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Die ganzen Zahlen hat der liebe Gott gemacht, alles andere ist Menschenwerk.
God made the integers, all else is the work of man.
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Preface

One of the oldest and liveliest branches of mathematics, number theory is noted
for its theoretical depth and applications to other fields, including representation
theory, physics, and cryptography. The forefront of number theory is replete with
sophisticated and famous open problems; at its foundation, however, are basic,
elementary ideas that can stimulate and challenge beginning students. This text-
book takes a problem-solving approach to number theory, situating each theo-
retical concept within the framework of some examples or some problems for
readers to solve. Starting with the essentials, the text covers divisibility, powers of
integers, the floor function and fractional part, digits of numbers, basic methods
of proof (extremal arguments, pigeonhole principle, induction, infinite descent,
inclusion–exclusion), arithmetic functions, divisibility theorems, and Diophantine
equations. Emphasis is also placed on the presentation of some special problems
involving quadratic residues; Fermat, Mersenne, and perfect numbers; as well as
famous sequences of integers such as Fibonacci, Lucas, and those defined by re-
cursive relations. By thoroughly discussing interesting examples and applications
and by introducing and illustrating every key idea with relevant problems of var-
ious levels of difficulty, the book motivates, engages, and challenges the reader.
The exposition proceeds incrementally and intuitively, and rigorously uncovers
deeper properties.

A special feature of the book is an outstanding selection of genuine Olympiad
and other mathematical contest problems solved using the methods already pre-
sented. The book brings about the unique and vast experience of the authors. It
captures the spirit of the mathematical literature and distills the essence of a rich
problem-solving culture.

Number Theory: Structures, Examples, and Problems will appeal to senior
high school and undergraduate students and their instructors, as well as to all who
would like to expand their mathematical horizons. It is a source of fascinating
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problems for readers at all levels and widely opens the gate to further explorations
in mathematics.

Titu Andreescu, University of Texas at Dallas

Dorin Andrica, “Babeş-Bolyai” University
Cluj-Napoca, Romania

March 2008
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Notation

Z the set of integers
Zn the set of integers modulo n
N the set of positive integers
N0 the set of nonnegative integers
Q the set of rational numbers
Q+ the set of positive rational numbers
Q≥ the set of nonnegative rational numbers
Qn the set of n-tuples of rational numbers
R the set of real numbers
R+ the set of positive real numbers
R≥ the set of nonnegative real numbers
Rn the set of n-tuples of real numbers
C the set of complex numbers
|A| the number of elements in the set A
A ⊂ B A is a proper subset of B
A ⊆ B A is a subset of B
A \ B A without B (set difference)
A ∩ B the intersection of sets A and B
A ∪ B the union of sets A and B
a ∈ A the element a belongs to the set A
n | m n divides m
gcd(m, n) the greatest common divisor of m, n
lcm(m, n) the least common multiple of m, n
π(n) the number of primes ≤ n
τ(n) number of divisors of n
σ(n) sum of all positive divisors of n
a ≡ b (mod m) a and b are congruent modulo m
ϕ Euler’s totient function
ordm(a) order of a modulo m
μ Möbius function



xviii Notation

akak−1 · · · a0(b) base-b representation
S(n) the sum of the digits of n
( f1, f2, . . . , fm) factorial base expansion

x� floor of x
�x
 ceiling of x
{x} fractional part of x
ep Legendre function
pk ‖ n pk fully divides n
fn Fermat number
Mn Mersenne number( a

p

)
Legendre symbol

Fn Fibonacci number
Ln Lucas number
Pn Pell number(n
k

)
binomial coefficient



I Fundamentals





1

Divisibility

1.1 Divisibility

For integers a and b, a �= 0, we say that a divides b if b = ac for some integer c.
We denote this by a | b. We also say that b is divisible by a or that b is a multiple
of a.

Because 0 = a · 0, it follows that a | 0 for all integers a. We have 0 | 0, since
0 = 0 · 0.

Straight from the definition we can derive the following properties:

1. If a | b, b �= 0, then |a| ≤ |b|;
2. If a | b and a | c, then a | αb + βc for any integers α and β;

3. If a | b and a | b ± c, then a | c;

4. a | a (reflexivity);

5. If a | b and b | c, then a | c (transitivity);

6. If a | b and b | a, then |a| = |b|.
The following result is called the division algorithm, and it plays an important

role:

Theorem. For any positive integers a and b there exists a unique pair (q, r) of
nonnegative integers such that

b = aq + r, r < a.

© Birkhäuser Boston, a part of Springer Science + Business Media, LLC 2009
T. Andreescu and D. Andrica, Number Theory, DOI: 10.1007/b11856_1, 3



4 I Fundamentals, 1. Divisibility

Proof. Since a ≥ 1, there exist positive integers n such that na > b (for example,
n = b is one such). Let q be the least positive integer for which (q + 1)a > b.
Then qa ≤ b. Let r = b − aq. It follows that b = aq + r and 0 ≤ r < a.

For the uniqueness, assume that b = aq ′ + r ′, where q ′ and r ′ are also non-
negative integers satisfying 0 ≤ r ′ < a. Then aq + r = aq ′ + r ′, implying
a(q − q ′) = r ′ − r , and so a | r ′ − r . Hence |r ′ − r | ≥ a or |r ′ − r | = 0. Because
0 ≤ r , r ′ < a yields |r ′ − r | < a, we are left with |r ′ − r | = 0, implying r ′ = r
and, consequently, q ′ = q.

In the theorem above, when b is divided by a, q is called the quotient and r
the remainder.

Remark. The division algorithm can be extended for integers as follows: For any
integers a and b, a �= 0, there exists a unique pair (q, r) of integers such that

b = aq + r, 0 ≤ r < |a|.
Example. Prove that for all positive integers n, the fraction

21n + 4

14n + 3

is irreducible.

(1st International Mathematical Olympiad)

Indeed, from the equality

2(21n + 4) − 3(14n + 3) = −1

it follows that 21n + 4 and 14n + 3 have no common divisor except for 1; hence
the conclusion.

Problem 1.1.1. Prove that for all integers n:
(a) n5 − 5n3 + 4n is divisible by 120;
(b) n2 + 3n + 5 is not divisible by 121.

Solution. (a) n5 − 5n3 + 4n = n(n2 − 1)(n2 − 4)

= n(n − 1)(n + 1)(n − 2)(n + 2),

the product of five consecutive integers: n − 2, n − 1, n, n + 1, n + 2.
If n ∈ {−2, −1, 0, 1, 2} we get n5 − 5n3 + 4n = 0 and the property holds.
If n ≥ 3 we can write

n5 − 5n3 + 4n = 5!
(

n + 2

5

)
= 120

(
n + 2

5

)
,

and the conclusion follows.
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If n ≤ −3, write n = −m, where m ≥ 3, and obtain

n5 − 5n3 + 4n = −120

(
m + 2

5

)
,

and we are done.
(b) Observe that

n2 + 3n + 5 = (n + 7)(n − 4) + 33,

so that 11 | n2+3n+5 if and only if 11 | (n+7)(n−4). Thus, if 11 � (n+7)(n−4)

then 11 (and hence 121) does not divide n2 + 3n + 5. So, assume 11 divides
(n + 7)(n − 4). Then 11 | n + 7 or 11 | n − 4; but then 11 must divide both of
n + 7 and n − 4, since (n + 7) − (n − 4) = 11. Thus, 121 | (n + 7)(n − 4).
However, 121 � 33. So 121 � n2 + 3n + 5 = (n + 7)(n − 4) + 33. Hence, in all
cases, 121 � n2 + 3n + 5.

Problem 1.1.2. Let a > 2 be an odd number and let n be a positive integer. Prove
that a divides 1an + 2an + · · · + (a − 1)an

.

Solution. Define k = an and note that k is odd. Then

dk + (a − d)k = a[dk−1 − dk−2(a − d) + · · · + (a − d)k−1]
Summing up the equalities from d = 1 to d = a−1

2 implies that p divides
1k + 2k + · · · + (a − 1)k , as claimed.

Problem 1.1.3. Prove that
345 + 456

is a product of two integers each of which is larger than 102002.

Solution. Write 345 + 456
as m4 + 4n4, where n = 2(56−1)/2. Then the desired

factorization is

m4 + 4n4 = (m2 + 2n2)2 − 4m2n2 = (m2 − 2mn + 2n2)(m2 + 2mn + 2n2).

Since the smaller factor is

m2 − 2mn + 2n2 = (m − n)2 + n2 ≥ n2 = 256−1 > 28008 = (24)2002 > 102002,

we are done.

Problem 1.1.4. Find all positive integers n such that for all odd integers a, if
a2 ≤ n then a | n.

Solution. Consider a fixed positive integer n. Let a be the greatest odd integer
such that a2 < n and hence n ≤ (a + 2)2. If a ≥ 7, then a − 4, a − 2, a
are odd integers that divide n. Note that any two of these numbers are relatively
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prime, so (a −4)(a −2)a divides n. It follows that (a −4)(a −2)a ≤ (a +2)2, so
a3−6a2+8a ≤ a2+4a+4. Then a3−7a2+4a−4 ≤ 0 or a2(a−7)+4(a−1) ≤ 0.
This is false, because a ≥ 7; hence a = 1, 3, or 5.

If a = 1, then 12 ≤ n ≤ 32, so n ∈ {1, 2, . . . , 8}.
If a = 3, then 32 ≤ n ≤ 52 and 1 · 3 | n, so n ∈ {9, 12, 15, 18, 21, 24}.
If a = 5, then 52 ≤ n ≤ 72 and 1 · 3 · 5 | n, so n ∈ {30, 45}. Therefore

n ∈ {1, 2, 3, 4, 5, 6, 7, 8, 9, 12, 15, 18, 21, 24, 30, 45}.
Problem 1.1.5. Find the elements of the set

S =
{

x ∈ Z

∣∣∣∣ x3 − 3x + 2

2x + 1
∈ Z

}
.

Solution. Since x3−3x+2
2x+1 ∈ Z, then

8x3 − 24x + 16

2x + 1
= 4x2 − 2x − 11 + 27

2x + 1
∈ Z.

It follows that 2x + 1 divides 27, so

2x + 1 ∈ {±1, ±3, ±9, ±27} and x ∈ {−14, −5, −2, −1, 0, 1, 4, 13},

since 2x + 1 is odd, x3−3x+2
2x+1 ∈ Z ⇔ 8x3−24x+16

2x+1 ∈ Z, so all these are solutions.

Problem 1.1.6. Find all positive integers n for which the number obtained by
erasing the last digit is a divisor of n.

Solution. Let b be the last digit of the number n and let a be the number obtained
from n by erasing the last digit b. Then n = 10a + b. Since a is a divisor of n,
we infer that a divides b. Any number n that ends in 0 is therefore a solution. If
b �= 0, then a is a digit and n is one of the numbers 11, 12, . . . , 19, 22, 24, 26,
28, 33, 36, 39, 44, 48, 55, 66, 77, 88, 99.

Problem 1.1.7. Find the greatest positive integer x such that 236+x divides 2000!.
Solution. The number 23 is prime and divides every 23rd number. In all, there
are

⌊ 2000
23

⌋ = 86 numbers from 1 to 2000 that are divisible by 23. Among those
86 numbers, three of them, namely 232, 2 · 232, and 3 · 232, are divisible by 232.
Hence 2389 | 2000! and x = 89 − 6 = 83.

Problem 1.1.8. Find all positive integers a, b, c such that

ab + bc + ac > abc.

Solution. Assume that a ≤ b ≤ c. If a ≥ 3 then ab + bc + ac ≤ 3bc ≤ abc, a
contradiction. Since a is an integer, all that is left is that a = 2 or a = 1.

If a = 2, then the inequality becomes 2b + 2c + bc > 2bc; hence 1
c + 1

b > 1
2 .
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If b ≥ 5, then c ≥ 5 and

1

2
<

1

b
+ 1

c
<

1

5
+ 1

5
= 2

5
,

which is false.
Therefore b < 5, that is, b = 4, b = 3, or b = 2.
The case b = 4 gives c < 4, which is not possible, since b ≤ c.
If b = 3, then we get c < 6, whence c ∈ {3, 4, 5}. In this case we find the

triples (2, 3, 3), (2, 3, 4), (2, 3, 5).
If b = 2, then we find the solutions (2, 2, c), where c is any positive integer.
If a = 1, then the solutions are (1, b, c), where b and c are any positive

integers.
In conclusion, the solutions are given by the triples (2,3,3), (2,3,4), (2,3,5),

(2, 2, c), (1, b, c), where b, c are arbitrary positive integers. Because of symmetry
we have also to consider all permutations.

Problem 1.1.9. Let n be a positive integer. Show that any number greater than
n4/16 can be written in at most one way as the product of two of its divisors
having difference not exceeding n.

(1998 St. Petersburg City Mathematical Olympiad)

First Solution. Suppose, on the contrary, that there exist a > c ≥ d > b with
a −b ≤ n and ab = cd > n4/16. Put p = a +b, q = a −b, r = c+d , s = c−d .
Now

p2 − q2 = 4ab = 4cd = r2 − s2 > n4/4.

Thus p2 − r2 = q2 − s2 ≤ q2 ≤ n2. But r2 > n4/4 (so r > n2/2) and p > r , so

p2 − r2 > (n2/2 + 1)2 − (n2/2)2 ≥ n2 + 1,

a contradiction.

Second solution. Suppose a < c ≤ d < b with ab = cd = N and b − a ≤ n.
Note that

(a+b)2−n2 ≤ (a+b)2−(b−a)2 = 4ab = 4cd = (c+d)2−(d−c)2 ≤ (c+d)2,

so that (a + b)2 − (c + d)2 ≤ n2. But since a + b > c + d (since the function
f : x → x + N/x decreases for N <

√
x , which means that f (a) > f (c)), we

obtain
n2 ≥ (c + d + 1)2 − (c + d)2 = 2c + 2d + 1.

Finally, the arithmetic–geometric means (AM–GM) inequality (see the glossary)
gives

N = cd ≤
(c + d

2

)2 ≤ (n2 − 1)2

16
<

n4

16
,

proving the claim.
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Additional Problems

Problem 1.1.10. Show that for any natural number n ≥ 2, one can find three
distinct natural numbers a, b, c between n2 and (n + 1)2 such that a2 + b2 is
divisible by c.

(1998 St. Petersburg City Mathematical Olympiad)

Problem 1.1.11. Find all odd integers n greater than 1 such that for any relatively
prime divisors a and b of n, the number a + b − 1 is also a divisor of n.

(2001 Russian Mathematical Olympiad)

Problem 1.1.12. Find all positive integers n such that 3n−1+5n−1 divides 3n +5n .

(1996 St. Petersburg City Mathematical Olympiad)

Problem 1.1.13. Find all positive integers n such that the set

{n, n + 1, n + 2, n + 3, n + 4, n + 5}
can be split into two disjoint subsets such that the products of elements in these
subsets are the same.

(12th International Mathematical Olympiad)

Problem 1.1.14. The positive integers d1, d2, . . . , dn are distinct divisors of 1995.
Prove that there exist di and d j among them such that the numerator of the reduced
fraction di/d j is at least n.

(1995 Israeli Mathematical Olympiad)

Problem 1.1.15. Determine all pairs (a, b) of positive integers such that ab2 +
b + 7 divides a2b + a + b.

(39th International Mathematical Olympiad)

Problem 1.1.16. Find all integers a, b, c with 1 < a < b < c such that (a −
1)(b − 1)(c − 1) is a divisor of abc − 1.

(33rd International Mathematical Olympiad)

Problem 1.1.17. Find all pairs of positive integers (x, y) for which

x2 + y2

x − y

is an integer that divides 1995.

(1995 Bulgarian Mathematical Olympiad)
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Problem 1.1.18. Find all positive integers (x, n) such that xn +2n +1 is a divisor
of xn+1 + 2n+1 + 1.

(1998 Romanian International Mathematical Olympiad Team Selection Test)

Problem 1.1.19. Find the smallest positive integer K such that every K -element
subset of {1, 2, . . . , 50} contains two distinct elements a, b such that a +b divides
ab.

(1996 Chinese Mathematical Olympiad)

1.2 Prime Numbers

The integer p > 1 is called a prime if its only divisors are 1 and p itself. Any
integer n > 1 has at least one prime divisor. If n is a prime, then that prime
divisor is n itself. If n is not a prime, then let a be its least divisor greater than
1. If a were not a prime, then a = a1a2 with 1 < a1 ≤ a2 < a and a1 | n,
contradicting the minimality of a.

An integer n > 1 that is not a prime is called composite. If n is a composite
integer, then it has a prime divisor p not exceeding

√
n. Indeed, writing again

n = ab, with 1 < a ≤ b, we see that n ≥ a2; hence a ≤ √
n.

The following result has been known for more than 2000 years:

Theorem 1.2.1. (Euclid1) There are infinitely many primes.

Proof. Assume by way of contradiction that there are only a finite number of
primes: p1 < p1 < · · · < pm . Consider the number P = p1 p2 · · · pn + 1.

If P is a prime, then P > pm , contradicting the maximality of pm . Hence P
is composite and, consequently, it has a prime divisor p > 1 that is one of the
primes p1, p2, . . . , pm , say pk . It follows that pk | p1 · · · pk · · · pm + 1. This,
together with pk | p1 · · · pk · · · pm , implies pk | 1, a contradiction.

Remark. The largest known prime at the present time is 232582657 − 1. It was
discovered in 2006 and it has 9808358 digits.

The most fundamental result in arithmetic pertains to the factorization of in-
tegers:

Theorem 1.2.2. (The prime factorization theorem) Any integer n > 1 has a
unique representation as a product of primes.

Proof. The existence of such a representation can be obtained as follows: Let p1
be a prime divisor (factor) of n. If p1 = n, then n = p1 is the prime factorization
of n. If p1 < n, then n = p1r1, where r1 > 1. If r1 is a prime, then n =

1Euclid of Alexandria (ca. 325–365 B.C.E.) is one of the most prominent mathematician of antiq-
uity, best known for his treatise on mathematics The Elements. The long-lasting nature of The Elements
must make Euclid the leading mathematics teacher of all time.
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p1 p2, where p2 = r1, is the desired factorization of n. If r1 is composite, then
r1 = p2r2, where p2 is a prime, r2 > 1 and so n = p1 p2r2. If r2 is a prime,
then n = p1 p2 p3, where r2 = p3 and we are done. If r2 is composite, then we
continue this algorithm, obtaining a sequence of integers r1 > r2 > · · · ≥ 1.
After a finite number of steps (see also FMID Variant 1 in Section 5.3), we reach
rk = 1, that is, n = p1 p2 · · · pk .

For the uniqueness, let us assume that there is at least one positive integer n
with two distinct representations, i.e.,

n = p1 p2 · · · pk = q1q2 · · · qh,

where p1, p2, . . . , pk, q1, q2, . . . , qh are primes. It is clear that k ≥ 2 and h ≥
2. Let n be the minimal such integer. We claim that pi �= q j for every i =
1, 2, . . . , k, j = 1, 2, . . . , h. If, for example, pk = qh = p, then n′ = n/p =
p1 · · · pk−1 = q1 · · · qh−1 and 1 < n′ < n, contradicting the minimality of n.
Assume without loss of generality that p1 is the least prime factor of n in the
above representations. By applying the division algorithm, it follows that

q1 = p1c1 + r1,

q2 = p1c2 + r2,

. . .

qh = p1ch + rh,

where 1 ≤ ri < p1, i = 1, . . . , h.
We have

n = q1q2 · · · qh = (p1c1 + r1)(p1c2 + r2) · · · (p1ch + rh).

Expanding the last product, we obtain n = Ap1 + r1r2 · · · rh . Setting n′ =
r1r2 · · · rh we have n = p1 p2 · · · pk = Ap1 + n′. It follows that p1 | n′ and
n′ = p1s1s2 · · · si , where s1, s2, . . . , si are primes.

On the other hand, using the factorization of r1, r2, . . . , rh into primes, all
their factors are less than ri < p1. From n′ = r1r2 · · · rh , it follows that n′ has
a factorization into primes of the form n′ = t1t2 · · · t j , where ts < p1, s =
1, 2, . . . , j . This factorization is different from n′ = p1s1s2 · · · si . But n′ < n,
contradicting the minimality of n.

From the above theorem it follows that any integer n > 1 can be written
uniquely in the form

n = pα1
1 · · · pαk

k ,

where p1, . . . , pk are distinct primes and α1, . . . , αk are positive integers and
p1 < p2 < · · · < pk . This representation is called the canonical factorization
of n.
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An immediate application of the prime factorization theorem is an alternative
way of proving that there are infinitely many primes.

As in the previous proof, assume that there are only finitely many primes:
p1 < p2 < · · · < pm . Let

x =
m∏

i=1

(
1 + 1

pi
+ · · · + 1

pk
i

+ · · ·
)

=
m∏

i=1

1

1 − 1
pi

.

On the other hand, by expanding and by using the canonical factorization of
positive integers, we obtain

x = 1 + 1

2
+ 1

3
+ · · ·

yielding
∏m

i=1
pi

pi −1 = ∞, a contradiction. We have used the well-known fact
that the harmonic series

1 + 1

2
+ 1

3
+ · · ·

diverges and the expansion formula

1

1 − x
= 1 + x + x2 + · · · (for |x | < 1),

which can also be interpreted as the summation formula for the infinite geometric
progression 1, x, x2, . . . .

From the formula ∞∏
i=1

pi

pi − 1
= ∞,

using the inequality 1 + t ≤ et , t ∈ R, we can easily derive

∞∑
i=1

1

pi
= ∞.

Even though there are no definitive ways to find all primes, the density of
primes (that is, the average appearances of primes among integers) has been
known for about 100 years. This was a remarkable result in the mathematical
field of analytic number theory showing that

lim
n→∞

π(n)

n/ log n
= 1,
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where π(n) denotes the number of primes ≤ n. The relation above is known as the
prime number theorem. It was proved by Hadamard2 and de la Vallée Poussin3 in
1896. An elementary but difficult proof was given by Erdős4 and Selberg.5

The most important open problems in number theory involve primes. The
recent book of David Wells [Prime Numbers: The Most Mysterious Figures in
Maths, John Wiley and Sons, 2005] contains just few of them. We mention here
only three such open problems:

(1) Consider the sequence (An)n≥1, An = √
pn+1 − √

pn , where pn denotes
the nth prime. Andrica’s conjecture states that the following inequality holds:

An < 1,

for any positive integer n. Results connected to this conjecture are given in D.
Andrica [On a Conjecture in Prime Number Theory, Proc. Algebra Symposium,
“Babeş-Bolyai” University of Cluj, 2005, pp. 1–8]. A search conducted by H.J.
Smith has grown past n = 26 · 1010, so it seems highly likely that the conjecture
is true.

(2) If p is a prime such that p + 2 is also a prime, then p and p + 2 are called
twin primes. It is not known whether there are infinitely many twin primes. The
largest known such pair is 100314512544015 · 2171960 ± 1, and it was found in
2006.

(3) The following property has been conjectured by Michael Th. Rassias, an
International Mathematical Olympiad Silver Medal winner in 2003 in Tokyo: For
any prime p greater than two there are two distinct primes p1, p2 with p1 < p2
such that

p = p1 + p2 + 1

p1
.

This is equivalent to the following statement: For any prime p greater than two
there are two primes p1, p2 with p1 < p2 such that (p −1)p1, p2 are consecutive
integers [Octogon Mathematical Magazine, 13 (1.B), 2005, p. 885].

For a prime p we say that pk fully divides n and write pk ‖ n if k is the greatest
positive integer such that pk | n.

Problem 1.2.1. Prove that for any integer n > 1 the number n5 + n4 + 1 is not a
prime.

2Jacques Salomon Hadamard (1865–1963), French mathematician whose most important result is
the prime number theorem, which he proved in 1896.

3Charles Jean Gustave Nicolas de la Vallée Poussin (1866–1962), Belgian mathematician who
proved the prime number theorem independently of Hadamard in 1896.

4Paul Erdős (1913–1996), one of the greatest mathematicians of the twentieth century. Erdős posed
and solved problems in number theory and other areas and founded the field of discrete mathematics.

5Atle Selberg (1917–2007), Norwegian mathematician known for his work in analytic number
theory and in the theory of automorphic forms.
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Solution. We have

n5 + n4 + 1 = n5 + n4 + n3 − n3 − n2 − n + n2 + n + 1

= n3(n2 + n + 1) − n(n2 + n + 1) + (n2 + n + 1)

= (n2 + n + 1)(n3 − n + 1),

the product of two integers greater than 1. Hence n5 + n4 + 1 is not a prime.

Problem 1.2.2. Find the positive integers n with exactly 12 divisors 1 = d1 <

d2 < · · · < d12 = n such that the divisor with index d4 − 1 (that is, dd4−1) is
(d1 + d2 + d4)d8.

(1989 Russian Mathematical Olympiad)

Solution. Of course, there is 1 ≤ i ≤ 12 such that di = d1 + d2 + d4. Since
di > d4, we have i ≥ 5. Also, observe that d j d13− j = n for all j and since
di d8 = dd4−1 ≤ n, we must have i ≤ 5, thus i = 5 and d1 + d2 + d4 = d5.
Also, dd4−1 = d5d8 = n = d12, thus d4 = 13 and d5 = 14 + d2. Of course,
d2 is the smallest prime divisor of n, and since d4 = 13, we can only have d2 ∈
{2, 3, 5, 7, 11}. Also, since n has 12 divisors, it has at most 3 prime divisors. If
d2 = 2 then d5 = 16 and then 4 and 8 are divisors of n smaller than d4 = 13,
impossible. A similar argument shows that d2 = 3 and d5 = 17. Since n has 12
divisors and is a multiple of 3 ·13 ·17, the only possibilities are 9 ·13 ·17, 3 ·169 ·7
and 3 · 13 · 289. One can easily check that only 9 · 13 · 17 = 1989 is a solution.

Problem 1.2.3. Find all positive integers a, b for which a4 + 4b4 is a prime.

Solution. Observe that

a4 + 4b4 = a4 + 4b4 + 4a2b2 − 4a2b2

= (a2 + 2b2)2 − 4a2b2

= (a2 + 2b2 + 2ab)(a2 + 2b2 − 2ab)

= [(a + b)2 + b2][(a − b)2 + b2].
Since (a + b)2 + b2 > 1, then a4 + 4b4 can be a prime number only if

(a − b)2 + b2 = 1. This implies a = b = 1, which is the only solution of the
problem.

Problem 1.2.4. Let p, q be distinct primes. Prove that there are positive integers
a, b such that the arithmetic mean of all the divisors of the number n = pa · qb is
also an integer.

(2002 Romanian Mathematical Olympiad)

Solution. The sum of all divisors of n is given by the formula

(1 + p + p2 + · · · + pa)(1 + q + q2 + · · · + qb),



14 I Fundamentals, 1. Divisibility

as can easily be seen by expanding the parentheses. The number n has (a + 1)×
(b + 1) positive divisors and their arithmetic mean is

M = (1 + p + p2 + · · · + pa)(1 + q + q2 + · · · + qb)

(a + 1)(b + 1)
.

If p and q are both odd numbers, we can take a = p and b = q, and it is easy
to see that M is an integer.

If p = 2 and q odd, choose again b = q and consider a + 1 = 1 + q + q2 +
· · · + qq−1. Then M = 1 + 2 + 22 + · · · + 2a , and it is an integer.

For p odd and q = 2, set a = p and b = p + p2 + p3 + · · · + p p−1. The
solution is complete.

Problem 1.2.5. Find all primes p such that p2 + 11 has exactly six different
divisors (including 1 and the number itself).

(1995 Russian Mathematical Olympiad)

Solution. For p �= 3, 3 | p2 − 1, and so 3 | (p2 + 11). Similarly, for p �= 2,
4 | p2 − 1, and so 4 | (p2 + 11). Except in these two cases, then, 12 | (p2 + 11);
since 12 itself has six divisors (1, 2, 3, 4, 6, 12) and p2 + 11 > 12 for p > 1,
p2 + 11 must have more than six divisors. The only cases to check are p = 2 and
p = 3. If p = 2, then p2 + 11 = 15, which has only four divisors (1, 3, 5, 15),
while if p = 3, then p2 + 11 = 20, which indeed has six divisors (1, 2, 4, 5, 10,
20). Hence p = 3 is the only solution.

Problem 1.2.6. Let a, b, c be nonzero integers, a �= c, such that

a

c
= a2 + b2

c2 + b2
.

Prove that a2 + b2 + c2 cannot be a prime.

(1999 Romanian Mathematical Olympiad)

First solution. The equality a
c = a2+b2

c2+b2 is equivalent to (a − c)(b2 − ac) = 0.

Since a �= c, it follows that b2 = ac and therefore:

a2 + b2 + c2 = a2 + ac + c2 = a2 + 2ac + c2 − b2

= (a + c)2 − b2 = (a + c − b)(a + c + b).

Now, clearly, a2 + b2 + c2 > 3, so, if a2 + b2 + c2 is a prime number, then
only four cases are possible:

(1) a + c − b = 1 and a + c − b = a2 + b2 + c2;

(2) a + c + b = 1 and a + c + b = a2 + b2 + c2;
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(3) a + c − b = −1 and a + c + b = −(a2 + b2 + c2);

(4) a + c + b = −1 and a + c − b = −(a2 + b2 + c2).

In the first two cases we are led to a2 + b2 + c2 − 2(a + c)+ 1 = 0, or (a − 1)2 +
(c − 1)2 + b2 = 1; hence a = c = 1.

In other cases we obtain (a + 1)2 + (c + 1)2 + b2 = 1; hence a = c = −1.
But a = c is a contradiction.

Second solution. As in the previous solution we get b2 = ac, then observe that
this forces a and c to have the same sign. Hence replacing them with their neg-
atives if necessary we may assume a, c > 0. Similarly, we may assume b > 0.
Then continue with the given solution to get a2 +b2 +c2 = (a+c−b)(a+b+c).
If this is a prime then the smaller factor a + c − b must be 1. But since a �= c,
a + c > 2

√
ac = 2b so a + c − b > b ≥ 1, a contradiction.

Problem 1.2.7. Show that each natural number can be written as the difference
of two natural numbers having the same number of prime factors.

(1999 Russian Mathematical Olympiad)

Solution. If n is even, then we can write it as (2n) − (n). If n is odd, let d be the
smallest odd prime that does not divide n. Then write n = (dn)− ((d −1)n). The
number dn contains exactly one more prime factor than n. As for (d − 1)n, it is
divisible by 2 because d − 1 is even. Its odd factors are less than d, so they all
divide n. Therefore (d − 1)n also contains exactly one more prime factor than n,
and dn and (d − 1)n have the same number of prime factors.

Problem 1.2.8. Let p be a prime number. Find all k ∈ Z, k �= 0, such that√
k2 − pk is a positive integer.

(1997 Spanish Mathematical Olympiad)

Solution. We will use the following simple but important property: If ab is a
square and a and b are coprime, then a and b are both squares.

The values are k = (p + 1)2/4 for p odd (and none for p = 2).
We first rule out the case that k is divisible by p: if k = np, then k2 − pk =

p2n(n−1). Since n and n−1 are consecutive, they are coprime, and by the lemma
above they are both squares. However, the only consecutive squares are 0 and 1,
so this gives k = p and

√
k2 − pk = 0, which is not positive.

We thus assume that k and p are coprime, in which case k and k − p are
coprime. Thus k2 − pk = k(k − p) is a square if and only if k and k − p are
squares, say k = m2 and k − p = n2. Then p = m2 − n2 = (m + n)(m − n),
which implies m + n = p, m − n = 1 and hence k = (p + 1)2/4. Since k must
be an integer, this forces p to be odd.

Problem 1.2.9. Let p > 5 be a prime number and

X = {p − n2 | n ∈ N, n2 < p}.
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Prove that X contains two distinct elements x, y such that x �= 1 and x di-
vides y.

(1996 Balkan Mathematical Olympiad)

Solution. Take m such that m2 < p < (m + 1)2 and write p = k + m2, with
1 ≤ k ≤ 2m. Since p−(m−k)2 = k(2m−k +1), we have p−m2 | p−(m−k)2.
Thus we are done by taking x = p − m2 = k and y = p − |m − k|2 unless either
k = p − m2 = 1 (which gives x = 1), k = m (which gives |m − k| = 0), or
k = 2m (which gives x = y). The latter two cases give p = m(m + 1) and p =
m(m + 2), respectively, which cannot occur, since p is prime. In the remaining
case, p = m2 + 1, which forces m be even. Hence x = p − (m − 1)2 = 2m
divides y = p − 1 = m2 is the required example.

Additional Problems

Problem 1.2.10. For each integer n such that n = p1 p2 p3 p4, where p1, p2, p3,
p4 are distinct primes, let

d1 = 1 < d2 < d3 < · · · < d16 = n

be the sixteen positive integers that divide n. Prove that if n < 1995, then d9 −
d8 �= 22.

(1995 Irish Mathematical Olympiad)

Problem 1.2.11. Prove that there are infinitely many positive integers a such that
the sequence (zn)n≥1, zn = n4 + a, does not contain any prime number.

(11th International Mathematical Olympiad)

Problem 1.2.12. Let p, q, r be distinct prime numbers and let A be the set

A = {paqbrc : 0 ≤ a, b, c ≤ 5}.
Find the smallest integer n such that every n-element subset of A contains two

distinct elements x, y such that x divides y.

(1997 Romanian Mathematical Olympiad)

Problem 1.2.13. Prove Bonse’s inequality:

p1 p2 · · · pn > p2
n+1

for n ≥ 4, where p1 = 2, p2 = 3, . . . is the increasing sequence of prime
numbers.
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Problem 1.2.14. Show that there exists a set A of positive integers with the fol-
lowing property: for any infinite set S of primes, there exist two positive integers
m ∈ A and n �∈ A each of which is a product of k distinct elements of S for some
k ≥ 2.

(35th International Mathematical Olympiad)

Problem 1.2.15. Let n be an integer, n ≥ 2. Show that if k2 + k + n is a prime
number for every integer k, 0 ≤ k ≤ √

n/3, then k2 + k + n is a prime number
for every k, 0 ≤ k ≤ n − 2.

(28th International Mathematical Olympiad)

Problem 1.2.16. A sequence q1, q2, . . . of primes satisfies the following condi-
tion: for n ≥ 3, qn is the greatest prime divisor of qn−1 + qn−2 + 2000. Prove that
the sequence is bounded.

(2000 Polish Mathematical Olympiad)

Problem 1.2.17. Let a > b > c > d be positive integers and suppose

ac + bd = (b + d + a − c)(b + d − a + c).

Prove that ab + cd is not prime.

(42nd International Mathematical Olympiad)

Problem 1.2.18. Find the least odd positive integer n such that for each prime p,
n2−1

4 + np4 + p8 is divisible by at least four primes.

(Mathematical Reflections)

1.3 The Greatest Common Divisor and
the Least Common Multiple

For a positive integer k we denote by Dk the set of all its positive divisors. It is
clear that Dk is a finite set. For positive integers m, n the maximal element in the
set Dm ∩ Dn is called the greatest common divisor of m and n and is denoted by
gcd(m, n).

Another characterization of gcd(m, n) is given by the property d | gcd(m, n)

if and only if d | m and d | n. Note that gcd(0, n) = n.
If Dm ∩ Dn = {1}, we have gcd(m, n) = 1 and we say that m and n are

relatively prime.
The following properties can be directly derived from the definition above.

(1) If d = gcd(m, n), m = dm′, n = dn′, then gcd(m′, n′) = 1.
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(2) If m = dm′, n = dn′, and gcd(m′, n′) = 1, then d = gcd(m, n).

(3) If d ′ is a common divisor of m and n, then d ′ divides gcd(m, n).

This property says, in particular, that gcd(m, n) is the largest common di-
visor of m and n, as the name implies.

(4) If m = pα1
1 · · · pαk

k and n = pβ1
1 · · · pβk

k , αi , βi ≥ 0, i = 1, . . . , k, then

gcd(m, n) = pmin(α1,β1)

1 · · · pmin(αk ,βk )
k .

(5) If m = nq + r , then gcd(m, n) = gcd(n, r).

Let us prove the last property. Set d = gcd(m, n) and d ′ = gcd(n, r). Because
d | m and d | n it follows that d | r . Hence d | d ′. Conversely, from d ′ | n and
d ′ | r it follows that d ′ | m, so d ′ | d. Thus d = d ′.

A useful algorithm for finding the greatest common divisor of two positive
integers is the Euclidean algorithm. It consists in repeated application of the divi-
sion algorithm:

m = nq1 + r1, 1 ≤ r1 < n,

n = r1q2 + r2, 1 ≤ r2 < r1,

. . .

rk−2 = rk−1qk + rk, 1 ≤ rk < rk−1,

rk−1 = rkqk+1 + rk+1, rk+1 = 0.

This chain of equalities is finite because the descending sequence n > r1 >

r2 > · · · > rk ≥ 0 of integers cannot go on indefinitely.
The last nonzero remainder, rk , is the greatest common divisor of m and n.

Indeed, by applying successively property (5) above, we obtain

gcd(m, n) = gcd(n, r1) = gcd(r1, r2) = · · · = gcd(rk−1, rk) = rk .

Proposition 1.3.1. For positive integers m and n, there exist integers a and b such
that am + bn = gcd(m, n).

Proof. From the Euclidean algorithm it follows that

r1 = m − nq1, r2 = −mq2 + n(1 + q1q2), . . . .

In general, ri = mαi + nβi , i = 1, . . . , k. Because ri+1 = ri−1 − ri qi+1, it
follows that {

αi+1 = αi−1 − qi+1αi ,

βi+1 = βi−1 − qi+1βi ,

i = 2, . . . , k − 1. Finally, we obtain gcd(m, n) = rk = αkm + βkn.
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Proposition 1.3.2. (Euclid’s lemma). Let p be a prime and a, b ∈ Z. If p | ab,
then p | a or p | b.

Proof. Suppose that p � a. Since gcd(p, a) | p, we have gcd(p, a) = 1 or
gcd(p, a) = p; but the latter implies p | a, contradicting our assumption, thus
gcd(p, a) = 1. Let r, s ∈ Z be such that r p + sa = 1. Then r pb + sab = b and
so p | b.

More generally, if a prime p divides a product of integers a1 · · · an then p | a j
for some j . This can be proved by induction on the number n.

We can define the greatest common divisor of several positive integers m1,
m2, . . . , ms by considering

d1 = gcd(m1, m2), d2 = gcd(d1, m3), . . . , ds−1 = gcd(ds−2, ms).

The integer d = ds−1 is called the greatest common divisor of m1, . . . , ms

and denoted by gcd(m1, . . . , ms). The following properties can be easily verified:

(i) gcd(gcd(m, n), p) = gcd(m, gcd(n, p)), proving that gcd(m, n, p) is well
defined.

(ii) If d | mi , i = 1, . . . , s, then d | gcd(m1, . . . , ms).

(iii) If mi = pα1i
1 · · · pαki

k , i = 1, . . . , s, then

gcd(m1, . . . , ms) = pmin(α11,...,α1k )
1 · · · pmin(α1s ,...,αks )

k .

For a positive integer k we denote by Mk the set of all multiples of k. Unlike
the set Dk defined earlier in this section, Mk is an infinite set.

For positive integers s and t , the minimal element of the set Ms ∩ Mt is called
the least common multiple of s and t and is denoted by lcm(s, t).

The following properties are easily obtained from the definition above:

(1′) If m = lcm(s, t), m = ss′ = t t ′, then gcd(s ′, t ′) = 1.

(2′) If m ′ is a common multiple of s and t and m ′ = ss′ = t t ′, gcd(s ′, t ′) = 1,
then m ′ = m.

(3′) If m′ is a common multiple of s and t , then m | m′.

(4′) If s = pα1
1 · · · pαk

k and t = pβ1
1 · · · pβk

k , αi , bi ≥ 0, i = 1, . . . , k, then

lcm(s, t) = pmax(α1,β1)

1 · · · pmax(αk ,βk )
k .

The following property establishes an important connection between greatest
common divisor and least common multiple:



20 I Fundamentals, 1. Divisibility

Proposition 1.3.3. For any positive integers m, n the following relation holds:

mn = gcd(m, n) · lcm(m, n).

Proof. Let m = pα1
1 · · · pαk

k , n = pβ1
1 · · · pβk

k , αi , βi ≥ 0, i = 1, . . . , k. From
properties (4) and (4′) we have

gcd(m, n) · lcm(m, n) = pmin(α1,β1)+max(α1,β1)

1 · · · pmin(αk ,βk)+max(αk ,βk)
k

e = pα1+β1
1 · · · pαk+βk

k = mn. �

It is also not difficult to see that if m | s and n | s, then lcm(m, n) | s.
Another useful property is the following.

Proposition 1.3.4. Let n, a, b be positive integers. Then

gcd(na − 1, nb − 1) = ngcd(a,b) − 1.

Proof. Without loss of generality, we assume that a ≥ b. Then

gcd(na −1, nb−1) = gcd(na −1−na−b(nb−1), nb −1) = gcd(na−b−1, nb−1).

Recall the process of finding gcd(a, b) = gcd(a−b, b) given by the Euclidean
algorithm. We see that the process of computing gcd(na −1, nb −1) is the same as
the process of computing gcd(a, b) as the exponents, from which the conclusion
follows.

Problem 1.3.1. Prove that for odd n and odd integers a1, a2, . . . , an, the greatest
common divisor of numbers a1, a2, . . . , an is equal to the greatest common divisor
of a1+a2

2 ,
a2+a3

2 , . . . , an+a1
2 .

Solution. Let

a = gcd(a1, a2, . . . , an) and b = gcd
(a1 + a2

2
,

a2 + a3

2
, . . . ,

an + a1

2

)
.

Then ak = bka, for some integers bk , k = 1, 2, . . . , n. It follows that

ak + ak+1

2
= bk + bk+1

2
a, (1)

where an+1 = a1 and bn+1 = b1. Since ak are odd numbers, bk are also odd, so
bk+bk+1

2 are integers.

From relation (1) it follows that a divides ak+ak+1
2 for all k ∈ {1, 2, . . . , n} so a

divides b.
On the other hand, ak+ak+1

2 = βkb, for some integers βk . Then

2b | ak + ak+1 (2)
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for all k ∈ {1, 2, . . . , n}. Summing up from k = 1 to k = n yields

2b | 2(a1 + a2 + · · · + an),

hence
b | a1 + a2 + · · · + an. (3)

Summing up for k = 1, 3, . . . , n − 2 implies

2b | a1 + a2 + · · · + an−1

and furthermore
b | a1 + a2 + · · · + an−1. (4)

From (3) and (4) we get that b divides an; then using relation (2) we obtain
b | ak for all k. Hence b | a and the proof is complete.

Problem 1.3.2. Prove that for all nonnegative integers a, b, c, d such that a and
b are relatively prime, the system

ax − yz − c = 0,

bx − yt + d = 0,

has infinitely many solutions in nonnegative integers.

Solution. We start with a useful lemma that is a corollary to Proposition 1.3.1.

Lemma. If a and b are relatively prime positive integers, then there are positive
integers u and v such that

au − bv = 1.

Proof. Here we give a different argument as in the proof of Proposition 1.3.1.
Consider the numbers

1 · a, 2 · a, . . . , (b − 1) · a. (1)

When divided by b, the remainders of these numbers are distinct. Indeed,
otherwise we would have k1 �= k2 ∈ {1, 2, . . . , b − 1} such that

k1a = p1b + r, k2a = p2b + r,

for some integers p1, p2. Hence

(k1 − k2)a = (p1 − p2)b.

Since a and b are relatively prime, it follows that b divides k1 − k2, which is
false because 1 ≤ |k1 − k2| < b.
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On the other hand, none of the numbers listed in (1) is divisible by b. Indeed,
if so, then there is k ∈ {1, 2, . . . , n − 1} such that

k · a = p · b for some integer p.

Let d be the greatest common divisor of k and p. Then k = k1d , p = p1d ,
for some integers p1, k1 with gcd(p1, k1) = 1. Hence k1a = p1b, and since
gcd(a, b) = 1, we have k1 = b, p1 = a. This is false, because k1 < b.

It follows that one of the numbers from (1) has the remainder 1 when divided
by b, so there is u ∈ {1, 2, . . . , b − 1} such that au = bv + 1 and the lemma is
proved. In fact, there are infinitely many positive integers u and v satisfying this
property, that is, u = u0+kb, v = v0+ka, where u0 and v0 satisfy au0−bv0 = 1.

We now prove that the system{
ax − yz − c = 0,

bx − yt + d = 0,

with a, b, c, d nonnegative integers and gcd(a, b) = 1, has infinitely many solu-
tions in nonnegative integers.

Because gcd(a, b) = 1, using the lemma, we see that there are infinitely many
positive integers u and v such that au − bv = 1. Hence

x = cu + dv, y = ad + bc, z = v, t = u,

are solutions to the system.

Problem 1.3.3. Find all the pairs of integers (m, n) such that the numbers A =
n2 + 2mn + 3m2 + 2, B = 2n2 + 3mn + m2 + 2, C = 3n2 + mn + 2m2 + 1 have
a common divisor greater than 1.

Solution. A common divisor of A, B, and C is also a divisor for D = 2A − B,
E = 3A−C , F = 5E −7D, G = 5D − E , H = 18A−2F −3E , I = nG −m F ,
and 126 = 18nI −5H +11F = 2·32 ·7. Since A+ B+C = 6(m2 +mn+n2)+5,
it follows that 2 and 3 do not divide A, B, and C . Therefore d = 7. We get that
(m, n) is equal to (7a + 2, 7b + 3) or (7c + 5, 7d + 4).

Problem 1.3.4. Let n be an even positive integer and let a, b be positive coprime
integers. Find a and b if a + b divides an + bn.

(2002 Romanian Mathematical Olympiad)

Solution. Since n is even, we have

an − bn = (a2 − b2)(an−2 + an−4b2 + · · · + bn−2).

Since a+b is a divisor of a2−b2, it follows that a+b is a divisor of an −bn . In
turn, a +b divides 2an = (an +bn)+(an −bn), and 2bn = (an +bn)−(an −bn).
But a and b are coprime numbers, and so gcd(2an, 2bn) = 2. Therefore a + b is
a divisor of 2; hence a = b = 1.



1.3. The Greatest Common Divisor and Least Common Multiple 23

Problem 1.3.5. M is the set of all values of the greatest common divisor d of the
numbers A = 2n + 3m + 13, B = 3n + 5m + 1, C = 6n + 8m − 1, where m and
n are positive integers. Prove that M is the set of all divisors of an integer k.

Solution. If d is a common divisor of the numbers A, B, and C , then d divides
E = 3A − C = m + 40, F = 2B − C = 2m + 3, and G = 2E − F = 77.

Hence d must be a divisor of 77. To complete the problem we need only show
that every divisor of 77 occurs as d for some m and n. Taking m = n = 1
gives (A, B, C) = (18, 9, 13) and hence d = 1. If d = 7, then 7 | 2m + 3.
The smallest solution is m = 2. Taking m = 2 and n = 1 gives (A, B, C) =
(21, 14, 21) and d = 7, as desired. If d = 11, then 11 | 2m + 3, which has
smallest solution m = 4. Taking m = n = 4 gives (A, B, C) = (33, 33, 55) and
d = 11, as desired. If d = 77, then 77 | 2m +3. Taking m = 37 and n = 15 gives
(A, B, C) = (154, 231, 385) and d = 77.
Problem 1.3.6. Let a, b, and c be integers. Prove that

gcd(a, b) gcd(b, c) gcd(c, a)

gcd(a, b, c)2
and

lcm(a, b) lcm(b, c) lcm(c, a)

lcm(a, b, c)2

are equal integers.

Solution. Let a = pα1
1 · · · pαn

n , b = pβ1
1 · · · pβn

n , and c = pγ1
1 · · · pγn

n , where
p1, . . . , pn are distinct primes, and α1, . . . , αn, β1, . . . , βn, γ1, . . . , γn are non-
negative integers. Then

gcd(a, b) gcd(b, c) gcd(c, a)

gcd(a, b, c)2
=

n∏
i=1

pmin{αi ,βi }
i

n∏
i=1

pmin{βi ,γi }
i

n∏
i=1

pmin{γi ,αi }
i

n∏
i=1

p2 min{αi ,βi ,γi }
i

=
n∏

i=1

pmin{αi ,βi }+min{βi ,γi }+min{γi ,αi }−2 min{αi ,βi ,γi }
i

and

lcm(a, b) lcm(b, c) lcm(c, a)

lcm(a, b, c)2
=

n∏
i=1

pmax{αi ,βi }
i

n∏
i=1

pmax{βi ,γi }
i

n∏
i=1

pmax{γi ,αi }
i

n∏
i=1

p2 max{αi ,βi ,γi }
i

=
n∏

i=1

pmax{αi ,βi }+max{βi ,γi }+max{γi ,αi }−2 max{αi ,βi ,γi }
i .
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It suffices to show that for each nonnegative numbers α, β, and γ

min{α, β} + min{β, γ } + min{γ, α} − 2 min{α, β, γ }
= max{α, β} + max{β, γ } + max{γ, α} − 2 max{α, β, γ }.

By symmetry, we may assume that α ≤ β ≤ γ . It is not difficult to deduce
that both sides are equal to β, completing our proof.

Problem 1.3.7. Let m ≥ 2 be an integer. A positive integer n is called m-good if
for every positive integer a relatively prime to n, one has n | am − 1.

Show that every m-good number is at most 4m(2m − 1).

(2004 Romanian International Mathematical Olympiad Team Selection Test)

Solution. If m is odd, then n | (n − 1)m − 1 implies n | 2; hence n ≤ 2.
Take now m = 2t q, t ≥ 1, q odd. If n = 2u(2v+1) is m-good, then (2v+1) |

(2v − 1)m − 1; hence (2v + 1) | 2m − 1. Also, if a = 8v + 5, then gcd(a, n) = 1,
so

2u | (aq)2t − 1 = (aq − 1)(aq + 1)(a2q + 1) · · · (a2t−1q + 1).

Since q is odd, aq = 8V + 5 for some integer V . Hence the first term in the
product is divisible by 22, but not 23. Similarly, the other terms are divisible by
2, but not 22. Hence the product is divisible by 2t+1 and no higher power of 2.
Therefore u ≤ t + 2, whence n ≤ 4 · 2t (2v + 1) ≤ 4m(2m − 1).

Remark. The estimate is optimal only for m = 2, m = 4.

Problem 1.3.8. Find all triples of positive integers (a, b, c) such that a3 +b3 +c3

is divisible by a2b, b2c, and c2a.

(2001 Bulgarian Mathematical Olympiad)

Solution. Answer: triples of the form (k, k, k) or (k, 2k, 3k) or their permutations.
Let g be the positive greatest common divisor of a and b. Then g3 divides

a2b, so g3 divides a3 + b3 + c3, and g divides c. Thus, the gcd of any two of
a, b, c is the gcd of all three.

Let (l, m, n) = (a/g, b/g, c/g). Then (l, m, n) is a triple satisfying the con-
ditions of the problem, and l, m, n are pairwise relatively prime. Because l2, m2,
and n2 all divide l3 + m3 + n3, we have

l2m2n2 | (l3 + m3 + n3).

We will prove that (l, m, n) is either (1, 1, 1) or a permutation of (1, 2, 3).
Assume without loss of generality that l ≥ m ≥ n. We have

3l3 ≥ l3 + m3 + n3 ≥ l2m2n2,
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and therefore l ≥ m2n2/3. Because l2 | (m3 + n3), we also have

2m3 ≥ m3 + n3 ≥ l2 ≥ m4n4/9.

If n ≥ 2, then m ≤ 2 · 9/24 < 2 ≤ n, which contradicts the assumption that
m ≥ n. Therefore, n must be 1. If m = n = 1, then l2 | m3 + n3 = 2 so l = 1 and
we get the unique solution (1, 1, 1).

If m ≥ 2, then l > m, because l and m are relatively prime, so

2l3 > l3 + m3 + 1 ≥ l2m2,

and l > m2/2, so
m3 + 1 ≥ l2 > m4/4,

and m ≤ 4. If m = 2, then l2 | m3 +1 = 9 and l ≥ m; hence l = 3 and we get the
solution (3, 2, 1). If m = 3 or 4, then l2 | m3 + 1 and l ≥ m gives a contradiction.

Additional Problems

Problem 1.3.9. A sequence a1, a2, . . . of natural numbers satisfies

gcd(ai , a j ) = gcd(i, j) for all i �= j.

Prove that ai = i for all i .

(1995 Russian Mathematical Olympiad)

Problem 1.3.10. The natural numbers a and b are such that

a + 1

b
+ b + 1

a

is an integer. Show that the greatest common divisor of a and b is not greater than√
a + b.

(1996 Spanish Mathematical Olympiad)

Problem 1.3.11. The positive integers m, n, m, n are written on a blackboard. A
generalized Euclidean algorithm is applied to this quadruple as follows: if the
numbers x, y, u, v appear on the board and x > y, then x − y, y, u + v, v are
written instead; otherwise x , y − x , u, v + u are written instead. The algorithm
stops when the numbers in the first pair become equal (they will equal the greatest
common divisor of m and n). Prove that the arithmetic mean of the numbers in
the second pair at that moment equals the least common multiple of m and n.

(1996 St. Petersburg City Mathematical Olympiad)
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Problem 1.3.12. How many pairs (x, y) of positive integers with x ≤ y satisfy
gcd(x, y) = 5! and lcm(x, y) = 50!?

(1997 Canadian Mathematical Olympiad)

Problem 1.3.13. Several positive integers are written on a blackboard. One can
erase any two distinct integers and write their greatest common divisor and least
common multiple instead. Prove that eventually the numbers will stop changing.

(1996 St. Petersburg City Mathematical Olympiad)

Problem 1.3.14. (a) For which positive integers n do there exist positive integers
x, y such that

lcm(x, y) = n!, gcd(x, y) = 1998?

(b) For which n is the number of such pairs x, y with x ≤ y less than 1998?

