bn —an)? Ch,

— Qnp
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which tends to zero as h — 0. The case h < 0 is similar. It is obvious
that the function F” is unbounded in the right neighborhood of the point a,,,
since F' on (an,by,) is an affine transformation of g on (0,1). Therefore, F’
is discontinuous at every point in the closure of {a,}. This closure coincides
with K due to the absence of inner points of K. (I

One can construct an everywhere differentiable function f such that its
derivative is discontinuous almost everywhere (Exercise 5.8.119). However,
f’ cannot be discontinuous everywhere (Exercise 5.8.37). Finally, we observe
that if f’ exists everywhere and is finite, then it cannot be non-integrable
on every interval, since there exists an interval where it is bounded (Exer-
cise 5.8.37).

Thus, neither the Lebesgue integral nor the improper Riemann integral
solve the problem of recovering an everywhere differentiable function from
its derivative. In §5.7, we consider a more general (non-absolute) integral
solving this problem (although not constructively). We remark, however,
that in the applications of the theory of integration, much more typical is the
problem of recovering functions that have derivatives only almost everywhere.
Certainly, without additional assumptions, this is impossible. For example,
the above-considered Cantor function (Proposition 3.6.5) has a zero derivative
almost everywhere, but is not constant. Lebesgue described the class of all
functions that are almost everywhere differentiable and can be recovered from
their derivatives by means of the Newton—Leibniz formula for the Lebesgue
integral. It turned out that these are precisely the absolutely continuous
functions. Before discussing such functions, we shall consider a broader class
of functions, which also are differentiable almost everywhere, but may not be
indefinite integrals.

In the study of derivatives it is useful to consider the so called derivates
of a function f that take values on the extended real line and are defined by
the following equalities:

DY f(x) = limsup flath) - f(x)7
h—40 h

D, f(z) = l}fﬂi%f w,

D™ f(z) = limsup flz+ h})L — f(x)’
h——0

D_ f(z) = liminf fleth) - f(ac)

h——0 h
If DY f(z) = D4 f(x), then we say that the function f has the right derivative
fi(x) :== DT f(x) = D4 f(x) at the point x, and if D~ f(z) = D_ f(x), then
we say that f has the left derivative f’ (z) := D~ f(z) = D_f(z) at the
point x. It is clear that the existence of a finite derivative of f at the point z
is equivalent to the equality and finiteness at this point of the right and left
derivatives.
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The upper and lower derivatives D f(x) and Df(x) are defined, respec-
tively, as the supremum and infimum of the ratio [f(x+h)— f(z)]/hash — 0,
h #0.

5.1.3. Lemma. For any function f on the interval [a,b], the set of all
points at which the right and left derivatives of f exist, but are not equal, is
finite or countable.

PROOF. Let D := {z: f'(x) < fl(z)} and let {r,} be the set of all
rational numbers. For any z € D, there exists the smallest £ such that
fl(x) < rp < fi(x). Furthermore, there exists the smallest m such that
rm < x and for all ¢ € (r,, z) one has

f(tiii(x) -

Finally, there exists the smallest number n such that r, > z and for all
t € (x,r,) one has

- @)
t—x
According to our choice of m and n we obtain
f@O&)—f@)>rg(t—a) ift#zandt € (rpy,rn). (5.1.2)

Thus, to every point & € D we associate a triple of natural numbers (k, m,n).
Note that to distinct points we associate different triples. Indeed, suppose
that to points x and y there corresponds one and the same triple (k,m,n).
Taking ¢ = y in (5.1.2), we obtain f(y) — f(x) > ri(y — x). If in (5.1.2) in
place of z we take y and set ¢ = x, then we obtain the opposite inequality.
Thus, D is at most countable. In a similar manner one verifies that the set
{f% < f_} is at most countable. O

Completing this section we formulate the following remarkable theorem
due to N. Lusin (see the proof in Bruckner [135, Ch. 8]; Lusin [632], [633],
[635]; Saks [840, Ch. VII, §2]).

5.1.4. Theorem. Let f be a measurable a.e. finite function on [0,1].
Then, there exists a continuous function F on [0,1] such that F is differen-
tiable a.e. and F'(x) = f(z) a.e.

5.2. Functions of bounded variation

5.2.1. Definition. A function f on a set T C IR' is of bounded variation
if one has

V(f,T):= SUPZ |f(tir1) — f(t:)] < oo,
i=1

where sup s taken over all collections t; < to < -+ < tpyq in T. The
quantity V(f,T) is called the variation of f on T. If T = [a,b], then we set

Ve (f) = V(/.[a,0)).



5.2. Functions of bounded variation 333

If a function f is of bounded variation, then it is bounded and for any
to € T one has

fgglf(t)l < [f(to)| + V(f,T).

We shall be mainly interested in the case where T is an interval [a, b] or
(a,b) (possibly unbounded).

The simplest example of a function of bounded variation is an increasing
function f on [a,b] (in the case of an unbounded interval it is additionally
required that the limits at the endpoints be finite). Indeed, we have V’(f) =
V(f,la,b]) = f(b)—f(a). It is clear that any decreasing function is of bounded
variation as well. The space BV|a,b] of all functions of bounded variation is
linear. In addition,

Vo(af +Bg) < |alVy(f) +181Vq (9) (5.2.1)
for any two functions f and g of bounded variation and arbitrary real numbers
« and B. This is obvious from the estimate

|af (tig1) + By(tiv1) — af (t:) — By(ts)|
< e |f(tiv1) — f(E)]+ 1Bl lg(tit1) — g(t:)]-

Hence the difference of two increasing functions is a function of bounded
variation. The converse is true as well.

5.2.2. Proposition. Let f be a function of bounded variation on [a,b].
Then:

(i) the functions V: x — V(f,[a,z]) and U: x — V(z) — f(x) are non-
decreasing on [a, b];

(ii) the function V is continuous at a point xg € [a,b] if and only if the
function f is continuous at this point;

(iil) for every c € (a,b), one has

V(f:[a,b]) = V(£ [a, c]) + V£, e, b]). (5.2.2)

PRrROOF. If we add a new point to a partition of [a, b], the corresponding
sum of the absolute values of the increments of the function does not de-
crease. Hence in the calculation of V?(f) we can consider only the partitions
containing the point ¢. Then

k n
V(f,la,b]) = SHP{Z [f(tien) = F@)+ Y [f(trn) = F(E)I]
i=1 i=k+1
where sup is taken over all partitions with ¢511 = ¢. This equality gives (5.2.2),
whence it follows that V' is a nondecreasing function. The function U =V — f
is nondecreasing as well, since whenever = > y we have

Viz) =V(y) =V, (f) 2 |f(@) = fy)] = f(z) = f(y)-

Then |V(z) — V(y)| > |f(x) — f(y)|, whence the continuity of f at every
point of continuity of V follows at once. It remains to verify the continuity
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of V at the points = where f is continuous. Let ¢ > 0. We find §y > 0 with
|f(x+h)— f(x)] < e/2 whenever |h| < dyg. By definition, there exist partitions
a=t <---<thyr=xand z =351 < --- < sp41 = b such that

| ™

VFfaa]) = 0 1F ) = FE)I|+ [V o b) = D If (i) = F(s0)]| <

Let |h| < ¢ := min(dg, & — t, $2 — x) and h > 0. Then
V(z+h) = V()= V() = V(£ [ 8) = V(S [e+ b))

< Y1 (se) = F(sl + 5 = V(L L+ hud)

+
(]

[F(siv1) = F(s0) + 5 = Vil +h,B])

2
<If(@) = fla+ b))+ <e,

since | f(z+h)— f(s2)|+ > i | f(si41) — F(s:)] < V2L, (f). A similar estimate
holds for h < 0. U

The variation of a function f may not be an additive set function. For
example, V(f,[0,1]) =1 > V(£,[0,1)) =0 if f(z) =0on [0,1) and f(1) = 1.

5.2.3. Corollary. A continuous function of bounded variation is the
difference of two continuous nondecreasing functions.

5.2.4. Corollary. Fvery function of bounded wvariation has at most
countably many points of discontinuity.

PrOOF. By the above proposition, it is sufficient to consider a nonde-
creasing function f. In this case, the points of discontinuity are exactly the
points = such that hlir&_ flx—h) < hh%l f(z+h). It is clear that they are at

— —0+

most countably many. O

In the proof of the following important theorem we employ a technical
lemma, which can be easily obtained from considerably more general results
in §5.5. In order not to break our order of exposition, we give a direct proof
of the necessary lemma.