(1998 Hungarian Mathematical Olympiad)

Problem 1.3.15. Determine all integers k for which there exists a function
f : N → Z such that

(a) f (1997) = 1998;
(b) for all a, b ∈ N, f (ab) = f (a) + f (b) + k f (gcd(a, b)).

(1997 Taiwanese Mathematical Olympiad)

Problem 1.3.16. Find all triples (x, y, n) of positive integers such that

gcd(x, n + 1) = 1 and xn + 1 = yn+1.

(1998 Indian Mathematical Olympiad)

Problem 1.3.17. Find all triples (m, n, l) of positive integers such that

m + n = gcd(m, n)2, m + l = gcd(m, l)2, n + l = gcd(n, l)2.

(1997 Russian Mathematical Olympiad)

Problem 1.3.18. Let a, b be positive integers such that gcd(a, b) = 1. Find all
pairs (m, n) of positive integers such that am + bm divides an + bn .

(Mathematical Reflections)



1.4. Odd and Even 27

1.4 Odd and Even

The set Z of integers can be partitioned into two subsets, the set of odd integers
and the set of even integers: {±1, ±3, ±5, . . . } and {0, ±2, ±4, . . . }, respectively.
Although the concepts of odd and even integers appear straightforward, they come
in handy in various number theory problems. Here are some basic ideas:

(1) an odd number is of the form 2k + 1, for some integer k;
(2) an even number is of the form 2m, for some integer m;
(3) the sum of two odd numbers is an even number;
(4) the sum of two even numbers is an even number;
(5) the sum of an odd number and an even number is an odd number;
(6) the product of two odd numbers is an odd number;
(7) a product of integers is even if and only if at least one of its factors is even.

Problem 1.4.1. Let m and n be integers m ≥ 1 and n > 1. Prove that mn is the
sum of m odd consecutive integers.

Solution. The equality

mn = (2k + 1) + (2k + 3) + · · · + (2k + 2m − 1)

is equivalent to
mn = 2km + (1 + 3 + · · · + 2m − 1)

or mn = 2km + m2. It follows that k = m(mn−2 − 1)/2, which is an integer
because m and mn−2 − 1 have different parities.

Problem 1.4.2. Let n be a positive integer. Find the sum of all even numbers
between n2 − n + 1 and n2 + n + 1.

Solution. We have n2 −n +1 = n(n −1)+1 and n2 +n +1 = n(n +1)+1, both
odd numbers. It follows that the least even number to be considered is n2 − n + 2
and the greatest is n2 + n. The desired sum is

(n2 − n + 2) + (n2 − n + 4) + · · · + (n2 + n − 2) + (n2 + n)

= (n2 − n) + 2 + (n2 − n) + 4 + · · · + (n2 − n) + 2n − 2 + (n2 − n) + 2n

= n(n2 − n) + 2(1 + 2 + · · · + n) = n3 − n2 + n2 + n = n3 + n.

Problem 1.4.3. Let n be a positive integer and let ε1, ε2, . . . , εn ∈ {−1, 1} be
such that ε1ε2 + ε2ε3 + · · · + εnε1 = 0. Prove that n is divisible by 4.

(Kvant)

Solution. The sum ε1ε2 + ε2ε3 + · · · + εnε1 has n terms equal to 1 or −1, so n is
even, say n = 2k. It is clear that k of the terms in the sequence ε1ε2, ε2ε3,. . . , εnε1
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are equal to 1 and k of them are equal to −1. On the other hand, the product of
the terms in the sum is

(ε1ε2)(ε2ε3) · · · (εnε1) = ε2
1ε

2
2 . . . ε2

n = 1;
hence (+1)k(−1)k = 1. That is, k is even and the conclusion follows.

Note that the result of this problem is sharp.
For any integer n = 4m there exist ε1, ε2, . . . , εn such that

ε1ε2 + ε2ε3 + · · · + εnε1 = 0;
for example,

ε1 = ε4 = ε5 = ε8 = · · · = ε4m−3 = ε4m = +1,

ε2 = ε3 = ε6 = ε7 = · · · = ε4m−2 = ε4m−1 = −1.

Problem 1.4.4. A table of numbers with m rows and n columns has all entries −1
or 1 such that for each row and each column the product of entries is −1. Prove
that m and n have the same parity.

Solution. We compute the product P of the m · n entries in two ways, by rows
and by columns, respectively:

P = (−1)(−1) · · · (−1)︸ ︷︷ ︸
m times

= (−1)m = (−1)n = (−1)(−1) · · · (−1)︸ ︷︷ ︸
n times

.

The conclusion now follows.
We show such a table for m = 3 and n = 5:

−1 1 1 −1 −1
1 1 −1 1 1
1 −1 1 1 1

Remark. If m and n have the same parity, then the number of tables with the
above property is 2(m−1)(n−1).

Additional Problems

Problem 1.4.5. We are given three integers a, b, c such that a, b, c, a + b − c,
a + c − b, b + c − a, and a + b + c are seven distinct primes. Let d be the
difference between the largest and smallest of these seven primes. Suppose that
800 ∈ {a + b, b + c, c + a}. Determine the maximum possible value of d.

Problem 1.4.6. Let n be an integer ≥ 1996. Determine the number of functions
f : {1, 2, . . . , n} → {1995, 1996} that satisfy the condition that f (1) + f (2) +
· · · + f (1996) is odd.

(1996 Greek Mathematical Olympiad)
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Problem 1.4.7. Is it possible to place 1995 different natural numbers around a
circle so that in each pair of these numbers, the ratio of the larger to the smaller is
a prime?

(1995 Russian Mathematical Olympiad)

Problem 1.4.8. Let a, b, c, d be odd integers such that 0 < a < b < c < d and
ad = bc. Prove that if a + d = 2k and b + c = 2m for some integers k and m,
then a = 1.

(25th International Mathematical Olympiad)

1.5 Modular Arithmetic

Let a, b, n be integers, with n �= 0. We say that a and b are congruent modulo
n if n | a − b. We denote this by a ≡ b (mod n). The relation “≡” on the set
Z of integers is called the congruence relation. If m does not divide a − b, then
we say that integers a and b are not congruent modulo n and we write a �≡ b
(mod n). It is clear that if a is divided by b with remainder r , then a is congruent
to r modulo b. In this case r is called the residue of a modulo b. The following
properties can be directly derived:

(1) a ≡ a (mod n) (reflexivity).

(2) If a ≡ b (mod n) and b ≡ c (mod n), then a ≡ c (mod n) (transitivity).

(3) If a ≡ b (mod n), then b ≡ a (mod n) (symmetry).

(4) If a ≡ b (mod n) and c ≡ d (mod n), then a + c ≡ b + d (mod n) and
a − c ≡ b − d (mod n).

(5) If a ≡ b (mod n), then for any integer k, ka ≡ kb (mod n).

(6) If a ≡ b (mod n) and c ≡ d (mod n), then ac ≡ bd (mod n).

(7) If ai ≡ bi (mod n), i = 1, . . . , k, then a1+· · ·+ak ≡ b1+· · ·+bk (mod n)

and a1 · · · ak ≡ b1 · · · bk (mod n). In particular, if a ≡ b (mod n), then for
any positive integer k, ak ≡ bk (mod n).

(8) We have a ≡ b (mod mi ), i = 1, . . . , k, if and only if

a ≡ b (mod lcm(m1, . . . , mk)).

In particular, if m1, . . . , mk are pairwise relatively prime, then a ≡ b (mod mi ),
i = 1, . . . , k, if and only if a ≡ b (mod m1, . . . , mk).
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Let us prove the last property. From a ≡ b (mod mi ), i = 1, . . . , k, it follows
that mi | a − b, i = 1, . . . , k. Hence a − b is a common multiple of m1, . . . , mk ,
and so lcm(m1, . . . , mk) | a − b. That is, a ≡ b (mod lcm(m1, . . . , mk)). Con-
versely, from a ≡ b (mod lcm(m1, . . . , mk)), and the fact that each mi divides
lcm(m1, . . . , mk) we obtain a ≡ b (mod mi ), i = 1, . . . , k.

Theorem 1.5.1. Let a, b, n be integers, n �= 0, such that a = nq1 + r1, b =
nq2 + r2, 0 ≤ r1, r2 < |n|. Then a ≡ b (mod n) if and only if r1 = r2.

Proof. Because a − b = n(q1 − q2) + (r1 − r2), it follows that n | a − b if and
only if n | r1 − r2. Taking into account that |r1 − r2| < |n|, we have n | r1 − r2 if
and only if r1 = r2.

Problem 1.5.1. For all the positive integers k ≤ 1999, let S1(k) be the sum of all
the remainders of the numbers 1, 2, . . . , k when divided by 4, and let S2(k) be the
sum of all the remainders of the numbers k + 1, k + 2, . . . , 2000 when divided by
3. Prove that there is a unique positive integer m ≤ 1999 so that S1(m) = S2(m).

(1999 Romanian Mathematical Olympiad)

Solution. Let Ak = {1, 2, 3, . . . , k} and Bk = {k + 1, k + 2, . . . , 2000}. From the
division of integers we have

k = 4q1 + r1, with r1 ∈ {0, 1, 2, 3}. (1)

If s1(k) is the sum of the remainders after division by 4 of the last r1 elements
of Ak , then let

S1(k) = 6q1 + s1(k), with 0 ≤ s1(k) ≤ 6. (2)

If r1 = 0, then set s1(k) = 0.
Using again the division of integers, there exist integers q2, r2 such that

2000 − k = 3q2 + r2, with r2 ∈ {0, 1, 2}. (3)

If s2(k) is the sum of the remainders on division by 3 of the last r2 elements
of Bk , then let

s2(k) = 3q2 + s2(k), with 0 ≤ s2(k) ≤ 3. (4)

Again we set S2(k) = 0 if r2 = 0.
Since S1(k) = S2(k), s2(k) − s1(k) = 3(2q1 − q2), so 3|2q1 − q2| = |s2(k) −

s1(k)| ≤ 6, and |2q1 − q2| ≤ 2. In other words, |2q1 − q2| ∈ {0, 1, 2}.
If 2q1 = q2, then (1) and (3) imply 2000 − (r1 + r2) = 10q1; hence 10 |

(r1 + r2). Then r1 = r2 = 0 and q1 = 200. From (1) it follows that k = 800, and
from (2) and (4) we have S1(800) = S2(800) = 1200.

Furthermore, S1(k) ≤ S1(k + 1), and S2(k) ≥ S2(k + 1) for all k ∈ {1, 2, . . . ,
1998}. Since S1(799) = S1(800) and S2(799) = S2(800) + 2 > S1(800), we



1.5. Modular Arithmetic 31

deduce that S1(k) < S2(k) for all k ∈ {1, 2, . . . , 799}. Since S1(801) = S1(800)+
1 > S2(800) ≥ S2(801), we derive that S1(k) > S2(k) for all k ∈ {801, 802, . . . ,
1999}. Consequently, S1(m) = S2(m) if and only if m = 800.

Problem 1.5.2. Let n be a positive integer. Show that if a and b are integers
greater than 1 such that 2n − 1 = ab, then ab − (a − b) − 1 can be written as
k · 22m for some odd integer k and some positive integer m.

(2001 Balkan Mathematical Olympiad)

Solution. Note that ab − (a − b) − 1 = (a + 1)(b − 1). We shall show that the
highest powers of 2 dividing (a + 1) and (b − 1) are the same. Let 2s and 2t

be the highest powers of 2 dividing (a + 1) and (b − 1), respectively. Because
a + 1, b − 1 ≤ ab + 1 = 2n , we have s, t ≤ n.

Note that 2s divides 2n = ab + 1 and a + 1, so that

ab ≡ a ≡ −1 (mod 2s).

Hence, b ≡ 1 (mod 2s), or 2s | b − 1, so that s ≤ t .
Similarly, ab ≡ −b ≡ −1 (mod 2t ), so a ≡ −1 (mod 2t ), and 2t | a + 1.

Thus, t ≤ s.
Therefore, s = t , the highest power of 2 dividing (a + 1)(b − 1) is 2s, and

ab − (a − b) − 1 = k · 22s for some odd k.

Problem 1.5.3. Find all nonnegative integers m such that (22m+1)2+1 is divisible
by at most two different primes.

(2002 Baltic Mathematics Competition)

Solution. We claim m = 0, 1, 2 are the only such integers. It is easy to check that
these values of m satisfy the requirement. Suppose some m ≥ 3 works. Write

(22m+1)2 + 1 = (22m+1 + 1)2 − 2 · 22m+1

= (22m+1 + 2m+1 + 1)(22m+1 − 2m+1 + 1).

The two factors are both odd, and their difference is 2m+2; hence, they are rel-
atively prime. It follows that each is a prime power. We also know that (22m+1)2 =
42m+1 ≡ −1 (mod 5), so one of the factors 22m+1 ± 2m+1 + 1 must be a power
of 5. Let 22m+1 + 2m+1s + 1 = 5k , where s = ±1 is the appropriate sign.

Taking the above equation modulo 8, and using the assumption m ≥ 3, we
obtain 5k ≡ 1 (mod 8), so that k is even. Writing k = 2l, we have

2m+1(2m + s) = (5l − 1)(5l + 1).

The factor 5l + 1 is congruent to 2 (mod 4), so 5l − 1 = 2ma for some odd
integer a. But if a = 1, then

2 = (5l + 1) − (5l − 1) = 2(2m + s) − 2m = 2m + 2s ≥ 23 − 2,
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a contradiction, whereas if a ≥ 3, then 5l − 1 ≥ 3 · 2m while 5l + 1 ≤ 2(2m + s),
another contradiction.

Problem 1.5.4. Find an integer n with 100 ≤ n ≤ 1997 such that n divides 2n +2.

(1997 Asian Pacific Mathematics Olympiad)

Solution. Note that 2 divides 2n + 2 for all n. Also, 11 divides 2n + 2 if and only
if n ≡ 6 (mod 10), and 43 divides 2n + 2 if and only if n ≡ 8 (mod 14). Since
n = 946 = 2 · 11 · 43 satisfies both congruences, n divides 2n + 2.

Remark. Actually, one can prove that there are infinitely many n such that n |
2n + 2. Also, any such n is even, since by a theorem of W. Sierpiński6 we cannot
have n | 2n−1 + 1 unless n = 1 (see also Problem 7.1.16).

Problem 1.5.5. The number 99 . . . 99 (with 1997 nines) is written on a black-
board. Each minute, one number written on the blackboard is factored into two
factors and erased, each factor is (independently) increased or diminished by 2,
and the resulting two numbers are written. Is it possible that at some point all of
the numbers on the blackboard equal 9?

(1997 St. Petersburg City Mathematical Olympiad)

Solution. The answer is No. Indeed, note that 99 . . . 99 (with 1997 nines) =
101997 − 1 is congruent to 3 modulo 4. If 99 . . . 99 (with 1997 nines) = ab,
for some integers a and b, then for example a is congruent to 1 modulo 4 and b
is congruent to 3 modulo 4. Changing a and b by 2 in either direction we find
numbers congruent to 3, respectively to 1 modulo 4. Hence at any point we get
numbers of different residues modulo 4, so these numbers cannot be equal.

Problem 1.5.6. Find the smallest positive integer that can be written both as (i)
a sum of 2002 positive integers (not necessarily distinct), each of which has the
same sum of digits and (ii) as a sum of 2003 positive integers (not necessarily
distinct) each of which has the same sum of digits.

(2002 Russian Mathematical Olympiad)

Solution. The answer is 10010. First observe that this is indeed a solution:
10010 = 2002 · 5 = 1781 · 4 + 222 · 13, so we may express 10010 as the sum
of 2002 fives or of 1781 fours and 222 thirteens, where 1781 + 222 = 2003. To
prove minimality, observe that a number is congruent modulo 9 to the sum of its
digits, so two positive integers with the same digit sum have the same remainders
modulo 9. Let k1 be the digit sum of the 2002 numbers and k2 the digit sum of the
2003 numbers. Then 4k1 ≡ 2002k1 ≡ 2003k2 ≡ 5k2 (mod 9). If k1 ≥ 5, the sum
of the 2002 numbers is at least 10010; if k2 ≥ 5, the sum of the 2003 numbers
is greater than 10010. Since k1 + k2 ≡ 0 (mod 9), we have k1 + k2 ≥ 9. Hence
either k1 ≥ 5 or k2 ≥ 5, and the minimal integer is 10010.

6Wacław Sierpiński (1882–1969), Polish mathematician with fundamental work in the area of set
theory, point set topology, and number theory.
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Additional Problems

Problem 1.5.7. Find all integers n > 1 such that any prime divisor of n6 − 1 is a
divisor of (n3 − 1)(n2 − 1).

(2002 Baltic Mathematics Competition)

Problem 1.5.8. Let f (n) be the number of permutations a1, . . . , an of the integers
1, . . . , n such that

(i) a1 = 1;

(ii) |ai − ai+1| ≤ 2, i = 1, . . . , n − 1.

Determine whether f (1996) is divisible by 3.

(1996 Canadian Mathematical Olympiad)

Problem 1.5.9. For natural numbers m, n, show that 2n−1 is divisible by (2m−1)2

if and only if n is divisible by m(2m − 1).

(1997 Russian Mathematical Olympiad)

Problem 1.5.10. Suppose that n is a positive integer and let

d1 < d2 < d3 < d4

be the four smallest positive integer divisors of n. Find all integers n such that

n = d2
1 + d2

2 + d2
3 + d2

4 .

(1999 Iranian Mathematical Olympiad)

Problem 1.5.11. Let p be an odd prime. For each i = 1, 2, . . . , p − 1 denote by
ri the remainder when i p is divided by p2. Evaluate the sum

r1 + r2 + · · · + r p−1.

(Kvant)

Problem 1.5.12. Find the number of integers x with |x | ≤ 1997 such that 1997
divides x2 + (x + 1)2.

(1998 Indian Mathematical Olympiad)

Problem 1.5.13. Find the greatest common divisor of the numbers

An = 23n + 36n+2 + 56n+2

when n = 0, 1, . . . , 1999.

(1999 Junior Balkan Mathematical Olympiad)
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1.6 Chinese Remainder Theorem

There are many situations in which one wishes to solve a congruence equation
f (x) ≡ a (mod N ) for some large N . Suppose we factor N as N = pk1

1 pk2
2 · · ·

pkr
r . Then any solution must also have f (x) ≡ a (mod pki

i ) for all i . Conversely,

if f (x) ≡ a (mod pki
u ), then all the pki

i divide f (x) − a. Hence their least com-
mon multiple N divides f (x) − a. Thus one congruence mod a very large N is
equivalent to lots of congruences mod its prime power factors. These congruences
are often much easier to solve, either because pki

i is much smaller than N , or be-
cause of special facts about primes such as Fermat’s little theorem. Thus it might
be easier to solve f (x) ≡ a (mod pki

i ) for all i . However, this solution will often
give us a list of congruences that x must satisfy, say

x ≡ c1 (mod m1), . . . , x ≡ cn (mod mn).

This leaves us with the problem whether such a system has a solution and how to
find the solutions. In solving systems of this form an important part is played by
the following very important result:

Theorem 1.6.1. (Chinese remainder theorem) Let m1, · · · , mn be positive inte-
gers different from 1 and pairwise relatively prime. Then for any nonzero integers
a1, . . . , ar the system of linear congruences

x ≡ a1 (mod m1), . . . , x ≡ ar (mod mr )

has solutions, and any two such solutions are congruent modulo m = m1 · · · mr .

Proof. It is clear that gcd
( m

m j
, m j

) = 1, j = 1, . . . , r . Applying Proposition
1.3.1, it follows that there is an integer b j such that

m

m j
b j ≡ 1 (mod m j ), j = 1, . . . , r.

Then m

m j
b j a j ≡ a j (mod m j ), j = 1, . . . , r.

Now consider the integer

x0 =
r∑

j=1

m

m j
b j a j .

We have

x0 ≡
( r∑

j=1

m

m j
b j a j

)
(mod mi ) ≡ m

mi
bi ai (mod mi )

≡ ai (mod mi ), i = 1, . . . , r,



1.6. Chinese Remainder Theorem 35

that is, x0 is a solution to the system of linear congruences.
If x1 is another solution, then x1 ≡ x0 (mod mi ), i = 1, . . . , r . Applying

property (8) in Section 1.5, the conclusion follows.

Example. Let us find the solutions to the system of linear congruences

x ≡ 2 (mod 3), x ≡ 1 (mod 4), x ≡ 3 (mod 5).

We proceed as in the proof of the theorem. Because in this case m = 3 ·4 ·5 =
60, we have to find a solution to each of the congruences

60

3
b1 ≡ 1 (mod 3),

60

4
b2 ≡ 1 (mod 4),

60

5
b3 ≡ 1 (mod 5).

This is equivalent to finding solutions to the congruences

2b1 ≡ 1 (mod 3), 3b2 ≡ 1 (mod 4), 2b3 ≡ 1 (mod 5).

We obtain b1 = 2, b2 = 3, b3 = 3. Then

x0 = 20 · 2 · 2 + 15 · 3 · 1 + 12 · 3 · 3 = 233.

Taking into account that all solutions are congruent modulo 60, it follows that
it suffices to take x0 = 53. All solutions are given by x = 53 + 60k, k ∈ Z.

Problem 1.6.1. We call a lattice point X in the plane visible from the origin O if
the segment O X does not contain any other lattice points besides O and X. Show
that for any positive integer n, there exists a square of n2 lattice points (with sides
parallel to the coordinate axes) such that none of the lattice points inside the
square is visible from the origin.

(2002 Taiwanese Mathematical Olympiad)

Solution. Suppose that the lower-left lattice point of such a square has coordinates
(x1, y1). We shall show that it is possible to select (x1, y1) such that the square
of lattice points with (x1, y1) at its corner and n points on a side contains only
invisible points. This can be accomplished by ensuring that each point has both
coordinates divisible by some prime number; this would imply that by dividing
both coordinates by this prime, we could find another lattice point that is between
the origin and this point.

In fact, we note that a lattice point X = (x, y) is visible from the origin if and
only if gcd(x, y) = 1.

Select n2 distinct prime numbers and call them pi, j , 1 ≤ 1, j ≤ n. Now find
x1 satisfying the following congruences:

x1 ≡ 0 (mod p1,1 p1,2 · · · p1,n),

x1 + 1 ≡ 0 (mod p2,1 p2,2 · · · p2,n),

. . .

x1 + n − 1 ≡ 0 (mod pn,1 pn,2 · · · pn,n).
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Likewise select y1 satisfying

y1 ≡ 0 (mod p1,1 p2,1 · · · pn,1),

y1 + 1 ≡ 0 (mod p1,2 p2,2 · · · pn,2),

. . .

y1 + n − 1 ≡ 0 (mod p1,n p2,n · · · pn,n).

Both values must exist by the Chinese remainder theorem. Thus we have
proved that it is possible to determine a position for (x1, y1) such that every point
in the square of n2 lattice points with (x1, y1) at its lower left corner is associated
with some prime by which both of its coordinates are divisible; thus no points in
this square are visible from the origin.

Problem 1.6.2. Show that there exists an increasing sequence {an}∞n=1 of natural
numbers such that for any k ≥ 0, the sequence {k + an} contains only finitely
many primes.

(1997 Czech and Slovak Mathematical Olympiad)

Solution. Let pk be the kth prime number, k ≥ 1. Set a1 = 2. For n ≥ 1, let
an+1 be the least integer greater than an that is congruent to −k modulo pk+1 for
all k ≤ n. Such an integer exists by the Chinese remainder theorem. Thus, for all
k ≥ 0, k + an ≡ 0 (mod pk+1) for n ≥ k + 1. Then at most k + 1 values in the
sequence {k + an} can be prime; from the (k + 2)th term onward, the values are
nontrivial multiples of pk+1 and must be composite. This completes the proof.

Additional Problems

Problem 1.6.3. Let P(x) be a polynomial with integer coefficients. Suppose that
the integers a1, a2, . . . , an have the following property: For any integer x there
exists an i ∈ {1, 2, . . . , n} such that P(x) is divisible by ai . Prove that there is an
i0 ∈ {1, 2, . . . , n} such that ai0 divides P(x) for every integer x .

(St. Petersburg City Mathematical Olympiad)

Problem 1.6.4. For any set of positive integers {a1, a2, . . . , an} there exists a
positive integer b such that the set {ba1, ba2, . . . , ban} consists of perfect powers.

1.7 Numerical Systems

1.7.1 Representation of Integers in an Arbitrary Base

The fundamental result in this subsection is given by the following theorem:
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Theorem 1.7.1. Let b be an integer greater than 1. For any integer n ≥ 1 there
is a unique system (k, a0, a1, . . . , ak) of integers such that 0 ≤ ai ≤ b − 1,
i = 0, 1, . . . , k, ak �= 0, and

n = akbk + ak−1bk−1 + · · · + a1b + a0. (1)

Proof. For the existence, we repeatedly apply the division algorithm:

n = q1b + r1, 0 ≤ r1 ≤ b − 1,

q1 = q2b + r2, 0 ≤ r2 ≤ b − 1,

. . .

qk−1 = qkb + rk, 0 ≤ rk ≤ b − 1,

where qk is the last nonzero quotient.
Let

a0 = r1 = n − q1b, a1 = q1 − q2b, . . . , ak−1 = qk−1 − qkb, ak = qk .

Then

k∑
i=0

ai b
i =

k−1∑
i=0

(qi − qi+1b)bi + qkbk = q0 +
k∑

i=1

qi b
i −

k∑
i=1

qi b
i = q0 = n.

For the uniqueness, assume that n = c0 + c1b + · · · + chbh is another such
representation.

If h �= k, for example h > k, then n ≥ bh ≥ bk+1. But

n = a0 + a1b + · · · + akbk ≤ (b − 1)(1 + b + · · · + bk) = bk+1 − 1 < bk+1,

a contradiction.
If h = k, then

a0 + a1b + · · · + akbk = c0 + c1b + · · · + ckbk,

and so b | a0 − c0. On the other hand, |a0 − c0| < b; hence a0 = c0, Therefore

a1 + a2b + · · · + akbk−1 = c1 + c2b + · · · + ckbk−1.

Repeating the procedure above, it follows that a1 = c1, a2 = c2, . . . ,
ak = ck .

Relation (1) is called the base-b representation of n and is denoted by

n = akak−1 · · · a0(b)

The usual decimal representation corresponds to b = 10.
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Examples. (1) 4567 = 4 · 103 + 5 · 102 + 6 · 10 + 7 = 4567(10).
(2) Let us write 1010011(2) in base 10. We have

1010011(2) = 1·26+0·25+1·24 +0·23 +0·22+1·2+1 = 64+16+2+1 = 83.

(3) Let us write 1211 in base 3. As above, dividing by 3 successively, the
remainders give the digits of the base-3 representation, beginning with the last.
The first digit is the last nonzero quotient. We can arrange the computations as
follows:

1211 3
1209 403 3

2 402 134 3
1 132 44 3

2 42 14 3
2 12 4 3

2 3 1
1

Hence 1211 = 1122212(3).

1.7.2 Divisibility Criteria in the Decimal System

We will prove some divisibility criteria for integers in decimal representation. In
this subsection, we will write n = ahah−1 · · · a0 with the understanding that we
operate in base 10.

Criterion 1. (a) The integer n = ahah−1 · · · a0 is divisible by 3 if and only if the
sum s(n) of its digits is divisible by 3.

(b) The integer n = ahah−1 · · · a0 is divisible by 9 if and only if s(n) is divisi-
ble by 9.

Proof. We have 10k ≡ 1 (mod 9), since 10 ≡ 1 (mod 9); hence

n =
h∑

k=0

ak10k ≡
h∑

k=0

ak ≡ s(n) (mod 9).

Both conclusions follow.

Criterion 2. The integer n = ahah−1 · · · a0 is divisible by 11 if and only if a0 −
a1 + · · · + (−1)hah is divisible by 11.

Proof. We have 10k = (11 − 1)k ≡ (−1)k (mod 11); hence

n =
h∑

k=0

ak10k ≡
h∑

k=0

(−1)kak (mod 11),

and the conclusion follows.
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Criterion 3. The integer n = ahah−1 · · · a0 is divisible by 7, 11, or 13 if and only
if ahah−1 · · · a3 − a2a1a0 has this property.

Proof. We have

n = a2a1a0 + (1001 − 1)ahah−1 · · · a3

= (7 · 11 · 13)ahah−1 · · · a3 − (ahah−1 · · · a3 − a2a1a0),

hence the desired conclusion.

Criterion 4. The integer n = ahah−1 · · · a0 is divisible by 27 or 37 if and only if
ahah−1 · · · a3 + a2a1a0 has this property.

Proof. We have

n = a2a1a0 + (999 + 1)ahah−1 · · · a3

= (27 · 37)ahah−1 · · · a3 + (ahah−1 · · · a3 + a2a1a0),

and the conclusion follows.

Examples. (1) The integer 123456789 is divisible by 9 because the sum of its
digits 1 + 2 + · · · + 9 = 45 has this property (Criterion 1(b)).

(2) The integer 20 . . . 04︸ ︷︷ ︸
2004

is not a perfect square because the sum of its digits is

6, a multiple of 3 but not of 9; hence the integer itself has these properties (Criteria
1(a) and 1(b)).

(3) All integers of the form abcde f , where a +c+e = 8 and b+d + f = 19,
are divisible by 99, because a + b + c + d + f = 8 + 19, a multiple of 9, and
f − e + d − c + b − a = 19 − 8, a multiple of 11, and the conclusion follows
from Criteria 1(b) and 2.

(4) For any nonzero digit a, the integer a1234567 is not divisible by 37. In-
deed, applying Criterion 4, we have a1234+567 = a1801 and a1+801 = 8a2 =
800 + 10a + 2 = 37 · 21 + 10a + 25. The integer 10a + 25 = 5(2a + 5) is not
divisible by 37 because 7 ≤ 2a + 5 ≤ 23.

Problem 1.7.1. Find all integers written as abcd in decimal representation and
dcba in base 7.

Solution. We have

abcd(10) = dcba(7) ⇔ 999a+93b = 39c+342d ⇔ 333a+31b = 13c+114d;
hence b ≡ c (mod 3). Since b, c ∈ {0, 1, 2, 3, 4, 5, 6}, the possibilities are:

(i) b = c;

(ii) b = c + 3;

(iii) b + 3 = c.
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Also, we note that 13c + 114d ≤ 762 < 3 · 333; hence a ≤ 2.
In the first case we must have a = 2, d = 3d ′, 37 + b = 19d ′, d ′ = 2. Hence

a = 2, d = 6, b = 1, c = 1, and the number abcd is 2116.
In the other cases a = 1. Considering a = 1, we obtain no solutions.

Problem 1.7.2. Prove that every integer k > 1 has a multiple less than k4 whose
decimal expansion has at most four distinct digits.

(1996 German Mathematical Olympiad)

Solution. Let n be the integer such that 2n−1 ≤ k < 2n . For n ≤ 6 the result is
immediate, so assume n > 6.

Let S be the set of nonnegative integers less than 10n whose decimal digits
are all 0 or 1. Since |S| = 2n > k, we can find two elements a < b of S that
are congruent modulo k, and b − a has only the digits 8, 9, 0, 1 in its decimal
representation. On the other hand,

b − a ≤ 1 + 10 + · · · + 10n−1 < 10n < 16n−1 ≤ k4;
hence b − a is the desired multiple.

Problem 1.7.3. A positive integer is written on a board. We repeatedly erase its
unit digit and add 5 times that digit to what remains. Starting with 71998, can we
ever end up at 19987?

(1998 Russian Mathematical Olympiad)

Solution. The answer is no. Let an be the nth number written on the board; let un

be the unit digit and an = 10tn + un . We have

an+1 = tn + 5un ≡ 50tn + 5un = 5(10tn + un) = 5an (mod 7).

Since a1 = 71998 ≡ 0 �≡ 19987 (mod 7), we can never obtain 19987 from
71998.

Problem 1.7.4. Find all the three-digit numbers abc such that the 6003-digit num-
ber abcabc . . . abc is divisible by 91 (abc occurs 2001 times).

Solution. The number is equal to

abc(1 + 103 + 106 + · · · + 106000).

Since 91 is a divisor of 1001 = 1 + 103 and the sum S = 1 + 103 + 106 +
· · · + 106000 has 2001 terms, it follows that 91 and (1 + 103) + 106(1 + 103) +
· · · + 106·999(1 + 103) + 106000 are relatively prime. Thus abc is divisible by 91.
The numbers are

182, 273, 364, 455, 546, 637, 728, 819, 910.
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Problem 1.7.5. Let n be an integer greater than 10 such that each of its digits
belongs to the set S = {1, 3, 7, 9}. Prove that n has some prime divisor greater
than or equal to 11.

(1999 Iberoamerican Mathematical Olympiad)

Solution. Note that any product of any two numbers from {1, 3, 7, 9} taken mod-
ulo 20 is still in {1, 3, 7, 9}. Therefore any finite product of such numbers is still
in this set. Specifically, any number of the form 3 j 7k is congruent to 1, 3, 7, or 9
(mod 20).

Now if all the digits of n ≥ 10 are in S, then its tens digit is odd and we cannot
have n ≡ 1, 3, 7, or 9 (mod 20). Thus, n cannot be of the form 3 j 7k . Nor can n
be divisible by 2 or 5 (otherwise, its last digit would not be 1, 3, 7, or 9). Hence n
must be divisible by some prime greater than or equal to 11, as desired.

Problem 1.7.6. Find all natural numbers with the property that when the first digit
is moved to the end, the resulting number is 3 1

2 times the original one.

(1997 South African Mathematical Olympiad)

Solution. Such numbers are those of the form

153846153846153846 . . . 153846.

Obviously, since the number has the same number of digits when multiplied
by 3.5, it must begin with either 1 or 2.

Case 1. The number is of the form 10N + A, A < 10N . So 7/2× (10N + A) =
10A + 1 is equivalent to A = (7 × 10N − 2)/13. The powers of 10 repeat with a
period of 6 mod 13 (10, 9, 12, 3, 4, 1), so A will be an integer iff n ≡ 5 (mod 6).
This gives the family of solutions above.

Case 2. The number is of the form 2 × 10N + A, A < 10N . Then, as before,
A = (14 × 10N − 4)/13. But since A < 10N , this implies 10N < 4, which is
impossible.

Problem 1.7.7. Any positive integer m can be written uniquely in base 3 as a
string of 0’s, 1’s, and 2’s (not beginning with a zero). For example,

98 = 81 + 9 + 2 × 3 + 2 × 1 = (10122)3.

Let c(m) denote the sum of the cubes of the digits of the base-3 form of m;
thus, for instance,

c(98) = 13 + 03 + 13 + 23 + 23 = 18.

Let n be any fixed positive integer. Define the sequence {ur } as

u1 = n, and ur = c(ur−1) for r ≥ 2.

Show that there is a positive integer r such that ur = 1, 2, or 17.
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(1999 United Kingdom Mathematical Olympiad)

Solution. If m has d ≥ 5 digits then we have m ≥ 3d−1 = (80 + 1)(d−1)/4 ≥
80 · d−1

4 + 1 > 8d by Bernoulli’s inequality. Thus m > c(m).
If m > 32 has four digits in base 3, then c(m) ≤ 23 +23 +23 +23 = 32 < m.

On the other hand, if 27 ≤ m ≤ 32, then m starts with the digits 10 in base 3 and
c(m) < 13 + 03 + 23 + 23 = 17 < m.

Therefore 0 < c(m) < m for all m ≥ 27. Hence, eventually, we have us < 27.
Because us has at most three digits, us+1 can equal only 8, 16, 24, 1, 9, 17, 2, 10,
or 3. If it equals 1, 2, or 17 we are already done; if it equals 3 or 9 then us+2 = 1.
Otherwise, a simple check shows that ur will eventually equal 2:

8 = (22)3
24 = (220)3

}
→ 16 = (121)3 → 10 = (101)3 → 2.

Problem 1.7.8. Do there exist n-digit numbers M and N such that all of the digits
of M are even, all of the digits of N are odd, each digit from 0 to 9 occurs exactly
once among M and N, and N divides M?

(1998 Russian Mathematical Olympiad)

Solution. The answer is no. We proceed by indirect proof. Suppose that such M
and N exist, and let a = M/N . Then M ≡ 0 + 2 + 4 + 6 + 8 ≡ 2 (mod 9)

and N ≡ 1 + 3 + 5 + 7 + 9 ≡ 7 (mod 9); they are both relatively prime to 9.
Now a ≡ M/N ≡ 8 (mod 9), and so a ≥ 8. But N ≥ 13579, so M = aN ≥
8(13579) > 99999, a contradiction.

Problem 1.7.9. Let k ≥ 1 be an integer. Show that there are exactly 3k−1 positive
integers n with the following properties:

(a) The decimal representation of n consists of exactly k digits.

(b) All digits of n are odd.

(c) The number n is divisible by 5.

(d) The number m = n/5 has k (decimal) digits.

(1996 Austrian–Polish Mathematics Competition)

Solution. The multiplication in each place must produce an even carry digit, since
these will be added to 5 in the next place and an odd digit must result. Hence all
of the digits of m must be 1, 5 or 9, and the first digit must be 1, since m and n
have the same number of decimal digits. Hence there are 3k−1 choices for m and
hence for n.
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Problem 1.7.10. Can the number obtained by writing the numbers from 1 to n in
order (n > 1) be the same when read left to right and right to left?

(1996 Russian Mathematical Olympiad)

Solution. It is not possible. Suppose 10p ≤ n < 10p+1. If N does not end with
321, then it will not be palindromic, so we may assume p ≥ 2. The longest run
of consecutive zeros in N will have length p. These runs occur exactly where we
write down the multiples of 10p. Suppose further k · 10p ≤ n < (k + 1) · 10p

for a digit k. Then there are exactly k runs of p consecutive zeros, and the kth is
bracketed by . . . 9k00 . . . 0k0 . . . . Thus none of the runs of p zeros can be sent to
itself or another run by reversing the order of the digits.

Problem 1.7.11. Three boxes with at least one marble in each are given. In a step
we choose two of the boxes, doubling the number of marbles in one of the boxes
by taking the required number of marbles from the other box. Is it always possible
to empty one of the boxes after a finite number of steps?

(1999 Slovenian Mathematical Olympiad)

Solution. Without loss of generality suppose that the number of marbles in the
boxes are a, b, and c with a ≤ b ≤ c. Write b = qa + r where 0 ≤ r < a and
q ≥ 1. Then express q in binary:

q = m0 + 2m1 + · · · + 2kmk,

where each mi ∈ {0, 1} and mk = 1. Now for each i = 0, 1, . . . , k, add 2i a
marbles to the first box: if mi = 1 take these marbles from the second box;
otherwise, take them from this third box. In this way we take at most (2k − 1)a <

qa ≤ b ≤ c marbles from the third box and exactly qa marbles from the second
box altogether.

In the second box there are now r < a marbles left. Thus the box with the
least number of marbles now contains fewer than a marbles. Then by repeating
the described procedure, we will eventually empty one of the boxes.

Additional Problems

Problem 1.7.12. The natural number A has the following property: the sum of the
integers from 1 to A, inclusive, has decimal expansion equal to that of A followed
by three digits. Find A.

(1999 Russian Mathematical Olympiad)

Problem 1.7.13. A positive integer is said to be balanced if the number of its
decimal digits equals the number of its distinct prime factors. For instance, 15
is balanced, while 49 is not. Prove that there are only finitely many balanced
numbers.

(1999 Italian Mathematical Olympiad)
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Problem 1.7.14. Let p ≥ 5 be a prime and choose k ∈ {0, . . . , p − 1}. Find the
maximum length of an arithmetic progression, none of whose elements contain
the digit k when written in base p.

(1997 Romanian Mathematical Olympiad)

Problem 1.7.15. How many 10-digit numbers divisible by 66667 are there whose
decimal representation contains only the digits 3, 4, 5, and 6?

(1999 St. Petersburg City Mathematical Olympiad)

Problem 1.7.16. Call positive integers similar if they are written using the same
digits. For example, for the digits 1, 1, 2, the similar numbers are 112, 121, and
211. Prove that there exist three similar 1995-digit numbers containing no zero
digit such that the sum of two them equals the third.

(1995 Russian Mathematical Olympiad)

Problem 1.7.17. Let k and n be positive integers such that

(n + 2)n+2, (n + 4)n+4, (n + 6)n+6, . . . , (n + 2k)n+2k

end in the same digit in decimal representation. At most how large is k?

(1995 Hungarian Mathematical Olympiad)

Problem 1.7.18. Let

1996∏
n=1

(1 + nx3n
) = 1 + a1xk1 + a2xk2 + · · · + am xkm ,

where a1, a2, . . . , am are nonzero and k1 < k2 < · · · < km . Find a1996.

(1996 Turkish Mathematical Olympiad)

Problem 1.7.19. For any positive integer k, let f (k) be the number of elements in
the set {k + 1, k + 2, . . . , 2k} whose base-2 representation has precisely three 1’s.

(a) Prove that, for each positive integer m, there exists at least one positive
integer k, such that f (k) = m.

(b) Determine all positive integers m for which there exists exactly one k with
f (k) = m.

(35th International Mathematical Olympiad)

Problem 1.7.20. For each positive integer n, let S(n) be the sum of digits in the
decimal representation of n. Any positive integer obtained by removing several
(at least one) digits from the right-hand end of the decimal representation of n
is called a stump of n. Let T (n) be the sum of all stumps of n. Prove that n =
S(n) + 9T (n).

(2001 Asian Pacific Mathematical Olympiad)
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Problem 1.7.21. Let p be a prime number and m a positive integer. Show that
there exists a positive integer n such that there exist m consecutive zeros in the
decimal representation of pn .

(2001 Japanese Mathematical Olympiad)

Problem 1.7.22. Knowing that 229 is a 9-digit number whose digits are distinct,
without computing the actual number determine which of the ten digits is missing.
Justify your answer.

Problem 1.7.23. It is well known that the divisibility tests for division by 3 and
9 do not depend on the order of the decimal digits. Prove that 3 and 9 are the
only positive integers with this property. More exactly, if an integer d > 1 has
the property that d | n implies d | n1, where n1 is obtained from n through an
arbitrary permutation of its digits, then d = 3 or d = 9.





2

Powers of Integers

An integer n is a perfect square if n = m2 for some integer m. Taking into account
the prime factorization, if m = pα1

1 · · · pαk
k , then n = p2α1

1 · · · p2αk
k . That is, n is a

perfect square if and only if all exponents in its prime factorization are even.
An integer n is a perfect power if n = ms for some integers m and s, s ≥

2. Similarly, n is an sth perfect power if and only if all exponents in its prime
factorization are divisible by s.

We say that the integer n is square-free if for any prime divisor p, p2 does not
divide n. Similarly, we can define the sth power-free integers.

These preliminary considerations seem trivial, but as you will see shortly, they
have significant rich applications in solving various problems.

2.1 Perfect Squares

Problem 2.1.1. Find all nonnegative integers n such that there are integers a and
b with the property

n2 = a + b and n3 = a2 + b2.

(2004 Romanian Mathematical Olympiad)

Solution. From the inequality 2(a2 + b2) ≥ (a + b)2 we get 2n3 ≥ n4, that is,
n ≤ 2. Thus:

for n = 0, we choose a = b = 0,
for n = 1, we take a = 1, b = 0, and
for n = 2, we may take a = b = 2.

Problem 2.1.2. Find all integers n such that n − 50 and n + 50 are both perfect
squares.

© Birkhäuser Boston, a part of Springer Science + Business Media, LLC 2009
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Solution. Let n − 50 = a2 and n + 50 = b2. Then b2 − a2 = 100, so (b − a)(b +
a) = 22 ·52. Because b−a and b+a are of the same parity, we have the following
possibilities: b − a = 2, b + a = 50, yielding b = 26, a = 24, and b − a = 10,
b+a = 10 with a = 0, b = 10. Hence the integers with this property are n = 626
and n = 50.

Problem 2.1.3. Let n ≥ 3 be a positive integer. Show that it is possible to eliminate
at most two numbers among the elements of the set {1, 2, . . . , n} such that the sum
of the remaining numbers is a perfect square.

(2003 Romanian Mathematical Olympiad)

Solution. Let m = ⌊√
n(n + 1)/2

⌋
. From m2 ≤ n(n + 1)/2 < (m + 1)2 we

obtain
n(n + 1)

2
− m2 < (m + 1)2 − m2 = 2m + 1.

Therefore, we have

n(n + 1)

2
− m2 ≤ 2m ≤

√
2n2 + 2n ≤ 2n − 1.

Since any number k, k ≤ 2n − 1, can be obtained by adding at most two
numbers from {1, 2, . . . , n}, we obtain the result.

Problem 2.1.4. Let k be a positive integer and a = 3k2 + 3k + 1.

(i) Show that 2a and a2 are sums of three perfect squares.

(ii) Show that if a is a divisor of a positive integer b, and b is a sum of three
perfect squares, then any power bn is a sum of three perfect squares.

(2003 Romanian Mathematical Olympiad)

Solution. (i) 2a = 6k2+6k+2 = (2k+1)2+(k+1)2+k2 and a2 = 9k4+18k3+
15k2 +6k +1 = (k2 +k)2 +(2k2 +3k +1)2 +k2(2k +1)2 = a2

1 +a2
2 +a2

3. (ii) Let
b = ca. Then b = b2

1+b2
2+b2

3 and b2 = c2a2 = c2(a2
1+a2

2+a2
3). To end the proof,

we proceed as follows: for n = 2p + 1 we have b2p+1 = (bp)2(b2
1 + b2

2 + b2
3),

and for n = 2p + 2, bn = (bp)2b2 = (b p)2c2(a2
1 + a2

2 + a2
3).

Problem 2.1.5. (a) Let k be an integer number. Prove that the number

(2k + 1)3 − (2k − 1)3

is the sum of three squares. (b) Let n be a positive number. Prove that the number
(2n + 1)3 − 2 can be represented as the sum of 3n − 1 squares greater than 1.

(2000 Romanian Mathematical Olympiad)
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Solution. (a) It is easy to check that

(2k + 1)3 − (2k − 1)3 = (4k)2 + (2k + 1)2 + (2k − 1)2.

(b) Observe that

(2n + 1)3 − 1 = (2n + 1)3 − (2n − 1)3 + (2n − 1)3 − (2n − 3)3 + · · · + 33 − 13.

Each of the n differences in the right-hand side can be written as a sum of three
squares greater than 1, except for the last one:

33 − 13 = 42 + 32 + 12.

It follows that

(2n + 1)3 − 2 = 32 + 42 +
n∑

k=2

[
(4k)2 + (2k + 1)2 + (2k − 1)2]

as desired.

Problem 2.1.6. Prove that for any positive integer n the number(
17 + 12

√
2
)n − (

17 − 12
√

2
)n

4
√

2

is an integer but not a perfect square.

Solution. Note that 17 + 12
√

2 = (√
2 + 1

)4
and 17 − 12

√
2 = (√

2 − 1
)4

, so

(
17 + 12

√
2
)n − (

17 − 12
√

2
)n

4
√

2
=

(√
2 + 1

)4n − (√
2 − 1

)4n

4
√

2

=
(√

2 + 1
)2n + (√

2 − 1
)2n

2
·
(√

2 + 1
)2n − (√

2 − 1
)2n

2
√

2
.

Define

A =
(√

2 + 1
)2n + (√

2 − 1
)2n

2
and B =

(√
2 + 1

)2n − (√
2 − 1

)2n

2
√

2
.

Using the binomial expansion formula we obtain positive integers x and y such
that (√

2 + 1
)2n = x + y

√
2,

(√
2 − 1

)2n = x − y
√

2.

Then

x =
(√

2 + 1
)2n + (√

2 − 1
)2n

2
= A
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and

y =
(√

2 + 1
)2n − (√

2 − 1
)2n

2
√

2
= B,

and so AB is as integer, as claimed. Observe that

A2 − 2B2 = (A + √
2B)(A − √

2B) = (
√

2 + 1)2n(
√

2 − 1)2n = 1,

so A and B are relatively prime. It is sufficient to prove that at least one of them
is not a perfect square. We have

A =
(√

2 + 1
)2n + (√

2 − 1
)2n

2
=

[(√
2 + 1

)n + (√
2 − 1

)n

√
2

]2

− 1 (1)

and

A =
(√

2 + 1
)2n + (√

2 − 1
)2n

2
=

[(√
2 + 1

)n − (√
2 − 1

)n

√
2

]2

+ 1. (2)

Since one of the numbers(√
2 + 1

)n + (√
2 − 1

)n

√
2

,

(√
2 + 1

)n − (√
2 − 1

)n

√
2

is an integer, depending on the parity of n, from the relations (1) and (2) we derive
that A is not a square. This completes the proof.

Problem 2.1.7. The integers a and b have the property that for every nonnegative
integer n, the number 2na + b is a perfect square. Show that a = 0.

(2001 Polish Mathematical Olympiad)

Solution. If a �= 0 and b = 0, then at least one of 21a + b and 22a + b is not
a perfect square, a contradiction. If a �= 0 and b �= 0, then each (xn, yn) =
(2

√
2na + b,

√
2n+2a + b) satisfies

(xn + yn)(xn − yn) = 3b.

Hence, x + n + yn divides 3b for each n. But this is impossible because 3b �= 0
but |xn + yn| > |3b| for large enough n. Therefore, a = 0.

Remark. We invite the courageous reader to prove that if f ∈ Z[X ] is a poly-
nomial and f (2n) is a perfect square for all n, then there is g ∈ Z[X ] such that
f = g2.
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Problem 2.1.8. Prove that the number

11 . . . 11︸ ︷︷ ︸
1997

22 . . . 22︸ ︷︷ ︸
1998

5

is a perfect square.

First solution.

N = 11 . . . 11︸ ︷︷ ︸
1997

·101999 + 22 . . . 22︸ ︷︷ ︸
1998

·10 + 5

= 1

9
(101997 − 1) · 101999 + 2

9
(101998 − 1) · 10 + 5

= 1

9
(103996 + 2 · 5 · 101998 + 25) = [ 1

3 (101998 + 5)
]2

=

⎛
⎜⎜⎜⎝1

1997︷ ︸︸ ︷
00 . . . 00 5

3

⎞
⎟⎟⎟⎠

2

= 33 . . . 33︸ ︷︷ ︸
1997

52.

Second solution. Note that

9N = 1 00 . . . 00︸ ︷︷ ︸
1996

1 00 . . . 00︸ ︷︷ ︸
1997

25 = 103996 + 101999 + 25 = (101998 + 5)2;

hence N is a square.

Problem 2.1.9. Find all positive integers n, n ≥ 1, such that n2 + 3n is a perfect
square.

Solution. Let m be a positive integer such that

m2 = n2 + 3n.

Since (m−n)(m+n) = 3n , there is k ≥ 0 such that m−n = 3k and m+n = 3n−k .
From m − n < m + n follows k < n − k, and so n − 2k ≥ 1. If n − 2k = 1, then
2n = (m + n)− (m − n) = 3n−k − 3k = 3k(3n−2k − 1) = 3k(31 − 1) = 2 · 3k , so
n = 3k = 2k + 1. We have 3m = (1 + 2)m = 1 + 2m + 22

(m
2

) + · · · > 2m + 1.
Therefore k = 0 or k = 1, and consequently n = 1 or n = 3. If n − 2k > 1, then
n − 2k ≥ 2 and k ≤ n − k − 2. It follows that 3k ≤ 3n−k−2, and consequently

2n = 3n−k − 3k ≥ 3n−k − 3n−k−2 = 3n−k−2(32 − 1) = 8 · 3n−k−2

≥ 8[1 + 2(n − k − 2)] = 16n − 16k − 24,

which implies 8k+12 ≥ 7n. On the other hand, n ≥ 2k+2; hence 7n ≥ 14k+14,
contradiction. In conclusion, the only possible values for n are 1 and 3.
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Problem 2.1.10. Find the number of five-digit perfect squares having the last two
digits equal.

Solution. Suppose n = abcdd is a perfect square. Then n = 100abc + 11d =
4m + 3d for some m. Since all squares have the form 4m or 4m + 1 and d ∈
{0, 1, 4, 5, 6, 9} as the last digit of a square, it follows that d = 0 or d = 4. If d =
0, then n = 100abc is a square if abc is a square. Hence abc∈{102,112, . . . , 312},
so there are 22 numbers. If d = 4, then 100abc+44 = n = k2 implies k = 2p and

abc = p2−11
25 . (1) If p = 5x , then abc is not an integer, false. (2) If p = 5x + 1,

then abc = 25x2+10x−1
25 = x2 + 2(x−1)

5 ⇒ x ∈ {11, 16, 21, 26, 31}, so there are 5
solutions. (3) If p = 5x +2, then abc = x2 + 20x−7

25 �∈ N, false. (4) If p = 5x +3,
then abc = x2 + 30x−2

25 �∈ N, false. (5) If p = 5x +4 then abc = x2 + 8x+1
5 ; hence

x = 5m + 3 for some m ⇒ x ∈ {13, 18, 23, 28}, so there are four solutions.
Finally, there are 22 + 5 + 4 = 31 squares.

Problem 2.1.11. The last four digits of a perfect square are equal. Prove they are
all zero.

(2002 Romanian Team Selection Test for JBMO)

Solution. Denote by k2 the perfect square and by a the digit that appears in the last
four positions. It easily follows that a is one of the numbers 0, 1, 4, 5, 6, 9. Thus
k2 ≡ a ·1111 (mod 16). (1) If a = 0, we are done. (2) Suppose that a ∈ {1, 5, 9}.
Since k2 ≡ 0 (mod 8), k2 ≡ 1 (mod 8) or k2 ≡ 4 (mod 8) and 1111 ≡ 7
(mod 8), we obtain 1111 ≡ 7 (mod 8), 5 · 1111 ≡ 3 (mod 8), and 9 · 1111 ≡ 7
(mod 8). Thus the congruence k2 ≡ a · 1111 (mod 16) cannot hold. (3) Suppose
a ∈ {4, 6}. Since 1111 ≡ 7 (mod 16), 4·1111 ≡ 12 (mod 16), and 6·1111 ≡ 10
(mod 16), we conclude that in this case the congruence k2 ≡ a · 1111 (mod 16)

cannot hold. Thus a = 0.