5.2.5. Lemma. Let F be a set in (0,1). Suppose that we are given some
family T of open intervals such that for every x € E and every § > 0, it
contains an interval (x,x + h) with h < 6. Then, for every ¢ > 0, one can
find a finite subfamily of disjoint intervals I, ..., I in this family such that

MUSLL L) < A(E)+e and A (ENUL, 1) > X (B) — e

In addition, given an open set U containing E, such intervals can be taken
instde U.
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ProOOF. We find an open set G D E such that \(G) < A\*(E) +e. If
we are given an open set U D FE, then we take G in U. Deleting from 7
all the intervals not contained in GG, one can assume from the very beginning
that the intervals of Z are in U. Hence the measure of their union does not
exceed \*(E) 4+ ¢. Let E,, be the set of all points z € E such that Z contains
an interval (z,x 4+ h) with A > 1/n. Since E is the union of the increasing
sets E,, there is n with A*(E,) > A (E) —¢/2. Let 6 = ¢/(2n + 2). Let
ay be the infimum of F,. Let us take a point 1 € E, in [a1,a; + 6]. Let
I = (x1,21+h1) € T be an interval with hy; > 1/n. If the set E, N (214 hy, 1)
is nonempty, then let ay be its infimum. Let us take a point zo € FE,, in
[ag,as + 6] and find Ir = (9,29 + he) € T with he > 1/n. Continuing this
process, we obtain k < n intervals I; = (z;,z; + h;) with h; > 1/n such that
there are no points of E, on the right from z1+hy and z; € [a;, a; + 6], where
a; is the infimum of E, N (zj—1 + hj—_1,1). It is clear that the points in E,
that are not covered by U§:1 I;, are contained in the union of the intervals
[aj,a; + 6], j = 1,...,k. Hence the outer measure of the set of such points
does not exceed nd < £/2. Therefore, by the subadditivity of outer measure

N (ENULL L) > M (E) — N (B AU L) > \(E) —e.
Finally, one has )\(Ule I;) < ANG) < X*(E) +e. O

5.2.6. Theorem. Let f be a function of bounded variation on [a,b].
Then f has a finite derivative almost everywhere on [a,b].

ProoF. It suffices to give a proof for a nondecreasing function f. Let
S ={z: Dyf(z) < D" f(x)}. Let us show that A\(S) = 0. To this end, it is
sufficient to show that for every pair of rational numbers u < v, the set

S(u,v) ={z: Dy f(z) <u<v<D'f(z)}

has measure zero. Suppose that A\*(S(u,v)) = ¢ > 0. Every point z in the
set S(u,v) is the left endpoint of arbitrarily small intervals (z, z + h) with the
property that f(x 4+ h) — f(z) < hu. By Lemma 5.2.5, for fixed € > 0, there
exists a finite collection of pairwise disjoint intervals (z;,2; + h;) such that
for their union U one has the estimates

N (UNS(u,v) >c—e, MU)=> hi<c+e.

It is clear that >, [f(z;+h;) — f(z;)] < 3, hiu < u(c+¢). On the other hand,
every point y € U N S(u,v) is the left endpoint of arbitrarily small intervals
(y,y +r) with f(y+r) — f(y) > rv. Hence by Lemma 5.2.5 one can find a
finite collection of pairwise disjoint intervals (y;,y; + 7;) in U such that for
their union W one has

M (W N S(u,v)) > A (UNS(u,v)) —e>c—2e.

Then 3, [flyj+75)— fy;)] >0 >, 75 > v(c—2¢). Since f is nondecreasing
and every interval (y;,y; +1;) belongs to one of the intervals (z;,z; + h;), we
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obtain the following estimate:

D i+ i) = Sp] < DL+ ha) = f(a2)].
J K2
Hence v(c — 2¢) < u(c+ ¢). Since € > 0 is arbitrary, we obtain v < w,
which is a contradiction. Therefore, ¢ = 0, and the right derivative of f
exists almost everywhere. One proves similarly that the left derivative of f
exists almost everywhere. The set E of all points  with f/(z) = 400 has
measure zero. Indeed, let € > 0 and N € IN. There exists h(z) > 0 such that
f(x 4+ h) — f(z) > Nh whenever 0 < h < h(z). By Lemma 5.2.5, there is a
finite collection of disjoint intervals (z;, x; +h;), where z; € F and h; = h(z;),
the sum of lengths of which, denoted by L, is at least A*(E) —e. The intervals
(f (@), f(@;+h;)) are disjoint and the sum of their lengths is not less than N L.
Hence we obtain \*(E) < e+ L < e+ V(f,|a,b])/N. Thus, A(E) = 0. Now
the assertion follows by Lemma 5.1.3. (I