Remark. 382 = 1444 ends in three equal digits, so the problem is sharp.

Problem 2.1.12. Let 1 < n1 < n2 < · · · < nk < · · · be a sequence of integers
such that no two are consecutive. Prove that for all positive integers m between
n1 + n2 + · · · + nm and n2 + n2 + · · · + nm+1 there is a perfect square.

Solution. It is easy to prove that between numbers a > b ≥ 0 such that
√

a −√
b > 1 there is a perfect square: take for example ([√b] + 1)2. It suffices to

prove that √
n1 + · · · + nm+1 − √

n1 + · · · + nm > 1, m ≥ 1.

This is equivalent to

n1 + · · · + nm + nm+1 > (1 + √
n1 + n2 + · · · + nm)2,

and then
nm+1 > 1 + 2

√
n1 + n2 + · · · + nm, m ≥ 1.
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We induct on m. For m = 1 we have to prove that n2 > 1 + 2
√

n1. Indeed,
n2 > n1 + 2 = 1 + (1 + n1) > 1 + 2

√
n1. Assume that the claim holds for some

m ≥ 1. Then
nm+1 − 1 > 2

√
n1 + · · · + nm

so (nm+1 − 1)2 > 4(n1 + · · · + nm) hence

(nm+1 + 1)2 > 4(n1 + · · · + nm+1).

This implies
nm+1 + 1 > 2

√
n1 + · · · + nm+1,

and since nm+2 − nm+1 ≥ 2, it follows that

nm+2 > 1 + 2
√

n1 + · · · + nm+1,

as desired.

Problem 2.1.13. Find all integers x, y, z such that 4x + 4y + 4z is a square.

Solution. It is clear that there are no solutions with x < 0. Without loss of general-
ity assume that x ≤ y ≤ z and let 4x +4y +4z = u2. Then 22x (1+4y−x +4z−x ) =
u2. We have two situations.

Case 1. 1 + 4y−x + 4z−x is odd, i.e., 1 + 4y−x + 4z−x = (2a + 1)2. It follows that

4y−x−1 + 4z−x−1 = a(a + 1),

and then
4y−x−1(1 + 4z−y) = a(a + 1).

We consider two cases. (1) The number a is even. Then a +1 is odd, so 4y−x−1 =
a and 1 + 4z−y = a + 1. It follows that 4y−x−1 = 4z−y ; hence y − x − 1 = z − y.
Thus z = 2y − x − 1 and

4x + 4y + 4z = 4x + 4y + 42y−x−1 = (2x + 22y−x−1)2.

(2) The number a is odd. Then a + 1 is even, so a = 4z−y + 1, a + 1 = 4y−x−1

and 4y−x−1 − 4z−y = 2. It follows that 22y−2x−3 = 22x−2y−1 + 1, which is
impossible, since 2x − 2y − 1 �= 0.

Case 2. 1 + 4y−x + 4z−x is even; thus y = x or z = x . Anyway, we must have
y = x , and then 2 + 4z−x is a square, which is impossible, since it is congruent to
2 (mod 4) or congruent to 3 (mod 4).
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Additional Problems

Problem 2.1.14. Let x, y, z be positive integers such that

1

x
− 1

y
= 1

z
.

Let h be the greatest common divisor of x, y, z. Prove that hxyz and h(y − x) are
perfect squares.

(1998 United Kingdom Mathematical Olympiad)

Problem 2.1.15. Let b an integer greater than 5. For each positive integer n, con-
sider the number

xn = 11 . . . 1︸ ︷︷ ︸
n−1

22 . . . 2︸ ︷︷ ︸
n

5,

written in base b. Prove that the following condition holds if and only if b = 10:
There exists a positive integer M such that for every integer n greater than M , the
number xn is a perfect square.

(44th International Mathematical Olympiad Shortlist)

Problem 2.1.16. Do there exist three natural numbers greater than 1 such that the
square of each, minus one, is divisible by each of the others?

(1996 Russian Mathematical Olympiad)

Problem 2.1.17. (a) Find the first positive integer whose square ends in three 4’s.
(b) Find all positive integers whose squares end in three 4’s. (c) Show that no
perfect square ends with four 4’s.

(1995 United Kingdom Mathematical Olympiad)

Problem 2.1.18. Let abc be a prime. Prove that b2 − 4ac cannot be a perfect
square.

(Mathematical Reflections)

Problem 2.1.19. For each positive integer n, denote by s(n) the greatest integer
such that for all positive integer k ≤ s(n), n2 can be expressed as a sum of squares
of k positive integers. (a) Prove that s(n) ≤ n2 − 14 for all n ≥ 4. (b) Find a
number n such that s(n) = n2 − 14. (c) Prove that there exist infinitely many
positive integers n such that

s(n) = n2 − 14.

(33rd International Mathematical Olympiad)
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Problem 2.1.20. Let A be the set of positive integers representable in the form
a2 + 2b2 for integers a, b with b �= 0. Show that if p2 ∈ A for a prime p, then
p ∈ A.

(1997 Romanian International Mathematical Olympiad Team Selection Test)

Problem 2.1.21. Is it possible to find 100 positive integers not exceeding 25000
such that all pairwise sums of them are different?

(42nd International Mathematical Olympiad Shortlist)

Problem 2.1.22. Do there exist 10 distinct integers, the sum of any 9 of which is
a perfect square?

(1999 Russian Mathematical Olympiad)

Problem 2.1.23. Let n be a positive integer such that n is a divisor of the sum

1 +
n−1∑
i=1

in−1.

Prove that n is square-free.

(1995 Indian Mathematical Olympiad)

Problem 2.1.24. Let n, p be integers such that n > 1 and p is a prime. If n |
(p − 1) and p | (n3 − 1), show that 4p − 3 is a perfect square.

(2002 Czech–Polish–Slovak Mathematical Competition)

Problem 2.1.25. Show that for any positive integer n > 10000, there exists a
positive integer m that is a sum of two squares and such that 0 < m − n < 3 4

√
n.

(Russian Mathematical Olympiad)

Problem 2.1.26. Show that a positive integer m is a perfect square if and only if
for each positive integer n, at least one of the differences

(m + 1)2 − m, (m + 2)2 − m, . . . , (m + n)2 − m

is divisible by n.

(2002 Czech and Slovak Mathematical Olympiad)
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2.2 Perfect Cubes

Problem 2.2.1. Prove that if n is a perfect cube, then n2 + 3n + 3 cannot be a
perfect cube.

Solution. If n = 0, then we get 3 and the property is true. Suppose by way of
contradiction that n2 + 3n + 3 is a cube for some n �= 0. Hence n(n2 + 3n + 3)

is a cube. Note that

n(n2 + 3n + 3) = n3 + 3n2 + 3n = (n + 1)3 − 1,

and since (n + 1)3 − 1 is not a cube when n �= 0, we obtain a contradiction.

Problem 2.2.2. Let m be a given positive integer. Find a positive integer n such
that m + n + 1 is a perfect square and mn + 1 is a perfect cube.

Solution. Choosing n = m2 + 3m + 3, we have

m + n + 1 = m2 + 4m + 4 = (m + 2)2

and
mn + 1 = m3 + 3m2 + 3m + 1 = (m + 1)3.

Problem 2.2.3. Which are there more of among the natural numbers from 1 to
1000000, inclusive: numbers that can be represented as the sum of a perfect
square and a (positive) perfect cube, or numbers that cannot be?

(1996 Russian Mathematical Olympiad)

Solution. There are more numbers not of this form. Let n = k2 + m3, where
k, m, n ∈ N and n ≤ 1000000. Clearly k ≤ 1000 and m ≤ 100. Therefore there
cannot be more numbers in the desired form than the 100000 pairs (k, m).

Problem 2.2.4. Show that no integer of the form xyxy in base 10 can be the cube
of an integer. Also find the smallest base b > 1 in which there is a perfect cube of
the form xyxy.

(1998 Irish Mathematical Olympiad)

Solution. If the 4-digit number xyxy = 101 × xy is a cube, then 101 | xy, which
is a contradiction. Convert xyxy = 101 × xy from base b to base 10. We obtain
xyxy = (b2 +1)× (bx + y) with x, y < b and b2 +1 > bx + y. Thus for xyxy to
be a cube, b2 + 1 must be divisible by a perfect square. We can check easily that
b = 7 is the smallest such number, with b2 + 1 = 50. The smallest cube divisible
by 50 is 1000, which is 2626 is base 7.
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Additional Problems

Problem 2.2.5. Find all the positive perfect cubes that are not divisible by 10 such
that the number obtained by erasing the last three digits is also a perfect cube.

Problem 2.2.6. Find all positive integers n less than 1999 such that n2 is equal to
the cube of the sum of n’s digits.

(1999 Iberoamerican Mathematical Olympiad)

Problem 2.2.7. Prove that for any nonnegative integer n the number

A = 2n + 3n + 5n + 6n

is not a perfect cube.

Problem 2.2.8. Prove that every integer is a sum of five cubes.

Problem 2.2.9. Show that every rational number can be written as a sum of three
cubes.

2.3 kth Powers of Integers, k at least 4

Problem 2.3.1. Given 81 natural numbers whose prime divisors belong to the set
{2, 3, 5}, prove that there exist four numbers whose product is the fourth power of
an integer.

(1996 Greek Mathematical Olympiad)

Solution. It suffices to take 25 such numbers. To each number, associate the triple
(x2, x3, x5) recording the parity of the exponents of 2, 3, and 5 in its prime factor-
ization. Two numbers have the same triple if and only if their product is a perfect
square. As long as there are 9 numbers left, we can select two whose product
is a square; in so doing, we obtain 9 such pairs. Repeating the process with the
square roots of the products of the pairs, we obtain four numbers whose product
is a fourth power.

Problem 2.3.2. Find all collections of 100 positive integers such that the sum of
the fourth powers of every four of the integers is divisible by the product of the
four numbers.

(1997 St. Petersburg City Mathematical Olympiad)

Solution. Such sets must be n, n, . . . , n or 3n, n, n, . . . , n for some integer n.
Without loss of generality, we assume that the numbers do not have a common
factor. If u, v, w, x, y are five of the numbers, then uvw divides u4 +v4 +w4 +x4

and u4 + v4 + w4 + y4, and so divides x4 − y4. Likewise, v4 ≡ w4 ≡ x4

(mod u), and from above, 3v4 ≡ 0 (mod u). If u has a prime divisor not equal
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to 3, we conclude that every other integer is divisible by the same prime, contrary
to assumption. Likewise, if u is divisible by 9, then every other integer is divisible
by 3. Thus all of the numbers equal 1 or 3. Moreover, if one number is 3, the
others are all congruent modulo 3, so are all 3 (contrary to assumption) or 1. This
completes the proof.

Problem 2.3.3. Let M be a set of 1985 distinct positive integers, none of which
has a prime divisor greater than 26. Prove that M contains at least one subset of
four distinct elements whose product is the fourth power of an integer.

(26th International Mathematical Olympiad)

Solution. There are nine prime numbers less than 26: p1 = 2, p2 = 3, . . . , p9 =
23. Any element x of M has a representation x = ∏9

i=1 pai
i , ai ≥ 0. If x, y ∈ M

and y = ∏9
i=1 pbi

i , the product xy = ∏9
i=1 pai +bi

i is a perfect square if and only
if ai + bi ≡ 0 (mod 2). Equivalently, ai ≡ bi (mod 2) for all i = 1, 2, . . . , 9.
Because there are 29 = 512 elements in (Z/2Z)9, any subset of M having at least
513 elements contains two elements x, y such that xy is a perfect square. Starting
from M and eliminating such pairs, one obtains 1

2(1985 − 513) = 736 > 513
distinct two-element subsets of M having a square as the product of elements.
Reasoning as above, we find among these squares at least one pair (in fact many
pairs) whose product is a fourth power.

Problem 2.3.4. Let A be a subset of {0, 1, . . . , 1997} containing more than 1000
elements. Prove that A contains either a power of 2, or two distinct integers whose
sum is a power of 2.

(1997 Irish Mathematical Olympiad)

Solution. Suppose A did not satisfy the conclusion. Then A would contain at most
half of the integers from 51 to 1997, since they can be divided into pairs whose
sum is 2048 (with 1024 left over); likewise, A contains at most half of the integers
from 14 to 50, at most half of the integers from 3 to 13, and possibly 0, for a total
of

973 + 18 + 5 + 1 = 997

integers.

Problem 2.3.5. Show that in the arithmetic progression with first term 1 and dif-
ference 729, there are infinitely many powers of 10.

(1996 Russian Mathematical Olympiad)

First solution. We will show that for all natural numbers n, 1081n − 1 is divisible
by 729. In fact,

1081n − 1 = (1081)n − 1n = (1081 − 1) · A,
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and

1081 − 1 = 9 . . . 9︸ ︷︷ ︸
81

= (9 . . . 9︸ ︷︷ ︸
9

) · · · (10 . . . 01︸ ︷︷ ︸
8

10 . . . 01︸ ︷︷ ︸
8

. . . 10 . . . 01︸ ︷︷ ︸
8

)

= 9(1 . . . 1︸ ︷︷ ︸
9

) · · · (10 . . . 01︸ ︷︷ ︸
8

10 . . . 01︸ ︷︷ ︸
8

. . . 10 . . . 01︸ ︷︷ ︸
8

).

The second and third factors have nine digits equal to 1 and the root of digits (if
any) 0, so the sum of the digits is 9, and each is a multiple of 9. Hence 1081 − 1 is
divisible by 93 = 729, as is 1081n − 1 for any n.

Second solution. In order to prove that 1081 − 1 is divisible by 93, just write

1081 − 1 = (9 + 1)81 − 1 = k · 93 +
(

81

2

)
92 +

(
81

1

)
· 9

= k · 93 + 81 · 40 · 92 + 81 · 9 = (k + 361) · 93.

Remark. An alternative solution uses Euler’s theorem (see Section 7.2). We have
10ϕ(729) ≡ 1 (mod 729); thus 10nϕ(729) is in this progression for any positive
integer n.

Additional Problems

Problem 2.3.6. Let p be a prime number and a, n positive integers. Prove that if

2p + 3p = an,

then n = 1.
(1996 Irish Mathematical Olympiad)

Problem 2.3.7. Let x, y, p, n, k be natural numbers such that

xn + yn = pk .

Prove that if n > 1 is odd and p is an odd prime, then n is a power of p.
(1996 Russian Mathematical Olympiad)

Problem 2.3.8. Prove that a product of three consecutive integers cannot be a
power of an integer.

Problem 2.3.9. Show that there exists an infinite set A of positive integers such
that for any finite nonempty subset B ⊂ A,

∑
x∈B x is not a perfect power.

(Kvant)

Problem 2.3.10. Prove that there is no infinite arithmetic progression consisting
only of powers ≥ 2.
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Floor Function and Fractional Part

3.1 General Problems

For a real number x there is a unique integer n such that n ≤ x < n + 1.
We say that n is the greatest integer less than or equal to x or the floor of x .

We write n = 
x�. The difference x − 
x� is called the fractional part of x and is
denoted by {x}.

The integer −
−x� is called the ceiling of x and is denoted by �x
.

Examples. (1) 
2.1� = 2, {2.1} = 0.1, and �2.1
 = 3.
(2) 
−3.9� = −4, {−3.9} = 0.1, and �−3.9
 = −3.
The following properties are useful:
(1) If a and b are integers, b > 0, and q is the quotient when a is divided by

b, then q = ⌊a
b

⌋
.

(2) For any real number x and any integer n, 
x +n� = 
x�+n and �x +n
 =
�x
 + n.

(3) For any positive real number x and any positive integer n, the number of
positive multiples of n not exceeding x is

⌊ x
n

⌋
.

(4) For any real number x and any positive integer n,
⌊ 
x�

n

⌋ = ⌊ x
n

⌋
.

(5) For any real numbers x and y,


x + y� − 1 ≤ 
x� + 
y� ≤ 
x + y�.
We will prove the last three properties. For (3), consider all multiples

1 · n, 2 · n, . . . , k · n,

where k · n ≤ x < (k + 1)n. That is, k ≤ x
n < k + 1 and the conclusion

follows. For (4) write 
x� = m and {x} = α. From the division algorithm and
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property (1) above it follows that m = n
⌊m

n

⌋ + r , where 0 ≤ r ≤ n − 1. We
obtain 0 ≤ r + α ≤ n − 1 + α < n, that is,

⌊ r+α
n

⌋ = 0 and

⌊ x

n

⌋
=

⌊
m + α

n

⌋
=

⌊⌊m

n

⌋
+ r + α

n

⌋
=

⌊m

n

⌋
+

⌊
r + α

n

⌋
=

⌊m

n

⌋
=

⌊
x�
n

⌋
.

Remark. An easier proof of (4) may be this:
Since

⌊ x
n

⌋ ≤ x
n <

⌊ x
n

⌋ + 1, we can write x = n
⌊ x

n

⌋ + s with 0 ≤ x < n. By
(2), we have 
x� = n

⌊ x
n

⌋ + 
s�, so


x�
n

=
⌊ x

n

⌋
+ 
s�

n
.

Applying (2) again gives ⌊
x�
n

⌋
=

⌊ x

n

⌋
+

⌊
x�
n

⌋
.

Since 0 ≤ 
x� ≤ s < n, 0 ≤ 
s�
n < 1. Hence the last term is zero and we get (4).

For (5) just set 
x� = m, {x} = α, and 
y� = n, {y} = β and reduce the
inequalities to 
α + β� − 1 ≤ 0 ≤ 
α + β�. Because 
α + β� is 0 or 1, we are
done.

The following properties connecting the floor and the ceiling of x are obvious:
(6) For any real number x , �x
 − 
x� ≤ 1.

Problem 3.1.1. Find all positive integers n such that 
 n
√

111� divides 111.

Solution. The positive divisors of 111 are 1, 3, 37, 111. So we have the following
cases:

(1) 
 n
√

111� = 1 or 1 ≤ 111 < 2n; hence n ≥ 7.

(2) 
 n
√

111� = 3, or 3n ≤ 111 < 4n , so n = 4.

(3) 
 n
√

111� = 37, or 37n ≤ 111 < 38n , impossible.

(4) 
 n
√

111� = 111, or 111n ≤ 111 < 112n , and so n = 1.

Therefore n = 1, n = 4, or n ≥ 7.

Problem 3.1.2. Solve in R the equation


x
x�� = 1.

Solution. By definition,

x
x�� = 1

implies
1 ≤ x
x� < 2.

We consider the following cases:
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(a) x ∈ (−∞, −1). Then 
x� ≤ −2 and x
x� > 2, a contradiction.
(b) x = −1 ⇒ 
x� = −1. Then x
x� = (−1) · (−1) = 1 and 
x
x�� = 1,

so x = −1 is a solution.
(c) x ∈ (−1, 0). We have 
x� = −1 and x
x� = −x < 1, false.
(d) If x ∈ [0, 1), then 
x� = 0 and x
x� = 0 < 1, so we have no solution in

this case.
(e) For x ∈ [1, 2) we obtain 
x� = 1 and x
x� = x , as needed.
(f) Finally, for x ≥ 2 we have 
x� ≥ 2 and x
x� ≥ 2x ≥ 4, a contradiction

with (1).
Consequently, x ∈ {−1} ∪ [1, 2).

Problem 3.1.3. Prove that for any integer n one can find integers a and b such
that

n = 
a
√

2� + 
b
√

3�.
Solution. For any integer n, one can find an integer b such that

b − 1 <
n − √

2√
3

< b.

Because b − 2√
3

< b − 1 we obtain

√
2 + b

√
3 − 2 < n ≤ √

2 + b
√

3.

Using property (5) we have to consider the following cases:
(1) If n = 
√2� + 
b

√
3�, we are done.

(2) If n = 
√2� + 
b
√

3� + 1, then n = 
2
√

2� + 
b
√

3�.
(3) If n = 
√2� + 
b

√
3� − 1, then n = 
0

√
2� + 
b

√
3�.

Problem 3.1.4. Find all real numbers x > 1, such that n
√
xn� is an integer for

all positive integers n, n ≥ 2.
(2004 Romanian Regional Mathematical Contest)

Solution. Put n
√
xn� = an . Then 
xn� = an

n and an
n ≤ xn < an

n +1. Taking roots,
one obtains an ≤ x < n

√
an

n + 1. This shows that 
x� = an .
We will show that positive integers x , x ≥ 2, satisfy the condition and that they

are the only solutions. Assume, by way of contradiction, that there is a solution x
that is not a nonnegative integer. Put x = a + α, a ∈ Z, a ≥ 1, 0 < α < 1.

It follows that an < (a + α)n < an + 1, and therefore,

1 <
(

1 + α

a

)n
< 1 + 1

an
≤ 2.

On the other hand, by the Bernoulli inequality,(
1 + α

a

)n ≥ 1 + n
α

a
> 2,

for sufficiently large n, a contradiction.
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Problem 3.1.5. Let p be a prime and let α be a positive real number such that
pα2 < 1

4 . Prove that ⌊
n
√

p − α

n

⌋
=

⌊
n
√

p + α

n

⌋
for all integers n ≥

⌊
α/

√
1 − 2α

√
p
⌋

+ 1.

Solution. It suffices to prove that there are no integers in the interval(
n
√

p − α
n , n

√
p + α

n

]
for n > α/

√
1 − 2α

√
p.

Assume by way of contradiction that there is integer k such that

n
√

p − α

n
< k ≤ n

√
p + α

n
.

Hence

n2 p + α2

n2 − 2α
√

p < k2 ≤ n2 p + α2

n2 + 2α
√

p.

Observe that α2

n2 −2α
√

p > −1. If n > α/
√

1 − 2α
√

p, then α2

n2 +2α
√

p < 1,
so

n2 p − 1 < k2 < n2 p + 1.

It follows that k2 = pn2 or
√

p = k/n, which is false, since p is prime.

Problem 3.1.6. Find the number of different terms of the finite sequence
⌊ k2

1998

⌋
,

where k = 1, 2, . . . , 1997.

(1998 Balkan Mathematical Olympiad)

Solution. Note that ⌊
9982

1998

⌋
= 498 < 499 =

⌊
9992

1998

⌋
,

so we can compute the total number of distinct terms by considering k = 1, . . . ,
998 and k = 999, . . . , 1997 independently. Observe that for k = 1, . . . , 997,

(k + 1)2

1998
− k2

1998
= 2k + 1

1998
< 1,

so for k = 1, . . . , 998, each of the numbers⌊
12

1998

⌋
= 0, 1, . . . , 498 =

⌊
9982

1998

⌋

appears at least once in the sequence 
k2/1998�, for a total of 499 distinct terms.
For k = 999, . . . , 1996, we have

(k + 1)2

1998
− k2

1998
= 2k + 1

1998
> 1,
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so the numbers 
k2/1998� (k = 999, . . . , 1997) are all distinct, giving
1997 − 999 + 1 = 999 more terms. Thus the total number of distinct terms is
1498.

Problem 3.1.7. Determine the number of real solutions a of the equation⌊a

2

⌋
+

⌊a

3

⌋
+

⌊a

5

⌋
= a.

(1998 Canadian Mathematical Olympiad)

Solution. There are 30 solutions. Since 
a/2�, 
a/3�, and 
a/5� are integers, so
is a. Now write a = 30p + q for integers p and q, 0 ≤ q < 30. Then⌊a

2

⌋
+

⌊a

3

⌋
+

⌊a

5

⌋
= a ⇔ 31p +

⌊q

2

⌋
+

⌊q

3

⌋
+

⌊q

5

⌋
= 30p + q

⇔ p = q −
⌊q

2

⌋
−

⌊q

3

⌋
−

⌊q

5

⌋
.

Thus, for each value of q, there is exactly one value of p (and one value of a)
satisfying the equation. Since q can equal any of thirty values, there are exactly
30 solutions, as claimed.

Problem 3.1.8. Let λ be the positive root of the equation t2 − 1998t − 1 = 0.
Define the sequence x0, x1, . . . by setting

x0 = 1, xn+1 = 
λxn�, n ≥ 0.

Find the remainder when x1998 is divided by 1998.

(1998 Iberoamerican Mathematical Olympiad)

Solution. We have

1998 < λ = 1998 + √
19982 + 4

2

= 999 +
√

9992 + 1 < 1999,

x1 = 1998, x2 = 19982. Since λ2 − 1998λ − 1 = 0,

λ = 1998 + 1

λ
and xλ = 1998x + x

λ

for all real numbers x . Since xn = 
xn−1λ� and xn−1 is an integer and λ is irra-
tional, we have

xn < xn−1λ < xn + 1 or
xn

λ
< xn−1 <

xn + 1

λ
.
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Since λ > 1998, 
xn/λ� = xn−1 − 1. Therefore,

xn+1 = 
xnλ� =
⌊

1998xn + xn

λ

⌋
= 1998xn + xn−1 − 1;

hence xn+1 ≡ xn−1 −1 (mod 1998). Therefore by induction, x1998 ≡ x0−999 ≡
1000 (mod 1998).

Problem 3.1.9. (Hermite1) Let n be a positive integer. Prove that for any real
number x,


nx� = 
x� +
⌊

x + 1

n

⌋
+ · · · +

⌊
x + n − 1

n

⌋
.

Solution. Let f (x) be the difference between the right-hand side and the left-hand
side of (1). Then

f

(
x + 1

n

)
=

⌊
x + 1

n

⌋
+ · · · +

⌊
x + 1

n
+ n − 1

n

⌋
−

⌊
n

(
x + 1

n

)⌋

=
⌊

x + 1

n

⌋
+ · · · +

⌊
x + n − 1

n

⌋
+ 
x + 1� − 
nx + 1�,

and since 
x + k� = 
x� + k for each integer k, it follows that

f

(
x + 1

n

)
= f (x)

for all real x . Hence f is periodic with period 1/n. Thus it suffices to study f (x)

for 0 ≤ x < 1/n. But f (x) = 0 for all these values; hence f (x) = 0 for all real
x , and the proof is complete.

Additional Problems

Problem 3.1.10. Let n be a positive integer. Find with proof a closed formula for
the sum ⌊

n + 1

2

⌋
+

⌊
n + 2

22

⌋
+ · · · +

⌊
n + 2k

2k+1

⌋
+ · · · .

(10th International Mathematical Olympiad)

Problem 3.1.11. Compute the sum∑
0≤i< j≤n

⌊
x + i

j

⌋
,

where x is a real number.
1Charles Hermite (1822–1901), French mathematician who did brilliant work in many branches of

mathematics.
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Problem 3.1.12. Evaluate the difference between the numbers

2000∑
k=0

⌊
3k + 2000

3k+1

⌋
and

2000∑
k=0

⌊
3k − 2000

3k+1

⌋
.

Problem 3.1.13. (a) Prove that there are infinitely many rational positive numbers
x such that

{x2} + {x} = 0.99.

(b) Prove that there are no rational numbers x > 0 such that

{x2} + {x} = 1.

(2004 Romanian Mathematical Olympiad)

Problem 3.1.14. Show that the fractional part of the number
√

4n2 + n is not
greater than 0.25.

(2003 Romanian Mathematical Olympiad)

Problem 3.1.15. Prove that for every natural number n,

n2∑
k=1

{√k} ≤ n2 − 1

2
.

(1999 Russian Mathematical Olympiad)

Problem 3.1.16. The rational numbers α1, . . . , αn satisfy

n∑
i=1

{kαi } <
n

2

for every positive integer k.
(a) Prove that at least one of α1, . . . , αn is an integer.
(b) Do there exist α1, . . . , αn that satisfy, for every positive integer k,

n∑
i=1

{kαi } ≤ n

2
,

such that no αi is an integer?

(2002 Belarusian Mathematical Olympiad)
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3.2 Floor Function and Integer Points

The following results are helpful in proving many relations involving the floor
function.

Theorem 3.2.1. Let a, b, c, d be nonnegative real numbers and let f : [a, b] →
[c, d] be a bijective increasing function.

Then∑
a≤k≤b


 f (k)� +
∑

c≤k≤d


 f −1(k)� − n(G f ) = 
b�
d� − �a − 1
�c − 1
, (1)

where k ranges over integers and n(G f ) is the number of points with integer
coordinates on the graph of f .

Proof. Note that �x
 is the number of integers in the interval [0, x), 
x� is the
number of integers in the interval (0, x], and hence 
x� + 1 is the number of
integers in the interval [0, x].

For a bounded region M of the plane we denote by n(M) the number of points
with nonnegative integral coordinates in M .

Since f is increasing and bijective, it is continuous. Hence we can consider
the following regions (see Figure 3.1):

M1 = {(x, y) ∈ R2 | a ≤ x ≤ b, 0 ≤ y ≤ f (x)},
M2 = {(x, y) ∈ R2 | c ≤ y ≤ d, 0 ≤ x ≤ f −1(y)},
M3 = {(x, y) ∈ R2 | 0 ≤ x ≤ b, 0 ≤ y ≤ d},
M4 = {(x, y) ∈ R2 | 0 ≤ x < a, 0 ≤ y < d}.

Then using the remarks above, we compute

n(M1) =
∑

a≤k≤b

(
 f (k)� + 1), n(M2) =
∑

c≤k≤d

(
 f −1(k)� + 1)

n(M3) = (
b� + 1)(
d� + 1), n(M4) = �a
 · �c
.
Since M1 ∪ M2 = M3 \ M4 and M1 ∩ M2 = G f is the graph of f , we get the

identity∑
a≤k≤b

(
 f (k)�+1)+
∑

c≤k≤d

(
 f −1(k)�+1)−n(G f ) = (
b�+1)(
d�+1)−�a
·�c
.

The interval [a, b] = [0, b] − [0, a) contains 
b� + 1 − �a
 integers, and
therefore the first sum on the right has this many terms. Similarly, the second sum
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has 
d� + 1 − �c
 terms. Hence we get∑
a≤k≤b


 f (k)� +
∑

c≤k≤d


 f −1(k)� − n(G f )

= (
b� + 1)(
d� + 1) − �a
 · �c
 − (
b� + 1 − �a
) − (
d� + 1 − �c
)
= 
b�
d� − �a − 1
�c − 1
. �

Figure 3.1.

Theorem 3.2.2. Let m, n, s be positive integers, m ≤ n. Then
s∑

k=1

⌊
km

n

⌋
+

∑
1≤k≤ ms

n

⌊
kn

m

⌋
= s

⌊ms

n

⌋
+

⌊
gcd(m, n) · s

n

⌋
. (2)

Proof. We first prove the following lemma.

Lemma. The collection
1 · m

n
,

2 · m

n
, . . . ,

s · m

n

contains exactly
⌊

gcd(m,n)·s
n

⌋
integers.

Proof of the lemma. Let d be the greatest common divisor of m and n. Hence
m = m1d and n = n1d for some integers m1 and n1.

The numbers in the collection are
1 · m1

n1
,

2 · m1

n1
, . . . ,

s · m1

n1

and since m1, n1 are relatively prime, there are 
s/n1� integers among them. Be-
cause n1 = n

d = n
gcd(m,n)

it follows that there are
⌊ gcd(m,n)s

n

⌋
integers in the

collection.
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In order to prove the desired result, let us consider the function f : [1, s] →[m
n , ms

n

]
, f (x) = m

n x in Theorem 3.2.1. Using the lemma above we have

n(G f ) = ⌊ gcd(m,n)·s
n

⌋
, and the conclusion follows.

Remark. The special case s = n leads to an important result:

n∑
k=1

⌊
km

n

⌋
+

m∑
k=1

⌊
kn

m

⌋
= mn + gcd(m, n). (3)

Theorem 3.2.3. Let a, b, c, d be nonnegative real numbers and let f : [a, b] →
[c, d] be a bijective, decreasing function.

Then ∑
a≤k≤b


 f (k)� −
∑

c≤k≤d

[ f −1(k)] = 
b��c − 1
 − 
d��a − 1
,

where again k ranges over integers.

Proof. Use the notation of the proof of Theorem 3.2.1. Since f is decreasing and
bijective, it is continuous and we can define the regions (see Figure 3.2)

N1 = {(x, y) ∈ R2 | a ≤ x ≤ b, c ≤ y ≤ f (x)},
N2 = {(x, y) ∈ R2 | c ≤ y ≤ d, a ≤ x ≤ f −1(y)},
N3 = {(x, y) ∈ R2 | a ≤ x ≤ b, 0 ≤ y < c},
N4 = {(x, y) ∈ R2 | a ≤ x ≤ b, c ≤ y ≤ d}.

Figure 3.2.
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Then N1 = N2; hence n(N1) = n(N2) and∑
a≤k≤b

(
 f (k)� + 1) = n(N1) + n(N3),∑
c≤k≤d

(
 f −1(k)� + 1) = n(N2) + n(N4),

n(N3) = (
b� + 1 − �a
)�c
,
n(N4) = (
d� + 1 − �c
)�a
.

It follows that∑
a≤k≤b


 f (k)� −
∑

c≤k≤d


 f −1(k)�

= (
b� + 1 − �a
)�c − 1
 − (
d� + 1 − �c
)�a − 1

= 
b��c − 1
 − 
d��a − 1
. �

Remark. Combining the result in Theorem 3.2.3 and the relation (3) for the func-
tion f : [0, n] → [0, m], f (x) = −m

n x + m, m ≤ n, yields, after some computa-
tion,

n∑
k=1

⌊
km

n

⌋
= 1

2(mn + m − n + gcd(m, n)). (4)

From the above relation we obtain

gcd(m, n) = 2
n−1∑
k=1

⌊
km

n

⌋
+ m + n + mn,

the proof of which was a 1998 Taiwanese Mathematical Olympiad problem.
From here we get

n−1∑
k=1

{
km

n

}
=

n−1∑
k=1

km

n
−

n−1∑
k=1

⌊
km

n

⌋

= m

n
· (n − 1)n

2
− 1

2 (mn − m − n + gcd(m, n))

= 1
2 (n − gcd(m, n)),

which was a 1995 Japanese Mathematical Olympiad problem.

Problem 3.2.1. Express
∑n

k=1

√

k� in terms of n and a = 
√n�.

(1997 Korean Mathematical Olympiad)
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Solution. We apply Theorem 3.2.1 for the function f : [1, n] → [1,
√

n], f (x) =√
x . Because n(G f ) = 
√n�, we have

n∑
k=1


√k� +

√n�∑
k=1


k2� − 
√n� = n
√n�,

hence
n∑

k=1


√k� = (n + 1)a − a(a + 1)(2a + 1)

6
.

Problem 3.2.2. Compute

Sn =
n(n+1)

2∑
k=1

[
−1 + √

1 + 8k

2

]
.

Solution. Consider the function f : [1, n] → ⌊
1,

n(n+1)
2

⌋
,

f (x) = x(x + 1)

2
.

The function f is increasing and bijective. Note that n(G f ) = n and f −1(x) =
−1+√

1+8x
2 . Applying the formula in Theorem 3.2.1, we obtain

n∑
k=1

⌊
k(k + 1)

2

⌋
+

n(n+1)
2∑

k=1

⌊
−1 + √

1 + 8k

2

⌋
− n = n2(n + 1)

2
;

hence
n(n+1)

2∑
k=1

[
−1 + √

1 + 8k

2

]
= n2(n + 1)

2
+ n − 1

2

n∑
k=1

k(k + 1)

= n2(n + 1)

2
+ n − n(n + 1)

4
− n(n + 1)(2n + 1)

12

= n(n2 + 2)

3
.

Additional Problems

Problem 3.2.3. Prove that

n∑
k=1

⌊
n2

k2

⌋
=

n2∑
k=1

⌊
n√
k

⌋

for all integers n ≥ 1.
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Problem 3.2.4. Let θ be a positive irrational number. Then, for any positive inte-
ger m,

m∑
k=1


kθ� +

mθ�∑
k=1

⌊
k

θ

⌋
= m
mθ�.

Problem 3.2.5. Let p and q be relatively prime positive integers and let m be a
real number such that 1 ≤ m < p.

(1) If s =
⌊

mq
p

⌋
, then


m�∑
k=1

⌊
kq

p

⌋
+

s∑
k=1

⌊
kp

q

⌋
= 
m�s.

(2) (Landau2) If p and q are odd, then

p−1
2∑

k=1

⌊
kq

p

⌋
+

q−1
2∑

k=1

⌊
kp

q

⌋
= (p − 1)(q − 1)

4
.

3.3 A Useful Result

The following theorem is also helpful in proving some relations involving the
floor function.

Theorem 3.3.1. Let p be an odd prime and let q be an integer that is not divisible
by p. If f : Z∗+ → R is a function such that:

(i) f (k)
p is not an integer, k = 1, 2, . . . , p − 1;

(ii) f (k) + f (p − k) is an integer divisible by p, k = 1, 2, . . . , p − 1;

then
p−1∑
k=1

⌊
f (k)

q

p

⌋
= q

p

p−1∑
k=1

f (k) − p − 1

2
. (1)

Proof. From (ii) it follows that

q f (k)

p
+ q f (p − k)

p
∈ Z, (2)

2Edmond Georg Hermann Landau (1877–1838), German mathematician who gave the first sys-
tematic presentation of analytic number theory and wrote an important work on the theory of analytic
functions of a single variable.
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and from (i) we obtain that q f (k)
p �∈ Z and q f (p−k)

p �∈ Z, k = 1, . . . , p − 1; hence

0 <
{q f (k)

p

}
+

{q f (p − k)

p

}
< 2.

But from (2),
{q f (k)

p

} + { q f (p−k)
p

} ∈ Z; thus

{q f (k)

p

}
+

{q f (p − k)

p

}
= 1, k = 1, . . . , p − 1.

Summing up and dividing by 2 yields

p−1∑
k=1

{ q

p
f (k)

}
= p − 1

2
.

It follows that
p−1∑
k=1

q

p
f (k) −

p−1∑
k=1

⌊
q

p
f (k)

⌋
= p − 1

2
,

and the conclusion follows.

Problem 3.3.1. Let p and q be two relatively prime integers. The following iden-
tity holds:

p−1∑
k=1

⌊
k

q

p

⌋
= (p − 1)(q − 1)

2
(Gauss).

Solution. The function f (x) = x satisfies both (i) and (ii) in Theorem 3.3.1;
hence

p−1∑
k=1

⌊
k

q

p

⌋
= q

p

(p − 1)p

2
− p − 1

2
,

and the desired relation follows.

Problem 3.3.2. Let p be an odd prime. Prove that

p−1∑
k=1

⌊
k3

p

⌋
= (p − 2)(p − 1)(p + 1)

4
.

(2002 German Mathematical Olympiad)

Solution. The function f (x) = x3 also satisfies conditions (i) and (ii); hence

p−1∑
k=1

⌊
k3 q

p

⌋
= q

p
· (p − 1)2 p2

4
− p − 1

2
= (p − 1)(p2q − pq − 2)

4
.

For q = 1 the identity in our problem follows.
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Additional Problems

Problem 3.3.3. Let p be an odd prime and let q be an integer that is not divisible
by p. Shows that

p−1∑
k=1

⌊
(−1)kk2 q

p

⌋
= (p − 1)(q − 1)

2
.

(2005 “Alexandru Myller” Romanian Regional Contest)

Problem 3.3.4. Let p be an odd prime. Show that

p−1∑
k=1

k p − k

p
≡ p + 1

2
(mod p).

(2006 “Alexandru Myller” Romanian Regional Contest)
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Digits of Numbers

4.1 The Last Digits of a Number

Let ana1 · · · a0 be the decimal representation of the positive integer N . The last
digit of N is l(N ) = a0, and for k ≥ 2, the last k digits of N are lk(N ) =
ak−1 · · · a0. These simple concepts appear in numerous situations.

It is useful to point out the last digit of kn , where k = 2, 3, . . . , 9 and n > 0:

l(2n) =

⎧⎪⎪⎨
⎪⎪⎩

6, n ≡ 0 (mod 4),

2, n ≡ 1 (mod 4),

4, n ≡ 2 (mod 4),

8, n ≡ 3 (mod 4),

l(3n) =

⎧⎪⎪⎨
⎪⎪⎩

1, n ≡ 0 (mod 4),

3, n ≡ 1 (mod 4),

9, n ≡ 2 (mod 4),

7, n ≡ 3 (mod 4),

l(4n) =
{

6, n ≡ 0 (mod 2),

4, n ≡ 1 (mod 2),
l(5n) = 5, l(6n) = 6,

l(7n) =

⎧⎪⎪⎨
⎪⎪⎩

1, n ≡ 0 (mod 4),

7, n ≡ 1 (mod 4),

9, n ≡ 2 (mod 4),

3, n ≡ 3 (mod 4),

l(8n) =

⎧⎪⎪⎨
⎪⎪⎩

6, n ≡ 0 (mod 4),

8, n ≡ 1 (mod 4),

4, n ≡ 2 (mod 4),

2, n ≡ 3 (mod 4),

l(9n) =
{

1, n ≡ 0 (mod 2),

9, n ≡ 1 (mod 2).

It is clear that if l(N ) = 0, then ln(N n) = 0 . . . 0︸ ︷︷ ︸
n times

, and if l(N ) = 1, then

l(N n) = 1 for all n ≥ 2.

Problem 4.1.1. What is the final digit of
(
. . .

(
((77)7)7

)
. . .7

)
?

There are 1001 7’s in the formula.

Solution. The final digit of a (decimal) number is its remainder modulo 10. Now

© Birkhäuser Boston, a part of Springer Science + Business Media, LLC 2009
77T. Andreescu and D. Andrica, Number Theory, DOI: 10.1007b11856_4, 
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72 = 49 ≡ −1 (mod 10). So 77 = (72)3 · 7 ≡ −7 (mod 10), and

(77)7 ≡ (−7)7 ≡ −(77) ≡ −(−7) ≡ 7 (mod 10).

Proceeding in this way, we see that
(
(77)7

)7 ≡ −7 (mod 10), and in general,(
. . .

(
((77)7)7) . . .7

) ≡ ±7 (mod 10),

where the sign is + if altogether there is an odd number of 7’s in the formula, and
− if there is an even number of 7’s. Now, 1001 is odd. So the final digit of the
given formula is 7.

Problem 4.1.2. Prove that every positive integer has at least as many (positive)
divisors whose last decimal digit is 1 or 9 as divisors whose last digit is 3 or 7.

(1997 St. Petersburg City Mathematical Olympiad)

Solution. Let d1(m), d3(m), d7(m), d9(m) be the numbers of divisors of m ending
in 1, 3, 7, 9, respectively. We prove the claim by induction on m; it holds obviously
for m a prime power, and if m is composite, write m = pq with p, q coprime,
and note that

d1(m) − d3(m) − d7(m) + d9(m)

= (d1(p) − d3(p) − d7(p) + d9(p))(d1(q) − d3(q) − d7(q) + d9(q)).

For instance,

d3(m) = d1(p)d3(q) + d3(p)d1(q) + d7(p)d9(q) + d9(p)d7(q).

Problem 4.1.3. Find the least positive integer n with the following properties:
(a) the last digit of its decimal representation is 6;
(b) by deleting the last digit 6 and replacing it in front of the remaining digits

one obtains a number four times greater than the given number.

(4th International Mathematical Olympiad)

Solution. Let n = 10kak + 10k−1ak−1 + · · · + 10a1 + 6 be the required number.
Writing n in the form n = 10N + 6, where 10k−1 < N < 10k , the condition (b)
becomes:

4(10N + 6) = 6 · 10k + N .

Thus, we obtain
39N = 6 · 10k − 24,

and equivalently
13N = 2(10k − 4).
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Thus, we obtain that 10k ≡ 4 (mod 13).
It is more convenient to write

(−3)k ≡ 4 (mod 13).

From the conditions of the problem, the least k with this property is required.
We have

(−3)2 ≡ 9 (mod 13), (−3)3 ≡ −27 (mod 13) ≡ −1 (mod 13),

(−3)5 ≡ (−3)2(−3)3 ≡ −9 ≡ 4 (mod 13).

Then, k = 5 is the least positive solution of the equation. Thus,

13N = 2 · 99996 ⇒ N = 15384 ⇒ n = 153846.

This number satisfies (b).

Additional Problems

Problem 4.1.4. In how may zeros can the number 1n + 2n + 3n + 4n end for
n ∈ N?

(1998 St. Petersburg City Mathematical Olympiad)

Problem 4.1.5. Find the last 5 digits of the number 51981.

Problem 4.1.6. Consider all pairs (a, b) of natural numbers such that the product
aabb, written in base 10, ends with exactly 98 zeros. Find the pair (a, b) for which
the product ab is smallest.

(1998 Austrian–Polish Mathematics Competition)

4.2 The Sum of the Digits of a Number

For a positive integer N = anan−1 · · · a0 in decimal representation we denote by
S(N ) the sum of its digits a0 + · · · + an−1 + an . Problems involving the function
S defined above appear frequently in various contexts. We present a few basic
properties.

(1) S(N ) = N − 9
∑

k≥1

⌊
N

10k

⌋
;

(2) 9 | N − S(N );
(3) (subadditivity): S(N1 + N2) ≤ S(N1) + S(N2);
(4) S(N1 N2) ≤ min(N1S(N2), N2S(N1));
(5) (submultiplicity): S(N1 N2) ≤ S(N1)S(N2).
Property (2) is in fact Property 1.7.2, Criterion 1(b).
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Let us prove the last three properties. Using (1) and the inequality 
x + y� ≥

x� + 
y�, we have

S(N1 + N2) = N1 + N2 − 9
∑
k≥1

⌊
N1 + N2

10k

⌋

≤ N1 + N2 − 9
∑
k≥1

(⌊
N1

10k

⌋
+

⌊
N2

10k

⌋)
= S(N1) + S(N2).

Because of the symmetry, in order to prove (4) it suffices to prove that
S(N1 N2) ≤ N1S(N2).

The last inequality follows by applying the subadditivity property repeatedly.
Indeed,

S(2N2) = S(N2 + N2) ≤ S(N2) + S(N2) = 2S(N2),

and after N1 steps we obtain

S(N1 N2) = S(N2 + N2 + · · · + N2︸ ︷︷ ︸
N1 times

)

≤ S(N2) + S(N2) + · · · + S(N2)︸ ︷︷ ︸
N1 times

= N1S(N2).

For (5) observe that if N2 = ∑k
o=0 bi · 10i , then

S(N1 N2) = S
(

N1

h∑
i=0

bi 10i
)

= S
( h∑

i=0

N1bi 10i
)

≤
h∑

i=0

S(N1bi 10i )

=
h∑

i=0

S(N1bi ) ≤
h∑

i=0

bi S(N1) = S(N1)S(N2).

Examples. (1) In the decimal expansion of N, the digits occur in increasing order.
What is S(9N )?

(1999 Russian Mathematical Olympiad)

Solution. Write N = akak−1 · · · a0. By performing the subtraction

ak ak−1 . . . a1 a0 0
− ak . . . a2 a1 a0

we find that the digits of 9N = 10N − N are

ak, ak−1 − ak, . . . , a1 − a2, a0 − a1 − 1, 10 − a0.

These digits sum to 10 − 1 = 9.
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(2) Find a positive integer N such that S(N ) = 1996S(3N ).

(1996 Irish Mathematical Olympiad)

Solution. Consider N = 1 33 . . . 3︸ ︷︷ ︸
5986 times

5. Then 3N = 4 00 . . . 0︸ ︷︷ ︸
5986 times

5 and

S(N ) = 3 · 5986 + 1 + 5 = 17964 = 1996 · 9 = 1996S(N ).

Problem 4.2.1. Determine all possible values of the sum of the digits of a perfect
square.

(1995 Iberoamerican Olympiad)

Solution. The sum of the digits of a number is congruent to the number modulo
9, and so for a perfect square this must be congruent to 0, 1, 4 or 7. We show that
all such numbers occur. The cases n = 1 and n = 4 are trivial, so assume n > 4.

If n = 9m, then n is the sum of the digits of (10m − 1)2 = 10m(10m − 2) + 1,
which looks like 9 . . . 980 . . . 01. If n = 9m+1, consider (10m−2)2 = 10m(10m−
4) + 4, which looks like 9 . . . 960 . . . 04. If n = 9m + 4, consider (10m − 3)2 =
10m(10m −6)+9, which looks like 9 . . . 94 . . . 09. Finally, if n = 9m−2, consider
(10m − 5)2 = 10m(10m − 10) + 25, which looks like 9 . . . 900 . . . 025.

Problem 4.2.2. Find the number of positive 6-digit integers such that the sum of
their digits is 8, and four of its digits are 1, 0, 0, 4.

(2004 Romanian Mathematical Olympiad)

Solution. The pair of missing digits must be 1, 2 or 0, 3.
In the first case, the first digit can be 1, 2, or 4. When 1 is the first digit, the

remaining digits, 1, 2, 0, 0, 4, can be arranged in 60 ways. When 4 or 2 is the first
digit, the remaining digits can be arranged in 30 ways.

In the same way, when completing with the pair (0, 3), the first digit can be 1,
3, or 4. In each case, the remaining digits (three zeros and two distinct nonzero
digits) can be arranged in 20 ways.

In conclusion, we have 60 + 2 · 30 + 3 · 20 = 180 numbers that satisfy the
given property.

Problem 4.2.3. Find the sum of the digits of the numbers from 1 to 1,000,000.
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Solution. Write the numbers from 0 to 999,999 in a rectangular array as follows:

0 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 0 2

. . . . . . . . . . . . . . . . . .

0 0 0 0 0 9
0 0 0 0 1 0
0 0 0 0 1 1

. . . . . . . . . . . . . . . . . .

0 0 0 0 1 9
0 0 0 0 2 0

. . . . . . . . . . . . . . . . . .

9 9 9 9 9 9

There are 1,000,000 six-digit numbers; hence 6,000,000 digits are used. In
each column every digit is equally represented, since in the units column each
digit appears from 0 to 9, in the tens column each digit appears successively in
blocks of 10, and so on. Thus each digit appears 600,000 times, so the required
sum is

600,000 · 45 + 1 = 27,000,001

(do not forget to count 1 from 1,000,000).

Problem 4.2.4. Find every positive integer n that is equal to the sum of its digits
added to the product of its digits.

Solution. Let a1a2 · · · an , a1 �= 0, and a2, . . . , an ∈ {0, 1, . . . , 9} be a number
such that

a1a2 · · · an = a1 + a2 + · · · + an + a1a2 · · · an .

The relation is equivalent to

a1(10n−1 − 1) + a2(10n−2 − 1) + · · · + 9an−1 = a1a2 · · · an

and
a2(10n−2 − 1) + · · · + 9an−1 = a1(a2a3 · · · an − 99 . . . 9︸ ︷︷ ︸

n−1 digits

).

The left-hand side of the equality is nonnegative, while the right-hand side is
nonpositive; hence both are equal to zero. The left-hand side is zero if n = 0 or

a2 = a3 = · · · = an−1 = 0.

For a2 = a3 = · · · = an−1 = 0, the left-hand side does not equal zero; hence
n = 2. Then a1(a2 − 9) = 0, so a2 = 0 and a1 ∈ {1, 2, . . . , 9}. The numbers are
19, 29, 39, 49, 59, 69, 79, 89, 99.
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Problem 4.2.5. What is the smallest multiple of 99 whose digits sum to 99 and
that begins and ends with 97?

(1997 Rio Platense Mathematical Olympiad)

Solution. We refer to the digits of the number besides the two 97’s as interior
digits; the sum of these digits is 99 − 2(9 + 7) = 67. Since each digit is at most
9, there are at least eight such digits.

Note that the sum of digits being 99 forces the number to be divisible by 9;
thus it suffices to ensure that the number be divisible by 11, which is to say, the
alternating sum of digits must be divisible by 11.

Suppose the number has exactly eight interior digits. If a is the sum of the
odd interior places and b the sum of the even places, we have a + b = 67 and
a − b ≡ −4 (mod 11). Since a − b must also be odd, we have a − b ≥ 7 or
a − b ≤ −15, and so either a ≥ 37 or b ≥ 41, contradicting the fact that a and b
are each the sum of four digits.

Now suppose the number has nine interior digits. In this case, a − b ≡ 0
(mod 11), so a − b ≥ 11 or a − b ≤ −11. In the latter case, b ≥ 39, again a
contradiction, but in the former case, we have a ≥ 39, which is possible because
a is now the sum of five digits. To minimize the original number, we take the odd
digits to be 3, 9, 9, 9, 9 and the even digits to be 1, 9, 9, 9, making the minimal
number 9731999999997.

Problem 4.2.6. Find all positive integers n such that there are nonnegative inte-
gers a and b with

S(a) = S(b) = S(a + b) = n.

(1999 Romanian Selection Test for JBMO)

Solution. We prove that the required numbers are all multiples of 9.
(a) Let n be an integer such that there are positive integers a and b such that

S(a) = S(b) = S(a + b).

We prove that 9 | n.
We have the property

9 | k − S(k). (1)

Using the relation (1) we obtain

9 | a − S(a), (2)

9 | b − S(b), (3)

and
9 | (a + b) − S(a + b). (4)
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From (2) and (3) it follows that

9 | a + b − (S(a) + S(b)); (5)

hence
9 | S(a) + S(b) − S(a + b) = n + n − n = n, (6)

as desired.
(b) Conversely, we prove that if n = 9p is a multiple of 9, then integers a, b >

0 with S(a) = S(b) = S(a + b) can be found. Indeed, set a = 531531 . . . 531︸ ︷︷ ︸
3p digits

and b = 171171 . . . 171︸ ︷︷ ︸
3p digits

. Then a + b = 702702 . . . 702︸ ︷︷ ︸
3p digits

and

S(a) = S(b) = S(a + b) = 9p = n,

as claimed.

Additional Problems

Problem 4.2.7. Show that there exist infinitely many natural numbers n such that
S(3n) ≥ S(3n+1).

(1997 Russian Mathematical Olympiad)

Problem 4.2.8. Do there exist three natural numbers a, b, c such that S(a + b) <

5, S(b + c) < 5, S(c + a) < 5, but S(a + b + c) > 50?

(1998 Russian Mathematical Olympiad)

Problem 4.2.9. Prove that there exist distinct positive integers {ni }1≤i≤50 such
that

n1 + S(n1) = n2 + S(n2) = · · · = n50 + S(n50).