5.2.7. Corollary. Every nondecreasing function f on a closed interval
[a,b] has a finite derivative f' almost everywhere on [a,b], the function [ is
integrable on [a,b] and

b
| 1@< o) fia) (5.2.3)

PROOF. Set f(z) = f(b) if x > b. Let f,(z) = h,t[f(z + hn) — f(2)],
h, =n~!. Then fn >0 and f,(z) — f'(z) a.e. In addition,

[ - ;Zfi g, [ o

b+hy,
:_/ m-m " f(@) dx < £(b) — f(a),

a
since f = bon [b,b+ h,] and f > f(a) on [a,a + hy,]. It remains to apply
Fatou’s theorem. O

This corollary yields the integrability of the derivative of every function
of bounded variation. Cantor’s function Cy (see Example 3.6.5) shows that
in (5.2.3) there might be no equality even for continuous functions. Indeed,
Cl(x) = 0 almost everywhere, but Cy(x) # const. In the next section, we
consider a subclass of the space of functions of bounded variation with an
equality in (5.2.3).

We note an interesting result due to Fubini [332], the proof of which is
delegated to Exercise 5.8.42.

5.2.8. Proposition. Let f, be nondecreasing functions on [a,b] such
that the series f(z) = > ", fu(x) converges for all x € [a,b]. Then

= Z fl(z) ae.
n=1
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5.3. Absolutely continuous functions
In this section, we consider functions on bounded intervals.

5.3.1. Definition. A function f on an interval [a,b] is called absolutely
continuous if, for every e > 0, there exists 6 > 0 such that

S OIFb) — flan)| < e
i=1
for every finite collection of pairwise disjoint intervals (a;,b;) in [a,b] with
S [bi — ai] < 6.
Let ACa,b] denote the class of all absolutely continuous functions on the
interval [a,b].

It is obvious from the definition that any absolutely continuous function
is uniformly continuous. The converse is not true: for example, the function
f on [0,1] that equals n=! at (2n)~2, vanishes at (2n + 1)72 and is linearly
interpolated between these points is not absolutely continuous. This is clear
from divergence of the series > - | f((2n)~!)| and convergence to zero of the
sequence of sums »_° [(2n)~t — (2n+1)71].

5.3.2. Lemma. Let functions f1,..., fn be absolutely continuous on the
interval [a, b] and let a function ¢ be defined and satisfy the Lipschitz condition
on a set U C R"™. Suppose that (f1(x),..., fo(z)) € U for allx € [a,b]. Then
the function o(f1,..., fn) is absolutely continuous on the interval [a,b].

PROOF. By hypothesis, for some C' > 0 and all x, y € U we have

lp(z) = e(y)l < Cllz —yl|.
In addition, given € > 0, there exists § > 0 such that

Z|fj — fila))| <en H(CH+ D), j=1,...,n,

for every collectlon of pairwise disjoint intervals (ai,b1),..., (ak, bx) in [a,d]
with Zle |b; — a;| < &. Now the estimate

k
S le(fr(b), oo fulb)) — o (frl@i),- ., fular))]
=1

k n 1/2
<y ¢ (Zm fgaz)l> <O ) - fyla)] < -
=1

=1 i=1 j=1
proves our claim. (I

5.3.3. Corollary. If functions f and g are absolutely continuous on [a,b],
then so are fg and f+g, and if g > ¢ > 0, then f/g is absolutely continuous.

5.3.4. Proposition. Every function f that is absolutely continuous on
the interval [a,b] is of bounded variation on this interval.
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ProOF. We take § corresponding to € = 1 in the definition of absolutely
continuous functions. Next we pick a natural number M > |b—a|é~!. Suppose
we are given a partition a = t; < --- < t, =b. We add to the points t; all
points of the form s; =a+ (b—a)jM~!, j =0,..., M. The elements of this

new partition are denoted by z;, 2 =1,...,k. Then
n—1 k—1
Z |f(tivr) = f(t)] < Z |f(zi41) — f(21)]
i=1 i=1

M
:Z Z |f(zit1) — f(z0)] < M,

it zip1€(s5-1,5;]

since the sum of lengths of the intervals (z;, z;41) with z;11 € (s;_1, s;] does
not exceed s; — sj_1 = |b—a|M~' < §. Thus, V(f,[a,b]) < M. O

5.3.5. Corollary. Let a function f be absolutely continuous on [a,b].
Then the function V: z — V(f,[a,x]) is absolutely continuous as well, hence
f is the difference of the mondecreasing absolutely continuous functions V
and V — f.