(1999 Polish Mathematical Olympiad)

Problem 4.2.10. The sum of the decimal digits of the natural number n is 100,
and that of 44n is 800. What is the sum of the digits of 3n?

(1999 Russian Mathematical Olympiad)

Problem 4.2.11. Consider all numbers of the form 3n2 + n + 1, where n is a
positive integer.

(a) How small can the sum of the digits (in base 10) of such a number be?
(b) Can such a number have the sum of its digits (in base 10) equal to 1999?

(1999 United Kingdom Mathematical Olympiad)
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Problem 4.2.12. Consider the set A of all positive integers n with the following
properties: the decimal expansion contains no 0, and the sum of the (decimal)
digits of n divides n.

(a) Prove that there exist infinitely many elements in A with the following
property: the digits that appear in the decimal expansion of A appear the same
number of times.

(b) Show that for each positive integer k, there exists an element in A with
exactly k digits.

(2001 Austrian–Polish Mathematics Competition)

4.3 Other Problems Involving Digits

Problem 4.3.1. Prove that there are at least 666 positive composite numbers with
2006 digits, having a digit equal to 7 and all the rest equal to 1.

Solution. The given numbers are

nk = 111 . . . 17 11 . . . 1︸ ︷︷ ︸
k digits

= 111 . . . 1︸ ︷︷ ︸
2006 digits

+6 000 . . . 0︸ ︷︷ ︸
k digits

= 1

9
(102006 − 1) + 6 · 10k, k = 0, 1, . . . , 2005.

It is obvious that none of these numbers is a multiple of 2, 3, 5, or 11, since
11 divides 111 . . . 1︸ ︷︷ ︸

2006 digits

, but not 6 · 10k .

So we are led to the idea of counting multiples of 7 and 13. We have 9nk =
100 ·1000668 −1+54 ·10k ≡ 2 · (−1)668 −1+ (−2) ·10k ≡ 1−2 ·10k (mod 7);
hence 7 | nk if 10k ≡ 3k ≡ 4 (mod 7). This happens for k = 4, 10, 16, . . . , 2002,
so there are 334 multiples of 7. Furthermore, 9nk ≡ 7 · (−1)668 − 1 + 2 · 10k =
6 + 2 · 10k (mod 13); hence 13 | nk if 10k ≡ 10 (mod 13). This happens for
k = 1, 7, 13, 19, . . . , 2005, so there are 335 multiples of 13. In all we have found
669 nonprime numbers.

Problem 4.3.2. Let a1, a2, . . . , a106 be integers between 1 and 9, inclusive. Prove
that at most 100 of the numbers a1a2 · · · ak (1 ≤ k ≤ 106) are perfect squares.

(2001 Russian Mathematical Olympiad)

Solution. For each positive integer x , let d(x) be the number of decimal digits
in x .

Lemma. Suppose that y > x are perfect squares such that y = 102bx + c for
some positive integers b, c with c < 102b. Then

d(y) − 1 ≥ 2(d(x) − 1).
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Proof. Because y > 102bx , we have
√

y > 10b√x . Because
√

y and 10b√x are
both integers,

√
y ≥ 10b√x +1, so that 102bx + c = y ≥ 102bx +2 ·10b√x +1.

Thus, c ≥ 2 · 10b√x + 1.
Also, 102b > c by assumption, implying that

102b > c ≥ 2 · 10b√x + 1.

Hence, 10b > 2
√

x . It follows that

y > 102bx > 4x2.

Therefore,
d(y) ≥ 2d(x) − 1,

as desired.
We claim that there are at most 20 perfect squares a1a2 · · · ak with an even

(resp. odd) number of digits. Let s1 < s2 < · · · < sn be these perfect squares.
Clearly d(sn) ≤ 106. We now prove that if n > 1, then d(sn) ≥ 1 + 2n−1.

Because s1, s2, . . . , sn all have an even (resp. odd) number of digits, for each
i = 1, 2, . . . , n − 1, we can write si+1 = 102bsi + c for some integers b > 0 and
0 ≤ c < 102b. Because no ai equals 0, we further know that 0 < c. Hence, by our
lemma,

d(si+1) − 1 ≥ 2(d(si ) − 1)

for each i = 1, 2, . . . , n − 1. Because d(s2) − 1 ≥ 2, we thus have d(sn) − 1 ≥
2n−1, as desired.

Thus, if n > 1,
1 + 2n−1 ≤ d(sn) ≤ 106,

and

n ≤
⌊ log(106 − 1)

log 2

⌋
+ 1 = 20.

Hence, there are at most 20 perfect squares a1a2 · · · ak with an even (resp.
odd) number of digits.

Therefore, there are at most 40 < 100 perfect squares a1a2 · · · ak .

Additional Problems

Problem 4.3.3. A wobbly number is a positive integer whose digits in base 10 are
alternately nonzero and zero, the units digit being nonzero. Determine all positive
integers that do not divide any wobbly number.

(35th International Mathematical Olympiad Shortlist)
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Problem 4.3.4. A positive integer is called monotonic if its digits in base 10, read
from left right, are in nondecreasing order. Prove that for each n ∈ N, there exists
an n-digit monotonic number that is a perfect square.

(2000 Belarusian Mathematical Olympiad)





5

Basic Principles in Number Theory

5.1 Two Simple Principles

5.1.1 Extremal Arguments

In many problems it is useful to consider the least or the greatest element with
a certain property. Very often such a choice leads to the construction of other
elements or to a contradiction.

Problem 5.1.1. Show that there exist infinitely many positive integers n such that
the largest prime divisor of n4 + 1 is greater than 2n.

(2001 St. Petersburg City Mathematical Olympiad)

Solution. First we prove the following result.

Lemma. There are infinitely many numbers that are prime divisors of m4 + 1 for
some m.

Proof. Suppose that there are only finite number of such primes. Let p1, p2, . . . ,
pk be all of them. Let p be any prime divisor of (p1 p2 · · · pk)

4 + 1. This num-
ber cannot equal any pi , a contradiction to our assumption, which proves the
lemma.

Let P be the set of all numbers that are prime divisors of m4 + 1 for some
m. Pick any p from P and m from Z, such that p divides m4 + 1. Let r be the
residue of m modulo p. We have r < p, p | r4 + 1, and p | (p − r)4 + 1. Let
n be the minimum of r and p − r . It follows that n < p/2 and p > 2n and of
course p | n4 + 1. Thus we have found for each p ∈ P a good number n p . Since
n p ≥ 4

√
p − 1, and P is infinite, the set {n p : p ∈ P} is also infinite.

Remark. Essentially the same proof shows that for any polynomial P(x) with
integer coefficients, there are infinitely many primes that divide P(n) for some
integer n.

© Birkhäuser Boston, a part of Springer Science + Business Media, LLC 2009
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Problem 5.1.2. Let a1, a2, . . . be a strictly increasing sequence of positive inte-
gers such that gcd(am, an) = agcd(m,n) for all positive integers m and n. There
exists a least positive integer k for which there exist positive integers r < k and
s > k such that a2

k = ar as . Prove that r divides k and that k divides s.

(2001 Indian Mathematical Olympiad)

Solution. We begin by proving a lemma.

Lemma. If positive integers a, b, c satisfy b2 = ac, then

gcd(a, b)2 = gcd(a, c) · a.

Proof. Consider any prime p. Let e be the highest exponent such that pe divides b,
and let e1 and e2 be the corresponding highest exponents for a and c, respectively.
Because b2 = ac, we have 2e = e1 + e2. If e1 ≥ e, then the highest powers of p
that divide gcd(a, b), gcd(a, c), and a are e, e2, and e1, respectively. Otherwise,
these highest powers are all e1. Therefore, in both cases, the exponent of p on the
left side of the desired equation is the same as the exponent of p on the right side.
The desired result follows.

Applying the lemma to the given equation a2
k = ar as , we have

gcd(ar , ak)
2 = gcd(ar , as)ar .

It now follows from the given equation that

a2
gcd(r,k) = agcd(r,s)ar .

Assume, for sake of contradiction, that gcd(r, k) < r , so that
agcd(r,k) < ar . Then from the above equation, it follows that agcd(r,k) > agcd(r,s),
so that gcd(r, k) > gcd(r, s). But then we have that (k0, r0, s0) = (

gcd(r, k),
gcd(r, s), r

)
satisfies a2

k0
= ar0 as0 with r0 < k0 < s0 and k0 < r < k, contradict-

ing the minimality of k.
Thus, we must have gcd(r, k) = r , implying that r | k. Then

gcd(ar , ak) = agcd(r,k) = ar ,

so ar | ak . Thus as = ak
ak
ar

is an integer multiple of ak , and

agcd(k,s) = gcd(ak, as) = ak .

Because a1, a2, . . . is increasing, it follows that gcd(k, s) = k. Therefore,
k | s, completing the proof.
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Problem 5.1.3. Determine all pairs (n, p) of positive integers such that p is a
prime, n ≤ 2p and (p − 1)n + 1 is divisible by n p−1.

(40th International Mathematical Olympiad)

Solution. All pairs (1, p), where p is a prime number, satisfy the conditions.
When p = 2, it follows that n = 2, and thus the pair (2, 2) is also a solution of
the problem. Thus, we may suppose p ≥ 3 and let n be such that n ≤ 2p and
n p−1 divides (p − 1)n + 1. Since (p − 1)n + 1 is odd number, it follows that
n < 2p. We shall prove that n = p.

Let q be a minimal prime divisor of n. Since q | n and n p−1 | (p − 1)n + 1,
it follows that (p − 1)n ≡ −1 (mod q). Since n and q − 1 are relatively prime
numbers, we may write an + b(q − 1) = 1 for some integers a and b.

We have

p−1 ≡ (p−1)an+b(q−1) ≡ (p−1)na(p−1)(q−1)b ≡ (−1)a1b ≡ −1 (mod q),

because a must be odd. This shows that q | p, and therefore q = p. Since n < 2p,
by the consideration of q, we have n = p.

Let consider in these conditions the original divisibility

p p−1 |(p − 1)p +1 = p p −
(

p

1

)
p p−1 +

(
p

2

)
p p−2− · · · +

(
p

p − 1

)
p − 1 + 1

= p2
[

p p−2 −
(

p

1

)
p p−3 +

(
p

2

)
p p−4 − · · · + 1

]
.

Therefore p − 1 = 2, p = 3, and we then obtain the pair (3, 3).
The conclusion is that the required solutions are (1, p), (2, 2), and (3, 3),

where p is an arbitrary prime.

Remark. With a little bit more work, we can even erase the condition n ≤ 2p.

5.1.2 The Pigeonhole Principle

Let S be a nonempty set and let S1, S2, . . . , Sn be a partition of S (that is, S1 ∪
S2 ∪ · · · ∪ Sn = S and Si ∩ S j = ∅ for i �= j). If a1, a2, . . . , an+1 are distinct
elements in S, then there is a k ∈ {1, 2, . . . , n} such that at least two of these
elements belong to Sk .

This simple observation is called the pigeonhole principle (or Dirichlet’s prin-
ciple).

Examples. (1) Let m1, m2, . . . , mn+1 be distinct integers. Then mi ≡ m j

(mod n) for some i, j ∈ {1, 2, . . . , n + 1}, i �= j .
Indeed, let St = {x ∈ Z : x ≡ t (mod n)}, t = 1, 2, . . . , n. There is a

k ∈ {1, 2, . . . , n} such that Sk contains at least two of the given integers, say mi
and m j . Then mi ≡ m j (mod n).
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(2) (Erdős) Given n + 1 distinct positive integers m1, m2, . . . , mn+1 not ex-
ceeding 2n, prove that there are two of them, mi and m j , such that mi | m j .

Indeed, for each s ∈ {1, 2, . . . , n} write ms = 2es qs , where es is a non-
negative integer and qs is an odd positive integer. Because q1, q2, . . . , qn+1 ∈
{1, 2, . . . , 2n} and the set {1, 2, . . . , 2n} has exactly n odd elements, it follows
that qi = q j for some i and j . Without loss of generality, assume that ei < e j .
Then mi | m j , as desired.

Problem 5.1.4. Prove that among any integers a1, a2, . . . , an, there are some
whose sum is a multiple of n.

Solution. Let s1 = a1, s2 = a1 + a2, . . . , sn = a1 + a2 + · · · + an . If at least
one of the integers s1, s2, . . . , sn is divisible by n, then we are done. If not, there
are n − 1 possible remainders when s1, s2, . . . , sn are divided by n. It follows that
si ≡ s j (mod n) for some i and j , i < j . Then s j − si = ai+1 + · · · + a j is a
multiple of n (see also Example (1) above).

Problem 5.1.5. In a 10 × 10 table are written natural numbers not exceeding 10.
Every pair of numbers that appear in adjacent or diagonally adjacent spaces of
the table are relatively prime. Prove that some number appears in the table at
least 17 times.

(2001 St. Petersburg City Mathematical Olympiad)

Solution. In any 2 × 2 square, only one of the numbers can be divisible by 2 and
only one can be divisible by 3, so if we tile the table with these 2 × 2 squares,
at most 50 of the numbers in the table are divisible by 2 or 3. The remaining 50
numbers must be divided among the integers not divisible by 2 or 3, and thus
the only ones available are 1, 5, and 7. By the pigeonhole principle, one of these
numbers appears at least 17 times.

Problem 5.1.6. Prove that from any set of 117 distinct three-digit numbers, it is
possible to select 4 pairwise disjoint subsets such that the sums of the numbers in
each subset are equal.

(2001 Russian Mathematical Olympiad)

Solution. We examine subsets of exactly two numbers. Clearly, if two distinct
subsets have the same sum, they must be disjoint. The number of two-element
subsets is

(117
2

) = 6786. Furthermore, the lowest attainable sum is 100 + 101 =
201, while the highest sum is 998+999 = 1997, for a maximum of 1797 different
sums. By the pigeonhole principle and the fact that 1797 · 3 + 1 = 5392 < 6786,
we see that there are four two-element subsets with the required property.

Additional Problems

Problem 5.1.7. Let n1 < n2 < · · · < n2000 < 10100 be positive integers. Prove
that one can find two nonempty disjoint subsets A and B of {n1, n2, . . . , n2000}



5.2. Mathematical Induction 93

such that

|A| = |B|,
∑
x∈A

x =
∑
x∈B

x, and
∑
x∈A

x2 =
∑
x∈B

x2.

(2001 Polish Mathematical Olympiad)

Problem 5.1.8. Find the greatest positive integer n for which there exist n nonneg-
ative integers x1, x2, . . . , xn , not all zero, such that for any sequence ε1, ε2, . . . , εn
of elements {−1, 0, 1}, not all zero, n3 does not divide ε1x1 + ε2x2 + · · · + εn xn .

(1996 Romanian Mathematical Olympiad)

Problem 5.1.9. Given a positive integer n, prove that there exists ε > 0 such that
for any n positive real numbers a1, a2, . . . , an , there exists a real number t > 0
such that

ε < {ta1}, {ta2}, . . . , {tan} < 1
2 .

(1998 St. Petersburg City Mathematical Olympiad)

Problem 5.1.10. We have 2n prime numbers written on the blackboard in a line.
We know that there are fewer than n different prime numbers on the blackboard.
Prove that there is a subsequence of numbers in that line whose product is a perfect
square.

Problem 5.1.11. Let x1 = x2 = x3 = 1 and xn+3 = xn + xn+1xn+2 for all
positive integers n. Prove that for any positive integer m there is an integer k > 0
such that m divides xk .

Problem 5.1.12. Prove that among seven arbitrary perfect squares there are two
whose difference is divisible by 20.

(Mathematical Reflections)

5.2 Mathematical Induction

Mathematical induction is a powerful and elegant method for proving statements
depending on nonnegative integers.

Let (P(n))n≥0 be a sequence of propositions. The method of mathematical
induction assists us in proving that P(n) is true for all n ≥ n0, where n0 is a given
nonnegative integer.

Mathematical Induction (weak form): Suppose that:

• P(n0) is true;

• For all k ≥ n0, P(k) is true implies P(k + 1) is true.

Then P(n) is true for all n ≥ n0.
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Mathematical Induction (with step s): Let s be a fixed positive integer. Suppose
that:

• P(n0), P(n0 + 1), . . . , P(n0 + s − 1) are true;

• For all k ≥ n0, P(k) is true implies P(k + s) is true.

Then P(n) is true for all n ≥ n0.

Mathematical Induction (strong form): Suppose that

• P(n0) is true;

• For all k ≥ n0, P(m) is true for all m with n0 ≤ m ≤ k implies P(k + 1)

is true.

Then P(n) is true for all n ≥ n0.
This method of proof is widely used in various areas of mathematics, includ-

ing number theory.

Problem 5.2.1. Prove that for any integer n ≥ 2, there exist positive integers
a1, a2, . . . , an such that a j − ai divides ai + a j for 1 ≤ i < j ≤ n.

(Kvant)

Solution. We will prove the statement by induction on the number of terms n. For
n = 2, we can choose a1 = 1 and a2 = 2.

We assume that we can find integers a1, a2, . . . , an such that a j − ai divides
ai +a j for 1 ≤ i < j ≤ n, where n is a positive integer greater than 1. Let m be the
least common multiple of numbers a1, a2, . . . , an, a j − ai , for all 1 ≤ i < j ≤ n.
Then

(a′
1, a′

2, a′
3, . . . , an+1) = (m, m + a1, m + a2, . . . , m + an)

is an (n + 1)-term sequence satisfying the conditions of the problem. Indeed,
a′

i − a′
1 = ai−1 divides m and a′

i + a′
1 = 2m + ai−1 by the definition of m, and

a′
j − a′

i = a j−1 − ai−1 (2 ≤ i < j ≤ n + 1) divides m. Also, a′
j + a′

i = 2m +
(a j−1 + ai−1) by the definition of m and by the inductive hypothesis. Therefore
our induction is complete.

Problem 5.2.2. Prove that for each n ≥ 3, the number n! can be represented as
the sum of n distinct divisors of itself. (Erdős)

Solution. The base case is 3! = 6 = 1 + 2 + 3. Strengthening the statement by
imposing the condition that one of the n divisors should be 1 puts us in a winning
position. The question here is how we came to think of this. Indeed, there is just
about one way to go in using the induction hypothesis n! = d1 + d2 + · · · + dn
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(where d1, d2, . . . , dn are the n divisors arranged in increasing order), namely,
multiplying the above relation by n + 1. This yields

(n + 1)! = (n + 1)d1 + (n + 1)d2 + · · · + (n + 1)dn

= d1 + nd1 + (n + 1)d2 + · · · + (n + 1)dn .

We split (n + 1)d1 into d1 + nd1, thus getting n + 1 summands, as needed. Of
them, only the second one might not be a divisor of (n + 1)!. We would like to
ensure that it is such a divisor, too. Hence the idea of insisting that d1 = 1.

Problem 5.2.3. Prove that there are infinitely many numbers not containing the
digit 0 that are divisible by the sum of their digits.

Solution. Let us prove by induction that 11 . . . 1︸ ︷︷ ︸
3n

is a good choice. The base case

is easily verified, and for the inductive step we have

11 . . . 1︸ ︷︷ ︸
3n+1

= 103 − 1

9
= (103n

)3 − 1

9

= 103n+1 − 1

9
(102·3n + 103n + 1)

= 11 . . . 1︸ ︷︷ ︸
3n

·N ,

where N is a multiple of 3, and the conclusion follows.

Problem 5.2.4. Let n be a positive integer. Let On be the number of 2n-tuples
(x1, . . . , xn, y1, . . . , yn) with values in 0 or 1 for which the sum x1 y1 +· · ·+ xn yn

is odd, and let En be the number of 2n-tuples for which the sum is even. Prove
that

On

En
= 2n − 1

2n + 1
.

(1997 Iberoamerican Mathematical Olympiad)

Solution. We prove by induction that On = 22n−1−2n−1 and En = 22n−1+2n−1,
which will give the desired ratio.

The base case is n = 1. This case works because O1 = 1 = 21 − 20 and
E1 = 3 = 21 + 20.

For the inductive step, we assume that this is true for n = k; then x1 y1 +· · ·+
xk yk is even for (22k−1 + 2k−1) 2k-tuples and odd for (22k−1 − 2k−1) 2k-tuples.
Now, x1 y1 + · · · + xk+1yk+1 is odd if and only if either x1 y1 + · · · + xk yk is odd
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and xk+1yk+1 is even or x1 y1 + · · · + xk yk is even and xk+1yk+1 is odd. Clearly
xk+1yk+1 can be odd in one way and even in three ways, so

Ok+1 = 3(22k−1 − 2k−1) + 22k−1 + 2k−1 = 22(k+1)−1 − 2(k+1)−1

and Ek+1 = 22(k+1) − Ok+1, which completes the induction.

Problem 5.2.5. Prove that for all integers n ≥ 3, there exist odd positive integers
x, y such that 7x2 + y2 = 2n.

(1996 Bulgarian Mathematical Olympiad)

Solution. We will prove that there exist odd positive integers xn, yn such that
7x2

n + y2
n = 2n , n ≥ 3.

For n = 3, we have x3 = y3 = 1. Now suppose that for a given integer n ≥ 3
we have odd integers xn, yn satisfying 7x2

n + y2
n = 2n . We shall exhibit a pair

(xn+1, yn+1) of odd positive integers such that 7x2
n+1 + y2

n+1 = 2n+1. In fact,

7
( xn ± yn

2

)2 +
(7xn ∓ yn

2

)2 = 2(7x2
n + y2

n) = 2n+1.

Precisely one of the numbers xn+yn
2 and |xn−yn |

2 is odd (since their sum is the
larger of xn and yn , which is odd). If, for example, xn+yn

2 is odd, then

7xn − yn

2
= 3xn + xn − yn

2

is also odd (as the sum of an odd and an even number); hence in this case we may
choose

xn+1 = xn + yn

2
and yn+1 = 7xn − yn

2
.

If xn−yn
2 is odd, then

7xn + yn

2
= 3xn + xn + yn

2
,

so we can choose

xn+1 = |xn − yn|
2

and yn+1 = 7xn + yn

2
.

Remark. This problem goes back to Euler.

Problem 5.2.6. Let f (x) = x3 +17. Prove that for each natural number n, n ≥ 2,
there is a natural number x for which f (x) is divisible by 3n but not by 3n+1.

(1999 Japanese Mathematical Olympiad)
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Solution. We prove the result by induction on n. If n = 2, then x = 1 suffices.
Now suppose that the claim is true for some n ≥ 2, that is, there is a natural
number y such that y3 + 17 is divisible by 3n but not 3n+1. We prove that the
claim is true for n + 1.

Suppose we have integers a, m such that a is not divisible by 3 and m ≥ 2.
Then a2 ≡ 1 (mod 3) and thus 3ma2 ≡ 3m (mod 3m+1). Also, because m ≥ 2
we have 3m − 3 ≥ 2m − 1 ≥ m + 1. Hence

(a + 3m−1)3 ≡ a3 + 3ma2 + 32m−1a + 33m−3 ≡ a3 + 3m (mod 3m+1).

Because y3 +17 is divisible by 3n , it is congruent to either 0, 3n , or 2 ·3n mod-
ulo 3n+1. Because 3 does not divide 17, 3 cannot divide y either. Hence applying
our result from the previous paragraph twice, once with (a, m) = (y, n) and once
with (a, m) = (y+3n−1, n), we find that 3n+1 must divide either (y+3n−1)3+17
or (y + 2 · 3n−1)3 + 17.

Hence there exists a natural number x ′ not divisible by 3 such that 3n+1 |
x ′3 + 17. If 3n+2 does not divide x ′3 + 17, we are done. Otherwise, we claim that
the number x = x ′ + 3n suffices. Because x = x ′ + 3n−1 + 3n−1 + 3n−1, the
result from the previous paragraphs tells us that x3 ≡ x ′3 + 3n + 3n + 3n ≡ x ′3
(mod 3n+1). Thus 3n+1 | x3 +17 as well. On the other hand, because x = x ′+3n ,
we have x3 ≡ x ′3 + 3n+1 �≡ x ′3 (mod 3n+2). It follows that 3n+2 does not divide
x3 + 17, as desired. This completes the inductive step.

Additional Problems

Problem 5.2.7. Let p be an odd prime. The sequence (an)n≥0 is defined as fol-
lows: a0 = 0, a1 = 1, . . . , ap−2 = p − 2, and for all n ≥ p − 1, an is the least
positive integer that does not form an arithmetic sequence of length p with any of
the preceding terms. Prove that, for all n, an is the number obtained by writing n
in base p − 1 and reading the result in base p.

(1995 USA Mathematical Olympiad)

Problem 5.2.8. Suppose that x, y, and z are natural numbers such that xy =
z2 + 1. Prove that there exist integers a, b, c, and d such that x = a2 + b2,
y = c2 + d2, and z = ac + bd .

(Euler’s problem)

Problem 5.2.9. Find all pairs of sets A, B that satisfy the following conditions:
(i) A ∪ B = Z;

(ii) if x ∈ A, then x − 1 ∈ B;
(iii) if x ∈ B and y ∈ B, then x + y ∈ A.

(2002 Romanian International Mathematical Olympiad Team Selection Test)
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Problem 5.2.10. Find all positive integers n such that

n =
m∏

k=0

(ak + 1),

where amam−1 · · · a0 is the decimal representation of n.

(2001 Japanese Mathematical Olympiad)

Problem 5.2.11. The sequence (un)n≥0 is defined as follows: u0 = 2, u1 = 5
2 and

un+1 = un(u2
n−1 − 2) − u1 for n = 1, 2, . . . .

Prove that [un] = 2
2n−(−1)n

3 , for all n > 0 (
x� denotes the integer part of x).

(18th International Mathematical Olympiad)

5.3 Infinite Descent

Fermat1 was the first mathematician to use a method of proof called infinite de-
scent.

Let P be a property concerning the nonnegative integers and let (P(n))n≥1 be
the sequence of propositions

P(n): “n satisfies property P .”

The following method is useful in proving that proposition P(n) is false for
all large enough n.

Let k be a nonnegative integer. Suppose that:

• P(k) is not true;

• if P(m) is true for a positive integer m > k, then there is some smaller j ,
m > j ≥ k, for which P( j) is true.

Then P(n) is false for all n ≥ k.
This is just the contrapositive of strong induction, applied to the negation of

proposition P(n). In the language of the ladder metaphor, if you know you cannot
reach any rung without first reaching a lower rung, and you also know you cannot
reach the bottom rung, then you cannot reach any of the rungs.

The above is often called the finite descent method.
Fermat’s method of infinite descent (FMID) can be formulated as follows:
Let k be an integer. Suppose that:

1Pierre de Fermat (1601–1665), French lawyer and government official most remembered for his
work in number theory, in particular for Fermat’s last theorem. He is also important in the foundations
of calculus, optics, and geometry.
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• if P(m) is true for an integer m > k, then there must be some smaller
integer j , m > j > k for which P( j) is true.

Then P(n) is false for all n > k.
That is, if there were an n for which P(n) were true, one could construct a

sequence n > n1 > n2 > · · · all of which would be greater than k. However, for
the integers, no such sequence is possible.

Two special cases of FMID are particularly useful in solving number theory
problems.

FMID Variant 1. There is no sequence of nonnegative integers n1 > n2 > · · · .
In some situations it is convenient to replace FMID Variant 1 by the following

equivalent form: If n0 is the smallest integer n for which P(n) is true, then P(n)

is false for all n < n0. In fact, this is equivalent to an extremal argument.

FMID Variant 2. If the sequence of integers (ni )i≥1 satisfies the inequalities
n1 ≥ n2 ≥ · · · , then there exists i0 such that ni0 = ni0+1 = · · · .

Problem 5.3.1. Find all triples (x, y, z) of nonnegative integers such that

x3 + 2y3 = 4z3.

Solution. Note that (0, 0, 0) is such a triple. We will prove that there is no other.
Assume that (x1, y1, z1) is a nontrivial solution to the given equation. Because
3
√

2, 3
√

4 are both irrational, it is not difficult to see that x1 > 0, y1 > 0, z1 > 0.
From x3

1 + 2y3
1 = 4z3

1 it follows that 2 | x1, so x1 = 2x2, x2 ∈ Z+. Then
4x3

2 + y3
1 = 2z3

1; hence y1 = 2y2, y2 ∈ Z+. Similarly, z1 = 2z2, z2 ∈ Z+. We
obtain the “new” solution (x2, y2, z2) with x1 > x2, y1 > y2, z1 > z2. Continuing
this procedure, we construct a sequence of positive integral triples (xn, yn, zn)n≥1
such that x1 > x2 > x3 > · · · . But this contradicts FMID Variant 1.

Additional Problems

Problem 5.3.2. Find all primes p for which there exist positive integers x, y, and
n such that pn = x3 + y3.

(2000 Hungarian Mathematical Olympiad)

5.4 Inclusion–Exclusion

The main result in this section is contained in the following theorem.
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Theorem 5.4.1. Let S1, S2, . . . , Sn be finite sets. Then

∣∣∣ n⋃
i=1

Si

∣∣∣ =
n∑

i=1

|Si | −
∑

1≤i< j≤n

|Si ∩ S j |

+
∑

1≤i< j<k≤n

|Si ∩ Sj ∩ Sk | − · · · + (−1)n−1
∣∣∣ n⋂

i=1

Si

∣∣∣,
where |S| denotes the number of elements in S and n ≥ 2.

Proof. We proceed by induction. For n = 2, we have to prove that |S1 ∪ S2| =
|S1| + |S2| − |S1 ∩ S2|. This is clear because the number of elements in S1 ∪ S2
is the number of elements in S1 and S2 less the ones in S1 ∩ S2, since the latter
elements were counted twice.

The inductive step uses the formula above for S1 → ⋃k
i=1 Sk and S2 →

Sk+1.

The formula in the theorem is called the inclusion–exclusion principle.

Example. How many positive integers not exceeding 1000 are divisible by 2, or
3, or 5?

Solution. Consider the sets

S1 = {2m : 1 ≤ m ≤ 500}, S2 = {3n : 1 ≤ n ≤ 333},
S3 = {5p : 1 ≤ p ≤ 200}.

Then

S1 ∩ S2 = {6q : 1 ≤ q ≤ 166}, S1 ∩ S3 = {10r : 1 ≤ r ≤ 100},
S2 ∩ S3 = {15s : 1 ≤ s ≤ 66}, and S1 ∩ S2 ∩ S3 = {30u : 1 ≤ u ≤ 33}.
Applying the inclusion–exclusion principle, we obtain

|S1 ∪ S2 ∪ S3| = |S1| + |S2| + |S3| − |S1 ∩ S2| − |S1 ∩ S3|
− |S2 ∩ S3| + |S1 ∩ S2 ∩ S3|

= 500 + 333 + 200 − 166 − 100 − 66 + 33 = 734.

The dual version of Theorem 5.4.1 is the following:

Theorem 5.4.2. Let S1, S2, . . . , Sn be subsets of the finite set S and let Si = S−Si

be the complementary set of Si , i = 1, 2, . . . , n. Then

∣∣∣ n⋂
i=1

Si

∣∣∣ = |S| −
n∑

i=1

|Si | +
∑

1≤i< j≤n

|Si ∩ Sj |

−
∑

1≤i< j<k≤n

|Si ∩ Sj ∩ Sk | + · · · + (−1)n
∣∣∣ n⋂

i=1

Si

∣∣∣.
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Proof. Let

A =
n⋂

i=1

Si and B =
n⋃

i=1

Si .

It is clear that A ∪ B = S and A ∩ B = ∅. Hence |S| = |A| + |B| and the
conclusion follows from Theorem 5.4.1.

Example. How many positive integers not exceeding 120 are not divisible by 2,
3, and 5?

Solution. Consider the sets

S1 = {2m | 1 ≤ m ≤ 60}, S2 = {3n | 1 ≤ n ≤ 40}, S3 = {5p | 1 ≤ p ≤ 24}.
We have

S1 ∩ S2 = {6q | 1 ≤ q ≤ 20}, S1 ∩ S3 = {10r | 1 ≤ r ≤ 12},
S2 ∩ S3 = {15s | 1 ≤ s ≤ 8}, and S1 ∩ S2 ∩ S3 = {30u | 1 ≤ u ≤ 4}.

Applying the formula in Theorem 5.3.2, we get

|S1 ∩ S2 ∩ S3| = 120 − (|S1| + |S2| + |S3|) + |S1 ∩ S2| + |S1 ∩ S3|
+ |S2 ∩ S3| − |S1 ∩ S2 ∩ S3|

= 120 − (60 + 40 + 24) + 20 + 12 + 8 − 4 = 32.

Problem 5.4.1. Let S = {1, 2, 3, . . . , 280}. Find the smallest integer n such that
each n-element subset of S contains five numbers that are pairwise relatively
prime.

(32nd International Mathematical Olympiad)

Solution. The solution is given in two steps.
First step. Consider the sets

M2 = {2, 4, 6, . . . , 280}, M3 = {3, 6, 9, . . . , 279},
M5 = {5, 10, 15, . . . , 280}, M7 = {7, 14, . . . , 280},

and let M = M2 ∪ M3 ∪ M5 ∪ M7. The following cardinalities are obvious:

|M2| = 140, |M3| = 93, |M5| = 56, and |M7| = 40.
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It is easy to prove that

|M2 ∩ M3| =
⌊280

6

⌋
= 46, |M2 ∩ M5| =

⌊280

10

⌋
= 28,

|M2 ∩ M7| =
⌊280

14

⌋
= 20, |M3 ∩ M5| =

⌊280

15

⌋
= 18,

|M3 ∩ M7| =
⌊280

21

⌋
= 13, |M5 ∩ M7| =

⌊280

35

⌋
= 8,

|M2 ∩ M3 ∩ M5| =
⌊280

30

⌋
= 9, |M2 ∩ M3 ∩ M7| =

⌊280

42

⌋
= 6,

|M2 ∩ M5 ∩ M7| =
⌊280

70

⌋
= 4, |M4 ∩ M5 ∩ M7| =

⌊ 28

105

⌋
= 2,

and

|M2 ∩ M3 ∩ M5 ∩ M7| =
⌊280

210

⌋
= 1.

By the principle of inclusion–exclusion, we obtain

|M | = |M2 ∪ M3 ∪ M5 ∪ M7|
= 140 + 93 + 56 + 40 − (46 + 28 + 20 + 18 + 13 + 8)

+ (9 + 6 + 4 + 2) − 1

= 216.

By the pigeonhole principle, any five-element subset of M contains at least
two elements from the same subset Mi , i ∈ {2, 3, 5, 7}. These elements are not
relatively prime numbers. Thus, we have proved that n > 216.

Second step. We will prove that n = 217.
The set S \ M contains 280 − 216 = 64 elements. It contains prime numbers

and composite numbers. Taking into account that 
√280� = 16, we see that any
composite numbers in S \ M have one prime factor at most 16. Thus they are
precisely

C = {112; 11 · 13; 11 · 17; 11 · 19; 11 · 23; 132; 13 · 17; 13 · 19}.
Observe that |C | = 8. The set S \ M contains the number 1, 8 composite

numbers, and 55 prime numbers. Also, taking into account the prime numbers 2,
3, 5, 7, we infer that the set S contains 59 prime numbers in all.

Let p1 = 2, p2 = 3, p3 = 5, . . . , p59 be all these prime numbers and let
P = {1, p2, p2, . . . , p59}. Thus, |P| = 60.

Let T be a subset containing 217 elements of S. If |T ∩ P| ≥ 5, it follows that
T contains 5 elements that are relatively prime numbers. So, suppose |T ∩ P| ≤ 4.
In this case, |T ∩ (S \ P)| ≥ 217 − 4 = 213. Since S contains 220 composite
numbers, it follows that at most 7 composite numbers are not in T .
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Consider the following five-element subsets of S \ P:

A1 = {22; 32; 52; 72; 132},
A2 = {2 · 23; 3 · 19; 5 · 17; 7 · 13; 11 · 11},
A3 = {2 · 29; 3 · 23; 5 · 19; 7 · 17; 11 · 13},
A4 = {2 · 31; 3 · 29; 5 · 23; 7 · 19; 11 · 17},
A5 = {2 · 37; 3 · 31; 5 · 29; 7 · 23; 11 · 19},
A6 = {2 · 41; 3 · 37; 5 · 31; 7 · 29; 11 · 23},
A7 = {2 · 43; 3 · 41; 5 · 37; 7 · 23; 13 · 17},
A8 = {2 · 47; 3 · 43; 5 · 41; 7 · 37; 13 · 19}.

By the pigeonhole principle, there exists a set Ai , 1 ≤ i ≤ 8, such that Ai ⊂
T ; if not, the set S \ T would contain eight composite numbers. Each Ai contains
five relatively prime numbers and we are done.

Additional Problems

Problem 5.4.2. The numbers from 1 to 1,000,000 can be colored black or white.
A permissible move consists in selecting a number from 1 to 1,000,000 and
changing the color of that number and each number not relatively prime to it.
Initially all of the numbers are black. Is it possible to make a sequence of moves
after which all of the numbers are colored white?

(1999 Russian Mathematical Olympiad)
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Arithmetic Functions

6.1 Multiplicative Functions

Arithmetic functions are defined on the positive integers and are complex val-
ued. The arithmetic function f �= 0 is called multiplicative if for every pair of
relatively prime positive integers m and n,

f (mn) = f (m) f (n).

An arithmetic function f �= 0 is called completely multiplicative if the relation
above holds for all positive integers m and n.

Remarks. (1) If f : Z∗+ → C is multiplicative, then f (1) = 1. Indeed, if a is
a positive integer for which f (a) �= 0, then f (a) = f (a · 1) = f (a) f (1) and
dividing by f (a) yields f (1) = 1.

(2) If f is multiplicative and n = pα1
1 · · · pαk

k is the prime factorization of the
positive integer n, then f (n) = f (pα1

1 ) · · · f (pαk
k ); that is, in order to compute

f (n) it suffices to compute f (pαi
i ), i = 1, . . . , k.

(3) If f is completely multiplicative and n = pα1
1 · · · pαk

k is the prime factor-
ization of n, then f (n) = f (p1)

α1 · · · f (pk)
αk ; that is, in order to compute f (n)

it suffices to compute f (pi ), i = 1, . . . , k.
An important arithmetic function is the Möbius1 function defined by

μ(n) =
⎧⎨
⎩

1 if n = 1,

0 if p2 | n for some prime p,

(−1)k if n = p1 · · · pk, where p1, . . . , pk are distinct primes.

For example, μ(2) = −1, μ(6) = 1, μ(12) = μ(22 · 3) = 0.

1August Ferdinand Möbius (1790–1868), German mathematician best known for his work in topol-
ogy, especially for his conception of the Möbius strip, a two-dimensional surface with only one side.

© Birkhäuser Boston, a part of Springer Science + Business Media, LLC 2009
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Theorem 6.1.1. The Möbius function μ is multiplicative.

Proof. Let m, n be positive integers such that gcd(m, n) = 1. If p2 | m for some
p > 1, then p2 | mn and so μ(m) = μ(mn) = 0 and we are done. Consider now
m = p1 · · · pk , n = q1 · · · qh , where p1, . . . , pk , q1, . . . , qh are distinct primes.
Then μ(m) = (−1)k , μ(n) = (−1)h , and mn = p1 · · · pkq1 · · · qh . It follows that
μ(mn) = (−1)k+h = (−1)k(−1)h = μ(m)μ(n).

For an arithmetic function f we define its summation function F by

F(n) =
∑
d|n

f (d).

The connection between f and F is given by the following result.

Theorem 6.1.2. If f is multiplicative, then so is its summation function F.

Proof. Let m, n be positive integers such that gcd(m, n) = 1 and let d be a divisor
of mn. Then d can be uniquely represented as d = kh, where k | m and h | n.
Because gcd(m, n) = 1, we have gcd(k, h) = 1, so f (kh) = f (k) f (h). Hence

F(mn) =
∑
d|mn

f (d) =
∑
k|m
h|n

f (k) f (h)

=
( ∑

k|m
f (k)

)( ∑
h|n

f (h)
)

= F(m)F(n). �

Remark. If f is a multiplicative function and n = pα1
1 · · · pαk

k , then

F(n) =
k∏

i=1

(
1 + f (pi ) + · · · + f (pαi

i )
)
. (1)

Indeed, after multiplication on the right-hand side we get a sum having terms
of the form f (pβ1

1 ) · · · f (pβk
k ) = f (pβ1

1 · · · pβk
k ), where 0 ≤ β1 ≤ α1, . . . , 0 ≤

βk ≤ αk . This sum is obviously F(n).
The function g(n) = μ(n) f (n) is multiplicative; hence applying (1), we get,

for its summation function G,

G(n) =
k∏

i=1

(
1 + μ(pi ) f (pi )

) =
k∏

i=1

(
1 − f (pi )

)
.

From (1) we also can derive the following formula:∑
d|n

μ(d) f (d) = (1 − f (p1)) · · · (1 − f (pk)). (2)
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If we take f = 1 in formula (2), then we get the following basic property of
the Möbius function: For any integer n ≥ 2,∑

d|n
μ(d) = 0.

Theorem 6.1.3. (Möbius inversion formula) Let f be an arithmetic function and
let F be its summation function. Then

f (n) =
∑
d|n

μ(d)F
(n

d

)
. (3)

Proof. We have∑
d|n

μ(d)F
(n

d

)
=

∑
d|n

μ(d)

( ∑
c| n

d

f (c)

)
=

∑
d|n

( ∑
c| n

d

μ(d) f (c)

)

=
∑
c|n

( ∑
d| n

c

μ(d) f (c)

)
=

∑
c|n

f (c)

( ∑
d| n

c

μ(d)

)
= f (n),

since for n
c > 1 we have

∑
d| n

c
μ(d) = 0.

We have used the fact that the sets{
(d, c)

∣∣ d | n and c | n

d

}
and

{
(d, c)

∣∣ c | n and d | n

c

}
are equal.

They are both equal to {(c, d)
∣∣ cd | n}.

Theorem 6.1.4. Let f be an arithmetic function and let F be its summation func-
tion. If F is multiplicative, then so is f .

Proof. Let m, n be positive integers such that gcd(m, n) = 1 and let d be a divisor
of mn. Then d = kh, where k | m, h | n, and gcd(k, h) = 1. Applying the Möbius
inversion formula, it follows that

f (mn) =
∑
d|mn

μ(d)F
(mn

d

)
=

∑
k|m
h|n

μ(kh)F
(mn

kh

)

=
∑
k|m
h|n

μ(k)μ(h)F
(m

k

)
F

(n

h

)

=
( ∑

k|m
μ(k)F

(m

k

))( ∑
h|n

μ(h)F
(n

h

))
= f (m) f (n). �
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Let f and g be two arithmetic functions. Define their convolution product or
Dirichlet2 product f ∗ g by

( f ∗ g)(n) =
∑
d|n

f (d)g
(n

d

)
.

Note that the convolution product can be written more symmetrically as

( f ∗ g)(n) =
∑

ab=n

f (a)g(b).

The following relation holds: 1 ∗ f = F , the summation function of f .

Problem 6.1.1. (1) Prove that the convolution product is commutative and asso-
ciative.

(2) Prove that for any arithmetic function f ,

f ∗ ε = ε ∗ f = f,

where ε(n) = 1 if n = 1 and 0 otherwise.

Solution. Let f and g be two arithmetic functions. Then

( f ∗ g)(n) =
∑
d|n

f (d)g
(n

d

)
=

∑
d1|n

f
( n

d1

)
g(d1) = (g ∗ f )(n),

since if d runs through all divisors of, then so does d1 = n
d . Therefore f ∗ g =

g ∗ f .
Let f, g, h be arithmetic functions. To prove the associativity law, let u = g∗h

and consider f ∗ u = f ∗ (g ∗ h). We have

( f ∗ u)(n) =
∑
a|n

f (a)u
(n

a

)
=

∑
ad=n

f (a)
∑
bc=d

g(b)h(c)

=
∑

abc=n

f (a)g(b)h(c).

Similarly, if we set v = f ∗ g and consider v ∗ h, we have

(v ∗ h)(n) =
∑

dc=n

v(d)h(c) =
∑

dc=n

∑
ab=d

f (a)g(b)h(c)

=
∑

abc=n

f (a)g(b)h(c);

2Johann Peter Gustav Lejeune Dirichlet (1805–1859), German mathematician who proved in 1837
that there are infinitely many primes in any arithmetic progression of integers for which the common
difference is relatively prime to the terms. Dirichlet made essential contributions in number theory,
probability theory, functional analysis, and Fourier series.
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hence f ∗ (g ∗ h) = ( f ∗ g) ∗ h.
(2) We have

(ε ∗ f )(n) =
∑
d|n

ε(d) f
(n

d

)
= f (n),

and we get ε ∗ f = f ∗ ε = f .

Problem 6.1.2. Let f be an arithmetic function. If f (1) �= 0, then there is a
unique arithmetic function g such that

f ∗ g = ε.

Solution. We show by induction on n that ( f ∗g)(n) = ε(n) has a unique solution
g(1), . . . , g(n).

For n = 1, we have f (1)g(1) = 1; hence g(1) = 1/ f (1).
Suppose n > 1 and assume that g(1), . . . , g(n − 1) have been uniquely deter-

mined such that ( f ∗ g)(k) = ε(k) holds for k = 1, 2, . . . , n − 1. Then

f (1)g(n) +
∑
d|n
d>1

f (d)g
(n

d

)
= 0,

and we get

g(n) = − 1

f (1)

∑
d|n
d>1

f (d)g
(n

d

)

i.e., the function g exists and is unique.

Remark. The unique function g satisfying f ∗ g = ε, where f (1) �= 0, is called
the convolution inverse of f . It is not difficult to show that μ is the convolution
inverse to the constant function 1.

Problem 6.1.3. If f and g are multiplicative, so is their convolution product.

Solution. Let h = f ∗ g. We have

h(mn) =
∑
c|mn

f (c)g
(mn

c

)
.

Set c = ab, where a | m and b | n. Since gcd(m, n) = 1, we can write c
uniquely in this way. Hence we have

h(mn) =
∑
a|m

∑
b|n

f (ab)g
(m

a

n

b

)

=
( ∑

a|m
f (a)g

(m

a

) )( ∑
b|n

f (b)g
(n

b

) )
= h(m)h(n).
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Problem 6.1.4. (1) If both g and f ∗ g are multiplicative, then f is also multi-
plicative.

(2) If g is multiplicative, then so is its convolution inverse.

Solution. (1) Suppose f is not multiplicative. Let h = f ∗ g. Since f is not mul-
tiplicative, there exist m and n, gcd(m, n) = 1, such that f (mn) �= f (m) f (n).
We choose mn as small as possible. If mn = 1, then we get f (1) �= f (1) f (1),
so f (1) �= 1. Since h(1) = f (1)g(1) = f (1) �= 1, h is not multiplicative, a
contradiction. If mn > 1, we have f (ab) = f (a) f (b) for all ab < mn with
gcd(a, b) = 1. Now

h(mn) = f (mn)g(1) +
∑
a|m
b|n

f (ab)g
(mn

ab

)

= f (mn) +
∑
a|m
b|n

ab<mn

f (a) f (b)g
(m

a

)
g

(n

b

)

= f (mn) − f (m) f (n) + h(m)h(n).

Since f (mn) �= f (m) f (n), we have h(mn) �= h(m)h(n). Therefore, h is not
multiplicative, a contradiction.

(2) Denote by g−1 the convolution inverse of g. Then ε = g ∗ g−1 = g−1 ∗
g and g are both multiplicative. From the previous result it follows that g−1 is
multiplicative.

Problem 6.1.5. Let f be an arithmetic function that is not identically zero. Prove
that it is completely multiplicative if and only if f ∗ f = f τ , where τ(n) is the
number of divisors of n.

(American Mathematical Monthly)

Solution. If f is completely multiplicative, we have

( f ∗ f )(n) =
∑
d|n

f (d) f
(n

d

)
=

∑
d|n

f
(

d
n

d

)
=

∑
d|n

f (n)

= f (n)
∑
d|n

1 = f (n)τ (n) = ( f τ)(n),

and the relation follows.
Conversely, take n = 1. We get f 2(1) = f (1)τ (1) = f (1). It follows that

f (1) = 0 or f (1) = 1. Now suppose that n ≥ 2 and let n = pα1
1 · · · pαk

k be the
prime factorization of n. Put α(n) = α1 +· · ·+αk . It suffices to show that for any
positive integer n ≥ 2, the following relation holds:

f (n) = f (1) f (p1)
α1 · · · f (pk)

αk .
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We proceed by induction on α. If α(n) = 1, then n is a prime, say n = p, and
the property follows from the fact that

2 f (p) = τ(p) f (p) = ( f ∗ f )(p) = f (1) f (p) + f (p) f (1) = 2 f (1) f (p).

Suppose then that the property holds for all n with α(n) ≤ k. Take any n with
α(n) = k + 1. Then

τ(n) f (n) = 2 f (1) f (n) +
∑

f (a) f (b),

where the sum runs over all a, b with ab = n and 1 < a, b < n. It follows that
α(a) ≤ k, α(b) ≤ k, and from the inductive assumption we get

τ(n) f (n) = 2 f (1) f (n) + (τ (n) − 2){ f 2(1) f (p1)
α1 · · · f (pk)

αk }.
Since n is not a prime, certainly τ(n) > 2, and so for both f (1) = 0 and

f (1) = 1, the desired result follows.

Additional Problems

Problem 6.1.6. Let f be a function from the positive integers to the integers
satisfying f (m + n) ≡ f (n) (mod m) for all m, n ≥ 1 (e.g., a polynomial with
integer coefficients). Let g(n) be the number of values (including repetitions) of
f (1), f (2), . . . , f (n) divisible by n, and let h(n) be the number of these values
relatively prime to n. Show that g and h are multiplicative functions related by

h(n) = n
∑
d|n

μ(d)
g(d)

d
= n

k∏
j=1

(
1 − g(p j )

p j

)
,

where n = pα1
1 · · · pαk

k is the prime factorization of n.

(American Mathematical Monthly)

Problem 6.1.7. Define λ(1) = 1, and if n = pα1
1 · · · pαk

k , define

λ(n) = (−1)α1+···+αk .

(1) Show that λ is completely multiplicative.
(2) Prove that ∑

d|n
λ(d) =

{
1 if n is a square,
0 otherwise.

(3) Find the convolutive inverse of λ.
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Problem 6.1.8. Let an integer n > 1 be factored into primes: n = pα1
1 · · · pαm

m
(pi distinct) and let its own positive integral exponents be factored similarly. The
process is to be repeated until it terminates with a unique “constellation” of prime
numbers. For example, the constellation for 192 is 192 = 222·3 · 3 and for 10000
is 10000 = 222 · 52. Call an arithmetic function g generally multiplicative if
g(ab) = g(a)g(b) whenever the constellations for a and b have no prime in
common.

(1) Prove that every multiplicative function is generally multiplicative. Is the
converse true?

(2) Let h be an additive function (i.e., h(ab) = h(a) + h(b) whenever
gcd(a, b) = 1). Call a function k generally additive if k(ab) = k(a) + k(b)

whenever the constellations for a and b have no prime in common. Prove that
every additive function is generally additive. Is the converse true?

(American Mathematical Monthly)

6.2 Number of Divisors

For a positive integer n denote by τ(n) the number of its divisors. It is clear that

τ(n) =
∑
d|n

1,

that is, τ is the summation function of the multiplicative function f (m) = 1,
m ∈ Z∗+. Applying Theorem 6.1.2, it follows that τ is multiplicative.

Theorem 6.2.1. If n = pα1
1 · · · pαk

k is the prime factorization of n, then

τ(n) = (α1 + 1) · · · (αk + 1). (4)

Proof. Using the fact that τ is multiplicative, we have

τ(n) = τ(pα1
1 ) · · · τ(pαk

k ) = (α1 + 1) · · · (αk + 1),

because pαi
i has exactly αi + 1 divisors, i = 1, . . . , k.

Problem 6.2.1.
(1) For any n ≥ 1,

n∑
m=1

τ(m) =
n∑

k=1

⌊n

k

⌋
.

(2) For any n ≥ 1,

τ(n) =
n∑

k=1

( ⌊n

k

⌋
−

⌊n − 1

k

⌋ )
.
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(3) Prove the formula

1

n log n

n∑
m=1

τ(m) = 1.

Solution. (1) Note that since k is a divisor of exactly 
n/k� of the numbers
{1, 2, . . . , n}, we have

n∑
k=1

⌊n

k

⌋
=

n∑
m=1

τ(m).

(2) Note that ⌊n

k

⌋
−

⌊n − 1

k

⌋
=

{
1 if k | n,

0 otherwise.

Hence
n∑

k=1

( ⌊n

k

⌋
−

⌊n − 1

k

⌋)
=

∑
k|n

1 = τ(n).

Alternatively, we can derive this formula by taking a difference of the relation
in (1).

(3) Using the inequalities x − 1 < 
x� ≤ x , from the relation in (1) we get

n∑
k=1

1

k
− 1 <

1

n

n∑
m=1

τ(m) ≤
n∑

k=1

1

k
,

i.e.,

n∑
k=1

1

k
− log n + log n − 1 <

1

n

n∑
m=1

τ(m) ≤
n∑

k=1

1

k
− log n + log n,

and the formula follows by dividing by log n.

Remark. It is clear that n is a prime if and only if τ(n) = 2. Hence

n∑
k=1

( ⌊n

k

⌋
−

⌊n − 1

k

⌋)
= 2

if and only if n is a prime.

Problem 6.2.2. Find all positive integers d that have exactly 16 positive integral
divisors d1, d2, . . . , d16 such that

1 = d1 < d2 < · · · < d16 = d,

d6 = 18, and d9 − d8 = 17.
(1998 Irish Mathematical Olympiad)
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Solution. Let d = pα1
1 pα2

2 · · · pαm
m with p1, . . . , pm distinct primes. Then d has

(a1 +1)(a2 +1) · · · (am +1) divisors. Since 18 = 2 ·32, it has 6 divisors: 1, 2, 3, 6,
9, 18. Since d has 16 divisors, we know that d = 2 ·33 p or d = 2 ·37. If d = 2 ·37,
then d8 = 54, d9 = 81, and d9 − d8 �= 17. Thus d = 2 · 33 p for some prime
p > 18. If p < 27, then d7 = p, d8 = 27, d9 = 2p = 27 + 17 + 44 ⇒ p = 22,
a contradiction. Thus p > 27. If p < 54, then d7 = 27, d8 = p, d9 = 54 =
d8 + 17 ⇒ p = 37. If p > 54, then d7 = 27, d8 = 54, d9 = d8 + 17 = 71. We
obtain two solutions to the problem: 2 · 33 · 37 = 1998 and 2 · 33 · 71 = 3834.

Problem 6.2.3. For how many (a) even and (b) odd numbers n does n divide
312 − 1, yet n does not divide 3k − 1 for k = 1, 2, . . . , 11?

(1995 Austrian Mathematical Olympiad)

Solution. We note that

312 − 1 = (36 − 1)(36 + 1)

= (32 − 1)(34 + 32 + 1)(32 + 1)(34 − 32 + 1)

= (23)(7 · 13)(2 · 5)(73).

Recall that the number of divisors of pe1
1 · · · pek

k is (e1 +1) · · · (ek +1). There-
fore 312 − 1 has 2 · 2 · 2 · 2 = 16 odd divisors and 4 · 16 = 64 even divisors.

If 312 ≡ 1 (mod m) for some integer m, then the smallest integer d such
that 3d ≡ 1 (mod m) divides 12. (Otherwise, we could write 12 = pq + r
with 0 < r < d and obtain 3r ≡ 1 (mod m).) Hence to ensure n � 3k − 1 for
k = 1, . . . , 11, we need only check k = 1, 2, 3, 4, 6. But

31 − 1 = 2,

32 − 1 = 23,

33 − 1 = 2 · 13,

34 − 1 = 24 · 5,

36 − 1 = 23 · 7 · 13.

The odd divisors we throw out are 1, 5, 7, 13, 91, while the even divisors are
2i for 1 ≤ i ≤ 4, 2i · 5 for 1 ≤ i ≤ 4, and each of 2 j · 7, 2 j · 13, and 2 j · 7 · 13 for
1 ≤ i ≤ 3. Since we are discarding 17 even divisors and 5 odd ones, we remain
with 47 even divisors and 11 odd ones.

Problem 6.2.4. Let τ(n) denote the number of divisors of the natural number n.
Prove that the sequence τ(n2 + 1) does not become strictly increasing from any
given point onward.

(1998 St. Petersburg City Mathematical Olympiad)
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Solution. We first note that for n even, τ(n2 + 1) ≤ n. Indeed, exactly half of the
divisors of n2 + 1 are less than n, and all are odd, so there are at most 2(n/2) in
all.

Now if τ(n2 + 1) becomes strictly increasing for n ≥ N , then

τ((n + 1)2 + 1) ≥ τ(n2 + 1) + 2

for n ≥ N (since τ(k) is even for k not a perfect square). Thus

τ(n2 + 1) ≥ τ(N 2 + 1) + 2(n − N )

, which exceeds n for large N , contradiction.

Additional Problems

Problem 6.2.5. Does there exist a positive integer such that the product of its
proper divisors ends with exactly 2001 zeros?

(2001 Russian Mathematical Olympiad)

Problem 6.2.6. Prove that the number of divisors of the form 4k + 1 of each
positive integer is not less than the number of its divisors of the form 4k + 3.

Problem 6.2.7. Let d1, d2, . . . , dl be all positive divisors of a positive integer. For
each i = 1, 2, . . . , l denote by ai the number of divisors of di . Then

a3
1 + a3

2 + · · · + a3
l = (a1 + a2 + · · · + al)

2.

6.3 Sum of Divisors

For a positive integer n denote by σ(n) the sum of its divisors. Clearly

σ(n) =
∑
d|n

d,

that is, σ is the summation function of the multiplicative function d(m) = m,
m ∈ Z∗+. Applying Theorem 6.1.2, it follows that σ is multiplicative.

Theorem 6.3.1. If n = pα1
1 · · · pαk

k is the prime factorization of n, then

σ(n) = pα1+1
1 − 1

p1 − 1
· · · pαk+1

k − 1

pk − 1
.

Proof. Because σ is multiplicative, it suffices to compute σ(pαi
i ), i = 1, . . . , k.

The divisors of pαi
i are 1, pi , . . . , pαi

i ; hence

σ(pαi
i ) = 1 + pi + · · · + pαi

i = pα1+1
i − 1

pi − 1
,

and the conclusion follows.
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Problem 6.3.1. (1) For any n ≥ 1,

n∑
k=1

k
⌊n

k

⌋
=

n∑
m=1

σ(m).

(2) For any n ≥ 1,

σ(n) =
n∑

k=1

k

(⌊n

k

⌋
−

⌊
n − 1

k

⌋)
.

(3) If

lim
n→∞

∑n
m=1 σ(m)

n2
= a,

then prove that a ∈ [1
2 , 1

]
.

Solution. (1) Since k is a divisor of exactly 
n/k� of the numbers {1, 2, . . . , n},
we have

n∑
k=1

k
⌊n

k

⌋
=

n∑
m=1

σ(m).

(2) We have ⌊n

k

⌋
−

⌊n − 1

k

⌋
=

{
1 if k | n,

0 otherwise;

hence
n∑

k=1

k
(⌊n

k

⌋
−

⌊n − 1

k

⌋)
=

∑
k|n

k = σ(n).

Alternatively, we can apply the formula in (1) for n and n − 1 and then take
the difference.

(3) Since x − 1 < 
x� ≤ x , from the relation in (1) we get

n2 − n(n + 1)

2
<

n∑
m=1

σ(m) ≤ n2,

i.e.,

lim
n→∞

∑n
m=1 σ(m)

n2 ∈ [ 1
2 , 1

]
.

Remarks. (1) The exact value of this interesting limit is π2/12.
(2) It is clear that n is a prime if and only if σ(n) = n + 1. Hence

n∑
k=1

k
( ⌊n

k

⌋
−

⌊n − 1

k

⌋)
= n + 1

if and only if n is a prime.
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Problem 6.3.2. If n is a composite positive integer, then

σ(n) ≥ n + √
n + 1.

Solution. The integer n has a divisor d such that d �= 1 and d ≤ √
n. Because n

d
is also a divisor of n, it follows that n

d ≥ √
n, and therefore

σ(n) =
∑
k|n

k ≥ 1 + n + n

d
≥ n + √

n + 1.

Problem 6.3.3. For any n ≥ 7,

σ (n) < n ln n.

Solution. Let d1, d2, . . . , dk be all the divisors of n. They can be also written as

n

d1
,

n

d2
, . . . ,

n

dk
;

hence

σ(n) = n
( 1

d1
+ 1

d2
+ · · · + 1

dk

)
≤ n

(
1 + 1

2
+ · · · + 1

k

)
,

where k = τ(n). Inducting on k, we prove that for any k ≥ 2,

1 + 1

2
+ · · · + 1

k
< 0.81 + ln k.

Now we use the inequality τ(n) ≤ 2
√

n, n ≥ 1. In order to prove it, let us
consider d1 < d2 < · · · < dk , the divisors of n not exceeding

√
n. The other

divisors are n/d1, n/d2, . . . , n/dk . We get τ(n) ≤ 2k ≤ 2
√

n.
Using the inequality τ(n) ≤ 2

√
n, it follows that

1 + 1

2
+ · · · + 1

k
< 0.81 + ln(2

√
n) < 1.51 + 1

2
ln n.

For n ≥ 21 we have ln n > 1.51 + 1
2 ln n, and checking directly the desired

inequality for n = 7, . . . , 20, the conclusion follows.

Problem 6.3.4. For any n ≥ 1,

σ(n)

τ (n)
≥ √

n.

Solution. Let d1, d2, . . . , dτ(n) be the divisors of n. They can be rewritten as

n

d1
,

n

d2
, . . . ,

n

dτ(n)

.



118 I Fundamentals, 6. Arithmetic Functions

Hence

σ(n)2 = n(d1 + d2 + · · · + dτ(n))
( 1

d1
+ 1

d2
+ · · · + 1

dτ(n)

)
≥ nτ(n)2,

and the conclusion follows because of the AM–HM inequality.

Remarks. (1) This means the average of divisors of n is at least
√

n.
(2) An alternative way to prove this inequality is the following: We start by

noting that for any divisor d of n we have d + n
d ≥ 2

√
n. This follows from the

AM–GM inequality or is an easy calculus exercise. Then sum this result over all
divisors d of n, noting that n

d also varies over all divisors to get 2σ(1) ≥ 2
√

nτ(n).

Additional Problems

Problem 6.3.5. For any n ≥ 2,

σ(n) < n
√

2τ(n).

(1999 Belarusian Mathematical Olympiad)

Problem 6.3.6. Find all the four-digit numbers whose prime factorization has the
property that the sum of the prime factors is equal to the sum of the exponents.

Problem 6.3.7. Let m, n, k be positive integers with n > 1. Show that σ(n)k �=
nm .

(2001 St. Petersburg City Mathematical Olympiad)

6.4 Euler’s Totient Function

For any positive integer n we denote by ϕ(n) the number of integers m such that
m ≤ n and gcd(m, n) = 1. The arithmetic function ϕ is called Euler’s3 totient
function. It is clear that ϕ(1) = 1 and for any prime p, ϕ(p) = p − 1. Moreover,
if n is a positive integer such that ϕ(n) = n − 1 then n is a prime.

Theorem 6.4.1. (Gauss) For any positive integer n,∑
d|n

ϕ(d) = n.

3Leonhard Euler (1707–1783), Swiss mathematician who worked at the Petersburg Academy and
Berlin Academy of Science. Euler was one of the most prolific mathematicians of all time. Euler
systematized mathematics by introducing the symbols e and i , and f (x) for a function of x . He also
made major contributions in optics, mechanics, electricity, and magnetism. Euler did important work
in number theory, proving that the divergence of the harmonic series implies an infinite number of
primes, factoring the fifth Fermat number, and introducing the totient function ϕ.
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Proof. Let d1, d2, . . . , dk be the divisors of n and let Si = {m | m ≤ n and
gcd(m, n) = di }, i = 1, . . . , k. If m ∈ Si , then m = di m′, where gcd

(
m′, n

di

) =
1. Because m ′ ≤ n

di
, from the definition of ϕ it follows that |Si | = ϕ

( n
di

)
. The sets

S1, . . . , Sk give a partition of {1, 2, . . . , n}; hence

k∑
i=1

ϕ
( n

di

)
=

k∑
i=1

|Si | = n.

But
{ n

d1
, . . . , n

dk

} = {d1, . . . , dk}, so
∑

d|n ϕ(d) = n.

Theorem 6.4.2. The function ϕ is multiplicative.

Proof. From Theorem 6.4.1 we obtain that the summation function of ϕ is F(n) =
n, which is multiplicative.

The conclusion now follows from Theorem 6.1.4.

Theorem 6.4.3. If n = pα1
1 · · · pαk

k is the prime factorization of n > 1, then

ϕ(n) = n
(

1 − 1

p1

)
· · ·

(
1 − 1

pk

)
.

Proof. We first notice that for any prime p and for any positive integer α,

ϕ(pα) = pα − pα−1 = pα
(

1 − 1

p

)
.

Indeed, the number of all positive integers not exceeding n that are divisible
by p is pα−1; hence ϕ(pα) = pα − pα−1.

Using Theorem 6.4.3 we have

ϕ(n) = ϕ(pα1
1 · · · pαk

k ) = ϕ(pα1
1 ) · · · ϕ(pαk

k )

= pα1
1

(
1 − 1

p1

)
· · · pαk

k

(
1 − 1

pk

)
= pα1

1 · · · pαk
k

(
1 − 1

p1

)
· · ·

(
1 − 1

pk

)
= n

(
1 − 1

p1

)
· · ·

(
1 − 1

pk

)
.

Alternative proof. We employ the inclusion–exclusion principle. Let

Ti = {d | d ≤ n and pi | d}, i = 1, . . . , k.

It follows that

T1 ∪ · · · ∪ Tk = {m | m ≤ n and gcd(m, n) > 1}.
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Hence

ϕ(n) = n − |T1 ∪ · · · ∪ Tk | = n −
k∑

i=1

|Ti | +
∑

1≤i< j≤k

|Ti ∩ Tj |

− · · · + (−1)k |T1 ∩ · · · ∩ Tk |.
We have

|Ti | = n

pi
, |Ti ∩ Tj | = n

pi p j
, . . . , |T1 ∩ · · · ∩ Tk | = n

p1 · · · pk
.

Finally,

ϕ(n) = n

(
1 −

n∑
i=1

1

pi
+

∑
1≤i< j≤k

1

pi p j
− · · · + (−1)k 1

p1 · · · pk

)

= n
(

1 − 1

p1

)
· · ·

(
1 − 1

pk

)
. �

Remarks. (1) A natural generalization of Euler’s totient function is given in Prob-
lem 6.1.6; hence it is possible to derive the properties contained in Theorems
6.4.1-6.4.3 directly from the results of this problem.

(2) Writing the formula in Theorem 6.4.3 as

ϕ(n) = n

p1 · · · pk
(p1 − 1) · · · (pk − 1),

it follows that ϕ(n) is an even integer for any n ≥ 3.

Problem 6.4.1. Prove that there are infinitely many even positive integers k such
that the equation ϕ(n) = k has no solution.

(Schinzel4)

Solution. Take k = 2 · 7m , m ≥ 1. If n = pα1
1 · · · pαh

h , then

ϕ(n) = pα1
1

(
1 − 1

p1

)
· · · pαh

h

(
1 − 1

ph

)

= pα1−1
1 · · · pαh−1

h (p1 − 1) · · · (ph − 1).

If at least two of the primes p1, . . . , ph are odd, then 4 | ϕ(n) and ϕ(n) �= k.

4Andrzej Schinzel (1935– ), Polish mathematician with important work on exponential congru-
ences, Euler’s ϕ-function, Diophantine equations, and applications of transcendental number theory
to arithmetic problems.
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If pi = 7, for some i , then 3 | φ(n) and φ(n) �= k. If any odd prime pi �= 7 has
αi > 1, then pi | φ(n) and again φ(n) �= k. Thus the only remaining possibilities
are n = 2α or 2α p for some p ≥ 3. In the first case φ(n) = 2α−1 �= k. In
the second case, if α > 1, then again 4 | φ(n) and φ(n) �= k. If α ≤ 1, then
φ(n) = p−1. For this to be k we need p−1 = 2 ·7m or p = 2 ·7m +1. However,
one easily checks that 3 | 2 · 7m + 1, so this forces p = 3 and m = 0, contrary to
our assumption.

Problem 6.4.2. Prove that there are infinitely many positive integers n such that

ϕ(n) = n

3
.

Solution. Let n = 2 · 3m , where m is a positive integer. Then

ϕ(n) = ϕ(2 · 3m) = ϕ(2)ϕ(3m) = 3m − 3m−1 = 2 · 3m−1 = n

3

for infinitely many values of n, as desired.

Problem 6.4.3. If n is a composite positive integer, then

ϕ(n) ≤ n − √
n.

Solution. because n is composite, it has a prime factor p j ≤ √
n. We have

ϕ(n) = n
(

1 − 1

p1

)
· · ·

(
1 − 1

pk

)
≤ n

(
1 − 1

p j

)
≤ n

(
1 − 1√

n

)
= n − √

n.

Problem 6.4.4. For any positive integer n, n �= 2, n �= 6,

ϕ(n) ≥ √
n.

Solution. If n = 2m , where m ≥ 2, then

ϕ(n) = 2m − 2m−1 = 2m−1 ≥ √
2m = √

n.

If n = pm , where p is an odd prime and m ≥ 2, then

ϕ(n) = pm − pm−1 = pm−1(p − 1) ≥ √
2pm = √

2n.

If n = pm , where p is a prime greater than or equal to 5, then ϕ(n) ≥ √
2n.

If n is odd or 4 | n, then

ϕ(n) = ϕ(pα1
1 ) · · · ϕ(pαk

k ) ≥
√

pα1
1 · · ·

√
pαk

k = √
n.

If n = 2t , where t is odd, then since n �= 6, we see that t has at least one
prime power factor that is at least 5. Hence ϕ(n) = ϕ(t) ≥ √

2t .
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Additional Problems

Problem 6.4.5. For a positive integer n, let ψ(n) be the number of prime factors
of n. Show that if ϕ(n) divides n − 1 and ψ(n) ≤ 3, then n is prime.

(1998 Korean Mathematical Olympiad)

Problem 6.4.6. Show that the equation ϕ(n) = τ(n) has only the solutions n =
1, 3, 8, 10, 18, 24, 30.

Problem 6.4.7. Let n > 6 be an integer and let a1, a2, . . . , ak be all positive
integers less than n and relatively prime to n. If

a2 − a1 = a3 − a2 = · · · = ak − ak−1 > 0,

prove that n must be either a prime number or a power of 2.

(32nd International Mathematical Olympiad)

6.5 Exponent of a Prime and Legendre’s Formula

Let p be a prime and let us denote by vp(a) the exponent of p in the decomposi-
tion of a. Of course, if p doesn’t divide a, then vp(a) = 0.

It is easy to prove the following properties of vp:
(1) min{vp(a), vp(b)} ≤ vp(a + b). If vp(a) �= vp(b), then vp(a + b) =

min{vp(a), vp(b)}.
(2) vp(ab) = vp(a) + vp(b).
(3) vp(gcd(a1, a2, . . . , an)) = min{vp(a1), vp(a2), . . . , vp(an)}.
(4) vp(lcm(a1, a2, . . . , an)) = max{vp(a1), vp(a2), . . . , vp(an)}.
If we have to prove that a | b, then it is enough to prove that the exponent

of any prime number in the decomposition of a is at least the exponent of that
prime in the decomposition of b. Now let us repeat the above idea in terms of the
function vp. We have a | b if and only if for every prime p we have vp(a) ≤
vp(b). Also, we have a = b if and only if for every prime p, vp(a) = vp(b).

For each positive integer n, let ep(n) be the exponent of the prime p in the
prime factorization of n!.

The arithmetic function ep is called the Legendre5 function associated with
the prime p, and it is connected to the function vp by the relation ep(n) = vp(n!).

The following result gives a formula for the computation of ep(n).

5Adrien-Marie Legendre (1752–1833), French mathematician who was a disciple of Euler and
Lagrange. In number theory, he studied the function ep , and he proved the unsolvability of Fermat’s
last theorem for n = 5.
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Theorem 6.5.1. (Legendre’s formula) For any prime p and any positive integer n,

ep(n) =
∑
i≥1

⌊
n

pi

⌋
= n − Sp(n)

p − 1
,

where Sp(n) is the sum of the digits of n when written in base p.

Proof. For n < p it is clear that ep(n) = 0. If n ≥ p, then in order to determine
ep(n) we need to consider only the multiples of p in the product 1 · 2 · · · n, that
is, (1 · p)(2 · p) · · · (kp) = pkk!, where k = ⌊ n

p

⌋
. Hence

ep(n) =
⌊

n

p

⌋
+ ep

(⌊
n

p

⌋)
.

Replacing n by
⌊ n

p

⌋
and taking into account that

⌊⌊ n
p

⌋
p

⌋
=

⌊
n

p2

⌋
,

we obtain

ep

(⌊
n

p

⌋)
=

⌊
n

p2

⌋
+ ep

(⌊
n

p2

⌋)
.

Continuing this procedure, we get

ep

(⌊
n

p2

⌋)
=

⌊
n

p3

⌋
+ ep

(⌊
n

p3

⌋)
,

. . .

ep

(⌊
n

pm−1

⌋)
=

⌊
n

pm

⌋
+ ep

(⌊
n

pm

⌋)
,

where m is the least positive integer such that n < pm+1, that is, m = ⌊ ln n
ln p

⌋
.

Summing up the relations above yields

ep(n) =
⌊

n

p

⌋
+

⌊
n

p2

⌋
+ · · · +

⌊
n

pm

⌋
.

The other relation is not difficult. Indeed, let us write

n = a0 + a1 p + · · · + ak pk ,

where a0, a1, . . . , ak ∈ {0, 1, . . . , p − 1} and ak �= 0. Then⌊
n

p

⌋
+

⌊
n

p2

⌋
+· · · = a1+a2 p+· · ·+ak pk−1+a2+a3 p+· · ·+ak pk−2+· · ·+ak .
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The coefficient of ai on the right-hand side is 1 + p +· · ·+ pi−1, so using the
formula

1 + p + · · · + pi−1 = pi − 1

p − 1
,

we obtain exactly the second part in the expression of ep(n).

Remark. An alternative proof of the first half of Legendre’s formula is to note
that

ep(n) =
n∑

k=1

vp(k) =
n∑

k=1

vp(k)∑
m=1

1.

Now look at the total contribution of a particular value of m to this double sum.
You will get a contribution of 1 for every multiple of pm in the set {1, 2, . . . , n}.
The number of such multiples is

⌊ n
pm

⌋
; hence

ep(n) =
∑
m≥1

⌊
n

pm

⌋
.

Examples. (1) Let us find the exponent of 7 in 400!. Applying Legendre’s for-
mula, we have

e7(400) =
⌊

400

7

⌋
+

⌊
400

72

⌋
+

⌊
400

73

⌋
= 57 + 8 + 1 = 66.

(2) Let us determine the exponent of 3 in ((3!)!)!. We have ((3!)!)! = (6!)! =
720!. Applying Legendre’s formula yields

e3(720) =
⌊

720

3

⌋
+

⌊
720

32

⌋
+

⌊
720

33

⌋
+

⌊
720

34

⌋
+

⌊
720

35

⌋
= 240 + 80 + 26 + 8 + 2 = 356.

Problem 6.5.1. Let p be a prime. Find the exponent of p in the prime factorization
of (pm)!.
Solution. Using the first half of Legendre’s formula, we have

ep(pm) =
∑
i≥1

⌊
pm

pi

⌋
= pm−1 + pm−2 + · · · + p + 1 = pm − 1

p − 1
.

An easier argument for the above formula follows directly from the second
version of Legendre’s formula. Then it is just Sp(pm) = 1, so ep(pm) = (pm −
1)/(p − 1).

Problem 6.5.2. Find all positive integers n such that n! ends in exactly 1000 zeros.
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First solution. There are clearly more 2’s than 5’s in the prime factorization of
n!; hence it suffices to solve the equation⌊n

5

⌋
+

⌊ n

52

⌋
+ · · · = 1000.

But ⌊n

5

⌋
+

⌊ n

52

⌋
+ · · · <

n

5
+ n

52
+ · · · = n

5

(
1 + 1

5
+ · · ·

)
= n

5
· 1

1 − 1
5

= n

4
;

hence n > 4000.
On the other hand, using the inequality 
a� > a − 1, we have

1000 >
(n

5
− 1

)
+

( n

52
− 1

)
+

( n

53
− 1

)
+

( n

54
− 1

)
+

( n

55
− 1

)

= n

5

(
1 + 1

5
+ 1

52
+ 1

53
+ 1

54

)
− 5 = n

5
· 1 − (1

5

)5

1 − 1
5

− 5,

so

n <
1005 · 4 · 3125

3124
< 4022.

We have narrowed n down to {4001, 4002, . . . , 4021}. Using Legendre’s for-
mula we find that 4005 is the first positive integer with the desired property and
that 4009 is the last. Hence n = 4005, 4006, 4007, 4008, 4009.

Second solution. It suffices to solve the equation e5(n) = 1000. Using the second
form of Legendre’s formula, this becomes n − S5(n) = 4000. Hence n > 4000.
We work our way upward from 4000 looking for a solution. Since e5(n) can
change only at multiples of 5, we step up 5 each time:

e5(4000) = 4000 − 4

5 − 1
= 999,

e5(4005) = 4005 − 5

5 − 1
= 1000,

e5(4010) = 4010 − 6

5 − 1
= 1001.

Any n > 4010 will clearly have e5(n) ≥ e5(4010) = 1001. Hence the only
solutions are n = 4005, 4006, 4007, 4008, 4009.

Problem 6.5.3. Prove that for any positive integer n, 2n does not divide n!.
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First solution. The exponent of 2 in the prime factorization of n! is

k = e2(n) =
⌊n

2

⌋
+

⌊ n

22

⌋
+ · · · .

We have

k <
n

2
+ n

22
+ · · · = n

2

(
1 + 1

2
+ · · ·

)
= n

2
· 1

1 − 1
2

= n,

and we are done.

Second solution. Using the second version of Legendre’s formula, we have
e2(n) = n − S2(n) < n, and we are done.

Remark. Similarly, for any prime p, pn does not divide ((p − 1)n)!.
Problem 6.5.4. Find all positive integers n such that 2n−1 divides n!.
First solution. If n = 2s , s = 0, 1, 2, . . . , then

e2(n) = 2s−1 + · · · + 2 + 1 = 2s − 1;
hence 2n−1 divides n!.

Assume that n is odd, n = 2n1 + 1. Then from 2n−1 = 22n1 | (2n1 + 1)! =
(2n1)!(2n1 + 1) it follows that 22n1 | (2n1)!, which is not possible, by Problem
6.5.3. We get n = 2m1. If m1 is odd, m1 = 2n2 + 1, we have

2n−1 = 24n2+1 | (4n2 + 2)! = (4n2)!(4n2 + 1) · 2 · (2n2 + 1),

and we obtain 24n2 | (4n2)!, a contradiction. Continuing this procedure, we get
n = 2s .

Second solution. We use the second version of Legendre’s formula. It is just
e2(n) = n − S2(n) = n − 1 if and only if S2(n) = 1, that is, if and only if n is a
power of 2.

Problem 6.5.5. Let p be an odd prime. Prove that the exponent of p in the prime
factorization of 1 · 3 · 5 · · · (2m + 1) is∑

k≥1

(⌊
2m + 1

pk

⌋
−

⌊
m

pk

⌋)
.

Solution. We have

1 · 3 · 5 · · · (2m + 1) = (2m + 1)!
m! · 2m

.

Because p is odd, the desired exponent is

ep(2m + 1) − ep(m) =
∑
k≥1

⌊
2m + 1

pk

⌋
−

∑
k≥1

⌊
m

pk

⌋
,

and the conclusion follows.
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Problem 6.5.6. If p is a prime and pα | (n
m

)
, then pα ≤ n.

Solution. Because (
n

m

)
= n!

m!(n − m)! ,

the exponent of p in the prime factorization of
(n

m

)
is

β = ep(n) − ep(m) − ep(n − m) =
∑
k≥1

(⌊
n

pk

⌋
−

⌊
m

pk

⌋
−

⌊
n − m

pk

⌋)
.

This sum has at most s nonzero terms, where ps ≤ n < ps+1. Using the
inequality 
x + y� − 
x� − 
y� ≤ 1 for x = m

pk and y = n−m
pk , it follows that

β ≤ s. Because pα | (n
m

)
, we obtain α ≤ β ≤ s; hence pα ≤ ps ≤ n.

Additional Problems

Problem 6.5.7. (a) If p is a prime, prove that for any positive integer n,

−
⌊ ln n

ln p

⌋
+ n

⌊
ln n
ln p

⌋∑
k=1

1

pk
< ep(n) <

n

p − 1
.

(b) Prove that

lim
n→∞

ep(n)

n
= 1

p − 1
.

Problem 6.5.8. Show that for all nonnegative integers m, n, the number

(2m)!(2n)!
m!n!(m + n)!

is also an integer.

(14th International Mathematical Olympiad)

Problem 6.5.9. Prove that (3a+3b)!(2a)!(3b)!(2b)!
(2a+3b)!(a+2b)!(a+b)!a!(b!)2 is an integer for any positive

integers a, b.

(American Mathematical Monthly)

Problem 6.5.10. Prove that there exists a constant c such that for any positive
integers a, b, n for which a! · b! | n!, we have a + b < n + c ln n.

(Paul Erdős)
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Problem 6.5.11. Prove that for any integer k ≥ 2, the equation

1

10n
= 1

n1! + 1

n2! + · · · + 1

nk !
does not have integer solutions such that 1 ≤ n1 < n2 < · · · < nk .

(Tuymaada Olympiad)



7

More on Divisibility

7.1 Congruences Modulo a Prime:
Fermat’s Little Theorem

In this section, p will denote a prime number. We begin by noticing that it makes
sense to consider a polynomial with integer coefficients

f (x) = a0 + a1x + · · · + ad xd ,

but reduced modulo p. If for each j , a j ≡ b j (mod p), we write

a0 + a1x + · · · + ad xd ≡ b0 + b1x + · · · + bd xd (mod p),

and talk about the residue class of a polynomial modulo p. We will denote the
residue class of f (x) by f (x)p. We say that f (x) has degree d modulo p if
ad �≡ 0 (mod p).

For an integer c, we can evaluate f (c) and reduce the answer modulo p to
obtain f (c)p . If f (c)p = 0 modulo p, then c is said to be a root of f (x) modulo p.

Theorem 7.1.1. (Lagrange) If f (x) has degree d modulo p, then the number of
distinct roots of f (x) modulo p is at most p.

Proof. Begin by noticing that if c is root of f (x) modulo p, then

f (x) ≡ f (x) − f (c) (mod p).

Hence

f (x) ≡ [a1 + a2(x + c) + · · ·
+ ad(xd−1 + xd−2c + · · · + xcd−2 + cd−1)](x − c) (mod p),

© Birkhäuser Boston, a part of Springer Science + Business Media, LLC 2009
129T. Andreescu and D. Andrica, Number Theory, DOI: 10.1007/b11856_7, 
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and we get f (x) ≡ f1(x)(x − c), where f1(x) is a polynomial of degree d − 1
modulo p with integer coefficients. If c′ is another root of f (x) modulo p such
that c′ �≡ c (mod p), then since f1(c′)(c′ − c) ≡ 0 (mod p), we have p |
f1(c′)(c′ − c). Hence, by Euclid’s lemma (Proposition 1.3.2), p | f1(c′). Thus
c′ is a root of f1(x) modulo p.

If now the integers c1, c2, . . . , ck are the distinct roots of f (x) modulo p, then

f (x) ≡ (x − c1)(x − c2) · · · (x − ck)g(x) (mod p).

In fact, the degree modulo p of g(x) is d − k. This implies 0 ≤ k ≤ d.

Theorem 7.1.2. (Fermat’s little theorem) Let a be a positive integer and let p be
a prime. Then

a p ≡ a (mod p).

Proof. We induct on a. For a = 1 everything is clear. Assume that p | a p − a.
Then

(a + 1)p − (a + 1) = (a p − a) +
p−1∑
k=1

(
p

k

)
ak .

Using the fact that p | (p
k

)
for 1 ≤ k ≤ p − 1 and the inductive hypothesis, it

follows that p | (a + 1)p − (a + 1), that is, (a + 1)p ≡ (a + 1) (mod p).
Alternative proof. Suppose that gcd(a, p) = 1 and let us show that a p−1 ≡

1 (mod p). Consider the integers a, 2a, . . . , (p − 1)a, whose remainders when
divided by p are distinct (otherwise, if ia ≡ ja (mod p), then p | (i − j)a, that
is, p | i − j , which holds only if i = j). Hence the remainders are 1, 2, . . . , p −1
in some order and

a · (2a) · · · (p − 1)a ≡ 1 · 2 · · · (p − 1) (mod p),

i.e.,
a p−1(p − 1)! ≡ (p − 1)! (mod p).

Because p and (p − 1)! are relatively prime, the conclusion follows.

Remark. The converse is not true. For example, 3 · 11 · 17 divides a3·11·17 − a,
since 3, 11, 17 each divide a3·11·17 − a (for instance, if 11 did not divide a, then
from Fermat’s little theorem, we would have 11 | a10 − 1; hence 11 | a10·56 − 1,
i.e., 11 | a561 − a and 561 = 3 · 11 · 17).

The composite integers n satisfying an ≡ a (mod n) for any integer a are
called Carmichael numbers. There exist such integers, for example n = 2 · 73 ·
1103. For other comments see the remark after Problem 7.3.11.

For problems involving xn it might be good to work modulo a prime p with
p ≡ 1 (mod n).
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Problem 7.1.1. (1) Let a be a positive integer. Prove that any prime factor > 2 of
a2 + 1 is of the form 4m + 1.

(2) Prove that there are infinitely many primes of the form 4m + 1.

Solution. (1) Assume that p | a2 + 1 and p = 4m + 3 for some integer m.
Then a2 ≡ −1 (mod p) and a p−1 = (a2)2m+1 ≡ (−1)2m+1 ≡ −1 (mod p),
contradicting Fermat’s little theorem.

(2) The integer (n!)2 + 1 is of the form 4m + 1; hence all its prime factors are
of this form. It follows that for any prime p of the form 4m + 1, (p!)2 + 1 is a
prime or has a prime factor p1 > p and we are done.

Problem 7.1.2. For any prime p, p p+1 + (p + 1)p is not a perfect square.

Solution. For p = 2 the property holds. Assume by way of contradiction that
p ≥ 3 and p p+1 + (p + 1)p = t2 for some positive integer t . It follows that

(t + p
p+1

2 )(t − p
p+1

2 ) = (p+1)p; hence t ± p
p+1

2 = 2p−1u p and t ∓ p
p+1

2 = 2v p,
for some positive integers u, v such that 2uv = p + 1 and gcd(u, v) = 1. We

obtain p
p+1

2 = |2p−2u p − v p|. Using Fermat’s little theorem we have u p ≡ u
(mod p), v p ≡ v (mod p), and 2p−1 ≡ 1 (mod p), so u ≡ 2v (mod p). From
2uv = p + 1 we get u = 2v and since gcd(u, v) = 1, this gives v = 1 and p = 3.
This leads to t2 = 145, a contradiction.

Problem 7.1.3. Let n ≥ 2, a > 0 be integers and p a prime such that a p ≡ 1
(mod pn). Show that if p > 2, then a ≡ 1 (mod pn−1), and if p = 2, then
a ≡ ±1 (mod 2n−1).

(1995 UNESCO Mathematical Contest)

Solution. We have a p ≡ 1 (mod pn) with n ≥ 2, so a p ≡ 1 (mod p). But from
Fermat’s little theorem, a p ≡ a (mod p); hence a ≡ 1 (mod p). For a = 1, the
result is obvious; otherwise, put a = 1 + kpd , where d ≥ 1 and p � k. Expanding
a p = (1 + kpd)p using the binomial theorem and using the fact that

( p
m

)
is a

multiple of p for 1 ≤ m ≤ p−1, we see that for p > 2, a p = 1+kpd+1+Mp2d+1

for M an integer. Therefore d +1 ≥ n, and so a ≡ 1 (mod pn−1). In case p = 2,
we have 2n | a2 − 1 = (a − 1)(a + 1). Since these differ by 2, both cannot be
multiples of 4. Hence either a + 1 or a − 1 is divisible by 2n−1, i.e., a ≡ ±1
(mod 2n−1), as desired.

Problem 7.1.4. Find the smallest integer n such that among any n integers, with
repetition allowed, there exist 18 integers whose sum is divisible by 18.

(1997 Ukrainian Mathematical Olympiad)

Solution. The minimum is n = 35; the 34-element collection of 17 zeros and 17
ones shows that n ≥ 35, so it remains to show that among 35 integers, there are 18
whose sum is divisible by 18. In fact, one can show that for any n, among 2n − 1
integers there are n whose sum is divisible by n.
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We prove this claim by induction on n; it is clear for n = 1. If n is composite,
say n = pq, we can assemble collections of p integers whose sum is divisible by
p as long as at least 2p − 1 numbers remain; this gives 2q − 1 collections, and
again by the induction hypothesis, some q of these have sum divisible by q.

Now suppose n = p is prime. The number x is divisible by p if and only if
x p−1 �≡ 1 (mod p). Thus if the claim is false, then the sum of (a1 +· · ·+ap)

p−1

over all subsets {a1, . . . , ap} of the given numbers is congruent to
(2p−1

p−1

) ≡ 1

(mod p). On the other hand, the sum of ae1
1 · · · a

ep
p for e1 + · · · + ep ≤ p − 1

is always divisible by p: if k ≤ p − 1 of the ei are nonzero, then each product
is repeated

(2p−1−k
p−k

)
times, and the latter is a multiple of p. This contradiction

shows that the claim holds in this case. (Note: to solve the original problem, of
course, it suffices to prove the cases p = 2, 3 directly.)

Remark. The fact that for any n, among 2n − 1 integers there are n whose sum is
divisible by n is a famous theorem of Erdős and Ginzburg.

Problem 7.1.5. Several integers are given (some of them may be equal) whose
sum is equal to 1492. Decide whether the sum of their seventh powers can equal

(a) 1996;
(b) 1998.

(1997 Czech–Slovak Match)

Solution. (a) Consider a set of 1492 1’s, 4 2’s, and 8 −1’s. Their sum is 1492, and
the sum of their seventh powers is 1492(1) + 4(128) + 8(−1) = 1996.

(b) By Fermat’s little theorem, x7 ≡ x (mod 7). Thus, the sum of the num-
bers’ seventh powers must be congruent to the sum of the numbers modulo 7. But
1998 �≡ 1492 (mod 7), so the numbers’ seventh powers cannot add up to 1998.

Problem 7.1.6. Find the number of integers n > 1 for which the number a25 − a
is divisible by n for each integer a.

(1995 Bulgarian Mathematical Olympiad)

Solution. Let n have the required property. Then p2 (p prime) cannot divide n,
since p2 does not divide p25−p. Hence n is the product of distinct prime numbers.
On the other hand, 225 − 2 = 2 · 32 · 5 · 7 · 13 · 17 · 241. But n is not divisible
by 17 or 241, since 325 ≡ −3 (mod 17) and 325 ≡ 32 (mod 241). Fermat’s little
theorem implies that a25 ≡ a (mod p) when p = 2, 3, 5, 7, 13. Thus n should
be equal to the divisors of 2 · 3 · 5 · 7 · 13 that are different from 1, and there are
25 − 1 = 31 of them.

Problem 7.1.7. (a) Find all positive integers n such that 7 divides 2n − 1.
(b) Prove that for any positive integer n the number 2n +1 cannot be divisible

by 7.

(6th International Mathematical Olympiad)
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Solution. Fermat’s little theorem gives

26k ≡ 1 (mod 7).

It follows from the divisibility 7 | (23k − 1)(23k + 1) that 23k ≡ 1 (mod 7),
since 23k + 1 = 8k + 1 ≡ 2 (mod 7). Hence all numbers n that are divisible by
3 answer the question.

Let n = 3k + r , where r = 1 or r = 2. Then

2n ≡ 23k+r ≡ (23)k · 2r = 2 or 4 (mod 7).

Hence, we cannot obtain 2n ≡ −1 (mod 7).

Problem 7.1.8. Consider the sequence a1, a2, . . . defined by

an = 2n + 3n + 6n − 1 (n = 1, 2, . . . ).

Determine all positive integers that are relatively prime to every term of the
sequence.

(46th International Mathematical Olympiad)

Solution. If p > 3, then 2p−2 + 3p−2 + 6p−2 ≡ 1 (mod p). To see this, multiply
both sides by 6 to get

3 · 2p−1 + 2 · 3p−1 + 6p−1 ≡ 6 (mod p),

which is a consequence of Fermat’s little theorem. Therefore p divides ap−2.
Also, 2 divides a1 and 3 divides a2. So, there is no number other than 1 that is
relatively prime to all the terms in the sequence.

Problem 7.1.9. Prove that the sequence {2n − 3 | n = 2, 3, . . . } contains a
subsequence whose members are all relatively prime.

(13th International Mathematical Olympiad)

Solution. We use induction. The numbers 22 − 3, 23 − 3, 24 − 3 are pairwise rel-
atively prime numbers. We shall prove that if n1, n2, . . . , nk are positive integers
such that the members of the sequence

2n1 − 3, 2n2 − 3, . . . , 2nk − 3 (1)

are relatively prime to each other, then there exists nk+1 such that 2nk+1 − 3 is
relatively prime to each number of the sequence (1).

Let {p1, p2, . . . , pr } be the set of all prime divisors of numbers from the se-
quence (1). Then p1, p2, . . . , pr are odd prime numbers, and by Fermat’s little
theorem,

2pi −1 ≡ 1 (mod pi ).



134 I Fundamentals, 7. More on Divisibility

It follows that

2(p1−1)(p2−1)···(pr −1) ≡ 1 (mod pi ), ∀ i = 1, . . . , r.

Let nk+1 = ∏r
i=1(pi − 1). We shall prove that 2ni − 3 and 2nk+1 − 3 are

relatively prime for all i = 1, . . . , r . Let p be a common prime divisor of 2ni −
3 and 2nk+1 − 3. Then 2nk+1 − 3 ≡ 1 − 3 (mod p) ≡ 0 (mod p); this is a
contradiction.

Problem 7.1.10. Let p ≥ 2 be a prime number such that 3 | (p − 2). Let

S = {y2 − x3 − 1 | x and y are integers, 0 ≤ x, y ≤ p − 1}.
Prove that at most p elements of S are divisible by p.

(1999 Balkan Mathematical Olympiad)

First solution. We need the following lemma.

Lemma. Given a prime p and a positive integer k > 1, if k and p−1 are relatively
prime, then xk ≡ yk (mod p) ⇒ x ≡ y (mod p) for all x, y.

Proof. If y ≡ 0 (mod p) the claim is obvious. Otherwise, note that xk ≡ yk ⇒
(xy−1)k ≡ 1 (mod p), so it suffices to prove that ak ≡ 1 (mod p) ⇒ a ≡ 1
(mod p).

Because gcd(p − 1, k) = 1, there exist integers b and c such that b(p −
1) + ck = 1. Thus, ak ≡ 1 (mod p) ⇒ ac ≡ 1 (mod p) ⇒ a1−b(p−1) ≡
1 (mod p). If a = 0 this is impossible. Otherwise, by Fermat’s little theorem,
(a−b)p−1 ≡ 1 (mod p), so that a ≡ 1 (mod p), as desired.

Alternatively, again note that clearly a �≡ 0 (mod p). Then let d be the order
of a, the smallest positive integer such that ad ≡ 1 (mod p); we have d | k.
Take the set {1, a, a2, . . . , ad−1}. If it does not contain all of 1, 2, . . . , p − 1 then
pick some other element b and consider the set {b, ba, ba2, . . . , bad−1}. These
two sets are disjoint, because otherwise bai ≡ a j ⇒ b ≡ a j−1 (mod p),
a contradiction. Continuing similarly, we can partition {1, 2, . . . , p − 1} into d-
element subsets, and hence d | p − 1. However, d | k and gcd(k, p − 1) = 1,
implying that d = 1. Therefore a ≡ ad ≡ 1 (mod p), as desired.

Because 3 | p − 2, gcd(3, p − 1) = 1. Then from the claim, it follows that the
set of elements {13, 23, . . . , p3} equals {1, 2, . . . , p} modulo p. Hence, for each
y with 0 ≤ y ≤ p − 1, there is exactly one x between 0 and p − 1 such that
x3 ≡ y2 − 1 (mod p), that is, such that p | y2 − x3 − 1. Therefore S contains at
most p elements divisible by p, as desired.

Second solution. Note that applying Fermat’s little theorem repeatedly, we get
that for p prime, am(p−1)+1 ≡ a (mod p). Since gcd(k, p−1) = 1 by the lemma
from Problem 1.3.2, there are positive integers a and b with ak − b(p − 1) = 1 or
ak = b(p − 1)+ 1. Since xk ≡ yk (mod p), we have xak ≡ yak (mod p). Since
xak = xb(p−1)+1 ≡ x (mod p), and similarly for y, we conclude that x ≡ y
(mod p).
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Additional Problems

Problem 7.1.11. Let 3n − 2n be a power of a prime for some positive integer n.
Prove that n is a prime.

Problem 7.1.12. Let f (x1, . . . , xn) be a polynomial with integer coefficients of
total degree less than n. Show that the number of ordered n-tuples (x1, . . . , xn)

with 0 ≤ xi ≤ 12 such that f (x1, . . . , xn) ≡ 0 (mod 13) is divisible by 13.

(1998 Turkish Mathematical Olympiad)

Problem 7.1.13. Find all pairs (m, n) of positive integers, with m, n ≥ 2, such
that an − 1 is divisible by m for each a ∈ {1, 2, . . . , n}.

(2001 Romanian International Mathematical Olympiad Team Selection Test)

Problem 7.1.14. Let p be a prime and b0 an integer, 0 < b0 < p. Prove that
there exists a unique sequence of base-p digits b0, b1, b2, . . . , bn, . . . with the
following property: If the base-p representation of a number x ends in the group
of digits bnbn−1 . . . b1b0, then so does the representation of x p.

Problem 7.1.15. Determine all integers n > 1 such that 2n+1
n2 is an integer.

(31st International Mathematical Olympiad)

Problem 7.1.16. Prove that for any n > 1 we cannot have n | 2n−1 + 1.

(Sierpiński)

Problem 7.1.17. Prove that for any natural number n, n! is a divisor of

n−1∏
k=0

(2n − 2k).

7.2 Euler’s Theorem

Theorem 7.2.1. (Euler’s theorem) Let a and n be relatively prime positive inte-
gers. Then aϕ(n) ≡ 1 (mod n).

Proof. Consider the set S = {a1, a2, . . . , aϕ(n)} consisting of all positive integers
less than n that are relatively prime to n. Because gcd(a, n) = 1, it follows that
aa1, aa2, . . . , aaϕ(n) is a permutation of a1, a2, . . . , aϕ(n). Then

(aa1)(aa2) · · · (aaϕ(n)) ≡ a1a2 · · · aϕ(n) (mod n).

Using that gcd(ak, n) = 1, k = 1, 2, . . . , ϕ(n), the conclusion now follows.
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Remark. Euler’s theorem also follows from Fermat’s little theorem. Indeed, let
n = pα1

1 · · · pαk
k be the prime factorization of n. We have a pi −1 ≡ 1 (mod pi );

hence a pi (p1−1) ≡ 1 (mod p2
i ), a p2

i (pi −1) ≡ 1 (mod p3
i ), . . . , a p

αi −1
i (pi −1) ≡ 1

(mod pαi
i ). That is, aϕ(p

αi
i ) ≡ 1 (mod pαi

i ), i = 1, . . . , k. Applying this property
to each prime factor, the conclusion follows.

Problem 7.2.1. Prove that for any positive integer s, there is a positive integer n
whose sum of digits is s and s | n.

(Sierpiński)

Solution. If gcd(s, 10) = 1 then let n = 10sϕ(s) + 10(s−1)ϕ(s) + · · · + 10ϕ(s). It is
clear that the sum of digits of n is s and that

n = (10sϕ(s) − 1) + (10(s−1)ϕ(s) − 1) + · · · + (10ϕ(s) − 1) + s

is divisible by s, by Euler’s theorem.
If gcd(s, 10) > 1, then let s = 2a5bt with gcd(t, 10) = 1 and take n =

10a+b(10sϕ(t) + 10(s−1)ϕ(t) + · · · + 10ϕ(t)).

Remark. The integers divisible by the sum of its digits are called Niven numbers.
For some information about these numbers see the remark after Problem 4.2.12.

Problem 7.2.2. Let n > 3 be an odd integer with prime factorization n =
pα1

1 · · · pαk
k (each pi is prime). If

m = n

(
1 − 1

p1

) (
1 − 1

p2

)
· · ·

(
1 − 1

pk

)
,

prove that there is a prime p such that p divides 2m − 1, but does not divide m.

(1995 Iranian Mathematical Olympiad)

Solution. Because m = ϕ(n) is Euler’s phi function and n is odd, we know by
Euler’s theorem that n divides 2m − 1. We consider two cases.

First let n = pr > 3 for some odd prime p. Then m = pr − pr−1 is even and
m ≥ 4. Since p divides

2m − 1 = (2m/2 − 1)(2m/2 + 1),

is must also divide one of the factors on the right. Any prime divisor of the other
factor (note that this factor exceeds 1) will also divide 2m − 1 but will not divide
n = pr .

If n has at least two distinct prime factors, then m ≡ 0 (mod 4) and p −
1 divides m/2 for each prime factor of n. Hence, by Fermat’s theorem, p also
divides 2m/2 − 1. It follows that no prime factor of n divides 2m/2 + 1. Hence any
prime factor of 2m/2 + 1 is a factor of 2m − 1 but not a factor of n.
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Problem 7.2.3. Let a > 1 be an integer. Show that the set

{a2 + a − 1, a3 + a2 − 1, . . . }
contains an infinite subset any two members of which are relatively prime.

(1997 Romanian International Mathematical Olympiad Team Selection Test)

Solution. We show that any set of n elements of the set that are pairwise coprime
can be extended to a set of n+1 elements. For n = 1, note that any two consecutive
terms in the sequence are relatively prime. For n > 1, let N be the product of the
numbers in the set so far; then aϕ(N )+1 + aϕ(N ) − 1 ≡ a (mod N ), and so this
number can be added (since every element of the sequence is coprime to a, N is
as well).

Problem 7.2.4. Let m and n be integers greater than 1 such that gcd(m, n − 1) =
gcd(m, n) = 1. Prove that the first m −1 terms of the sequence n1, n2, . . . , where
n1 = mn + 1 and nk+1 = n · nk + 1, k ≥ 1, cannot all be primes.

Solution. It is straightforward to show that

nk = nkm + nk−1 + · · · + n + 1 = nkm + nk − 1

n − 1

for every positive integer k. Hence

nϕ(m) = nϕ(m) · m + nϕ(m) − 1

n − 1
.

From Euler’s theorem, m | (nϕ(m)−1), and since gcd(m, n−1) = 1, it follows
that

m | nϕ(m) − 1

n − 1
.

Consequently, m divides nϕ(m). Because ϕ(m) ≤ m − 1, nϕ(m) is not a prime,
and we are done.

Additional Problems

Problem 7.2.5. Prove that for every positive integer n, there exists a polynomial
with integer coefficients whose values at 1, 2, . . . , n are distinct powers of 2.

(1999 Hungarian Mathematical Olympiad)

Problem 7.2.6. Let a > 1 be an odd positive integer. Find the least positive integer
n such that 22000 is a divisor of an − 1.

(2000 Romanian International Mathematical Olympiad Team Selection Test)
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Problem 7.2.7. Let n = pr1
1 · · · prk

k be the prime factorization of the positive
integer n and let r ≥ 2 be an integer. Prove that the following are equivalent:

(a) The equation xr ≡ a (mod n) has a solution for every a.
(b) r1 = r2 = · · · = rk = 1 and gcd(pi −1, r) = 1 for every i ∈ {1, 2, . . . , k}.

(1995 UNESCO Mathematical Contest)

7.3 The Order of an Element

Given are the positive integer n > 1 and an integer a such that gcd(a, n) = 1. The
smallest positive integer d for which n | ad − 1 is called the order of a modulo n.
Observe first of all that the definition is well defined, since from Euler’s theorem
we have n | aϕ(n) − 1, so such numbers d indeed exist. In what follows we will
denote by on(a) the order of a modulo n. The following properties hold:

(1) If am ≡ 1 (mod n), then on(a) | m;

(2) on(a) | ϕ(n); if p is a prime, then op(n) | p − 1 for any n.

(3) If al ≡ am (mod n), then l ≡ m (mod on(a)).

In order to prove property (1) let us consider d = on(a). Indeed, because
n | am − 1 and n | ad − 1, we find that n | agcd(m,d) − 1 (see also Proposi-
tion 1.3.4). But from the definition of d it follows that d ≤ gcd(m, d), which
cannot hold unless d | m.

The positive integer a is called a primitive root modulo n if we have
gcd(a, n) = 1 and on(a) = ϕ(n). One can show that there are primitive roots
modulo n if and only if n ∈ {2, 4, pα, 2pα}, where p ≥ 3 is any prime and α is
any positive integer.

Problem 7.3.1. Prove that n | ϕ(an − 1) for all positive integers a, n.

(Saint Petersburg Mathematical Olympiad)

Solution. What is oan−1(a)? It may seem a silly question, since of course
oan−1(a) = n. Using the observation in the introduction, we obtain exactly
n | ϕ(an − 1).

Problem 7.3.2. Prove that any prime factor of the nth Fermat number 22n + 1 is
congruent to 1 modulo 2n+1. Show that there are infinitely many prime numbers
of the form 2nk + 1 for any fixed n.

Solution. Let us consider a prime p such that p | 22n + 1. Then p | 22n+1 − 1
and consequently op(2) | 2n+1. This ensures the existence of a positive integer
k ≤ n +1 such that op(2) = 2k . We will prove that in fact k = n +1. The proof is
easy. Indeed, if this is not the case, then op(2) | 2n and so p | 2op(2) − 1 | 22n − 1.
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But this is impossible, since p | 22n + 1 and p is odd. Therefore, we have found
that op(2) = 2n+1 and we have to prove that op(2) | p − 1 to finish the first part
of the question. But this follows from the introduction.

The second part is a direct consequence of the first. Indeed, it is enough to
prove that there exists an infinite set of Fermat numbers (22nk + 1)nk>a any two
relatively prime. Then we could take a prime factor of each such Fermat number
and apply the first part to obtain that each such prime is of the form 2nk + 1.
Not only is it easy to find such a sequence of coprime Fermat numbers, but in
fact any two distinct Fermat numbers are relatively prime. Indeed, suppose that
d | gcd(22n + 1, 22n+k + 1). Then d | 22n+1 − 1 and so d | 22n+k − 1. Combining
this with d | 22n+k +1, we obtain a contradiction. Hence both parts of the problem
are solved.

Problem 7.3.3. For a prime p, let f p(x) = x p−1 + x p−2 + · · · + x + 1.
(a) If p | m, prove that there exists a prime factor of f p(m) that is relatively

prime with m(m − 1).
(b) Prove that there are infinitely many numbers n such that pn + 1 is prime,

for any fixed n.

(2003 Korean International Mathematical Olympiad Team Selection Test)

Solution. Part (a) is straightforward. In fact, we will prove that any prime factor
of f p(m) is relatively prime to m(m−1). Take such a prime divisor q. Because q |
1+m+· · ·+m p−1, it is clear that gcd(q, m) = 1. Moreover, if gcd(q, m−1) �= 1,
then q | m − 1, and because q | 1 + m + · · · + m p−1, it follows that q | p. But
p | m and we find that q | m, which is clearly impossible.