PrOOF. Let € > 0. We find § > 0 such that the sum of the absolute
values of the increments of f on every finite collection of disjoint intervals
(ai,b;) of total length less than § is estimated by £/2. It remains to observe
that the sum of the absolute values of the increments of V' on the intervals
(a;, b;) is estimated by e. Indeed, suppose we are given such a collection of
k intervals (a;,b;). For every 4, one can find a partition of [a;, b;] by points
a; :tﬁ <... Stﬁvi = b; such that

N;—1
V(£ lai b)) < D 1f(t) — F(E)] +e47"
=1
Then
k k N;—1 4 . -
DoIVB) = V(@) =Y V(f,las b)) < () = FE)+5 <=
i=1 i=1 i=1 j=1

since the intervals (t;, t; 41) are pairwise disjoint and the sum of their lengths
does not exceed 9. O

For every Lebesgue integrable function f on [a,b] and any constant C,
one can consider the function

F(z)=C + / F(6)dt,

which is called an indefinite integral of f. It turns out that the functions of
such a form are precisely the absolutely continuous functions.
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5.3.6. Theorem. A function f is absolutely continuous on [a,b] if and
only if there exists an integrable function g on [a,b] such that

@) = @)+ [ o) dy, Ve fab] (5.3.1)

PROOF. If f has form (5.3.1), then by the absolute continuity of the
Lebesgue integral, for every € > 0, there exists d > 0 such that

| lat@lds <

for any set D of measure less than §. It remains to observe that

Z|f — fla) =)

n b,
| stwrde] < [ lata)ldo <<
i=1 V@i U

for any union U = (J"_; [a;, b;] of pairwise disjoint intervals of total length less
than §.

Let us prove the converse assertion. It suffices to prove it for nondecreas-
ing functions f because by Corollary 5.3.5 the function f is the difference of
nondecreasing absolutely continuous functions. According to Theorem 1.8.1,
there exists a nonnegative Borel measure y on [a, b] such that f(z) = u([a, z))
for all € [a,b]. Now it is sufficient to show that the measure p is given by
an integrable density g with respect to Lebesgue measure A\, which by the
Radon—Nikodym theorem is equivalent to the absolute continuity of the mea-
sure p with respect to Lebesgue measure. Let E be a Borel set of Lebesgue
measure zero in [a,b]. We have to verify that u(E) = 0. Let us fix ¢ > 0.
By hypothesis, there exists § > 0 such that the sum of the absolute values of
the increments of f on any disjoint intervals of the total length less than
is estimated by €. By Theorem 1.4.8, there exists an open set U containing
E such that u(U\E) < e. Making U smaller, one can ensure the estimate
A(U) < 6. The set U is the finite or countable union of pairwise disjoint
intervals (a;, b;). By the choice of 4, for every finite union of (a;, b;), we have

M(Oal,z) Z|f flay)| <&,
i=1

whence by the countable additivity of p we obtain u(U) < e. Therefore,
#(E) < 2e and hence p(E) = 0. O

5.3.7. Corollary. If (5.3.1) is fulfilled, then
b
V(r Lot = [ lofa)ld. (532)

PROOF. Since for every interval [s t] C [a,b] one has

dw‘</ lg(z)| dz,

[f(8) = f(s)l =
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b

Let us prove the reverse inequality. We may assume that f(a) = 0. Let us
fix € > 0. By using the absolute continuity of the Lebesgue integral, we find

d > 0 such that
1
/ l9(2)|do < ~e
. 8

for every set D of measure less than 6. Set

Qp ={x: g(x) >0}, Q- ={z: g(x) <0}

Then we find finitely many pairwise disjoint intervals (a1,b1), ...,(an,by) in
[a, b] such that

we obtain

A(m A O(% bi)) <. (5.3.3)

Next we choose in [a, b]\ U (a;,b;) a finite collection of pairwise disjoint in-

tervals (¢1,dy), .. (ck,dk) such that

MO A (Ci,di) <4
( U )
Set A; = (a;,b;)\{g > 0}. Then
b; b; b;
1)~ fa) = [ glayd= [ lgta)ldo+ [ [ofa) - lg(o)]] do

= [M@a 2 [ o)

i i

On account of estimate (5.3.3), which, in particular, shows that the sum of
measures of the sets A; is less than J, we obtain

y 1
;U(b az|>Z/ |d505>/9+|g(x)|dgg25.