More difficult is (b). But we are tempted to use (a) and to explore the proper-
ties of f p(m), just as in the previous problem. So, let us take a prime q | f p(m) for
a certain positive integer m divisible by p. By part (a), gcd(q, m − 1) = 1. Since
q | m p −1, we must have oq(m) = p and hence q ≡ 1 (mod p). Now we need to
find a sequence (mk)k≥1 of multiples of p such that f p(mk) are pairwise relatively
prime. This is not as easy as in the first example. Anyway, just by trial and error,
it is not difficult to find such a sequence. There are many other approaches, but
we like the following one: take m1 = p and mk = p f (m1) f p(m2) · · · f p(mk−1).
Let us prove that f p(mk) is relatively prime to f p(m1), f p(m2), . . . , f p(mk−1).
Fortunately, this is easy, since f p(m1) f p(m2) · · · f p(mk−1) | f p(mk) − f p(0) =
f p(mk) − 1. The solution ends here.

Problem 7.3.4. Find the smallest number n with the property that

22005 | 17n − 1.

Solution. The problem actually asks for o22005(17). We know that o22005(17) |
ϕ(22005) = 22004, so o22005(17) = 2k , where k ∈ {1, 2, . . . , 2004}. The order
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of an element has done its job. Now it is time to work with exponents. We have
22005 | 172k − 1. Using the factorization

172k − 1 = (17 − 1)(17 + 1)(172 + 1) · · · (172k−1 + 1),

we proceed by finding the exponent of 2 in each factor of this product. But this is
not difficult, because for all i ≥ 0 the number 172t + 1 is a multiple of 2, but not
a multiple of 4. Thus, v2(172k − 1) = 4 + k, and the order is found by solving the
equation k + 4 = 2005. Thus, o22005(17) = 22001 is the answer to the problem.

Problem 7.3.5. Find all prime numbers p, q such that p2 + 1 | 2003q + 1 and
q2 + 1 | 2003p + 1.

Solution. Let us suppose that p ≤ q. We discuss first the trivial case p = 2. In
this case, 5 | 2003q + 1, and it is easy to deduce that q is even; hence q = 2,
which is a solution of the problem. Now, suppose that p > 2 and let r be a prime
factor of p2 + 1. Because r | 20032q − 1, it follows that or (2003) | 2q. Suppose
that (q, or (2003)) = 1. Then or (2003) | 2 and r | 20032 − 1, but we cannot
have r | 2003 − 1, since this would give 2003q ≡ 1 (mod r), contrary to the
hypotheses. Thus r | 2003+1 = 22 ·3 ·167. It seems that this is a dead end, since
there are too many possible values for r . Another simple observation narrows the
number of possible cases: because r | p2 + 1, r must be of the form 4k + 1 or
equal to 2, and now we do not have many possibilities: r ∈ {2, 13}. The case
r = 13 is also impossible, because 2003q + 1 ≡ 2 (mod 13) and r | 2003q + 1.
So, we have found that for any prime factor r of p2 + 1, we have either r = 2
or q | or (2003), which in turn implies q | r − 1. Because p2 + 1 is even but not
divisible by 4 and because any odd prime factor of it is congruent to 1 modulo q ,
we must have p2 + 1 ≡ 2 (mod q). This implies that p2 + 1 ≡ 2 (mod q), that
is, q | (p − 1)(p + 1). Combining this with the assumption that p ≤ q yields
q | p+1 and in fact q = p+1. It follows that p = 2, contradicting the assumption
p > 2. Therefore the only pair is (2, 2).

Additional Problems

Problem 7.3.6. Find all ordered triples of primes (p, q, r) such that

p | qr + 1, q | r p + 1, r | pq + 1.

(2003 USA International Mathematical Olympiad Team Selection Test)

Problem 7.3.7. Find all primes p, q such that pq | 2p + 2q .

Problem 7.3.8. Prove that for any positive integer n ≥ 2, 3n − 2n is not divisible
by n.

Problem 7.3.9. Find all positive integers m, n such that n | 1 + m3n + m2·3n
.

(Bulgarian International Mathematical Olympiad Team Selection Test)
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Problem 7.3.10. Let a, n > 2 be positive integers such that n | an−1 − 1 and n
does not divide any of the numbers ax − 1, where x < n − 1 and x | n − 1. Prove
that n is a prime number.

Problem 7.3.11. Find all prime numbers p, q for which the congruence

α3pq ≡ α (mod 3pq)

holds for all integers α.

(1996 Romanian Mathematical Olympiad)

Problem 7.3.12. Let p be a prime number. Prove that there exists a prime number
q such that for every integer n, the number n p − p is not divisible by q .

(44th International Mathematical Olympiad)

7.4 Wilson’s Theorem

Theorem 7.4.1. (Wilson’s1 theorem) For any prime p, p | (p − 1)! + 1.

Proof. The property holds for p = 2 and p = 3, so we may assume that
p ≥ 5. Let S = {2, 3, . . . , p − 2}. For any h in S, the integers h, 2h, . . . , (p −
1)h yield distinct remainders when divided by p. Hence there is a unique h ′ ∈
{1, 2, . . . , p − 1} such that hh′ ≡ 1 (mod p). Moreover, h′ �= 1 and h′ �= p − 1;
hence h′ ∈ S. In addition, h′ �= h; otherwise, h2 ≡ 1 (mod p), implying p | h−1
or p | h + 1, which is not possible, since h + 1 < p. It follows that we can
group the elements of S in p−3

2 distinct pairs (h, h′) such that hh′ ≡ 1 (mod p).
Multiplying these congruences gives (p − 2)! ≡ 1 (mod p), and the conclusion
follows.

Alternative proof. The property is trivially true when p = 2, so assume that p is
odd. By Fermat’s little theorem, the polynomial x p−1 −1 has for its p −1 distinct
roots modulo p the numbers 1, 2, . . . , p−1. According to Theorem 7.1.1 we have

(x − 1)(x − 2) · · · (x − p + 1) ≡ x p−1 − 1 (mod p).

By setting x = 0 we obtain

(−1)p−1(p − 1)! ≡ −1 (mod p).

Since p − 1 is even, the result follows.

Remark. The converse is true, that is, if n | (n − 1)! + 1 for an integer n ≥ 2,
then n is a prime. Indeed, if n were equal to n1n2 for some integers n1, n2 ≥ 2,
we would have n1 | 1 · 2 · · · n1 · · · (n − 1) + 1, which is not possible.

1John Wilson (1741–1793), English mathematician who published this result without proof. It was
first proved in 1773 by Lagrange, who showed that the converse is also true.
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Problem 7.4.1. If p is an odd prime, then the remainder when (p − 1)! is divided
by p(p − 1) is p − 1.

Solution. We need to show that (p − 1)! ≡ p − 1 (mod p(p − 1)).
From Wilson’s theorem we obtain (p − 1)! − (p − 1) ≡ 0 (mod p). Because

(p − 1)! − (p − 1) ≡ 0 (mod p − 1) and gcd(p, p − 1) = 1, we get

(p − 1)! − (p − 1) ≡ 0 (mod p(p − 1)).

Remark. Generally, if a ≡ b (mod u), a ≡ b (mod v), and gcd(u, v) = 1, then
a ≡ b (mod uv).

Problem 7.4.2. Let p be an odd prime and a1, a2, . . . , ap an arithmetic sequence
whose common difference is not divisible by p. Prove that there is an i ∈ {1, 2,
. . . , p} such that ai + a1a2 · · · ap ≡ 0 (mod p2).

Solution. Note that a1, a2, . . . , ap give distinct remainders when divided by p.
Take i such that ai ≡ 0 (mod p). It follows that

a1a2 · · · ap

ai
≡ (p − 1)! (mod p).

From Wilson’s theorem, we have (p−1)! ≡ −1 (mod p), and the conclusion
follows.

Problem 7.4.3. Let a and n be positive integers such that n ≥ 2 and gcd(a, n) =
1. Prove that

an−1 + (n − 1)! ≡ 0 (mod n)

if and only if n is a prime.

Solution. If n is a prime, the conclusion follows from Fermat’s little theorem and
Wilson’s theorem.

For the converse, assume by way of contradiction that n = n1n2, where n1 ≥
n2 ≥ 2.

Because n | an−1 + (n − 1)!, it follows that n1 | an−1 + (n − 1)!, that is,
n1 | an−1, contradicting the hypothesis gcd(a, n) = 1.

Problem 7.4.4. (1) If p is a prime, then for any positive integer n < p,

(n − 1)!(p − n)! ≡ (−1)n (mod p).

(2) If p is a prime, then
(p−1

k

) ≡ (−1)k (mod p) for all k = 0, 1, . . . ,
p − 1.

Solution. (1) The property is obvious for p = 2, so assume that p is odd. From
Wilson’s theorem, (p − 1)! ≡ −1 (mod p); hence

(n − 1)!n(n + 1) · · · (p − 1) ≡ −1 (mod p).
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This is equivalent to

(n − 1)!(p − (p − n))(p − (p − n − 1)) · · · (p − 1) ≡ −1 (mod p).

But p − k ≡ −k (mod p), k = 1, 2, . . . , p − n; hence

(n − 1)!(−1)p−n(p − n)! ≡ −1 (mod p),

and taking into account that p is odd, the conclusion follows.
(2) We have (

p − 1

k

)
= (p − 1)!

k!(p − k − 1)! ,

hence k!(p − k − 1)!(p−1
k

) = (p − 1)! ≡ −1 (mod p). Applying the result in
(1) for n = k + 1, it follows that k!(p − k − 1)! ≡ (−1)k+1 (mod p) and we are
done.

Additional Problems

Problem 7.4.5. Let p be an odd prime. Prove that

12 · 32 · · · (p − 2)2 ≡ (−1)
p+1

2 (mod p)

and
22 · 42 · · · (p − 1)2 ≡ (−1)

p+1
2 (mod p).

Problem 7.4.6. Show that there do not exist nonnegative integers k and m such
that k! + 48 = 48(k + 1)m .

(1996 Austrian–Polish Mathematics Competition)

Problem 7.4.7. For each positive integer n, find the greatest common divisor of
n! + 1 and (n + 1)!.

(1996 Irish Mathematical Olympiad)

Problem 7.4.8. Let p ≥ 3 be a prime and let σ be a permutation of {1, 2, . . . ,
p − 1}. Prove that there are i �= j such that p | iσ(i) − jσ( j).

(1986 Romanian International Mathematical Olympiad Team Selection Test)
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Diophantine Equations

8.1 Linear Diophantine Equations

An equation of the form

a1x1 + · · · + an xn = b, (1)

where a1, a2, . . . , an, b are fixed integers, is called a linear Diophantine1 equa-
tion. We assume that n ≥ 1.

The main result concerning linear Diophantine equations is the following:

Theorem 8.1.1. Equation (1) is solvable if and only if

gcd(a1, . . . , an) | b.

In case of solvability, one can choose n − 1 solutions such that any solution is
a integer linear combination of those n − 1.

Proof. Let d = gcd(a1, . . . , an). If b is not divisible by d, then (1) is not solvable,
since for any integers x1, . . . , xn the left-hand side of (1) is divisible by d and the
right-hand side is not.

Actually, we need to prove that gcd(x1, x2, . . . , xn) is a linear combination
with integer coefficients of x1, x2, . . . , xn . For n = 2 this follows from Proposi-
tion 1.3.1. Since

gcd(x1, . . . , xn) = gcd(gcd(x1, . . . , xn−1), xn),

we obtain that gcd(x1, . . . , xn) is a linear combination of xn and gcd(x1, . . . ,
xn−1); thus by the induction hypothesis, it is a linear combination of x1, . . . ,

xn−1, xn . �
1Diophantus of Alexandria (ca. 200–284), Greek mathematician sometimes known as “the father

of algebra” who is best known for his book Arithmetica. This book had an enormous influence on the
development of number theory.

© Birkhäuser Boston, a part of Springer Science + Business Media, LLC 2009
T. Andreescu and D. Andrica, Number Theory, DOI: 10.1007/b11856_8, 145
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Corollary 8.1.2. Let a1, a2 be relatively prime integers. If (u, v) is a solution to
the equation

a1x1 + a2x2 = b, (2)

then all of its solutions are given by{
x1 = u + a2t,
x2 = v − a1t,

(3)

where t ∈ Z.

Example. Solve the equation

3x + 4y + 5z = 6.

Solution. Working modulo 5, we have 3x + 4y ≡ 1 (mod 5); hence

3x + 4y = 1 + 5s, s ∈ Z.

A solution to this equation is x = −1+3s, y = 1− s. Applying (3) we obtain
x = −1 + 3s + 4t , y = 1 − s − 3t , t ∈ Z, and substituting back into the original
equation yields z = 1 − s. Hence all solutions are

(x, y, z) = (−1 + 3s + 4t, 1 − s − 3t, 1 − s), s, t ∈ Z.

Problem 8.1.1. Solve in nonnegative integers the equation

x + y + z + xyz = xy + yz + zx + 2.

Solution. We have

xyz − (xy + yz + zx) + x + y + z − 1 = 1,

and consequently,
(x − 1)(y − 1)(z − 1) = 1.

Because x, y, z are nonnegative integers, we obtain

x − 1 = y − 1 = z − 1 = 1,

so x = y = z = 2.

Problem 8.1.2. Find all triples (x, y, z) of integers such that

x2(y − z) + y2(z − x) + z2(x − y) = 2.

Solution. The equation is equivalent to

(x − y)(x − z)(y − z) = 2.
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Observe that (x − y) + (y − z) = x − z. On the other hand, 2 can be written
as a product of three integers in the following ways:

(i) 2 = (−1) · (−1) · 2,
(ii) 2 = 1 · 1 · 2,

(iii) 2 = (−1) · 1 · (−2).
Since in the first case no two factors add up to the third, we have only three

possibilities up to cyclic rotation:

(a)

⎧⎨
⎩

x − y = 1
x − z = 2
y − z = 1

, so (x, y, z) = (k + 1, k, k − 1) for some integer k;

(b)

⎧⎨
⎩

x − y = −2
x − z = −1
y − z = 1

, so (x, y, z) = (k − 1, k + 1, k) for some integer k;

(c)

⎧⎨
⎩

x − y = 1
x − z = −1
y − z = −2

, so (x, y, z) = (k, k − 1, k + 1) for some integer k.

Problem 8.1.3. Let p and q be prime numbers. Find all positive integers x and y
such that

1

x
+ 1

y
= 1

pq
.

Solution. The equation is equivalent to

(x − pq)(y − pq) = p2q2.

We have the cases:
(1) x − pq = 1, y − pq = p2q2, so x = 1 + pq, y = pq(1 + pq).
(2) x − pq = p, y − pq = pq2, so x = p(1 + q), y = pq(1 + q).
(3) x − pq = q, y − pq = p2q, so x = q(1 + p), y = pq(1 + p).
(4) x − pq = p2, y − pq = q2, so x = p(p + q), y = q(p + q).
(5) x − pq = pq, y − pq = pq, so x = 2pq, y = 2pq .

The equation is symmetric, so we have also:
(6) x = pq(1 + pq), y = 1 + pq.
(7) x = pq(1 + q), y = p(1 + q).
(8) x = pq(1 + p), y = q(1 + p).
(9) x = q(1 + q), y = p(p + q).

Additional Problems

Problem 8.1.4. Solve in integers the equation

(x2 + 1)(y2 + 1) + 2(x − y)(1 − xy) = 4(1 + xy).
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Problem 8.1.5. Determine the side lengths of a right triangle if they are integers
and the product of the legs’ lengths equals three times the perimeter.

(1999 Romanian Mathematical Olympiad)

Problem 8.1.6. Let a, b, and c be positive integers each two of them being rel-
atively prime. Show that 2abc − ab − bc − ca is the largest integer that cannot
be expressed in the form xbc + yca + zab, where x, y, and z are nonnegative
integers.

(24th International Mathematical Olympiad)

8.2 Quadratic Diophantine Equations

8.2.1 The Pythagorean Equation

One of the most celebrated Diophantine equations is the so-called Pythagorean
equation

x2 + y2 = z2. (1)

Studied in detail by Pythagoras2 in connection with right-angled triangles whose
side lengths are all integers, this equation was known even to the ancient Babylo-
nians.

Note first that if the triple of integers (x0, y0, z0) satisfies equation (1), then
all triples of the form (kx0, ky0, kz0), k ∈ Z, also satisfy (1). That is why it is
sufficient to find solutions (x, y, z) to (1) with gcd(x, y, z) = 1. This is equivalent
to the condition that x, y, z be pairwise relatively prime, since any prime that
divides two of x, y, z also divides the third.

A solution (x0, y0, z0) to (1) where x0, y0, z0 are pairwise relatively prime is
called a primitive solution.

Theorem 8.2.1. Any primitive solution (x, y, z) in positive integers to equation
(1) up to the symmetry of x and y is of the form

x = m2 − n2, y = 2mn, z = m2 + n2, (2)

where m and n are relatively prime positive integers such that m > n and m �≡ n
(mod 2) (i.e., exactly one is odd).

Proof. The identity

(m2 − n2)2 + (2mn)2 = (m2 + n2)2

2Pythagoras of Samos (ca. 569–475 B.C.E.), Greek philosopher who made fundamental devel-
opments in mathematics, astronomy, and the theory of music. The theorem now known as the
Pythagorean theorem was known to the Babylonians 1000 years earlier, but Pythagoras may have
been the first to prove it.
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shows that the triple given by (2) is indeed a solution to equation (1) and y is even.
The integers x and y cannot be both odd, for otherwise

z2 = x2 + y2 ≡ 2 (mod 4),

a contradiction. Hence exactly one of the integers x and y is even.
Assume that m is odd and n is even. If gcd(x, y, z) = d ≥ 2, then d divides

2m2 = (m2 + n2) + (m2 − n2)

and d divides
2n2 = (m2 + n2) − (m2 − n2).

Since m and n are relatively prime, it follows that d = 2. Hence m2 + n2 is
even, in contradiction to the fact that exactly one of m and n is odd. It follows that
d = 1, so the solution (2) is primitive.

Conversely, let (x, y, z) be a primitive solution to (1) with y = 2a. Then
x and z are odd, and consequently the integers z + x and z − x are even. Let
z + x = 2b and z − x = 2c. We may assume that b and c are relatively prime,
for otherwise z and x would have a nontrivial common divisor. On the other hand,
4a2 = y2 = z2 − z2 = (z + x)(z − x) = 4bc, i.e., a2 = bc. Since b and c are
relatively prime, it follows that b = m2 and c = n2 for some positive integers m
and n with m + n odd. We obtain

x = b − c = m2 − n2, y = 2mn, z = b + c = m2 + n2. �

A triple (x, y, z) of the form (2) is called a Pythagorean triple.
In order to list systematically all the primitive solutions to equation (1) with

(2) giving a primitive Pythagorean triple, we assign values 2, 3, 4, . . . for the
number m successively, and then for each of these values we take those integers
n that are relatively prime to m, less than m, and even whenever m is odd.

Here is the table of the first twenty primitive solutions listed according to the
above-mentioned rule.

m n x y z area m n x y z area
2 1 3 4 5 6 7 6 13 84 85 546
3 2 5 12 13 30 8 1 63 16 65 504
4 1 15 8 17 60 8 3 55 48 73 1320
4 3 7 24 25 84 8 5 39 80 89 1560
5 2 21 20 29 210 8 7 15 112 113 840
5 4 9 40 41 180 9 2 77 36 85 1386
6 1 35 12 37 210 9 4 65 72 97 2340
6 5 11 60 61 330 9 8 17 144 145 1224
7 2 45 28 53 630 10 1 99 20 101 990
7 4 33 56 65 924 10 3 91 60 109 2730
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Corollary 8.2.2. The general integral solution to (1) is given by

x = k(m2 − n2), y = 2kmn, z = k(m2 + n2), (3)

where k, m, n ∈ Z.

Problem 8.2.1. Solve the following equation in positive integers:

x2 + y2 = 1997(x − y).

(1998 Bulgarian Mathematical Olympiad)

Solution. The solutions are

(x, y) = (170, 145) or (1827, 145).

We have

x2 + y2 = 1997(x − y),

2(x2 + y2) = 2 · 1997(x − y),

x2 + y2 + (x2 + y2 − 2 · 1997(x − y)) = 0,

(x + y)2 + ((x − y)2 − 2 · 1997(x − y)) = 0,

(x + y)2 + (1997 − x + y)2 = 19972.

Since x and y are positive integers, 0 < x +y < 1997 and 0 < 1997−x +y <

1997. Thus the problem reduces to solving a2 + b2 = 19972 in positive integers.
Since 1997 is a prime, gcd(a, b) = 1. By Pythagorean substitution, there are
positive integers m > n such that gcd(m, n) = 1 and

1997 = m2 + n2, a = 2mn, b = m2 − n2.

Since m2, n2 ≡ 0, 1, −1 (mod 5) and 1997 ≡ 2 (mod 5), we have m, n ≡
±1 (mod 5). Since m2, n2 ≡ 0, 1 (mod 3) and 1997 ≡ 2 (mod 3), we have
m, n ≡ ±1 (mod 3). Therefore m, n ≡ 1, 4, 11, 14 (mod 15). Since m > n,
1997/2 ≤ m2 ≤ 1997. Thus we need to consider only m = 34, 41, 44. The only
solution is (m, n) = (34, 29). Thus

(a, b) = (1972, 315),

which leads to our two solutions.

Problem 8.2.2. Let p, q, r be primes and let n be a positive integer such that

pn + qn = r2.

Prove that n = 1.
(2004 Romanian Mathematical Olympiad)
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Solution. Assume that n ≥ 2 satisfies the relation in the problem. Clearly one of
the primes p, q, and r is equal to 2. If r = 2 then pn + qn = 4, false, so assume
that p > q = 2.

Consider the case that n > 1 is odd; we have

(p + 2)(pn−1 − 2pn−2 + 22 pn−3 − · · · + 2n−1) = r2.

Notice that

pn−1 − 2pn−2 + 22 pn−3 − · · · + 2n−1

= 2n−1 + (p − 2)(pn−2 + 22 pn−4 + · · · + 1) > 1

and p + 2 > 1 hence both factors are equal to r . This can be written as pn + 2n =
(p + 2)2 = p2 + 4p + 4, which is false for n ≥ 3.

Consider the case that n > 1 is even and let n = 2m. From Theorem 8.2.1 it
follows that pm = a2 − b2, 2m = 2ab and r = a2 + b2, for some integers a, b
with (a, b) = 1. Therefore, a and b are powers of 2, so b = 1 and a = 2m−1.
This implies pm = 4m−1 − 1 < 4m , so p must be equal to 3. The equality
3m = 4m−1 − 1 fails for m = 1 and also for m ≥ 2, since 4m−1 > 3m + 1, by
induction.

Consequently n = 1. For example, in this case we can take p = 23, q = 2,
and r = 5.

Additional Problems

Problem 8.2.3. Find all Pythagorean triangles whose areas are numerically equal
to their perimeters.

Problem 8.2.4. Prove that for every positive integer n there is a positive integer k
such that k appears in exactly n nontrivial Pythagorean triples.

(American Mathematical Monthly)

Problem 8.2.5. Find the least perimeter of a right-angled triangle whose sides and
altitude are integers.

(Mathematical Reflections)

8.2.2 Pell’s Equation

A special quadratic equation is

u2 − Dv2 = 1, (1)

where D is a positive integer that is not a perfect square. Equation (1) is called
Pell’s3 equation, and it has numerous applications in various fields of mathemat-

3John Pell (1611–1685), English mathematician best known for Pell’s equation, which in fact he
had little to do with.
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ics. We will present an elementary approach to solving this equation, due to La-
grange.

Theorem 8.2.3. If D is a positive integer that is not a perfect square, then equa-
tion (1) has infinitely many solutions in positive integers, and the general solution
is given by (un, vn)n≥1,

un+1 = u1un + Dv1vn, vn+1 = v1un + u1vn, (2)

where (u1, v1) is its fundamental solution, i.e., the minimal solution different from
(1, 0).

Proof. First, we will prove that equation (1) has a fundamental solution.
Let c1 be an integer greater than 1. We will show that there exist integers

t1, w1 ≥ 1 such that

∣∣t1 − w1
√

D
∣∣ <

1

c1
, w1 ≤ c1.

Indeed, considering lk = [k√
D+1], k = 0, 1, . . . , c1, yields 0 < lk−k

√
D ≤

1, k = 0, 1, . . . , c1, and since
√

D is an irrational number, it follows that lk′ �= lk′′
whenever k ′ �= k′′.

There exist i, j, p ∈ {0, 1, 2, . . . , c1}, i �= j , p �= 0, such that

p − 1

c1
< li − i

√
D ≤ p

c1
and

p − 1

c1
< l j − j

√
D ≤ p

c1

because there are c1 intervals of the form
( p−1

c1
,

p
c1

)
, p = 0, 1, . . . , c1, and c1 + 1

numbers of the form lk − k
√

D, k = 0, 1, . . . , c1.
Assume j > i and note that l j > li .
From the inequalities above it follows that |(lk − li ) − ( j − i)

√
D| < 1

c1
, and

setting |l j − li | = t1 and | j − i | = w1 yields |t1 − w1
√

D| < 1
c1

and w1 ≤ c1.

Multiplying this inequality by t1 + w1
√

D < 2w1
√

D + 1 gives

|t2
1 − Dw2

1| < 2
w1

c1

√
D + 1

c1
< 2

√
D + 1.

Choosing a positive integer c2 > c1 such that |t1 − w1
√

D| > 1
c2

, we obtain
positive integers t2, w2 with the properties

|t2
2 − Dw2

2| < 2
√

D + 1 and |t1 − t2| + |w1 − w2| �= 0.

By continuing this procedure, we obtain a sequence of distinct pairs (tn, wn)n≥1
satisfying the inequalities |t2

n − Dw2
n| < 2

√
D + 1 for all positive integers n.

It follows that the interval (−2
√

D − 1, 2
√

D + 1) contains a nonzero integer k
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such that there exists a subsequence of (tn, wn)n≥1 satisfying the equation t2 −
Dw2 = k. This subsequence contains at least two pairs (ts, ws), (tr , wr ) for which
ts ≡ tr (mod k), ws ≡ wr (mod k), and tswr − trws �= 0, otherwise ts = tr and
ws = wr , in contradiction to |ts − tr | + |ws − wr | �= 0.

Let t0 = ts tr − Dwswr and let w0 = tswr − trws . Then

t2
0 − Dw2

0 = k2. (3)

On the other hand, t0 = ts tr − Dwswr ≡ t2
s − Dw2

0 ≡ 0 (mod k), and it
follows immediately that w0 ≡ 0 (mod k). The pair (t, w), where t0 = t |k| and
w0 = wk, is a nontrivial solution to equation (1).

We show now that the pair (un, vn) defined by (2) satisfies Pell’s equation (1).
We proceed by induction with respect to n. By definition, (u1, v1) is a solution to
equation (1). If (un, vn) is a solution to this equation, then

u2
n+1 − Dv2

n+1 = (u1un + Dv1vn)
2 − D(v1un + u1vn)2

= (u2
1 − Dv2

1)(u
2
n − Dv2

n) = 1,

i.e., the pair (un+1, vn+1) is also a solution to equation (1).
It is not difficult to see that for all positive integers n,

un + vn
√

D = (u1 + v1
√

D)n. (4)

Let zn = un + vn
√

D = (u1 + v1
√

D)n and note that z1 < z2 < · · · <

zn < · · · . We will prove now that all solutions to equation (1) are of the form
(4). Indeed, if equation (1) had a solution (u, v) such that z = u + v

√
D is

not of the form (4), then zm < z < zm+1 for some integer m. Also, we have
1/zm = um − vm

√
D. Then 1 < (u + v

√
D)(um − vm

√
D) < u1 + v1

√
D,

and therefore 1 < (uum − Dvvm) + (umv − uvm)
√

D < u1 + v1
√

D. On the
other hand, (uum − Dvvm)2 − D(umv − uvm)2 = (u2 − Dv2)(u2

m − Dv2
m) = 1,

i.e., (uum − Dvvm, umv − uvm) is a solution of (1) smaller than (u1, v1), in
contradiction to the assumption that (u1, v1) was the minimal one.

In order to complete the proof we have only to show that a = uum − Dvvm

and b = umv − uvm are positive. We have 1 < a + b
√

D and a2 − Db2 = 1;
hence 0 < 1/(a + b

√
D) = a − b

√
D < 1. Now we obtain

a = 1

2
(a + b

√
D) + 1

2
(a − b

√
D) >

1

2
+ 0 > 0,

b
√

D = 1

2
(a + b

√
D) − 1

2
(a − b

√
D) >

1

2
− 1

2
= 0,

so a, b are positive integers. �
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Remarks. (1) The identity um + vm
√

D = (u1 + v1
√

D)m , m = 0, 1, 2, . . . ,
shows how the fundamental solution generates all solutions.

(2) The relations (1) could be written in the following useful matrix form:(
un+1
vn+1

)
=

(
u1 Dv1
v1 u1

) (
un
vn

)
,

whence (
un
vn

)
=

(
u1 Dv1
v1 u1

)n (
u0
v0

)
=

(
u1 Dv1
v1 u1

) (
1
0

)
. (5)

If (
u1 Dv1
v1 u1

)n

=
(

an bn
cn dn

)
then it is well known that each of an, bn, cn, dn is a linear combination of λn

1, λ
n
2,

where λ1, λ2 are the eigenvalues of the matrix
(

u1 Dv1
v1 u1

)
. Using (5), after an easy

computation it follows that

un = 1
2 [(u1 + v1

√
D)n + (u1 − v1

√
D)n],

vn = 1
2
√

D
[(u1 + v1

√
D)n − (u1 − v1

√
D)n].

(6)

(3) The solutions to Pell’s equation given in the form (4) or (6) may be used
in the approximation of the square roots of positive integers that are not perfect
squares. Indeed, if (un, vn) are the solutions of equation (1), then

un − vn
√

D = 1

un + vn
√

D
,

and so
un

vn
− √

D = 1

vn(un + vn
√

D)
<

1√
Dv2

n

<
1

v2
n
,

i.e., the fractions un/vn approximate
√

D with an error less than 1/v2
n .

It follows that
lim

n→∞
un

vn
= √

D. (7)

Problem 8.2.4. Consider the sequences (un)n≥0, (vn)n≥0 defined by u0 = 1,
v0 = 0, and un+1 = 3un + 4vn, vn+1 = 2un + 3vn, n ≥ 1. Define xn = un + vn,
yn = un + 2vn, n ≥ 0. Prove that yn = 
xn

√
2� for all n ≥ 0.

Solution. We prove by induction that

u2
n − 2v2

n = 1, n ≥ 1. (1)
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For n = 1 the claim is true. Assuming that the equality is true for some n, we
have

u2
n+1 − 2v2

n+1 = (3un + 4vn)2 − 2(2un + 3vn)
2 = u2

n − 2v2
n = 1;

hence (1) is true for all n ≥ 1.
We prove now that

2x2
n − y2

n = 1, n ≥ 1. (2)

Indeed,

2x2
n − y2

n = 2(un + vn)2 − (un + 2vn)2 = u2
n − 2v2

n = 1,

as claimed. It follows that(
xn

√
2 − yn

)(
xn

√
2 + yn

) = 1, n ≥ 1.

Notice that xn
√

2 + yn > 1, so

0 < xn
√

2 − yn < 1, n ≥ 1.

Hence yn =
⌊

xn
√

2
⌋

, as claimed.

Problem 8.2.5. Show that there exist infinitely many systems of positive integers
(x, y, z, t) that have no common divisor greater than 1 and such that

x3 + y3 + z2 = t4.

(2000 Romanian International Mathematical Olympiad Team Selection Test)

First solution. Let us consider the identity

[13 + 23 + · · · + (n − 2)3] + (n − 1)3 + n3 =
(n(n + 1)

2

)2
.

We may write it in the form

(n − 1)3 + n3 +
( (n − 1)(n − 2)

2

)2 =
(n(n + 1)

2

)2
.

It is sufficient to find positive integers n for which n(n + 1)/2 is a perfect
square. Such a goal can be attained.

Let us remark that the equality

(2n + 1)2 − 2(2x)2 = 1
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can be realized by taking the solutions (uk, vk) of Pell’s equation u2 − 2v2 = 1,
where u0 = 3, v0 = 2, and uk, vk are obtained from the identity

(u0 + √
2v0)

k(u0 − √
2v0)

k = (uk + √
2vk)(uk − √

2vk) = 1.

Second solution. Consider the following identity:

(a + 1)4 − (a − 1)4 = 8a3 + 8a,

where a is a positive integer. Take a = b3, where b is an even integer. From the
above identity one obtains

(b3 + 1)4 = (2b3)3 + (2b)3 + [(b3 − 1)2]2.

Since b is an even number, b3 + 1 and b3 − 1 are odd numbers. It follows that
the numbers x = 2b3, y = 2b, z = (b3 − 1)2, and t = b3 + 1 have no common
divisor greater than 1.

Additional Problems

Problem 8.2.6. Let p be a prime number congruent to 3 modulo 4. Consider the
equation

(p + 2)x2 − (p + 1)y2 + px + (p + 2)y = 1.

Prove that this equation has infinitely many solutions in positive integers, and
show that if (x, y) = (x0, y0) is a solution of the equation in positive integers,
then p | x0.

(2001 Bulgarian Mathematical Olympiad)

Problem 8.2.7. Determine all integers a for which the equation

x2 + axy + y2 = 1

has infinitely many distinct integer solutions (x, y).

(1995 Irish Mathematical Olympiad)

Problem 8.2.8. Prove that the equation

x3 + y3 + z3 + t3 = 1999

has infinitely many integral solutions.

(1999 Bulgarian Mathematical Olympiad)
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8.2.3 Other Quadratic Equations

There are many other general quadratic equations that appear in concrete situa-
tions. Here is an example.

Consider the equation

axy + bx + cy + d = 0, (1)

where a is a nonzero integer and b, c, d are integers such that ad − bc �= 0.

Theorem 8.2.4. If gcd(a, b) = gcd(a, c) = 1, then equation (1) is solvable if and
only if there is a divisor m of ad − bc such that a | m − b or a | m − c.

Proof. We can write (1) in the following equivalent form:

(ax + c)(ay + b) = bc − ad. (2)

If such a divisor m exists and a | m − c, then we take ax + c = m and
ay + b = m ′, where mm′ = bc − ad. In order to have solutions, it suffices to
show that a | m ′ − b. Indeed, the relation mm′ = bc − ad implies (ax + c)m′ =
bc − ad, which is equivalent to a(m′x + d) = −c(m ′ − b). Taking into account
that gcd(a, c) = 1, we get a | m′ − b.

The converse is clearly true.

Remarks. In case of solvability, equation (1) has only finitely many solutions.
These solutions depend upon the divisors m of ad − bc.

Example. Solve the equation

3xy + 4x + 7y + 6 = 0.

Solution. We have ad − bc = −10, whose integer divisors are −10, −5, −2, −1,
1, 2, 5, 10. The conditions in Theorem 8.2.4 are satisfied only for m = −5, −2,
1, 10. We obtain the solutions (x, y) = (−4, −2), (−3, −3), (−2, 2), (1, −1),
respectively.

In what follows you can find several nonstandard quadratic equations.

Problem 8.2.9. For any given positive integer n, determine (as a function of n)
the number of ordered pairs (x, y) of positive integers such that

x2 − y2 = 102 · 302n .

Prove further that the number of such pairs is never a perfect square.

(1999 Hungarian Mathematical Olympiad)

Solution. Because 102 · 302n is even, x and y must have the same parity. Then
(x, y) is a valid solution if and only if (u, v) = ( x+y

2 ,
x−y

2

)
is a pair of positive

integers that satisfies u > v and uv = 52 · 302n . Now 52 · 302n = 22n · 32n · 52n+2
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has exactly (2n + 1)2(2n + 3) factors. Thus without the condition u > v there
are exactly (2n + 1)2(2n + 3) such pairs (u, v). Exactly one pair has u = v, and
by symmetry half of the remaining pairs have u > v. It follows that there are
1
2 ((2n + 1)2(2n + 3) − 1) = (n + 1)(4n2 + 6n + 1) valid pairs.

Now suppose that (n + 1)(4n2 + 6n + 1) were a square. Because n + 1 and
4n2 + 6n + 1 = (4n + 2)(n + 1) − 1 are coprime, 4n2 + 6n + 1 must be a square
as well. However, (2n + 1)2 < 4n2 + 6n + 1 < (2n + 2)2, a contradiction.

Problem 8.2.10. Prove that the equation a2 + b2 = c2 + 3 has infinitely many
integer solutions {a, b, c}.

(1996 Italian Mathematical Olympiad)

Solution. Let a be any odd number, let b = (a2 − 5)/2 and c = (a2 − 1)/2. Then

c2 − b2 = (c + b)(c − b) = a2 − 3.

Remark. Actually one can prove that any integer n can be represented in infinitely
many ways in the form a2 + b2 − c2 with a, b, c ∈ Z.

Additional Problems

Problem 8.2.11. Prove that the equation

x2 + y2 + z2 + 3(x + y + z) + 5 = 0

has no solutions in rational numbers.

(1997 Bulgarian Mathematical Olympiad)

Problem 8.2.12. Find all integers x, y, z such that 5x2 − 14y2 = 11z2.

(2001 Hungarian Mathematical Olympiad)

Problem 8.2.13. Let n be a nonnegative integer. Find the nonnegative integers
a, b, c, d such that

a2 + b2 + c2 + d2 = 7 · 4n.

(2001 Romanian JBMO Team Selection Test)

Problem 8.2.14. Prove that the equation

x2 + y2 + z2 + t2 = 22004,

where 0 ≤ x ≤ y ≤ x ≤ t , has exactly two solutions in the set of integers.

(2004 Romanian Mathematical Olympiad)
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Problem 8.2.15. Let n be a positive integer. Prove that the equation

x + y + 1

x
+ 1

y
= 3n

does not have solutions in positive rational numbers.

8.3 Nonstandard Diophantine Equations

8.3.1 Cubic Equations

Problem 8.3.1. Find all pairs (x, y) of nonnegative integers such that x3 + 8x2 −
6x + 8 = y3.

(1995 German Mathematical Olympiad)

Solution. Note that for all real x ,

0 < 5x2 − 9x + 7 = (x3 + 8x2 − 6x + 8) − (x + 1)3.

Therefore if (x, y) is a solution, we must have y ≥ x + 2. In the same vein,
we note that for x ≥ 1,

0 > −x2 − 33x + 15 = (x3 + 8x2 − 6x + 8) − (x3 + 9x2 + 27x + 27).

Hence we have either x = 0, in which case y = 2 is a solution, or x ≥ 1, in
which case we must have y = x + 2. But this means that

0 = (x3 + 8x2 − 6x + 8) − (x3 + 6x2 + 12x + 8) = 2x2 − 18x .

Hence the only solutions are (0, 2), (9, 11).

Problem 8.3.2. Find all pairs (x, y) of integers such that

x3 = y3 + 2y2 + 1.

(1999 Bulgarian Mathematical Olympiad)

Solution. When y2 +3y > 0, (y +1)3 > x3 > y3. Thus we must have y2 +3y ≤
0, and y = −3, −2, −1, or 0, yielding the solutions (x, y) = (1, 0), (1, −2), and
(−2, −3).

Problem 8.3.3. Find all the triples (x, y, z) of positive integers such that

xy + yz + zx − xyz = 2.

First solution. Let x ≤ y ≤ z. We consider the following cases:
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(1) For x = 1, we obtain y + z = 2, and then

(x, y, z) = (1, 1, 1).

(2) If x = 2, then 2y + 2z − yz = 2, which gives (z − 2)(y − 2) = 2.
The solutions are z = 4, y = 3 and z = 3, y = 4. Due to the symmetry of the
relations, the solutions (x, y, z) are

(2, 3, 4), (2, 4, 3), (3, 2, 4), (4, 2, 3), (3, 4, 2), (4, 3, 2).

(3) If x ≥ 3, y ≥ 3, z ≥ 3, then xyz ≥ 3yz, xyz ≥ 3xz, xyz ≥ 3xy. Thus
xy + xz + yz − xyz ≤ 0, so there are no solutions.

Second solution. Let x ′ = x−1, y′ = y−1, z′ = z−1. The equation is equivalent
to x ′y′z′ = x ′ + y′ + z′. If x ′ = 0, then y′ = z′ = 0, and we get the solution
(x, y, z) = (1, 1, 1) for the initial equation. If x ′ �= 0, y′ �= 0, and x ′ �= 0, then

1

x ′y′ + 1

y′z′ + 1

z′x ′ = 1

forces one of x ′y′ or the other two to be at most 3.
It follows that (x ′, y′, z′) = (1, 2, 3) and all corresponding permutations and

we get all solutions in case (2).

Problem 8.3.4. Determine a positive constant c such that the equation

xy2 − y2 − x + y = c

has exactly three solutions (x, y) in positive integers.

(1999 United Kingdom Mathematical Olympiad)

Solution. When y = 1 the left-hand side is 0. Thus we can rewrite our equation
as

x = y(y − 1) + c

(y + 1)(y − 1)
.

Note that from the offset equation y − 1 | c and writing c = (y − 1)d we
get x = y+d

y+1 . Hence d ≡ 1 (mod y + 1), and thus c ≡ y − 1 (mod y2 − 1).
Conversely, any such c makes x an integer.

Thus we want c to satisfy exactly three congruences c ≡ y −1 (mod y2 −1).
Every c always satisfies this congruence for y = c + 1, so we need two others.
The first two nontrivial congruences for y = 2, 3 give c ≡ 1 (mod 3) and c ≡ 2
(mod 8). Hence c = 10 is the least solution to both these congruences and also
works for y = 11. It does not satisfy any others, since we would have y − 1 | 10;
hence y = 2, 3, 6, 11. We have already seen that 2, 3, 11 all work, but trying
y = 6 gives x = 2/7. Thus there are exactly three solutions with c = 10, namely
(x, y) = (4, 2), (2, 3), and (1, 11).
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Additional Problems

Problem 8.3.5. Find all triples (x, y, z) of natural numbers such that y is a prime
number, y and 3 do not divide z, and x3 − y3 = z2.

(1999 Bulgarian Mathematical Olympiad)

Problem 8.3.6. Find all positive integers a, b, c such that

a3 + b3 + c3 = 2001.

(2001 Junior Balkan Mathematical Olympiad)

Problem 8.3.7. Determine all ordered pairs (m, n) of positive integers such that

n3 + 1

mn − 1

is an integer.
(35th International Mathematical Olympiad)

8.3.2 High-Order Polynomial Equations

Problem 8.3.8. Prove that there are no integers x, y, z such that

x4 + y4 + z4 − 2x2 y2 − 2y2z2 − 2z2x2 = 2000.

Solution. Suppose by way of contradiction that such numbers exist. Assume with-
out loss of generality that x, y, z are nonnegative integers.

First we prove that the numbers are distinct. For this, consider that y = z.
Then x4 − 4x2 y2 = 2000; hence x is even.

Setting x = 2t yields t2(t2 − y2) = 125. It follows that t2 = 25 and y2 = 20,
a contradiction.

Let now x > y > z. Since x4 + y4 + z4 is even, at least one of the numbers
x, y, z is even and the other two have the same parity. Observe that

x4 + y4 + z4 − 2x2 y2 − 2y2z2 − 2z2x2

= (x2 − y2)2 − 2(x2 − y2)z2 + z4 − 4y2z2

= (x2 − y2 − z2 − 2yz)(x2 − y2 − z2 + 2yz)

= (x + y + z)(x − y − z)(x − y + z)(x + y − z),

each of the four factors being even. Since 2000 = 16 · 125 = 24 · 125, we deduce
that each factor is divisible by 2, but not by 4. Moreover, the factors are distinct:

x + y + z > x + y − z > x − y + z > x − y − z.

The smallest even divisors of 2000 that are not divisible by 4 are 2, 10, 50,
250. But 2 · 10 · 50 · 250 > 2000, a contradiction.
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Problem 8.3.9. Find the smallest value for n for which there exist positive integers
x1, . . . , xn with

x4
1 + x4

2 + · · · + x4
n = 1998.

Solution. Observe that for any integer x we have x4 = 16k or x4 = 16k + 1 for
some k.

Since 1998 = 16 · 124 + 14, it follows that n ≥ 14.
If n = 14, all the numbers x1, x2, . . . , x14 must be odd, so let x4

k = 16ak + 1.

Then ak = x4
k −1
16 , k = 1, 2, . . . , 14; hence ak ∈ {0, 5, 39, 150, . . . } and a1 + a2 +

· · · + a14 = 124. It follows that ak ∈ {0, 5, 39} for all k = 1, 2, . . . , 14, and
since 124 = 5 · 24 + 4, the number of terms ak equal to 39 is 1 or at least 6. A
simple analysis shows that the claim fails in both cases; hence n ≥ 15. Any of the
equalities

1998 = 54 + 54 + 34 + 34 + 34 + 34 + 34 + 34 + 34 + 34 + 34 + 24

+ 14 + 14 + 14

= 54 + 54 + 44 + 34 + 34 + 34 + 34 + 34 + 34

+ 14 + 14 + 14 + 14 + 14 + 14

proves that n = 15.

Problem 8.3.10. Find all positive integer solutions (x, y, z, t) of the equation

(x + y)(y + z)(z + x) = t xyz

such that gcd(x, y) = gcd(y, z) = gcd(z, x) = 1.

(1995 Romanian International Mathematical Olympiad Team Selection Test)

Solution. It is obvious that (x, x + y) = (x, x + z) = 1, and x divides y + z, y
divides z + x , and z divides x + y. Let a, b, and c be integers such that

x + y = cz,

y + z = ax,

z + x = by.

We may assume that x ≥ y ≥ z. If y = z, then y = z = 1 and then
x ∈ {1, 2}. If x = y, then x = y = 1 and z = 1. So assume that x > y > z. Since
a = y+z

x < 2, we have a = 1 and x = y + z. Thus, y | y + 2z and y | 2z. Since
y > z, y = 2z and since gcd(y, z) = 1, one has z = 1, y = 2, x = 3.

Finally, the solutions are (1, 1, 1, 8), (2, 1, 1, 9), (3, 2, 1, 10) and those ob-
tained by permutations of x, y, z.
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Problem 8.3.11. Determine all triples of positive integers a, b, c such that a2 +1,
b2 + 1 are prime and (a2 + 1)(b2 + 1) = c2 + 1.

(2002 Polish Mathematical Olympiad)

Solution. Of course, we may assume that a ≤ b. Since a2(b2+1) = (c−b)(c+b)

and b2 + 1 is a prime, we have b2 + 1 | c − b or b2 + 1 | c + b. If b2 + 1 | c − b,
then a2 ≥ c + b ≥ b2 + 2b + 1; impossible, since a ≤ b. So there is k such that
c+b = k(b2 +1) and a2 = k(b2 +1)−2b. Thus, b2 ≥ k(b2+1)−2b > kb2−2b,
whence k ≤ 2. If k = 2, then b2 ≥ 2b2 − 2b + 2; thus (b − 1)2 + 1 ≤ 0, false.
Thus k = 1 and a = b−1. But then b2 +1 and (b−1)2 +1 are primes and at least
one of them is even, forcing b − 1 = 1 and b = 2, a = 1, c = 3. By symmetry,
we obtain (a, b, c) = (1, 2, 3) or (2, 1, 3).

Additional Problems

Problem 8.3.12. Prove that there are no positive integers x and y such that

x5 + y5 + 1 = (x + 2)5 + (y − 3)5.

Problem 8.3.13. Prove that the equation y2 = x5 − 4 has no integer solutions.

(1998 Balkan Mathematical Olympiad)

Problem 8.3.14. Let m, n > 1 be integers. Solve in positive integers the equation

xn + yn = 2m .

(2003 Romanian Mathematical Olympiad)

Problem 8.3.15. For a given positive integer m, find all triples (n, x, y) of positive
integers such that m, n are relatively prime and (x2+ y2)m = (xy)n , where n, x, y
can be represented in terms of m.

(1995 Korean Mathematical Olympiad)

8.3.3 Exponential Diophantine Equations

Problem 8.3.16. Find the integer solutions to the equation

9x − 3x = y4 + 2y3 + y2 + 2y.

Solution. We have successively

4((3x )2 − 3x ) + 1 = 4y4 + 8y3 + 4y2 + 8y + 1,
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then
(2t − 1)2 = 4y4 + 8y3 + 4y2 + 8y + 1,

where 3x = t ≥ 1, since it is clear that there are no solutions with x < 0.
Observe that

(2y2 + 2y)2 < E ≤ (2y2 + 2y + 1)2.

Since E = (2t − 1)2 is a square, then

E = (2y2 + 2y + 1)2

if and only if
4y(y − 1) = 0,

so y = 0 or y = 1.
If y = 0, then t = 1 and x = 0.
If y = 1, then t = 3 and x = 1.
Hence the solutions (x, y) are (0, 0) and (1, 1).

Problem 8.3.17. The positive integers x, y, z satisfy the equation 2x x = yy + zz.
Prove that x = y = z.

(1997 St. Petersburg City Mathematical Olympiad)

Solution. We note that (x + 1)x+1 ≥ xx+1 + (x + 1)xx > 2x x . Thus we cannot
have y > x or z > x , since otherwise, the right side of the equation will exceed
the left. But then 2xx ≥ yy + zz , with equality if and only if x = y = z.

Problem 8.3.18. Find all solutions in nonnegative integers x, y, z of the equation

2x + 3y = z2.

(1996 United Kingdom Mathematical Olympiad)

Solution. If y = 0, then 2x = z2−1 = (z+1)(z−1), so z+1 and z−1 are powers
of 2. The only powers of 2 that differ by 2 are 4 and 2, so (x, y, z) = (3, 0, 3).

If y > 0, then taking the equation mod 3, it follows that x is even. Now we
have 3y = z2 − 2x = (z + 2x/2)(z − 2x/2). The factors are powers of 3, say
z + 2x/2 = 3m and z − 2x/2 = 3n , but then 3m − 3n = 2x/2+1. Since the right side
is not divisible by 3, we must have n = 0 and

3m − 1 = 2x/2+1.

If x = 0, we have m = 1, yielding (x, y, z) = (0, 1, 2). Otherwise, 3m − 1 is
divisible by 4, so m is even and 2x/2+1 = (3m/2 + 1)(3m/2 − 1). The two factors
on the right are powers of 2 differing by 2, so they are 2 and 4, giving x = 4 and
(x, y, z) = (4, 2, 5).
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Additional Problems

Problem 8.3.19. Determine all triples (x, k, n) of positive integers such that

3k − 1 = xn.

(1999 Italian Mathematical Olympiad)

Problem 8.3.20. Find all pairs of nonnegative integers x and y that satisfy the
equation

px − y p = 1,

where p is a given odd prime.

(1995 Czech–Slovak Match)

Problem 8.3.21. Let x, y, z be integers with z > 1. Show that

(x + 1)2 + (x + 2)2 + · · · + (x + 99)2 �= yz .

(1998 Hungarian Mathematical Olympiad)

Problem 8.3.22. Determine all solutions (x, y, z) of positive integers such that

(x + 1)y+1 + 1 = (x + 2)z+1.

(1999 Taiwanese Mathematical Olympiad)





9

Some Special Problems in
Number Theory

9.1 Quadratic Residues; the Legendre Symbol

Let a and m be positive integers such that m �= 0 and gcd(a, m) = 1. We say that
a is a quadratic residue mod m if the congruence x2 ≡ a (mod m) has a solution.
Otherwise, we say that a is a quadratic nonresidue.

Let p be a prime and let a be a positive integer not divisible by p. The Legen-
dre symbol of a with respect to p is defined by

( a

p

)
=

{
1 if a is a quadratic residue (mod p),

−1 otherwise.

It is clear that the perfect squares are quadratic residues mod p. It is natural to
ask how many integers among 1, 2, . . . , p − 1 are quadratic residues. The answer
is given in the following theorem.

Theorem 9.1.1. Let p be an odd prime. There are p−1
2 quadratic residues in the

set {1, 2, . . . , p − 1}.
Proof. Consider the numbers k2, k = 1, 2, . . . ,

p−1
2 . These are quadratic residues,

and moreover, they are distinct. Indeed, if i2 ≡ j2 (mod p), then it follows that
p | (i − j)(i + j), and since i + j < p, this implies p | i − j ; hence i = j .

Conversely, if gcd(a, p) = 1 and the congruence x2 ≡ a (mod p) has a
solution x , then x = qp+i , where − p−1

2 ≤ i ≤ p−1
2 and so i2 ≡ q (mod p).

The basic properties of the Legendre symbol are as follows:
(1) (Euler’s criterion) If p is an odd prime and a an integer not divisible by p,

then
a

p−1
2 ≡

( a

p

)
(mod p).
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(2) If a ≡ b (mod p), then
( a

p

) = ( b
p

)
.

(3) (multiplicity)
( a1···an

p

) = ( a1
p

) · · · ( an
p

)
.

(4)
(−1

p

) = (−1)
p−1

2 .

For Euler’s criterion, suppose that
( a

p

) = 1. Then i2 ≡ a (mod p) for some

integer i . We have gcd(i, p) = 1, and from Fermat’s little theorem, i p−1 ≡ 1

(mod p). Hence a
p−1

2 ≡ 1 (mod p) and we are done.
If

( a
p

) = −1, then each of the congruences

x
p−1

2 − 1 ≡ 0 (mod p) and x
p−1

2 + 1 ≡ 0 (mod p)

has p−1
2 distinct solutions in the set {1, 2, . . . , p −1}. The p−1

2 quadratic residues

correspond to the first congruence, and the p−1
2 quadratic nonresidues correspond

to the second. Hence if a is a quadratic nonresidue, we have a
p−1

2 ≡ −1 (mod p),
and we are done.

Remark. From Fermat’s little theorem, a p−1 ≡ 1 (mod p), and hence p |
(a

p−1
2 − 1)(a

p−1
2 + 1). From Euler’s criterion, p | a

p−1
2 − 1 if and only if a

is a quadratic residue mod p.
Property (2) is clear. For (3) we apply Euler’s criterion:

(ai

p

)
≡ a

p−1
2

i (mod p), i = 1, . . . , n.

Therefore (a1

p

)
· · ·

(an

p

)
≡ a

p−1
2

1 · · · a
p−1

2
n = (a1 · · · an)

p−1
2

≡
(a1 · · · an

p

)
(mod p).

In order to prove (4), note that (−1)
p−1

2 ,
(−1

p

) ∈ {−1, 1}. Hence p |(−1)
p−1

2 −(−1
p

)
is just Euler’s criterion for a = −1.

The following theorem gives necessary and sufficient conditions under which
2 is a quadratic residue.

Theorem 9.1.2. For any odd prime p,( 2

p

)
= (−1)

p2−1
8 .

Proof. We need the following lemma.
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Lemma. (Gauss1) If a is a positive integer that is not divisible by p, then from the
division algorithm,

ka = pqk + rk, k = 1, . . . ,
p − 1

2
.

Let b1, . . . , bm be the distinct remainders r1, . . . , r(p−1)/2 that are less than
p
2 and let c1, . . . , cn be the other distinct remaining remainders. Then( a

p

)
= (−1)n.

Proof of lemma. We have

m∏
i=1

bi

n∏
j=1

c j =
p−1

2∏
k=1

rk =
p−1

2∏
k=1

(ka − pqk) ≡
p−1

2∏
k=1

ka = a
p−1

2

( p − 1

2

)
! (mod p).

Because p
2 < c j ≤ p − 1, j = 1, . . . , n, we have 1 ≤ p − c j ≤ (p − 1)/2. It

is not possible to have p − c j = bi for some i and j . Indeed, if bi + c j = p, then
p = as − pqs + at − pqt , so p | s + t , which is impossible, since 1 ≤ s, t ≤
(p − 1)/2.

Therefore the integers b1, . . . , bm, p − c1, . . . , p − cn are distinct and

{b1, . . . , bm, p − c1, . . . , p − cn} =
{

1, 2, . . . ,
p − 1

2

}
.

We obtain
m∏

i=1

bi

n∏
j=1

(p − c j ) =
( p − 1

2

)
! .

Finally,

(−1)n
m∏

i=1

bi

n∏
j=1

c j ≡
( p − 1

2

)
! (mod p);

hence a(p−1)/2 ≡ (−1)n (mod p). The conclusion now follows from Euler’s
criterion.

In order to prove the theorem we use Gauss’s lemma for a = 2. We have
{r1, r2, . . . , r(p−1)/2} = {2, 4, . . . , p − 1}. The number of integers k such that
p/2 < 2k < p is n = ⌊ p

2

⌋ − ⌊ p
4

⌋
.

1Karl Friedrich Gauss (1777–1855), German mathematician who is sometimes called the “prince
of mathematics”. Gauss proved in 1801 the fundamental theorem of arithmetic, and he published
one of the most brilliant achievements in mathematics, Disquisitiones Arithmeticae. In this book he
systematized the study of number theory and developed the algebra of congruences.
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If p = 4u + 1, then n = 2u − u = u and p2−1
8 = 2u2 + u. We have n ≡ p2−1

8
(mod 2) and we are done.

If p = 4v + 3, then n = 2v + 1 − v = v + 1 and p2−1
8 = 2v2 + 3v + 1, and

again n ≡ p2−1
8 (mod 2).

The central result concerning the Legendre symbol is the so-called quadratic
reciprocity law of Gauss:

Theorem 9.1.3. If p and q are distinct odd primes, then( q

p

)( p

q

)
= (−1)

p−1
2 · q−1

2 .

Proof. In Gauss’s lemma we take a = q and we get
( q

p

) = (−1)n . Let
∑m

i=1 bi =
b and

∑n
j=1 c j = c. Then using the equality

{b1, . . . , bm, p − c1, . . . , p − cn} =
{

1, 2, . . . ,
p − 1

2

}
,

it follows that

b + np − c =
p−1

2∑
k=1

k = p2 − 1

8
.

But from Gauss’s lemma we have qk = ⌊ kq
p

⌋
, k = 1, 2, . . . , p − 1; hence

q
p2 − 1

8
= p

p−1
2∑

k=1

⌊
kq

p

⌋
+ b + c.

Summing up the last two relations gives

2c + p

p−1
2∑

k=1

⌊
kq

p

⌋
+ p2 − 1

8
(1 − q) − np = 0.

Because 2c and 1 − q are even, it follows that

n ≡
p−1

2∑
k=1

⌊
kq

p

⌋
(mod 2),

and applying Gauss’s lemma again we obtain

(
q

p

)
= (−1)

∑ p−1
2

k=1

⌊
kq
p

⌋
.
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Similarly, we derive the relation

( p

q

)
= (−1)

∑ p−1
2

j=1

⌊
j p
q

⌋
.

Multiplying the last two equalities and taking into account Landau’s identity
in Problem 3.2.5(b) of Chapter 3, the conclusion follows.

Problem 9.1.1. Let k = 22n +1 for some positive integer n. Show that k is a prime
if and only if k is a factor of 3(k−1)/2 + 1.

(1997 Taiwanese Mathematical Olympiad)

Solution. Suppose k is a factor of 3(k−1)/2 + 1. This is equivalent to 3(k−1)/2 ≡
−1 (mod k). Hence 3k−1 ≡ 1 (mod k). Let d be the order of 3 mod k. Then
d � (k −1)/2 = 22n −1, but d | (k −1) = 22n

. Hence d = 22n = k −1. Therefore
k is prime.

Conversely, suppose k is prime. By the quadratic reciprocity law,(3

k

)
=

(k

3

)
=

(2

3

)
= −1.

By Euler’s criterion, 3(k−1)/2 ≡ ( 3
k

) ≡ −1 (mod k), as claimed.

Problem 9.1.2. Prove that if n is a positive integer such that the equation x3 −
3xy2 + y3 = n has an integer solution (x, y), then it has at least three such
solutions.

Show there are no solutions if n = 2891.

(23rd International Mathematical Olympiad)

Solution. The idea of the solution is to find a nonsingular change of coordinates
with integer coefficients

(x, y) → (ax + by, cx + dy)

such that the polynomial x3 − 3xy2 + y3 does not change after changing coordi-
nates. Such a transformation can be found after noticing the identity

x3 − 3xy2 + y3 = (y − x)3 − 3x2 y + 2x3 = (y − x)3 − 3(y − x)x2 + (−x)3.

Thus, such a transformation is T (x, y) = (y − x, −x). It can be represented
by the linear transformation

T

(
x
y

)
=

(−1 1
−1 0

) (
x
y

)
=

(−x + y
−x

)
.
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We have

T 2 =
(−1 1

−1 0

) (−1 1
−1 0

)
=

(
0 −1
1 −1

)
and

T 3 =
(

0 −1
1 −1

) (−1 1
−1 0

)
=

(
1 0
0 1

)
.

Thus, T 2(x, y) = (−y, x − y). Moreover, it is easy to see that if x3 − 3xy2 +
y3 = n, n ≥ 0, then the pairs (x, y), (−y, x − y), and (y − x, −x) are distinct.

For the second part, observe that 2891 = 72 ·59. Suppose that x, y are integers
such that x3 − 3xy2 + y3 = 2891. Then x, y are relatively prime, because from
d = gcd(x, y) we obtain d3 | 2891. The numbers x, y are not divisible by 7; thus
they are invertible modulo 7. Thus, from the equation we obtain( y

x

)3 − 3
( y

x

)2 + 1 ≡ 0 (mod 7).

This proves that the congruence

a3 − 3a2 + 1 ≡ 0 (mod 7)

has a solution, a ∈ Z. Since 7 is not a divisor of a, by Fermat’s little theorem one
has a6 ≡ 1 (mod 7). There are two possibilities: a3 ≡ 1 (mod 7) or a3 ≡ −1
(mod 7). When a3 ≡ 1 (mod 7) we obtain

a3 − 3a2 + 1 ≡ 0 (mod 7) ⇒ 3a2 ≡ 2 (mod 7) ⇒ a2 ≡ 3 (mod 7).

Using the Legendre symbol and the quadratic reciprocity law,( 3
7

) = (−1)
3−1

2 · 7−1
2

( 7
3

) = (−1)
( 1

3

) = −1.

This proves that 3 is not a square modulo 7. When a3 ≡ −1 (mod 7) we
obtain the contradiction from 3a2 ≡ 0 (mod 7). Thus, the equation x3 − 3xy2 +
y3 = 2891 has no solution in integers (x, y).

Problem 9.1.3. Let m, n be positive integers such that

A = (m + 3)n + 1

3m

is an integer. Prove that A is odd.

(1998 Bulgarian Mathematical Olympiad)

Solution. If m is odd, then (m + 3)n + 1 is odd and A is odd. Now we suppose
that m is even. Since A is an integer,

0 ≡ (m + 3)n + 1 ≡ mn + 1 (mod 3),
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so n = 2k + 1 is odd and m ≡ −1 (mod 3). We consider the following cases:
(a) m = 8m ′ for some positive integer m′. Then

(m + 3)n + 1 ≡ 32k+1 + 1 ≡ 4 (mod 8)

and 3m ≡ 0 (mod 8). So A is not an integer.
(b) m = 2m′ for some odd positive integer m′, i.e., m ≡ 2 (mod 4). Then

(m + 3)n + 1 ≡ (2 + 3)n + 1 ≡ 2 (mod 4)

and 3m ≡ 2 (mod 4). So A is odd.
(c) m = 4m ′ for some odd positive integer m′. Because m ≡ −1 (mod 3),

there exists an odd prime p such that p ≡ −1 (mod 3) and p | m. Since A is an
integer,

0 ≡ (m + 3)n + 1 ≡ 32k+1 + 1 (mod m)

and 32k+1 ≡ −1 (mod p). Let a be a primitive root modulo p; let b be a positive
integer such that 3 ≡ ab (mod p). Thus a(2k+1)b ≡ −1 (mod p). Note that
(p/3) = (−1/3) = −1. We consider the following cases.

(i) p ≡ 1 (mod 4). From the quadratic reciprocity law, (−1/p) = 1, so

a2c ≡ −1 ≡ a(2k+1)b (mod p)

for some positive integer c. Therefore b is even and (3/p) = 1. Again, from the
quadratic reciprocity law,

−1 = (3/p)(p/3) = (−1)(3−1)(p−1)/4 = 1,

a contradiction.
(ii) p ≡ 3 (mod 4). From the quadratic reciprocity law, (−1/p) = −1, so

a2c+1 ≡ −1 ≡ a(2k+1)b (mod p)

for some positive integer c. Therefore b is odd and (3/p) = −1. Again, from the
quadratic reciprocity law,

1 = (3/p)(p/3) = (−1)(3−1)(p−1)/4 = −1,

a contradiction.
Thus for m = 4m′ and m′ odd, A is not an integer.
From the above, we see that if A is an integer, A is odd.

Problem 9.1.4. Prove that 2n + 1 has no prime factors of the form 8k + 7.

(2004 Vietnamese International Mathematical Olympiad Team Selection Test)
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Solution. Assume that we have a prime p such that p | 2n + 1 and p ≡ −1
(mod 8). If n is even, then p ≡ 3 (mod 4) and

(−1
p

) = 1, a contradiction. If n

is odd, 2n ≡ −1 (mod p), and so −2 ≡ (2
n+1

2 )2 (mod p); hence
(−2

p

) = 1. We

get (−1)
p2−1

8 (−1)
p−1

2 = 1, again a contradiction.

Problem 9.1.5. Prove that 23n +1 has at least n prime divisors of the form 8k +3.

Solution. Using the result of the previous problem, we deduce that 2n + 1 does
not have prime divisors of the form 8k + 7. We will prove that if n is odd, then it
has no prime divisors of the form 8k +5 either. Indeed, let p be a prime divisor of

2n + 1. Again we have 2n ≡ −1 (mod p) and so −2 ≡ (2
n+1

2 )2 (mod p). Using

the same argument as the one in the previous problem, we deduce that p2−1
8 + p−1

2
is even, which cannot happen if p is of the form 8k + 5.

Now, let us solve the additional problem. We will assume n > 2 (otherwise,
the verification is trivial). The essential observation is the identity

23n + 1 = (2 + 1)(22 − 2 + 1)(22·3 − 23 + 1) · · · (22·3n−1 − 23n−1 + 1).

Now we will prove that for all 1 ≤ i < j ≤ n − 1,

gcd(22·3i − 23i + 1, 22·3 j − 23 j + 1) = 3.

Indeed,

23 j = (23i+1
)3 j−i−1 ≡ (−1)3 j−i−1 ≡ −1 (mod 23i+1 + 1),

implying

22·3 j − 23 j + 1 ≡ 3 (mod 23i+1 + 1).

Therefore the greatest common divisor is at most 3. Since

22·3i − 23i + 1 ≡ 1 − (−1) + 1 = 3 (mod 3),

both quantities are divisible by 3 and therefore the greatest common divisor is 3,
as claimed.

It remains to show that each of the numbers 22·3i −23i +1, with 1 ≤ i ≤ n −1
has at least one prime divisor of the form 8k+3 different from 3. It would follow in
this case that 23n + 1 has at least n − 1 distinct prime divisors of the form 8k + 3
(from the previous remarks), and since it is also divisible by 3, the conclusion
would follow. Fix i ∈ {1, 2, . . . , n − 1} and observe that any prime factor of
22·3i − 23i + 1, is also a prime factor of 23n + 1, and thus, from the first remark, it
must be of the form 8k + 1 or 8k + 3. Because v3(22·3i − 23i + 1) = 1, it follows
that if all prime divisors of 22·3i − 23i + 1 except for 3 are of the form 8k + 1,
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then 22·3i − 23i + 1 ≡ 3 (mod 8), which is clearly impossible. Thus at least one
prime divisor of 22·3i − 23i + 1 is different from 3 and is of the form 8k + 3, and
so the claim is proved. The conclusion follows.

Problem 9.1.6. Find a number n between 100 and 1997 such that n | 2n + 2.

(1997 Asian-Pacific Mathematical Olympiad)

Solution. The first step would be choosing n = 2p, for some prime number p.
Unfortunately, this cannot work by Fermat’s little theorem. So let us try setting
n = 2pq, with p, q different prime numbers. We need pq | 22pq−1 +1, and so we
must have

(−2
p

) = (−2
q

) = 1. Also, using Fermat’s little theorem, p | 22q−1 + 1

and q | 22p−1 + 1. A small verification shows that q = 3, 5, 7 are not good
choices, so let us try q = 11. In this case we obtain p = 43, and so it suffices
to show that pq | 22pq−1 + 1 for q = 11 and p = 43. This is immediate, since
the hard work has already been completed: we have shown that it suffices to have
p | 22q−1, q | 22p−1 +1, and

(−2
p

) = (−2
q

) = 1 in order to have pq | 22pq−1 +1.
But as one can easily check, all these conditions are satisfied, and the number
2 · 11 · 43 = 946 is a valid answer.

Additional Problems

Problem 9.1.7. Let f, g : Z+ → Z+ functions with the following properties:
(i) g is surjective;

(ii) 2 f 2(n) = n2 + g2(n) for all positive integers n.
If, moreover, | f (n)−n| ≤ 2004

√
n for all n, prove that f has infinitely many

fixed points.

(2005 Moldavian International Mathematical Olympiad Team Selection Test)

Problem 9.1.8. Suppose that the positive integer a is not a perfect square. Then( a
p

) = −1 for infinitely many primes p.

Problem 9.1.9. Suppose that a1, a2, . . . , a2004 are nonnegative integers such that
an

1 + an
2 + · · · + an

2004 is a perfect square for all positive integers n. What is the
minimal number of such integers that must equal 0?

(2004 Mathlinks Contest)

Problem 9.1.10. Find all positive integers n such that 2n − 1 | 3n − 1.

(American Mathematical Monthly)

Problem 9.1.11. Find the smallest prime factor of 12215 + 1.
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9.2 Special Numbers

9.2.1 Fermat Numbers

Trying to find all primes of the form 2m + 1, Fermat noticed that m must be a
power of 2. Indeed, if m equaled k · h with k an odd integer greater than 1, then

2m + 1 = (2h)k + 1 = (2h + 1)(2h(k−1) − 2h(k−2) + · · · − 2h + 1),

and so 2m + 1 would not be a prime.
The integers fn = 22n + 1, n ≥ 0, are called Fermat numbers. We have

f0 = 3, f1 = 5, f2 = 17, f3 = 257, f4 = 65,573.

After checking that these five numbers are primes, Fermat conjectured that
fn is a prime for all n. But Euler proved that 641 | f5. His argument was the
following:

f5 = 232 + 1 = 228(54 + 24) − (5 · 27)4 + 1 = 228 · 641 − (6404 − 1)

= 641
(
228 − 639(6402 + 1)

)
.

It is still an open problem whether there are infinitely many Fermat primes.
Also, the question whether there are any Fermat primes after f4 is still open. The
answer to this question is important, because Gauss proved that a regular polygon
Q1 Q2 . . . Qn can be constructed using only a straightedge and compass if and
only if n = 2h p1 · · · pk , where k ≥ 0 and p1, . . . , pk are distinct Fermat primes.
Gauss was the first to construct such a polygon for n = 17.

Problem 9.2.1. Prove that for fn , the nth Fermat number,
(i) fn = f0 · · · fn−1 + 2, n ≥ 1;

(ii) gcd( fk , fh) = 1 if k �= h;
(iii) fn ends in 7 for all n ≥ 2.

Solution. (i) We have

fk = 22k + 1 = (
22k−1)2 + 1 = ( fk−1 − 1)2 + 1 = f 2

k−1 − 2 fk−1 + 2;
hence

fk − 2 = fk−1( fk−1 − 2), k ≥ 1. (1)

Multiplying relations (1) for k = 1, . . . , n yields

fn − 2 = f0 · · · fn−1( f0 − 2),

and the conclusion follows.
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For a different proof we can use directly the identity

x2n − 1

x − 1
=

n−1∏
k=0

(x2k + 1).

(ii) From (i) we have

gcd( fn, f0) = gcd( fn, f1) = · · · = gcd( fn, fn−1) = 1

for all n ≥ 1; hence gcd( fk, fh) = 1 for all k �= h.
(iii) Because f1 = 5 and f0 · · · fn−1 is odd, using (i), it follows that fn ends

in 5 + 2 = 7 for all n ≥ 2.

Problem 9.2.2. Find all Fermat numbers that can be written as a sum of two
primes.

Solution. All Fermat numbers are odd. If fn = p + q for some primes p and q,
p ≤ q, then p = 2 and q > 2. We obtain

q = 22n − 1 = (
22n−1)2 − 1 = (

22n−1 − 1
)(

22n−1 + 1
);

hence 22n−1 − 1 must equal 1. That is, n = 1 and f1 = 2 + 3 is the unique Fermat
number with this property.

An alternative solution uses Problem 1 (iii): if n ≥ 2, then fn ends in 7, so q
must end in 5. Hence q = 5 and 2 + 5 �= fn for n ≥ 2. The only Fermat number
with the given property is f1.

Problem 9.2.3. Show that for any n ≥ 2 the prime divisors p of fn are of the form
p = s · 2n+2 + 1.

Solution. Because p | fn , it follows that 22n ≡ −1 (mod p). Hence squaring
gives 22n+1 ≡ 1 (mod p). Thus op(2) | 2n+1. Since 22n �≡ 1 (mod p), we have
op(2) = 2n+1. Thus 2n+1 | p − 1. Hence p ≡ 1 (mod 8) and

( 2
p

) = 1. So 2

is a quadratic residue mod p and there is some a with a2 ≡ 2 (mod p). Hence
op(a) = 2n+2 and 2n+2 | p − 1, that is, p = s · 2n+2 + 1 for some s.

Additional Problems

Problem 9.2.4. Find all positive integers n such that 2n − 1 is a multiple of 3 and
2n−1

3 is a divisor of 4m2 + 1 for some integer m.

(1999 Korean Mathematical Olympiad)

Problem 9.2.5. Prove that the greatest prime factor of fn , n ≥ 2, is greater than
2n+2(n + 1).

(2005 Chinese International Mathematical Olympiad Team Selection Test)
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9.2.2 Mersenne Numbers

The integers Mn = 2n − 1, n ≥ 1, are called Mersenne2 numbers. It is clear that
if n is composite, then so is Mn . Moreover, if n = ab, where a and b are integers
greater than 1, then Ma and Mb both divide Mn . But there are primes n for which
Mn is composite, for example 47 | M23, 167 | M83, 263 | M131, and so on.

It is not known if there are infinitely many primes with this property. The
largest known prime is

232582657 − 1,

and it is a Mersenne number. Presently, we know 42 Mersenne numbers that are
primes.

Theorem 9.2.1. Let p be an odd prime and let q be a prime divisor of Mp. Then
q = 2kp + 1 for some positive integer k.

Proof. From the congruence 2p ≡ 1 (mod q) and from the fact that p is a prime,
it follows that p is the least positive integer satisfying this property. Using Fer-
mat’s little theorem, we have 2q−1 ≡ 1 (mod q), and hence p | q − 1. But q − 1
is an even integer, so q − 1 = 2kp, and the conclusion follows.

Problem 9.2.6. Let p be a prime of the form 4k + 3. Then 2p + 1 is a prime if
and only if 2p + 1 divides Mp.

Solution. Suppose that q = 2p + 1 is a prime. Then(
2

q

)
= (−1)

q2−1
8 = (−1)

p(p+1)
2 = (−1)2(k+1)(4k+3) = 1;

hence 2 is a quadratic residue mod q.

Using Euler’s criterion, it follows that 2
q−1

2 ≡ 1 (mod q), that is, 2p ≡ 1
(mod q), and the conclusion follows.

If q is composite, then it has a prime divisor q1 such that q1 ≤ √
q . Using

Fermat’s little theorem, we have 2q1−1 ≡ 1 (mod q1). But 2p ≡ 1 (mod q1)

with p prime implies that p is the least positive integer with the property. Hence
p | q1 − 1, and thus q1 ≥ p + 1 >

√
p, contradicting the choice of q1. Therefore

q must be a prime and the conclusion follows.

Additional Problems

Problem 9.2.7. Let P∗ denote all the odd primes less than 10000, and suppose
p ∈ P∗. For each subset S = {p1, p2, . . . , pk} of P∗, with k ≥ 2 and not
including p, there exists a q ∈ P∗ \ S such that

(q + 1) | (p1 + 1)(p2 + 1) · · · (pk + 1).

2Marin Mersenne (1588–1648), French monk who is best known for his role as a clearing house
for correspondence with eminent philosophers and scientists and for his work in number theory.
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Find all such possible values of p.
(1999 Taiwanese Mathematical Olympiad)

9.2.3 Perfect Numbers

An integer n ≥ 2 is called perfect if the sum of its divisors is equal to 2n. That
is, σ(n) = 2n. For example, the numbers 6, 28, 496 are perfect. The even perfect
numbers are closely related to Mersenne numbers. It is not known whether any
odd perfect numbers exist.

Theorem 9.2.2. (Euclid) If Mk is a prime, then n = 2k−1 Mk is a perfect number.

Proof. Because gcd(2k−1, 2k − 1) = 1, and the fact that σ is a multiplicative
function, it follows that

σ(n) = σ(2k−1)σ (2k − 1) = (2k − 1) · 2k = 2n. �

There is also a partial converse, due to Euler.

Theorem 9.2.3. If the even positive integer n is perfect, then n = 2k−1 Mk for
some positive integer k for which Mk is a prime.

Proof. Let n = 2t u, where t ≥ 1 and u is odd. Because n is perfect, we have
σ(n) = 2n; hence σ(2t u) = 2t+1u. Using again that σ is multiplicative, we get

σ(2t u) = σ(2t )σ (u) = (2t+1 − 1)σ (u).

This is equivalent to

(2t+1 − 1)σ (u) = 2t+1u.

Because gcd(2t+1 − 1, 2t+1) = 1, it follows that 2t+1 | σ(u); hence σ(u) =
2t+1v for some positive integer v. We obtain u = (2t+1 − 1)v.

The next step is to show that v = 1. If v > 1, then

σ(u) ≥ 1 + v + 2t+1 − 1 + v(2t+1 − 1) = (v + 1)2t+1 > v · 2t+1 = σ(u),

a contradiction. We get v = 1; hence u = 2t+1 − 1 = Mt+1 and σ(u) = 2t+1.
If Mt+1 is not a prime, then σ(u) > 2t+1, which is impossible. Finally, n =
2k−1 Mk , where k = t + 1.

Remark. Recall that Mk is a prime only if k is a prime. This fact reflects also in
Theorem 9.2.2 and Theorem 9.2.3.

Problem 9.2.8. Show that any even perfect number is triangular.

Solution. Using Theorem 9.2.3, we have

n = 2k−1Mk = 2k

2
(2k − 1) = m(m + 1)

2
,

where m = 2k − 1 and we are done.
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Additional Problems

Problem 9.2.9. Prove that if n is an even perfect number, then 8n + 1 is a perfect
square.

Problem 9.2.10. Show that if k is an odd positive integer, then 2k−1Mk can be

written as the sum of the cubes of the first 2
k−1

2 odd positive integers. In particular,
any perfect number has this property.

9.3 Sequences of Integers

9.3.1 Fibonacci and Lucas Sequences

Leonardo Fibonacci3 introduced in 1228 the sequence F1 = F2 = 1 and Fn+1 =
Fn + Fn−1, n ≥ 2. It is not difficult to prove by induction that the closed form for
Fn is given by Binet’s formula

Fn = 1√
5

[(1 + √
5

2

)n −
(1 − √

5

2

)n
]

(1)

for all n ≥ 1. As a consequence of the recursive definition or of formula above,
it is a convention to define F0 = 0. Identities for Fibonacci numbers are usually
proved either by induction or from Binet’s formula. It is also an useful matrix
form for the Fibonacci numbers(

1 1
1 0

)n

=
(

Fn+1 Fn

Fn Fn−1

)
, n ≥ 1 (2)

that easily follows by induction.
In what follows we give some arithmetical properties of the Fibonacci num-

bers.
(1) If m | n, then Fm | Fn . If n ≥ 5 and Fn is a prime, then so is n.
(2) For any m, n ≥ 0, gcd(Fm, Fn) = Fgcd(m,n).
(3) If gcd(m, n) = 1, then Fm Fn | Fmn .
In order to prove (1) suppose that n = mk for some integer k > 1 and denote

α = 1+√
5

2 , β = 1−√
5

2 . Using (1), we have

Fn

Fm
= αn − βn

αm − βm
= (αm)k − (βm)k

αm − βm
= αm(k−1) + αm(k−2)βm + · · · + βm(k−1).

3Leonardo Pisano Fibonacci (1170–1250) was among the first to introduce the Hindu-Arabic num-
ber system into Europe. His book on how to do arithmetic in the decimal system, called Liber abbaci
(meaning Book of the Abacus or Book of Calculating), completed in 1202, persuaded many European
mathematicians of his day to use this “new” system.
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Because α + β = 1 and αβ = −1 it follows by induction that αi + β i is an
integer for all integers i ≥ 1 and the conclusion follows.

It is now clear that if n = kh, k ≥ 3, then Fk divides Fn hence Fn is not a
prime.

For (2) let d = gcd(m, n) and suppose that n > m. Applying Euclid’s Algo-
rithm, we get

n = mq1 + r1

m = r1q2 + r2

r1 = r2q3 + r3

. . .

ri−1 = ri qi+1

and so d = ri . It is not difficult to check that for any positive integers m, n,

Fm+n = Fm−1 Fn + Fm Fn+1. (3)

The standard proof of (3) is by induction on n after fixing m. Another argu-
ment follows from the matrix form (2). Indeed, we have(

Fm+n+1 Fm+n

Fm+n Fm+n−1

)
=

(
1 1
1 0

)m+n

=
(

1 1
1 0

)n (
1 1
1 0

)m

=
(

Fn+1 Fn

Fn Fn−1

) (
Fm+1 Fm

Fm Fm−1

)

=
(

Fn+1 Fm+1 + Fn Fm Fn+1 Fm + Fn Fm−1
Fn Fm+1 + Fn−1 Fm Fn Fm + Fn−1 Fm−1

)
.

Suppose n > m ≥ 1. From the identity Fn = Fm−1 Fn−m + Fm Fn−m+1 we
have

gcd(Fm , Fn) = gcd(Fm, Fm−1 Fn−m + Fm Fn−m+1) = gcd(Fm, Fm−1 Fn−m).

By the inductive hypothesis,

gcd(Fm, Fm−1) = F1 = 1

and
gcd(Fm, Fn−m) = Fgcd(m,n−m) = Fgcd(m,n).

Therefore gcd(Fm, Fn) = Fgcd(m,n).
Property (3) follows from (2) by observing that

gcd(Fm, Fn) = Fgcd(m,n) = F1 = 1

and then using (1).
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Lucas’s sequence is defined by L0 = 2, L1 = 1, and Ln+1 = Ln + Ln−1,
n ≥ 1. The Lucas numbers are the companions to the Fibonacci numbers because
they satisfy the same recursion.

The analogue of Binet’s Fibonacci number formula for Lucas numbers is

Ln =
(1 + √

5

2

)n +
(1 − √

5

2

)n
, n ≥ 0, (4)

and they are connected with Fibonacci numbers by Ln = F2n/Fn , Ln = 2Fn+1 −
Fn , n ≥ 0.

Problem 9.3.1. Show that there is a positive number in the Fibonacci sequence
that is divisible by 1000.

(1999 Irish Mathematical Olympiad)

Solution. In fact, for any natural number n, there exist infinitely many positive
Fibonacci numbers divisible by n.

Consider ordered pairs of consecutive Fibonacci numbers (F0, F1), (F1, F2),

. . . taken modulo n. Because the Fibonacci sequence is infinite and there are only
n2 possible ordered pairs of integers modulo n, two such pairs (Fj , Fj+1) must
be congruent: Fi ≡ Fi+m and Fi+1 ≡ Fi+m+1 (mod n) for some i and m.

If i ≥ 1 then Fi−1 ≡ Fi+1 − Fi ≡ Fi+m+1 − Fi+m ≡ Fi+m−1 (mod n).
Likewise, Fi+2 ≡ Fi+1 + Fi ≡ Fi+m+1 + Fi+m ≡ Fi+2+m (mod n). Con-
tinuing similarly, we have Fj ≡ Fj+m (mod n) for all j ≥ 0. In particular,
0 = F0 ≡ Fm ≡ F2m ≡ · · · (mod n), so the numbers Fm, F2m, . . . are all
positive Fibonacci numbers divisible by n. Applying this to n = 1000, we are
done.

Problem 9.3.2. Prove that
(i) The statement “Fn+k − Fn is divisible by 10 for all positive integers n” is

true if k = 60 and false for any positive integer k < 60;
(ii) The statement “Fn+t − Fn is divisible by 100 for all positive integers n”

is true if t = 300 and false for any positive integer t < 300.

(1996 Irish Mathematical Olympiad)

First solution. A direct computation shows that the Fibonacci sequence has pe-
riod 3 modulo 2 and 20 modulo 5 (compute terms until the initial terms 0, 1 repeat,
at which time the entire sequence repeats), yielding (a). As for (b), one computes
that the period mod 4 is 6. The period mod 25 turns out to be 100, which is awfully
many terms to compute by hand, but knowing that the period must be a multiple
of 20 helps, and verifying the recursion Fn+8 = 7Fn+4 − Fn shows that the period
divides 100; finally, an explicit computation shows that the period is not 20.
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Second solution. Expanding Binet’s formula using the binomial theorem gives

2n−1 Fn =
n/2∑
k=0

5k
(

n

2k + 1

)
.

Therefore Fn ≡ 3n−1
(
n + 5

(n
3

))
(mod 25). Modulo 25, 3n−1 has period 20,

n has period 25, and 5
(n

3

)
has period 5. Therefore Fn clearly has period dividing

100. The period cannot divide 50, since this formula gives Fn+50 ≡ 310 Fn ≡ −Fn
(mod 25) and the period cannot divide 20 since it gives Fn+20 ≡ Fn + 3n−1 · 20
(mod 25).

Problem 9.3.3. Let (an)n≥0 be the sequence defined by a0 = 0, a1 = 1, and

an+1 − 3an + an−1

2
= (−1)n

for all integers n > 0. Prove that an is a perfect square for all n ≥ 0.

Solution. Note that a2 = 1, a3 = 4, a4 = 9, a5 = 25, so a0 = F2
0 , a1 = F2

1 ,
a2 = F2

2 , a3 = F2
3 , a4 = F2

4 , a5 = F2
5 , where (Fn)n≥0 is the Fibonacci sequence.

We induct on n to prove that an = F2
n for all n ≥ 0. Assume that ak = F2

k for
all k ≤ n. Hence

an = F2
n , an−1 = F2

n−1, an−2 = F2
n−2. (1)

From the given relation we obtain

an+1 − 3an + an−1 = 2(−1)n

and
an − 3an−1 + an−2 = 2(−1)n−1, n ≥ 2.

Summing up these equalities yields

an+1 − 2an − 2an−1 + an−2 = 0, n ≥ 2. (2)

Using the relations (1) and (2) we obtain

an+1 = 2F2
n + 2F2

n−1 − F2
n−2 = (Fn + Fn−1)

2 + (Fn − Fn−1)
2 − F2

n−2

= F2
n+1 + F2

n−2 − F2
n−2 = F2

n+1,

as desired.

Problem 9.3.4. Define the sequence (an)n≥0 by a0 = 0, a1 = 1, a2 = 2, a3 = 6,
and

an+4 = 2an+3 + an+2 − 2an+1 − an, n ≥ 0.

Prove that n divides an for all n > 0.
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Solution. From the hypothesis it follows that a4 = 12, a5 = 25, a6 = 48. We
have a1

1 , a2
2 = 1, a3

3 = 2, a4
4 = 3, a5

5 = 5, a6
6 = 8, so an

n = Fn for all n =
1, 2, 3, 4, 5, 6, where (Fn)n≥1 is the Fibonacci sequence.

We prove by induction that an = nFn for all n. Indeed, assuming that ak =
k Fk for k ≤ n + 3, we have

an+4 = 2(n + 3)Fn+3 + (n + 2)Fn+2 − 2(n + 1)Fn+1 − nFn

= 2(n + 3)Fn+3 + (n + 2)Fn+2 − 2(n + 1)Fn+1 − n(Fn+2 − Fn+1)

= 2(n + 3)Fn+3 + 2Fn+2 − (n + 2)Fn+1

= 2(n + 3)Fn+3 + 2Fn+2 − (n + 2)(Fn+3 − Fn+2)

= (n + 4)(Fn+3 + Fn+2) = (n + 4)Fn+4,

as desired.

Additional Problems

Problem 9.3.5. Determine the maximum value of m2 + n2, where m and n are
integers satisfying 1 ≤ m, n ≤ 1981 and (n2 − mn − m2)2 = 1.

(22nd International Mathematical Olympiad)

Problem 9.3.6. Prove that for any integer n ≥ 4, Fn + 1 is not a prime.

Problem 9.3.7. Let k be an integer greater than 1, a0 = 4, a1 = a2 = (k2 − 2)2,
and

an+1 = anan−1 − 2(an + an−1) − an−2 + 8 for n ≥ 2.

Prove that 2 + √
an is a perfect square for all n.

9.3.2 Problems Involving Linear Recursive Relations

A sequence x0, x1, x2, . . . of complex numbers is defined recursively by a linear
recursion of order k if

xn = a1xn−1 + a2xn−2 + · · · + ak xn−k, n ≥ k, (1)

where a1, a2, . . . , ak are given complex numbers and x0 = α0, x1 = α1, . . . ,
xk−1 = αk−1 are also given.

The main problem is to find a general formula for xn in terms of a1, a2, . . . ,
ak , α0, α1, . . . , αk−1, and n. In order to solve this problem we attach to (1) the
algebraic equation

tk − a1tk−1 − a2t k−2 − · · · − ak = 0, (2)

which is called the characteristic equation of (1).
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Theorem 9.3.1. If the characteristic equation (2) has distinct roots t1, t2, . . . , tk ,
then

xn = c1tn
1 + c2tn

2 + · · · + ck tn
k , (3)

where the constants c1, c2, . . . , ck are determined by the initial conditions x0 =
α0, x1 = α1, . . . , xk−1 = αk−1.

Proof. Consider the sequence y0, y1, y2, . . . given by

yn = c1tn
1 + c2tn

2 + · · · + cntn
n .

It is not difficult to prove that the sequence (yn)n≥0 satisfies the linear re-
cursion (1), since t1, t2, . . . , tk are the roots of the characteristic equation (2).
Consider the following system of linear equations:

c1 + c2 + · · · + ck = α0,

c1t1 + c2t2 + · · · + cktk = α1,

. . .

c1tk−1
1 + c2tk−1

2 + · · · + cktk−1
k = αk−1, (4)

whose determinant is the so-called Vandermonde determinant

V (t1, t2, . . . , tk) =
∏

1≤i< j≤k

(t j − ti ).

This determinant is nonzero, because t1, t2, . . . , tk are distinct.
Hence c1, c2, . . . , ck are uniquely determined as a solution to system (4).

Moreover, y0 = α0 = x0, y1 = α1 = x1, . . . , yk−1 = αk−1 = xk−1. Using
strong induction, from (1) it follows that yn = xn for all n.

The case in which the roots of the characteristic equation (2) are not distinct
is addressed in the following theorem.

Theorem 9.3.2. Suppose that equation (2) has the distinct roots t1, . . . , th , with
multiplicities s1, . . . , sh, respectively. Then xn is a linear combination of

tn
1 , ntn

1 , . . . ns1−1tn
1

. . .

tn
h , ntn

h , . . . , nsh−1tn
h

One can also say that

xn = f1(n)tn
1 + f2(n)tn

2 + · · · + fh(n)tn
h ,

where fi is a polynomial of degree si , for each i .
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The proof of this result uses the so-called Hermite interpolation polynomial
or formal series.

The most frequent situation is with k = 2. Then the linear recursion becomes

xn = a1xn−1 + a2xn−2, n ≥ 2,

where a1, a2 are given complex numbers and x0 = α0, x1 = α1.
If the characteristic equation t2 − a1t − a2 = 0 has distinct roots t1, t2, then

xn = c1tn
1 + c2tn

2 , n ≥ 0,

where c1, c2 are solutions to the system of linear equations

c1 + c2 = α0, c1t1 + c2t2 = α1,

that is,

c1 = α1 − α0t2
t1 − t2

, c2 = α0t1 − α1

t1 − t2
.

If the characteristic equation has the nonzero double root t1, then

xn = c1tn
1 + c2ntn

1 = (c1 + c2n)tn
1 ,

where c1, c2 are determined from the system of equations x0 = α0, x1 = α1,
that is,

c1 = α0, c2 = α1 − α0t1
t1

.

Example. Let us find the general term of the sequence

P0 = 0, P1 = 1, . . . , Pn = 2Pn−1 + Pn−2, n ≥ 2.

The characteristic equation is t2 − 2t − 1 = 0, whose roots are t1 = 1 + √
2

and t2 = 1 − √
2. We have Pn = c1tn

1 + c2tn
2 , n ≥ 0, where c1 + c2 = 0 and

c1(1 + √
2) + c2(1 − √

2) = 1; hence

Pn = 1

2
√

2

[
(1 + √

2)n − (1 − √
2)n], n ≥ 0.

This sequence is called Pell’s sequence, and it plays an important part in Dio-
phantine equations.

In some situations we encounter inhomogeneous recursions of order k of the
form

xn = a1xn−1 + a2xn−2 + · · · + ak xn−k + b, n ≥ k,

where a1, a2, . . . , ak, b are given complex numbers and x1 = α1, x2 = α2, . . . ,
xk−1 = αk−1. The method of attack consists in performing a translation xn =
yn +β, where β is the solution to the equation (1−a1 −a2 −· · ·−ak)β = b when
a1 + a2 + · · · + ak �= 1. The sequence (yn)n≥0 satisfies the linear recursion (1).
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Example. Let us find xn if x0 = α, xn = axn−1 + b, n ≥ 1.
If a = 1, we have an arithmetic sequence whose first term is α and whose

common difference is b. In this case xn = α + nb.
If a �= 1, we perform the translation xn = yn + β, where β = b

1−a . In this
case (yn)n≥0 satisfies the recursion y0 = α − β, yn = ayn−1, n ≥ 1, which is
a geometric sequence whose first term is α − β and whose ratio is a. We obtain
yn = (α − β)an; hence

xn =
(
α − b

1 − a

)
an + b

1 − a
, n ≥ 0.

Problem 9.3.8. Let a and b be positive integers and let the sequence (xn)n≥0 be
defined by x0 = 1 and xn+1 = axn + b for all nonnegative integers n. Prove
that for any choice of a and b, the sequence (xn)n≥0 contains infinitely many
composite numbers.

(1995 German Mathematical Olympiad)

Solution. The case a = 1 gives xn = 1 + b + · · · + bn−1 = bn−1
b−1 , n ≥ 0. If n is

even, n = 2k, then

xn = (bk + 1)
bk − 1

b − 1
= (bk + 1)xk, k ≥ 0

and we are done.
Let a �= 1.
Assume to the contrary that xn is composite for only finitely many n. Take N

larger than all such n, so that xm is prime for all n > N . Choose such a prime
xm = p not dividing a − 1 (this excludes only finitely many candidates). Let t be
such that t (1 − a) ≡ b (mod p); then

xn+1 − t ≡ axn + b − b = a(xn − t) (mod p).

In particular,

xm+p−1 = t + (xm+p−1 − t) ≡ t + a p−1(xm − t) ≡ (1 − a p−1)t ≡ 0 (mod p).

However, xm+p−1 is a prime greater than p, yielding a contradiction. Hence
infinitely many of the xn are composite.

Problem 9.3.9. Find an if a0 = 1 and an+1 = 2an + √
3a2

n − 2, n ≥ 0.

Solution. We have (an+1 − 2an)
2 = 3a2

n − 2, so

a2
n+1 − 4an+1an + a2

n + 2 = 0, n ≥ 0.

Then
a2

n − 4anan−1 + a2
n−1 + 2 = 0, n ≥ 1;
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hence, by subtraction,

a2
n+1 − a2

n−1 − 4an(an+1 − an−1) = 0

for all n ≥ 1. Because it is clear that (an)n≥0 is increasing, we have an+1−an−1 �=
0, for all n ≥ 1, so

an+1 + an−1 − 4an = 0, n ≥ 1,

that is, an+1 = 4an − an−1, n ≥ 1. Moreover, a0 = 1 and a1 = 3. The character-
istic equation is t2 − 4t + 1 = 0, whose roots are t1 = 2 + √

3 and t2 = 2 − √
3.

We obtain

an = 1

2
√

3

[
(1 + √

3)(2 + √
3)n − (1 − √

3)(2 − √
3)n

]
, n ≥ 0.

We can also write an as follows:

an = 1√
3

[(1 + √
3

2

)2n+1 −
(1 − √

3

2

)2n+1
]

, n ≥ 0.

Note that from a0 = 1, a1 = 3, and an+1 = 4an − an−1 it follows by strong
induction that an is a positive integer for all n.

Problem 9.3.10. Consider the sequence {an} such that a0 = 4, a1 = 22, and
an − 6an−1 + an−2 = 0 for n ≥ 2. Prove that there exist sequences {xn} and {yn}
of positive integers such that

an = y2
n + 7

xn − yn

for any n ≥ 0.

(2001 Bulgarian Mathematical Olympiad)

Solution. Consider the sequence {cn} of positive integers such that c0 = 2, c1 =
1, and cn = 2cn−1 + cn−2 for n ≥ 2.

We prove by induction that an = c2n+2 for n ≥ 0. We check the base cases
of a0 = 4 = c2 and a1 = 9 = c4. Then, for any k ≥ 2, assuming that the claim
holds for n = k − 2 and n = k − 1,

c2k+2 = 2c2k+1 + c2k

= 2(2c2k + c2k−1) + ak−1

= 4c2k + (c2k − c2k−2) + ak−1

= 6ak−1 − ak−2

= ak,
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so the claim holds for n = k as well, and the induction is complete.
For n ≥ 1, (

an+1 an

an+2 an+1

)
=

(
0 1
1 2

) (
an an−1

an+1 an

)
and ∣∣∣∣an+1 an

an+2 an+1

∣∣∣∣ =
∣∣∣∣0 1
1 2

∣∣∣∣
∣∣∣∣ an an−1
an+1 an

∣∣∣∣ = −
∣∣∣∣ an an−1
an+1 an

∣∣∣∣ .
Thus, for n ≥ 0,

c2
n+1 − cncn+2 = (−1)n(c2

1 − c0c2) = (−1)n(12 − 2 · 4) = (−1)n(−7).

In particular, for all n ≥ 0,

c2
2n+1 − c2nan = c2

2n+1 − c2nc2n+2 = (−1)2n(−7) = −7

and

an = c2
2n+1 + 7

c2n
.

We may therefore take yn = c2n+1 and xn = c2n + yn .

Problem 9.3.11. The sequence a1, a2, . . . is defined by the initial conditions a1 =
20, a2 = 30 and the recursion an+2 = 3an+1 − an for n ≥ 1. Find all positive
integers n for which 1 + 5anan+1 is a perfect square.

(2002 Balkan Mathematical Olympiad)

Solution. The only solution is n = 3. We can check that 20 ·30 ·5+1 = 3001 and
30·70·5+1 = 10501 are not perfect squares, while 70·180·5+1 = 63001 = 2512

is a perfect square. Then we have only to prove that 1 + 5anan+1 is not a perfect
square for n ≥ 4. First, we will prove a lemma.

Lemma. For any integer n ≥ 2,

a2
n + 500 = an−1an+1.

Proof. We will prove this by induction on n. In the base case, 302+500 = 1400 =
20 · 70. Now assume that a2

n + 500 = an−1an+1. Then

anan+2 = (3an+1 − an)(an) = 3an+1an − a2
n

= 3an+1an − (an−1an+1 − 500)

= 500 + an+1(3an − an−1) = 500 + a2
n+1,

proving the inductive step. Therefore the desired statement is true from in-
duction.
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Now, for n ≥ 4, (an + an+1)
2 = a2

n + a2
n+1 + 2anan+1. But

a2
n+1 = 9a2

n + a2
n−1 − 6an−1an,

so

(an + an+1)
2 = 2anan+1 + 3an(3an − an−1) + a2

n−1 + a2
n − 3anan−1

= 5anan+1 + a2
n−1 − anan−2

= 5anan+1 + a2
n−1 − (a2

n−1 + 500) = 5anan+1 − 500,

by the lemma and the definition of a.
Therefore (an +an+1)

2 = 5anan+1 −500 < 5anan+1 +1. Since an is increas-
ing and n ≥ 4,

an + an+1 ≥ 180 + 470 = 650,

so

(an + an+1 + 1)2 = (an + an+1)
2 + 2(an + an+1) + 1

> (an + an+1)
2 + 501 = 5anan+1 + 1.

Because two adjacent integers have squares above and below 5anan+1 + 1,
that value is not a perfect square for n ≥ 4.

Additional Problems

Problem 9.3.12. Let a, b be integers greater than 1. The sequence x1, x2, . . . is
defined by the initial conditions x0 = 0, x1 = 1 and the recursion

x2n = ax2n−1 − x2n−2, x2n+1 = bx2n − x2n−1

for n ≥ 1. Prove that for any natural numbers m and n, the product xn+m xn+m−1
· · · xn+1 is divisible by xm xm−1.

(2001 St. Petersburg City Mathematical Olympiad)

Problem 9.3.13. Let m be a positive integer. Define the sequence {an}n≥0 by
a0 = 0, a1 = m, and an+1 = m2an − an−1 for n ≥ 1. Prove that an ordered pair
(a, b) of nonnegative integers, with a ≤ b, is a solution of the equation

a2 + b2

ab + 1
= m2

if and only if (a, b) = (an, an+1) for some n ≥ 0.

(1998 Canadian Mathematical Olympiad)
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Problem 9.3.14. Let b, c be positive integers, and define the sequence a1, a2, . . .

by a1 = b, a2 = c, and
an+2 = |3an+1 − 2an|

for n ≥ 1. Find all such (b, c) for which the sequence a1, a2, . . . has only a finite
number of composite terms.

(2002 Bulgarian Mathematical Olympiad)

9.3.3 Nonstandard Sequences of Integers

Problem 9.3.15. Let k be a positive integer. The sequence an is defined by a1 = 1,
and for n ≥ 2, an is the nth positive integer greater than an−1 which is congruent
to n modulo k. Find an is closed form.

(1997 Austrian Mathematical Olympiad)

Solution. We have an = n(2+(n−1)k)
2 . If k = 2, then an = n2. First, observe

that a1 ≡ 1 (mod k). Thus, for all n, an ≡ n (mod k), and the first positive
integer greater than an−1 which is congruent to n modulo k must be an−1 +1. The
nth positive integer greater than an−1 that is congruent to n modulo k is simply
(n − 1)k more than the first positive integer greater than an−1 which satisfies that
condition. Therefore, an = an−1 + 1 + (n − 1)k. Solving this recursion gives

an = n + (n − 1)n

2
k.

Problem 9.3.16. Let a1 = 19, a2 = 98. For n ≥ 1, define an+2 to be the remainder
of an + an+1 when it is divided by 100. What is the remainder when

a2
1 + a2

2 + · · · + a2
1998

is divided by 8?

(1998 United Kingdom Mathematical Olympiad)

Solution. The answer is 0. Consider an (mod 4) which is not changed by taking
the remainder divided by 100, there’s the cycle 3, 2, 1, 3, 0, 3 which repeats 333
times. Then

a2
1 + a2

2 + · · · + a2
1998 ≡ 333(1 + 4 + 1 + 1 + 0 + 1) ≡ 0 (mod 8),

as claimed.

Problem 9.3.17. A sequence of integers {an}n≥1 satisfies the following recursion
relation:

an+1 = a3
n + 1999 for n = 1, 2, . . . .

Prove that there exists at most one n for which an is a perfect square.

(1999 Austrian–Polish Mathematics Competition)
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Solution. Consider the possible values of (an, an+1) modulo 4:

an 0 1 2 3
an+1 3 0 3 2

No matter what a1 is, the terms a3, a4, . . . are all 2 or 3 (mod 4). However,
all perfect squares are 0 or 1 (mod 4), so at most two terms (a1 and a2) can
be perfect squares. If a1 and a2 are both perfect squares, then writing a1 = a2,
a2 = b2 we have a6 + 1999 = b2 or 1999 = b2 − (a3)2 = (b + a3)(b − a3).
Because 1999 is prime, b−a3 = 1 and b+a3 = 1999. Thus a3 = 1999−1

2 = 999,
which is impossible. Hence at most one term of the sequence is a perfect square.

Problem 9.3.18. Determine whether there exists an infinite sequence of positive
integers such that

(i) no term divides any other term;
(ii) every pair of terms has a common divisor greater than 1, but no integer

greater than 1 divides all the terms.

(1999 Hungarian Mathematical Olympiad)

Solution. The desired sequence exists. Let p0, p1, . . . be the primes greater than
5 in order, and let q3i = 6, q3i+1 = 10, q3i+2 = 15 for each nonnegative integer
i . Then let si = pi qi for all i ≥ 0. The sequence s0, s1, s2, . . . clearly satisfies (i)
because si is not even divisible by p j for i �= j . For the first part of (ii), any two
terms have their indices both in {0, 1}, both in {0, 2}, or both in {1, 2} (mod 3),
so they have a common divisor of 2, 3, or 5, respectively. For the second part, we
just need to check that no prime divides all the si . Indeed, 2 � s2, 3 � s1, 5 � s0, and
no prime greater than 5 divides more than one si .

Problem 9.3.19. Let a1, a2, . . . be a sequence satisfying a1 = 2, a2 = 5, and

an+2 = (2 − n2)an+1 + (2 + n2)an

for all n ≥ 1. Do there exist indices p, q, and r such that apaq = ar ?

(1995 Czech–Slovak Match)

Solution. No such p, q, r exist. We show that for all n, an ≡ 2 (mod 3). This
holds for n = 1 and n = 2 by assumption and follows for all n by induction:

an+2 = (2 − n2)an+1 + (2 + n2)an

≡ 2(2 − n2) + 2(2 + n2) = 8 ≡ 2 (mod 3).

Let p, q, r be positive integers. We have apaq ≡ 1 (mod 3), so apaq is
different from ar , which is congruent to 2 (mod 3).
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Problem 9.3.20. Is there a sequence of natural numbers in which every natural
number occurs just once and moreover, for any k = 1, 2, 3, . . . the sum of the
first k terms is divisible by k?

(1995 Russian Mathematical Olympiad)

Solution. We recursively construct such a sequence. Suppose a1, . . . , am have
been chosen, with s = a1 + · · · + am , and let n be the smallest number not yet
appearing. By the Chinese remainder theorem, there exists t such that t ≡ −s
(mod m + 1) and t ≡ −s − n (mod m + 2). We can increase t by a suitably large
multiple of (m + 1)(m + 2) to ensure that it does not equal any of a1, . . . , am .
Then a1, . . . , am, t, n also has the desired property, and the construction ensures
that 1, . . . , m all occur among the first 2m terms.

Additional Problems

Problem 9.3.21. Let {an} be a sequence of integers such that for n ≥ 1,

(n − 1)an+1 = (n + 1)an − 2(n − 1).

If 2000 divides a1999, find the smallest n ≥ 2 such that 2000 divides an .

(1999 Bulgarian Mathematical Olympiad)

Problem 9.3.22. The sequence (an)n≥0 is defined by a0 = 1, a1 = 3, and

an+2 =
{

an+1 + 9an if n is even,

9an+1 + 5an if n is odd.

Prove that
(a)

∑2000
k=1995 a2

k is divisible by 20,
(b) a2n+1 is not a perfect square for any n = 0, 1, 2, . . . .