Similarly, we obtain
: 1
S 1£(di) - f(es)] z/ o)) do — 5e.

i=1 -

Thus,

n k b
V(£ [0 8) > Y 1F(b) = fla)| + D [£(d) = flen)] > / l9(x)| dz — e,
i=1 i=1 a

which completes the proof. (]
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5.4. The Newton—Leibniz formula

5.4.1. Lemma. Let f be an integrable function on [a,b] such that

x
/ ft)dt=0, Vaz€la,b].
a
Then f =0 almost everywhere.

PRrROOF. It follows by our hypothesis that the integral of f over every
interval in [a, b] is zero, whence we obtain that the integrals of f over finite
unions of intervals vanish. Let us show that the integral of f over the set
Q = {z: f(z) > 0} vanishes as well. Indeed, let ¢ > 0. By the absolute
continuity of the Lebesgue integral there exists 6 > 0 such that

/D|f|dx<a

for every set D of measure less than §. We find a set A that is finite union of
intervals with A(Q A A) < §. Then

/Qf(z)dxg/Af(as)dx+/QAA|f(z)|dxg/Af(z)ders:E.

Since € > 0 is arbitrary, the left-hand side of this inequality vanishes, i.e., {2
has measure zero. Similarly, the set {f < 0} has measure zero. An alternative
reasoning is this: the Borel measure p := f- A vanishes on all intervals, hence
on the o-algebra generated by them, i.e., is zero on the Borel o-algebra. In
other words, the integrals of f over all Borel sets vanish, which means that
f=0ae. O

5.4.2. Theorem. Let a function f be integrable on [a,b]. Then
d €T
d_/ f@®)dt = f(z) almost everywhere on [a,b).
€z a
PRrROOF. Set f(x) =0if « & [a,b]. Let

F(z) = / £(¢) dt.

Suppose first that |f(z)] < M < oo. Let h, — 0. As shown above, the
function F' is absolutely continuous, therefore, is of bounded variation and is
almost everywhere differentiable on [a,b]. Then for a.e. = € [a,b] we have
Jim h'[F(z + h,) — F(z)] = F'(x). Since

B z+hy,
‘F(a:+h;:) F(x)’:’hi/ F(t)at] < M,

we obtain by the monotone convergence theorem

1im/ (y+h;z) ) dy:/ F'(y) dy
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for every z € [a,b]. We observe that

x o Tt+hy
/ F(y+hy) F(y)dy:i/ dy_i/
a ha,
erh
= */ y)dy — */ y) dy,

which approaches F(z) — F(a) as n — oo by the continuity of F'. Hence

F(@) = Fa) = Fla) = [ F'ty)d
i.e., one has

/x[F’(y) —f(y)]dy=0, VYaelab.

By Lemma 5.4.1 this means that F'(z) — f(z) = 0 a.e. on [a,b].

We proceed to the general case. We may assume that f > 0 because f
is the difference of two nonnegative integrable functions. Let f,, = min(f,n).
Since f — f, > 0, the function

/Wﬂw—n@»w

is nondecreasing, therefore, its derivative exists almost everywhere and is
nonnegative. Thus,

d [* d [*
& a2 [ nwa

By the boundedness of f, and the previous step, we obtain F’'(x) > f,(z)
a.e. Hence F'(z) > f(x) a.e., whence we obtain

/ab F'(z)dz > /abf(:c) dx

On the other hand, by Corollary 5.2.7 we have

/ab (2)dx < F(b) /f

whence it follows that

which is only possible if F'(z) — f(x) = 0 a.e. because F'(z) — f(z) > 0 a.e.
as shown above. ]

The Newton—Leibniz formula yields the following integration by parts
formula.
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5.4.3. Corollary. Let f and g be two absolutely continuous functions
on the interval [a,b]. Then

b b
/ f'(@)g(x) dz = f(b)g(b) — f(a)g(a) —/ f(@)g'(x) da. (5.4.1)

PROOF. Since the function fg is absolutely continuous, the Newton—
Leibniz formula applies and it remains to observe that (fg) = f'g + fg’
almost everywhere (i.e., at all points where f and g are differentiable). (I

A related result is found in Exercise 5.8.43.
One more useful corollary of the Newton—Leibniz formula is the change
of variables formula for absolutely continuous transformations.

5.4.4. Corollary. Let ¢ be a monotone absolutely continuous function
on the interval [c,d] and let F([c,d]) C [a,b]. Then, for every function f that
is Lebesgue integ