(1995 Vietnamese Mathematical Olympiad)

Problem 9.3.23. Prove that for any natural number a1 > 1, there exists an in-
creasing sequence of natural numbers a1, a2, . . . such that a2

1 + a2
2 + · · · + a2

k is
divisible by a1 + a2 + · · · + ak for all k ≥ 1.

(1995 Russian Mathematical Olympiad)

Problem 9.3.24. The sequence a0, a1, a2, . . . satisfies

am+n + am−n = 1
2 (a2m + a2n)

for all nonnegative integers m and n with m ≥ n. If a1 = 1, determine an .

(1995 Russian Mathematical Olympiad)
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Problem 9.3.25. The sequence of real numbers a1, a2, a3, . . . satisfies the initial
conditions a1 = 2, a2 = 500, a3 = 2000 as well as the relation

an+2 + an+1

an+1 + an−1
= an+1

an−1

for n = 2, 3, 4, . . . . Prove that all the terms of this sequence are positive integers
and that 22000 divides the number a2000.

(1999 Slovenian Mathematical Olympiad)

Problem 9.3.26. Let k be a fixed positive integer. We define the sequence a1, a2,
. . . by a1 = k + 1 and the recursion an+1 = a2

n − kan + k for n ≥ 1. Prove that
am and an are relatively prime for distinct positive integers m and n.

Problem 9.3.27. Suppose the sequence of nonnegative integers a1, a2, . . . , a1997
satisfies

ai + a j ≤ ai+ j ≤ ai + a j + 1

for all i, j ≥ 1 with i + j ≤ 1997. Show that there exists a real number x such
that an = 
nx� for all 1 ≤ n ≤ 1997.

(1997 USA Mathematical Olympiad)

Problem 9.3.28. The sequence {an} is given by the following relation:

an+1 =
{ an−1

2 , if an ≥ 1,

2an
1−an

, if an < 1.

Given that a0 is a positive integer, an �= 2 for each n = 1, 2, . . . , 2001, and
a2002 = 2, find a0.

(2002 St. Petersburg City Mathematical Olympiad)

Problem 9.3.29. Let x1 = x2 = x3 = 1 and xn+3 = xn + xn+1xn+2 for all
positive integers n. Prove that for any positive integer m there is an integer k > 0
such that m divides xk .

Problem 9.3.30. Find all infinite bounded sequences a1, a2, . . . of positive inte-
gers such that for all n > 2,

an = an−1 + an−2

gcd(an−1, an−2)
.

(1999 Russian Mathematical Olympiad)

Problem 9.3.31. Let a1, a2, . . . be a sequence of positive integers satisfying the
condition 0 < an+1 − an ≤ 2001 for all integers n ≥ 1. Prove that there exists an
infinite number of ordered pairs (p, q) of distinct positive integers such that ap is
a divisor of aq .

(2001 Vietnamese Mathematical Olympiad)
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Problem 9.3.32. Define the sequence {xn}n≥0 by x0 = 0 and

xn =

⎧⎪⎨
⎪⎩

xn−1 + 3r+1−1
2 , if n = 3r (3k + 1),

xn−1 − 3r+1+1
2 , if n = 3r (3k + 2),

where k and r are nonnegative integers. Prove that every integer appears exactly
once in this sequence.

(1999 Iranian Mathematical Olympiad)

Problem 9.3.33. Suppose that a1, a2, . . . is a sequence of natural numbers such
that for all natural numbers m and n, gcd(am, an) = agcd(m,n). Prove that there
exists a sequence b1, b2, . . . of natural numbers such that an = ∏

d|n bd for all
integers n ≥ 1.

(2001 Iranian Mathematical Olympiad)





10

Problems Involving
Binomial Coefficients

10.1 Binomial Coefficients

One of the main problems leading to the consideration of binomial coefficients is
the expansion of (a + b)n , where a, b are complex numbers and n is a positive
integer. It is well known that

(a + b)n =
(

n

0

)
an +

(
n

1

)
an−1b + · · · +

(
n

n − 1

)
abn−1 +

(
n

n

)
bn,

where
(n

k

) = n!
k!(n−k)! , k = 0, 1, . . . , n with the convention 0! = 1. The integers(n

0

)
,
(n

1

)
, . . . ,

(n
n

)
are called binomial coefficients. They can be obtained recursively

by using Pascal’s1 triangle,

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
1 5 10 10 5 1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

in which every entry different from 1 is the sum of the two entries above and
adjacent to it.

The fundamental properties of the binomial coefficients are the following:

1Blaise Pascal (1623–1662) was a very influential French mathematician and philosopher who
contributed to many areas of mathematics.
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(1) (symmetry)
(n

k

) = ( n
n−k

)
;

(2) (Pascal’s triangle property)
( n

k+1

) = (n−1
k+1

) + (n−1
k

)
;

(3) (monotonicity)
(n

0

)
<

(n
1

)
< · · · <

( n⌊
n−1

2

⌋
+1

) = ( n
 n
2 �

)
;

(4) (sum of binomial coefficients)
(n

0

) + (n
1

) + · · · + (n
n

) = 2n;

(5) (alternating sum)
(n

0

) − (n
1

) + · · · + (−1)n
(n

n

) = 0, n ≥ 1;

(6) (Vandermonde property)
∑k

i=0

(m
i

)( n
k−i

) = (m+n
k

)
;

(7) If p is a prime, then p | (p
k

)
, k = 1, . . . , p − 1.

Problem 10.1.1. Let n be an odd positive integer. Prove that the set{(
n

1

)
,

(
n

2

)
, . . . ,

(
n

n−1
2

)}

contains an odd number of odd numbers.

Solution. For n = 1 the claim is clear, so let n ≥ 3.
Define Sn = (n

1

) + (n
2

) + · · · + ( n
n−1

2

)
. Then

2Sn =
(

n

1

)
+

(
n

2

)
+ · · · +

(
n

n − 1

)
= 2n − 2,

or Sn = 2n−1 − 1. Because Sn is odd it follows that the sum Sn contains an odd
number of odd terms, as desired.

Problem 10.1.2. Determine all positive integers n ≥ 3 such that 22000 is divisible
by

1 +
(

n

1

)
+

(
n

2

)
+

(
n

3

)
.

(1998 Chinese Mathematical Olympiad)

Solution. The solutions are n = 3, 7, 23. Since 2 is a prime,

1 +
(

n

1

)
+

(
n

2

)
+

(
n

3

)
= 2k

for some positive integer k ≤ 2000. We have

1 +
(

n

1

)
+

(
n

2

)
+

(
n

3

)
= (n + 1)(n2 − n + 6)

6
,



10.1. Binomial Coefficients 199

i.e., (n + 1)(n2 − n + 6) = 3 × 2k+1. Let m = n + 1; then m ≥ 4 and m(m2 −
3m + 8) = 3 × 2k+1. We consider the following two cases:

(a) m = 2s . Since m ≥ 4, s ≥ 2. We have

22s − 3 × 2s + 8 = m2 − 3m + 8 = 3 × 2t

for some positive integer t . If s ≥ 4, then

8 ≡ 3 × 2t (mod 16) ⇒ 2t = 8 ⇒ m2 − 3m + 8 = 24 ⇒ m(m − 3) = 16,

which is impossible. Thus either s = 3, m = 8, t = 4, n = 7, or s = 2, m = 4,
t = 2, n = 3.

(b) m = 3 × 2u . Since m ≥ 4, m > 4 and u ≥ 1. We have

9 × 22u − 9 × 2u + 8 = m2 − 3m + 8 = 2v

for some positive integer v. It is easy to check that there is no solution for v when
u = 1, 2. If u ≥ 4, we have 8 ≡ 2v (mod 16) ⇒ v = 3 and m(m − 3) = 0,
which is impossible. So u = 3, m = 3 × 23 = 24, v = 9, n = 23.

Problem 10.1.3. Let m and n be integers such that 1 ≤ m ≤ n. Prove that m is a
divisor of

n
m−1∑
k=0

(−1)k
(

n

k

)
.

(2001 Hungarian Mathematical Olympiad)

Solution. We can write the given expression as follows:

n
m−1∑
k=0

(−1)k
(

n

k

)
= n

m−1∑
k=0

(−1)k
((

n − 1

k

)
+

(
n − 1

k − 1

))

= n
m−1∑
k=0

(−1)k
(

n − 1

k

)
+ n

m−1∑
k=1

(−1)k
(

n − 1

k − 1

)

= n
m−1∑
k=0

(−1)k
(

n − 1

k

)
− n

m−2∑
k=0

(−1)k
(

n − 1

k

)

= n(−1)m−1
(

n − 1

m − 1

)

= m(−1)m−1
(

n

m

)
.

The final expression is clearly divisible by m.
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Problem 10.1.4. Show that for any positive integer n, the number

Sn =
(

2n + 1

0

)
· 22n +

(
2n + 1

2

)
· 22n−2 · 3 + · · · +

(
2n + 1

2n

)
· 3n

is the sum of two consecutive perfect squares.

(1999 Romanian International Mathematical Olympiad Team Selection Test)

Solution. It is easy to see that:

Sn = 1
4

[
(2 + √

3)2n+1 + (2 − √
3)2n+1

]
.

The required property says that there exists k > 0 such that Sn = (k−1)2+k2,
or, equivalently,

2k2 − 2k + 1 − Sn = 0.

The discriminant of this equation is � = 4(2Sn − 1), and, using
( 1+√

3√
2

)2 =
2 + √

3, after the usual computations, we obtain

� =
( (1 + √

3)2n+1 + (1 − √
3)2n+1

2n

)2
.

After solving the equation, we find that

k = 2n+1 + (1 + √
3)2n+1 + (1 − √

3)2n+1

2n+2
.

Therefore, it is sufficient to prove that k is an integer. Let us set Em = (1 +√
3)m + (1 − √

3)m , where m is a positive integer. Clearly, Em is an integer. We
shall prove that 2

[ m
2

]
divides Em . For E0 = 2, E1 = 2, E2 = 8, the assertion is

true. Moreover, the numbers Em satisfy the relation

Em = 2Em−1 + 2Em−2.

The property now follows by induction.

Problem 10.1.5. Prove that for every pair m, k of natural numbers, m has a
unique representation in the form

m =
(

ak

k

)
+

(
ak−1

k − 1

)
+ · · · +

(
at

t

)
,

where
ak > ak−1 > · · · > at ≥ t ≥ 1.

(1996 Iranian Mathematical Olympiad)
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First solution. We first show uniqueness. Suppose m is represented by two se-
quences ak, . . . , at and bk , . . . , bt . Find the first position in which they differ;
without loss of generality, assume that this position is k and that ak > bk . Then

m ≤
(

bk

k

)
+

(
bk − 1

k − 1

)
+ · · · +

(
bk − k + 1

1

)
<

(
bk + 1

k

)
≤ m,

a contradiction.
To show existence, apply the greedy algorithm: find the largest ak such that(ak

k

) ≤ m, and apply the same algorithm with m and k replaced by m − (ak
k

)
and

k − 1. We need only make sure that the sequence obtained is indeed decreasing,
but this follows because by assumption, m <

(ak+1
m

)
, and so m − (ak

k

)
<

( ak
k−1

)
.

Second solution. Sort all unordered k-tuples of distinct nonnegative integers lex-
icographically. Then the k-tuple {ak, ak−1, . . . , at , t −1, t −3, . . . , 0} is preceded
by exactly

(ak
k

) + (ak−1
k−1

) + · · · + (at
t

)
other k-tuples. (The first term counts the

number of k-tuples whose largest element is smaller than ak . The second term
counts k-tuples that begin with ak but whose second-largest element is smaller
than ak−1, etc.) Since there is necessarily a unique k-tuple preceded by m other
k-tuples, every m has a unique representation in this form.

Problem 10.1.6. Show that for every positive integer n ≥ 3, the least common
multiple of the numbers 1, 2, . . . , n is greater than 2n−1.

(1999 Czech–Slovak Match)

Solution. For any n ≥ 3 we have

2n−1 =
n−1∑
k=0

(
n − 1

k

)
<

n−1∑
k=0

(
n − 1


 n−1
2 �

)
= n

(
n − 1


 n−1
2 �

)
.

Hence it suffices to show that n
( n−1

 n−1

2 �
)

divides lcm(1, 2, . . . , n). Using an

argument involving prime factorizations, we will prove the more general assertion
that for each k < n, lcm(n, n − 1, . . . , n − k) is divisible by n

(n−1
k

)
.

Let k and n be fixed natural numbers with k < n, and let p ≤ n be an arbitrary
prime. Let pα be the highest power of p that divides lcm(n, n − 1, . . . , n − k),
where pα | n − l for some l. Then for each i ≤ α, we know that pi | n − l. Thus
exactly

⌊ l
pi

⌋
of {n − l + 1, n − l + 2, . . . , n} and exactly

⌊ k−l
pi

⌋
of {n − l − 1, n −

l − 2, . . . , n − k} are multiples of pi , so pi divides
⌊ l

pi

⌋ + ⌊ k−l
pi

⌋ ≤ ⌊ k
pi

⌋
of the

remaining k numbers, that is, at most the number of multiples of pi between 1
and k. It follows that p divides

n

(
n − 1

k

)
= n(n − 1) · · · (n − l + 1)(n − l − 1) · · · (n − k)

k! (n − l)

at most α times, so that indeed n
(n−1

k

) | lcm(n, n − 1, . . . , n − k).
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Additional Problems

Problem 10.1.7. Show that the sequence(
2002

2002

)
,

(
2003

2002

)
,

(
2004

2002

)
, . . . ,

considered modulo 2002, is periodic.
(2002 Baltic Mathematical Competition)

Problem 10.1.8. Prove that (
2p

p

)
≡ 2 (mod p2)

for any prime number p.

Problem 10.1.9. Let k, m, n be positive integers such that m + k + 1 is a prime
number greater than n + 1. Let us set Cs = s(s + 1). Show that the product

(Cm+1 − Ck)(Cm+2 − Ck) · · · (Cm+n − Ck)

is divisible by C1C2 · · · Cn .
(18th International Mathematical Olympiad)

Problem 10.1.10. Let n, k be arbitrary positive integers. Show that there exist
positive integers a1 > a2 > a3 > a4 > a5 > k such that

n = ±
(

a1

3

)
±

(
a2

3

)
±

(
a3

3

)
±

(
a4

3

)
±

(
a5

3

)
.

(2000 Romanian International Mathematical Olympiad Team Selection Test)

Problem 10.1.11. Prove that if n and m are integers, and m is odd, then

1

3mn

m∑
k=0

(
3m

3k

)
(3n − 1)k

is an integer.
(2004 Romanian International Mathematical Olympiad Team Selection Test)

Problem 10.1.12. Show that for any positive integer n the number
n∑

k=0

(
2n + 1

2k + 1

)
23k

is not divisible by 5.
(16th International Mathematical Olympiad)

Problem 10.1.13. Prove that for a positive integer k there is an integer n ≥ 2 such
that

(n
1

)
, . . . ,

( n
n−1

)
are all divisible by k if and only if k is a prime.
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10.2 Lucas’s and Kummer’s Theorems

The following theorems of E. Lucas2 (1878) and E. Kummer3 (1852) are very
useful in number theory. Let n be a positive integer, and let p be a prime. Let
nmnm−1 · · · n0 p denote the base-p representation of n; that is,

n = nmnm−1 · · · n0 p = n0 + n1 p + · · · + nm pm,

where 0 ≤ n0, n1, . . . , nm ≤ p − 1 and nm �= 0.

Theorem 10.2.1. (Lucas) Let p be a prime, and let n be a positive integer with n =
nmnm−1 · · · n0 p. Let i be a positive integer less than n. If i = i0+i1 p+· · ·+im pm,
where 0 ≤ i0, i1, . . . , im ≤ p − 1, then(

n

i

)
≡

m∏
j=0

(
n j

i j

)
(mod p). (1)

Here
(0

0

) = 1 and
(n j

i j

) = 0 if n j < i j .

To prove this theorem, we need some additional techniques. Let p be a prime,
and let f (x) and g(x) be two polynomials with integer coefficients. We say that
f (x) is congruent to g(x) modulo p, and write f (x) ≡ g(x) (mod p), if all of
the coefficients of f (x) − g(x) are divisible by p. (Note that the congruence of
polynomials is different from the congruence of the values of polynomials. For
example, x(x + 1) �≡ 0 (mod 2) even though x(x + 1) is divisible by 2 for all
integers x .) The following properties can be easily verified:

(a) f (x) ≡ f (x) (mod p);
(b) if f (x) ≡ g(x) (mod p), then g(x) ≡ f (x) (mod p);
(c) if f (x) ≡ g(x) (mod p) and g(x) ≡ h(x) (mod p), then

f (x) ≡ h(x) (mod p);
(d) if f (x) ≡ g(x) (mod p) and f1(x) ≡ g1(x) (mod p), then

f (x) ± f1(x) ≡ g(x) ± g1(x) (mod p)

and
f (x) f1(x) ≡ g(x)g1(x) (mod p).

Proof of Theorem 10.2.1. By property (7) (Part I, Section 10.1), the binomial
coefficients

(p
k

)
, where 1 ≤ k ≤ p − 1, are divisible by p. Thus,

(1 + x)p ≡ 1 + x p (mod p)

2François Edouard Anatole Lucas (1842–1891), French mathematician best known for his results
in number theory. He studied the Fibonacci sequence and devised the test for Mersenne primes.

3Ernst Eduard Kummer (1810–1893), German mathematician whose main achievement was the
extension of results about integers to other integral domains by introducing the concept of an ideal.
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and
(1 + x)p2 = [(1 + x)p]p ≡ [1 + x p]p ≡ 1 + x p2

(mod p),

and so on, so that for any positive integer r ,

(1 + x)pr ≡ 1 + x pr
(mod p)

by induction.
We have

(1 + x)n = (1 + x)n0+n1 p+···+nm pm

= (1 + x)n0 [(1 + x)p]n1 · · · [(1 + x)pm ]nm

≡ (1 + x)n0(1 + x p)n1 · · · (1 + x pm
)nm (mod p).

The coefficient of xi in the expansion of (1 + x)n is
(n

i

)
. On the other hand,

because i = i0 + i1 p + · · · + im pm , the coefficient of xi is the coefficient of
xi0(x p)i1 · · · (x pm

)im , which is equal to
(n0

i0

)(n1
i1

) · · · (nm
im

)
. Hence(

n

i

)
≡

(
n0

i0

)(
n1

i1

)
· · ·

(
nm

im

)
(mod p),

as desired.

Theorem 10.2.2. (Kummer) Let n and i be positive integers with i ≤ n, and let p
be a prime. Then pt divides

(n
i

)
if and only if t is less than or equal to the number

of carries in the addition (n − i) + i in base p.

Proof. We will use the formula

ep(n) = n − Sp(n)

p − 1
, (2)

where ep is the Legendre function and Sp(n) is the sum of the digits of n in base
p (see Section 6.5). We actually prove that the largest nonnegative integer t such
that pt divides

(n
i

)
is exactly the number of carries in the addition (n − i) + i in

base p.
Let n = amam−1 · · · a0 p , i = bkbk−1 . . . b0 p, (n − i) = (clcl−1 . . . c0)p.

Because 1 ≤ i ≤ n, it follows that k, l ≤ m. Without loss of generality, we assume
that k ≤ l. Let a, b, c, and t ′ be integers such that pa ‖ n!, pb ‖ i !, pc ‖(n − i)!,
and pt ′ ‖ (n

i

)
. Then t ′ = a − b − c.

From formula (2) we have

a = n − (am + am−1 + · · · + a0)

p − 1
,

b = i − (bk + bk−1 + · · · + b0)

p − 1
,

c = (n − i) − (cl + cl−1 + · · · + c0)

p − 1
.
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Thus

t ′ = −(am + · · · + a0) + (bk + · · · + b0) + (cl + · · · + c0)

p − 1
. (3)

On the other hand, if we add n − i and i in base p, we have

bk bk−1 . . . b1 b0
cl cl−1 . . . ck ck−1 . . . c1 c0

am am−1 . . . al al−1 . . . ak ak−1 . . . a1 a0

Then we have either b0 + c0 = a0 (with no carry) or b0 + c0 = a0 + p (with
a carry of 1). More generally, we have

b0 + c0 = a0 + α1 p,

b1 + c1 + α1 = a1 + α2 p,

b2 + c2 + α2 = a2 + α3 p,

. . .

bm + cm + αm = am,

where αi denotes the carry at the (i − 1)th digit from the right. (Note also that
b j = 0 for j > k and that c j = 0 for j > l.) Adding the above equations together
yields

(b0 + · · · + bk) + (c0 + · · · + cl) = (a0 + · · · + am) + (p − 1)(α1 + · · · + αm).

Thus, equation (3) becomes

t ′ = α1 + · · · + αm,

as desired.

Problem 10.2.1. Let n be a positive integer. Prove that the number of k ∈ {0, 1,
. . . , n} for which

(n
k

)
is odd is a power of 2.

Solution. Let the base-2 expansion of n be 20n0 + 21n1 + · · · + 2ana , where
ni ∈ {0, 1} for each i . Then for any k = 20k0 + 21k1 + · · · + 2aka , we have(

n

k

)
≡

(
n0

k0

)(
n1

k1

)
· · ·

(
na

ka

)
(mod 2)

by Lucas’s theorem. Thus
(n

k

)
is odd if and only if ki ≤ ni for each i . Let m be the

number of ni ’s equal to 1. Then the values of k ∈ {0, 1, . . . , 2a+1 − 1} for which(n
k

)
is odd are obtained by setting ki = 0 or 1 for each of the m values of i such

that ni = 1, and ki = 0 for the other values of i . Thus there are 2m values of k in
{0, 1, . . . , 2a+1 − 1} for which

(n
k

)
is odd. Finally, note that for k > n,

(n
k

) = 0 is
never odd, so the number of k ∈ {0, 1, . . . , n} for which

(n
k

)
is odd is 2m , a power

of 2.



206 I Fundamentals, 10. Problems Involving Binomial Coefficients

Problem 10.2.2. Determine all positive integers n, n ≥ 2, such that
(n−k

k

)
is even

for k = 1, 2, . . . ,
⌊ n

2

⌋
.

(1999 Belarusian Mathematical Olympiad)

Solution. Suppose that p = 2, a = 2s − 1, and as−1 = as−2 = · · · = a0 = 1.
For any b with 0 ≤ b ≤ 2s − 1, each term

(ai
bi

)
in the above equation equals 1.

Therefore,
(a

b

) ≡ 1 (mod 2).
This implies that n + 1 is a power of two. Otherwise, let s = 
log2 n� and let

k = n − (2s − 1) = n − 2s+1 − 2

2
≤ n − n

2
= n

2
.

Then
(n−k

k

) = (2s−1
k

)
is odd, a contradiction.

Conversely, suppose that n = 2s − 1 for some positive integer s. For
k = 1, 2, . . . ,

⌊ n
2

⌋
, there is at least one 0 in the binary representation of a = n −k

(not counting leading zeros, of course). Whenever there is a 0 in the binary rep-
resentation of n − k, there is a 1 in the corresponding digit of b = k. Then the
corresponding

(ai
bi

)
equals 0, and by Lucas’s theorem,

(n−k
k

)
is even.

Therefore, n = 2s − 1 for integers s ≥ 2.

Problem 10.2.3. Prove that
(2n

k

)
, k = 1, 2, . . . , 2n − 1, are all even and that

exactly one of them is not divisible by 4.

Solution. All these numbers are even, since(
2n

k

)
= 2n

k

(
2n − 1

k − 1

)
and 2n/k is different from 1 for all k = 1, 2, . . . , 2n − 1.

From the same relation it follows that
(2n

k

)
is a multiple of 4 for all k different

from 2n−1. For k = 2n−1 we have(
2n

2n−1

)
= 2

(
2n − 1

2n−1 − 1

)
.

But from Lucas’s theorem it follows that
( 2n−1

2n−1−1

)
is odd, since 2n −1 contains

only 1’s in its binary representation and
(1

k

) = 1 if k = 0 or 1. This solves the
problem.

Additional Problems

Problem 10.2.4. Let p be an odd prime. Find all positive integers n such that(n
1

)
,
(n

2

)
, . . . ,

( n
n−1

)
are all divisible by p.

Problem 10.2.5. Let p be a prime. Prove that p does not divide any of
(n

1

)
, . . . ,( n

n−1

)
if and only if n = spk − 1 for some positive integer k and some integer s

with 1 ≤ s ≤ p − 1.
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Miscellaneous Problems

Problem 11.1. Find all positive integers x, y, z that satisfy the conditions x + y ≥
2z and x2 + y2 − 2z2 = 8.

(2003 “Alexandru Myller” Romanian Regional Contest)

First solution. There are two possible cases:
Case I. x ≥ y ≥ z.
We set x − z = a ≥ 0, y − z = b ≥ 0, a ≥ b. We then obtain the equation

2z(a + b) + a2 + b2 = 8. When z ≥ 3, there are no solutions. For z = 2, we get
(a + 2)2 + (b + 2)2 = 16, which again has no solution. When z = 1 we obtain
solutions (x, y, z) = (3, 1, 1) and (x, y, z) = (1, 3, 1). When z = 0, a2 + b2 = 8
and we get the solution (x, y, z) = (2, 2, 0).

Case II. x ≥ z ≥ y.
Note again that x − z = a, y − z = b and obtain the solution (x, y, z) =

(n + 2, n − 2, n) or (x, y, z) = (n − 2, n + 2, n).

Second solution. Let x = z + a ≥ y = z + b, where a + b ≥ 0 (b may be
negative). Then the equation becomes 2(a + b)z + a2 + b2 = 8. Note that this
implies that a + b is even and a + b < 4. If a + b = 0, then we get a = 2 and
b = −2; hence (x, y, z) = (n + 2, n − 2, n) or (n − 2, n + 2, n). If a + b = 2,
then z = 1, a = 2 and b = 0; hence (x, y, z) = (3, 1, 1) or (1, 3, 1).

Problem 11.2. Let n be a positive integer. Find all integers that can be written as

1

a1
+ 2

a2
+ · · · + n

an
,

for some positive integers a1, a2, . . . , an.

Solution. First, observe that k = 1
a1

+ 2
a2

+ · · · + n
an

. Then

k ≤ 1 + 2 + 3 + · · · + n = n(n + 1)

2
.

© Birkhäuser Boston, a part of Springer Science + Business Media, LLC 2009
T. Andreescu and D. Andrica, Number Theory, DOI: 10.1007/b11856_11, 207
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We prove that any integer k ∈ {
1, 2, . . . ,

n(n+1)
2

}
can be written as requested.

For k = 1, put a1 = a2 = · · · = an = n(n+1)
2 .

For k = n, set a1 = 1, a2 = 2, . . . , an = n.
For 1 < k < n, let ak−1 = 1 and ai = n(n+1)

2 − k + 1 for i �= k − 1.
Thus

1

a1
+ 2

a2
+ · · · + n

an
= k − 1

1
+

∑
i=1

i �=k−1

i

ai
= k − 1 +

n(n+1)
2 − k + 1

n(n+1)
2 − k + 1

= k.

For n < k <
n(n+1)

2 , write k as

k = n + p1 + p2 + · · · + pi ,

with 1 ≤ pi < · · · < p2 < p1 ≤ n − 1.
Setting ap1+1 = ap2+1 = · · · = api +1 = 1 and a j = j otherwise, we are

done.

Problem 11.3. Find all positive integers a < b < c < d with the property that
each of them divides the sum of the other three.

Solution. Since d | (a + b + c) and a + b + c < 3d, it follows that a + b + c = d
or a + b + c = 2d.

Case (i). If a + b + c = d, since a | (b + c + d), we have a | 2d and similarly
b | 2d, c | 2d.

Let 2d = ax = by = cz, where 2 < z < y < x . Thus 1
x + 1

y + 1
z = 1

2 .

(a) If z = 3, then 1
x + 1

y = 1
6 . The solutions are

(x, y) = {(42, 7), (24, 8), (18, 9), (15, 10)};
hence

(a, b, c, d) ∈ {
(k, 6k, 14k, 21k), (k, 3k, 8k, 12k),

(k, 2k, 6k, 9k), (2k, 3k, 10k, 15k)
}
,

for k > 0.
(b) If z = 4, then 1

x + 1
y = 1

4 , and

(x, y) = {(20, 5), (12, 6)}.
The solutions are

(a, b, c, d) = (k, 4k, 5k, 10k) and (a, b, c, d) = (k, 2k, 3k, 6k),

for k > 0.
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(c) If z = 5, then 1
x + 1

y = 3
10 , and (3x − 10)(3y − 10) = 100.

Since 3x − 10 ≡ 2 (mod 3), it follows that 3x − 10 = 20 and 3y − 10 = 5.
Thus y = 5, false.

(d) If z ≥ 6 then 1
x + 1

y + 1
z < 1

6 + 1
6 + 1

6 = 1
2 , so there are no solutions.

Case (ii). If a + b + c = 2d, we obtain a | 3d, b | 3d, c | 3d.
Then 3d = ax = by = cz, with x > y > z > 3 and 1

x + 1
y + 1

z = 2
3 . Since

x ≥ 4, y ≥ 5, z ≥ 6 we have 1
x + 1

y + 1
z ≤ 1

6 + 1
5 + 1

4 = 37
60 < 2

3 , so there are no
solutions in this case.

Problem 11.4. Find the greatest number that can be written as a product of some
positive integers whose sum is 1976.

(18th International Mathematical Olympiad)

Solution. Let x1, x2, . . . , xn be the numbers having the sum x1 + x2 +· · ·+ xn =
1976 and the maximum value of the product x1 · x2 · · · xn = p.

If one of the numbers, say x1, is equal to 1, then x1+x2 = 1+x2 > x2 = x1x2.
Hence the product (x1 + x2) · x3 · · · xn is greater than x1 · x2 · · · xn = p, false.
Therefore xk ≥ 2 for all k.

If one of the numbers is equal to 4, we can replace it with two numbers 2
without changing the sum or the product.

Suppose that xk ≥ 5 for some k. Then xk < 3(xk −3), so replacing the number
xk with the numbers 3 and xk − 3, the sum remains constant while the product
increases, contradiction.

Therefore all the numbers are equal to 2 or 3. If there are more than three
numbers equal to 2, we can replace them by two numbers equal to 3, preserving
the sum and increasing the product (since 2 · 2 · 2 < 3 · 3). Hence at most two
terms equal to 2 are allowed. Since 1976 = 3 · 658 + 2, the maximum product is
equal to 2 · 3658.

Problem 11.5. Prove that there exist infinitely many positive integers that cannot
be written in the form

x3
1 + x5

2 + x7
3 + x9

4 + x11
5

for some positive integers x1, x2, x3, x4, x5.

(2002 Belarusian Mathematical Olympiad)

Solution. For each integer N , we consider the number of integers in [1, N ] that

can be written in the above form. Because x1 ≤ N
1
3 , there are at most N

1
3 ways

to choose x1. A similar argument applies to the other xi ’s. Therefore, there are at

most N
1
3 N

1
5 N

1
7 N

1
9 N

1
11 = N

3043
3465 combinations. So there are at least N − N

3043
3465

integers not covered. It is easy to see that this value can be arbitrarily large as
N approaches infinity. Therefore, there exist infinitely many positive integers that
cannot be written in the form x3

1 + x5
2 + x7

3 + x9
4 + x11

5 .
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Additional Problems

Problem 11.6. Let a, b be positive integers. By integer division of a2 + b2 by
a + b we obtain the quotient q and the remainder r . Find all pairs (a, b) such that
q2 + r = 1977.

(19th International Mathematical Olympiad)

Problem 11.7. Let m, n be positive integers. Show that 25n − 7m is divisible by
3 and find the least positive integer of the form |25n − 7m − 3m |, where m, n run
over the set of positive integers.

(2004 Romanian Mathematical Regional Contest)

Problem 11.8. Given an integer d, let

S = {m2 + dn2 | m, n ∈ Z}.
Let p, q ∈ S be such that p is a prime and r = q

p is an integer. Prove that
r ∈ S.

(1999 Hungary–Israel Mathematical Competition)

Problem 11.9. Prove that every positive rational number can be represented in the
form

a3 + b3

c3 + d3
,

where a, b, c, d are positive integers.

(1999 International Mathematical Olympiad Shortlist)

Problem 11.10. Two positive integers are written on the board. The following
operation is repeated: if a < b are the numbers on the board, then a is erased and
ab/(b − a) is written in its place. At some point the numbers on the board are
equal. Prove that again they are positive integers.

(1998 Russian Mathematical Olympiad)

Problem 11.11. Let f (x) + a0 + a1x + · · · + am xm , with m ≥ 2 and am �= 0,
be a polynomial with integer coefficients. Let n be a positive integer, and suppose
that:

(i) a2, a3, . . . , am are divisible by all the prime factors of n;
(ii) a1 and n are relatively prime.
Prove that for any positive integer k, there exists a positive integer c such that

f (c) is divisible by nk .

(2001 Romanian International Mathematical Olympiad Team Selection Test)
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Problem 11.12. Let x, a, b be positive integers such that xa+b = abb. Prove that
a = x and b = xx .

(1998 Iranian Mathematical Olympiad)

Problem 11.13. Let m, n be integers with 1 ≤ m < n. In their decimal repre-
sentations, the last three digits of 1978m are equal, respectively, to the last three
digits of 1978n . Find m and n such that m + n is minimal.

(20th International Mathematical Olympiad)





II Solutions to Additional Problems





1

Divisibility

1.1 Divisibility

Problem 1.1.10. Show that for any natural number n, one can find three distinct
natural numbers a, b, c between n2 and (n + 1)2 such that a2 + b2 is divisible
by c.

(1998 St. Petersburg City Mathematical Olympiad)

Solution. (We must assume n > 1.) Take

a = n2 + 2, b = n2 + n + 1, c = n2 + 1.

Then a2 + b2 = (2n2 + 2n + 5)c.

Problem 1.1.11. Find all odd integers n greater than 1 such that for any relatively
prime divisors a and b of n, the number a + b − 1 is also a divisor of n.

(2001 Russian Mathematical Olympiad)

Solution. We will call a number “good” if it satisfies the given conditions. It is not
difficult to see that all prime powers are good. Suppose n is a good number that
has at least two distinct prime factors. Let n = pr s, where p is the smallest prime
dividing n, and s is not divisible by p. Because n is good, p+s −1 must divide n.
For any prime q dividing s, s < p + s −1 < s +q, so q does not divide p + s −1.
Therefore, the only prime factor of p + s − 1 is p. Then s = pc − p + 1 for some
c > 1. Because pc must also divide n, pc + s − 1 = 2pc − p divides n. Because
2pc−1 − 1 has no factors of p, it must divide s. Since every prime divisor of s is
larger than p, we must have either s > p (2pc−1−1) or s = 2pc−1−1. In the first
case, rearranging gives 1 > pc, a contradiction. In the second case, rearranging
gives (p − 2)(pc−1 − 1) = 0. Hence p = 2, contrary to the assumption that n is
odd.

© Birkhäuser Boston, a part of Springer Science + Business Media, LLC 2009
T. Andreescu and D. Andrica, Number Theory, DOI: 10.1007/b11856_12, 215
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Problem 1.1.12. Find all positive integers n such that 3n−1+5n−1 divides 3n +5n.
So only prime powers are good.

(1996 St. Petersburg City Mathematical Olympiad)

First solution. This occurs only for n = 1. Let sn = 3n + 5n and note that

sn = (3 + 5)sn−1 − 3 · 5 · sn−2,

so sn−1 must also divide 3 · 5 · sn−2. If n > 1, then sn−1 is coprime to 3 and 5, so
sn−1 must divide sn−2, which is impossible since sn−1 > sn−2.

Second solution. Note that 1 < 3n+5n

3n−1+5n−1 < 5, so we can have only 3n+5n

3n−1+5n−1 ∈
{2, 3, 4} cases, which are easily checked.

Problem 1.1.13. Find all positive integers n such that the set

{n, n + 1, n + 2, n + 3, n + 4, n + 5}
can be split into two disjoint subsets such that the products of elements in these
subsets are the same.

(12th International Mathematical Olympiad)

Solution. At least one of six consecutive numbers is divisible by 5. From the
given condition it follows that two numbers must be divisible by 5. These two
numbers are necessarily n and n +5. Therefore n and n +5 are in distinct subsets.
Since n(n + 1) > n + 5 for n ≥ 3, it follows that a required partition cannot
be considered with subsets of different cardinality. Thus each subset must contain
three numbers. The following possibilities have to be considered:

(a) {n, n + 2, n + 4} ∪ {n + 1, n + 3, n + 5},
(b) {n, n + 3, n + 4} ∪ {n + 1, n + 2, n + 5}.
In case (a), n < n + 1, n + 2 < n + 3, and n + 4 < n + 5.
In case (b), the condition of the problem gives

n(n + 3)(n + 4) = (n + 1)(n + 3)(n + 5).

We obtain n2 + 5n + 10 = 0, and this equation has no real solution.

Remark. One can prove that if p is a prime of the form 4k + 3, then one cannot
partition p − 1 consecutive integers into two classes with equal product. This
problem is the particular case p = 7.

Problem 1.1.14. The positive integers d1, d2, . . . , dn are distinct divisors of 1995.
Prove that there exist di and d j among them such that the numerator of the re-
duced fraction di/d j is at least n.

(1995 Israeli Mathematical Olympiad)
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Solution. Note that 3·5·7·19 = 1995. If the chosen divisors include one divisible
by 19 and another not divisible by 19, the quotient of the two has numerator
divisible by 19, solving the problem since n ≤ 16. If this is not the case, either
all divisors are divisible by 19 or none of them has this property, and in particular
n ≤ 8. Without loss of generality, assume that the divisors are all not divisible by
19.

Under this assumption, we are done if the divisors include one divisible by 7
and another not divisible by 7, unless n = 8. In the latter case all of the divisors
not divisible by 19 occur, including 1 and 3 · 5 · 7, so this case also follows. We
now assume that none of the chosen divisors is divisible by 4, so that in particular
n ≤ 4.

Again, we are done if the divisors include one divisible by 5 and another not
divisible by 5. But this can fail to occur only if n = 1 or n = 2. The former case
is trivial, while in the latter case we simply divide the larger divisor by the smaller
one, and the resulting numerator has at least one prime divisor and so is at least 3.
Hence the problem is solved in all cases.

Problem 1.1.15. Determine all pairs (a, b) of positive integers such that ab2 +
b + 7 divides a2b + a + b.

(39th International Mathematical Olympiad)

Solution. From the divisibility ab2 + b + 7 | a2b + a + b we obtain

ab2 + b + 7 | b(a2b + a + b) − a(ab2 + b + 7) ⇒ ab2 + b + 7 | b2 − 7a.

When b2 − 7a = 0, it follows that b2 = 7k, a = 7k2. Observe that all pairs
(7k2, 7k), k ≥ 1, are solutions to the problem.

Suppose b2 −7a > 0. Then ab2 +b+7 ≤ b2 −7a, and we get a contradiction:

b2 − 7a < b2 < ab2 + b + 7.

Suppose b2 − 7a < 0. Then ab2 + b + 7 ≤ 7a − b2. This is possible only for
b2 < 7, i.e., either b = 1 or b = 2. If b = 1, we obtain a + 8 | a2 + a + 1, that
is, a + 8 | a(a + 8) − 7(a + 8) + 57. Hence a + 8 | 57 and we get a + 8 = 19 or
a + 8 = 49, so a = 11 or a = 49.

If b = 2, we obtain 4a + 9 | a + 22 ⇒ 4a + 9 ≤ a + 22 ⇒ 3a ≤ 13. This
case cannot give a solution.

Hence, the solutions of the problem are (7k2, 7k), (11, 1), and (49, 1).

Problem 1.1.16. Find all integers a, b, c with 1 < a < b < c such that (a −
1)(b − 1)(c − 1) is a divisor of abc − 1.

(33rd International Mathematical Olympiad)
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Solution. It is convenient to define a − 1 = x , b − 1 = y, and c − 1 = z. Then
we have the conditions 1 ≤ x < y < z and xyz | xy + yz + zx + x + y + z.

The idea of the solution is to point out that we cannot have xyz ≤ xy +
yz + zx + x + y + z for infinitely many triples (x, y, z) of positive integers. Let
f (x, y, z) be the quotient of the required divisibility.

From the algebraic form

f (x, y, z) = 1

x
+ 1

y
+ 1

z
+ 1

xy
+ 1

yz
+ 1

zx

we can see that f is a decreasing function in one of the variables x, y, z. By
symmetry and because x, y, z are distinct numbers,

f (x, y, z) ≤ f (1, 2, 3) = 2 + 5
6 < 3.

Thus, if the divisibility is fulfilled we can have either f (x, y, z) = 1 or
f (x, y, z) = 2. So, we have to solve in positive integers the equations

xy + yz + zx + x + y + z = kxyz, (1)

where k = 1 or k = 2.
Observe that f (3, 4, 5) = 59

60 < 1. Thus x ∈ {1, 2}. Also f (2, 3, 4) = 35
24 < 2.

Thus, for x = 2, we necessarily have k = 1. The conclusion is that only three
equations have to be considered in (1).

Case 1. x = 1 and k = 1. We obtain the equation

1 + 2(y + z) + yz = yz.

It has no solutions.

Case 2. x = 1 and k = 2. We obtain the equation

1 + 2(y + z) = yz.

Write it in the form (y − 2)(z − 2) = 5 and obtain y − 2 = 1, z − 2 = 5. It
has a unique solution: y = 3, z = 7.

Case 3. x = 2 and k = 1. We obtain the equation

2 + 3(y + z) = yz.

By writing it in the form (y−3)(z−3) = 11, we obtain y−3 = 1, z−3 = 11.
Thus, it has a unique solution: y = 4, z = 15.

From Case 2 and Case 3 we obtain respectively a = 2, b = 4, c = 8 and
a = 3, b = 5, c = 16. These are the solutions of the problem.
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Problem 1.1.17. Find all pairs of positive integers (x, y) for which

x2 + y2

x − y

is an integer that divides 1995.
(1995 Bulgarian Mathematical Olympiad)

Solution. It is enough to find all pairs (x, y) for which x > y and x2 + y2 =
k(x − y), where k divides 1995 = 3 · 5 · 7 · 19. We shall use the following well-
known fact: if p is prime of the form 4q + 3 and if it divides x2 + y2 then p
divides x and y. (For p = 3, 7, 19 the last statement can be proved directly.) If k
is divisible by 3, then x and y are divisible by 3 too. Simplifying by 9 we get an
equality of the form x2

1 + y2
1 = k1(x1 − y1), where k1 divides 5 ·7 ·19. Considering

7 and 19 analogously we get an equality of the form a2 + b2 = 5(a − b), where
a > b. (It is not possible to get an equality of the form a2 + b2 = a − b.) From
here (2a − 5)2 + (2b + 5)2 = 50, i.e., a = 3, b = 1, or a = 2, b = 1. The above
consideration implies that the pairs we are looking for are of the form (3c, c),
(2c, c), (c, 3c), (c, 2c), where c = 1, 3, 7, 19, 3 · 7, 3 · 19, 7 · 19, 3 · 7 · 19.

Problem 1.1.18. Find all positive integers (x, n) such that xn +2n +1 is a divisor
of xn+1 + 2n+1 + 1.

(1998 Romanian International Mathematical Olympiad Team Selection Test)

Solution. The solutions are (x, n) = (4, 1) and (11,1). If n = 1, we need x + 3 =
x + 2 + 1 | x2 + 4 + 1 = x2 + 5 = (x + 3)(x − 3) + 14, so x + 3 divides 14 and
x = 4 or 11. Suppose n ≥ 2. For x ∈ {1, 2, 3} we have

1 + 2n + 1 < 1 + 2n+1 + 1 < 2(1 + 2n + 1),

2n + 2n + 1 < 2n+1 + 2n+1 + 1 < 2(2n + 2n + 1),

2(3n + 2n + 1) < 3n+1 + 2n+1 + 1 < 3(3n + 2n + 1),

so xn + 2n + 1 does not divide xn+1 + 2n+1 + 1. For x ≥ 4, xn = xn/2 + xn/2 ≥
22n/2 + x2/2, so

(2n + 1)x ≤ ((2n + 1)2 + x2)/2

= (22n + 2n+1 + 1 + x2)/2 < 2n+1 + xn + 2n + 2.

Therefore

(x − 1)(xn + 2n + 1) = xn+1 + 2n x + x − xn − 2n − 1

< xn+1 + 2n+1 + 1 < x(xn + 2n + 1);
again xn + 2n + 1 does not divide xn+1 + 2n+1 + 1. So the only solutions are
(4, 1) and (11, 1).
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Problem 1.1.19. Find the smallest positive integer k such that every k-element
subset of {1, 2, . . . , 50} contains two distinct elements a, b such that a +b divides
ab.

(1996 Chinese Mathematical Olympiad)

Solution. The minimal value is k = 39. Suppose a, b ∈ S are such that a + b
divides ab. Let c be the greatest common divisor of a and b, and put a = ca1,
b = cb1, so that a1 and b1 are relatively prime. Then c(a1 + b1) divides c2a1b1,
so a1 + b1 divides ca1b1. Since a1 and b1 have no common factor, neither do a1
and a1 + b1, or b1 and a1 + b1. In short, a1 + b1 divides c.

Since S ⊆ {1, . . . , 50}, we have a + b ≤ 99, so c(a1 + b1) ≤ 99, which
implies a1 + b1 ≤ 9; on the other hand, of course a1 + b1 ≥ 3. An exhaustive
search produces 23 pairs a, b satisfying the condition:

a1 + b1 = 3 (6, 3), (12, 6), (18, 9), (24, 12),

(30, 15), (36, 18), (42, 21), (48, 24)

a1 + b1 = 4 (12, 4), (24, 8), (36, 12), (48, 16)

a1 + b1 = 5 (20, 5), (40, 10), (15, 10), (30, 20), (45, 30)

a1 + b1 = 6 (30, 6)

a1 + b1 = 7 (42, 7), (35, 14), (28, 21)

a1 + b1 = 8 (40, 24)

a1 + b1 = 9 (45, 36)

The twelve pairs (3, 6), (4, 12), (5, 20), (7, 42), (8, 24), (9, 18), (10, 40),
(14, 35), (16, 48), (15, 30), (21, 28) and (36, 45) are disjoint. Hence any 39-ele-
ment subset must contain one of these pairs and hence two elements a and b with
a + b | ab. Conversely, the 12-element set

{6, 10, 12, 18, 20, 21, 24, 30, 35, 42, 45, 48}
meets every pair on the list, so

{1, 2, . . . , 50} \ {6, 10, 12, 18, 20, 21, 24, 30, 35, 42, 45, 48}
is a 38-element set without this property.

1.2 Prime Numbers

Problem 1.2.10. For each integer n such that n = p1 p2 p3 p4, where p1, p2, p3,
p4 are distinct primes, let

d1 = 1 < d2 < d3 < · · · < d16 = n

be the sixteen positive integers that divide n. Prove that if n < 1995, then d9 −
d8 �= 22.

(1995 Irish Mathematical Olympiad)
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Solution. Note that 35 · 57 = 1995 = 2 · 3 · 7 · 19. Suppose that n < 1995 and
d9 − d8 = 22; then d8d9 = n, so d8 < 35. Moreover, d8 cannot be even, since
that would make n divisible by 4, whereas n has distinct prime factors. Hence d8,
d9, and n are odd.

The divisors d1, . . . , d8 each are the product of distinct odd primes, since they
divide n. Since 3 · 5 · 7 > 35, none of d1, . . . , d8 is large enough to have three odd
prime factors, so each is either prime or the product of two primes. Since n has
only four prime factors, four of the di must be the product of two odd primes. But
the smallest such numbers are

15, 21, 33, 35, . . . .

Assume that p1 < p2 < p3 < p4. If d8 = p1 p4, then clearly d8 �= 15 and
d8 �= 21. Moreover, if d8 = 33, then p1 = 3 and p4 = 11; hence p2 = 5 and
p3 = 7, and we get d9 = p2 p3 = 35, giving the difference d9 − d8 = 2, which is
not possible. If d8 = p3 p4, then d8 �= 15, d8 �= 21, and d8 �= 33, since p3 > 3.

In both situations we must have d8 ≥ 35, contrary to assumption.

Problem 1.2.11. Prove that there are infinitely many positive integers a such that
the sequence (zn)n≥1, zn = n4 + a, does not contain any prime number.

(11th International Mathematical Olympiad)

Solution. To consider all positive integers of the form n4 + a, n ≥ 1, means to
consider all values of the polynomial P(X) = X4 + a in the positive integers. A
decomposition of the polynomial P(X) gives us decompositions of the numbers
n4 + a, except in the case of factors taking the value 1.

The polynomial P(X) can have a decomposition in integer polynomials only
into quadratic factors:

P(X) = (X2 + m X + n)(X2 + m′ X + n′).

Such a decomposition is possible if and only if

m + m′ = 0, mm ′ + n + n′ = 0, mn′ + m ′n = 0 and nn′ = a.

We obtain m′ = −m, n = n′, m2 − 2n = 0, and n2 = a.
The third equation forces m to be even. Taking m = −m ′ = 2k gives

n = n′ = 2k2 and a = 4k4. The corresponding factorization is X4 + 4k4 =
(X2 − 2k X + 2k2)(X2 + 2k X + 2k2). For k ≥ 2, these factors are

X2 ± 2k X + 2k2 = (X ± k)2 + k2 ≥ k2,

hence are nontrivial and X4 + 4k4 is composite.
For the record, this is the third problem to use this factorization.



222 II Solutions, 1. Divisibility

Problem 1.2.12. Let p, q, r be distinct prime numbers and let A be the set

A = {paqbrc : 0 ≤ a, b, c ≤ 5}.
Find the smallest integer n such that any n-element subset of A contains two

distinct elements x, y such that x divides y.

(1997 Romanian Mathematical Olympiad)

Solution. Define an order relation on A by setting paqbrc ≤ pa1 qb1rc1 iff a ≤ a1,
b ≤ b1, c ≤ c1. Thus, we must find the longest antichain with respect to this
relation, that is, the maximal number m such that there is B ⊂ A with |B| = m
and no two elements of B are comparable. The answer will then be n = m + 1.

From now on, identify paqbrc with (a, b, c) and regard it as a lattice point in
R3. One can easily check that the set

B = {(a, b, c) | a, b, c ∈ {0, 1, . . . , 5}, a + b + c = 8}
has 27 elements and that it is an antichain. We will prove that any set with 28 el-
ements contains two comparable elements. Of course, it suffices to find 27 chains
that partition {(a, b, c) | 0 ≤ a, b, c ≤ 5} and such that each chain has a unique
representation from B. Take A = {(a, b) | 0 ≤ a, b ≤ 5} and partition it into six
chains (draw a picture!)

A1 = {(0, 0), (0, 1), . . . , (0, 5), (1, 5), . . . , (5, 5)},
A2 = {(1, 0), (1, 1), . . . , (1, 4), (2, 4), . . . , (5, 4)},
A3 = {(2, 0), (2, 1), . . . , (2, 3), (3, 3), . . . , (5, 3)},
A4 = {(3, 0), (3, 1), (3, 2), (4, 2), (5, 2)},
A5 = {(4, 0), (4, 1), (5, 1)},
A6 = {(5, 0)}.

Next define A1 j = {(a, b, j) | (a, b) ∈ A1} and similarly for A2, A3. We
have found 18 chains so far.

For (a, b) ∈ A4 ∪ A5 ∪ A6 we define the chain A(a,b) = {(a, b, j) | 0 ≤ j ≤
5}, and we have 9 chains, for a total of 27 chains.

Problem 1.2.13. Prove Bonse’s inequality:

p1 p2 · · · pn > p2
n+1

for n ≥ 4, where p1 = 2, p2 = 3, . . . is the increasing sequence of prime
numbers.
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Solution. Let us define An−1 = p1 p2 · · · pn−1 and ak = k An−1 − pn for 1 ≤ k ≤
pn −1. Observe that these numbers are relatively prime. Indeed, a prime common
divisor of ak1 and ak2 would divide (k1 − k2)An−1, and since gcd(ak1 , pn) = 1,
this divisor would be one of p1, . . . , pn−1, which is clearly impossible. Of course,
this implies that ak ≥ pn+k (since ak is relatively prime to p1, . . . , pn−1). Thus
for k = pn − 1 we have An − An−1 − pn > ppn+n−1, and so p1 p2 · · · pn >

ppn+n−1 > p3n−1 for n ≥ 5. From here we find that for n ≥ 6 we have

p1 · · · pn >
(

p1 · · · p
 n
2 �

)2
> p2

3
 n
2 �−1

> p2
n+1. In the last inequality it is neces-

sary to have
⌊ n

2

⌋ ≥ 5, that is, n ≥ 10. Let us remark that checking cases shows
that this inequality holds for n ≥ 6. For n = 5 one can easily check the inequality.

Problem 1.2.14. Show that there exists a set A of positive integers with the fol-
lowing property: for any infinite set S of primes, there exist two positive integers
m ∈ A and n �∈ A each of which is a product of k distinct elements of S for some
k ≥ 2.

(35th International Mathematical Olympiad)

Solution. There are several constructions for such A, involving different ideas
about the decomposition of integers.

First example. Let p1 < p2 < · · · < pn < · · · be the increasing sequence of all
prime numbers. Define A as the set of numbers of the form pi1 pi2 · · · pik where
i1 < i2 < · · · < ik and k = pi1 . For example, 3 · 5 · 7 ∈ A; 3 · 11 · 13 ∈ A and
5 · 7 · 11 �∈ A; 3 · 5 · 7 · 11 �∈ A.

We will see that A satisfies the required condition. Let S be an infinite set of
prime numbers, say q1 < q2 < · · · < qn < · · · . Take m = q1q2 · · · qq1 and
n = q1q2 · · · qq1+1. Then m ∈ A and n �∈ A.

Second example. Define A = ⋃∞
i=1 Ai , where Ai is the set of numbers that

are the product of i + 1 distinct primes that are different from pi . For example,
3 · 5 · 7 ∈ A2, 2 · 3 · 7 · 11 ∈ A3 and 2 · 3 · 7 �∈ A2, 3 · 5 · 7 · 13 �∈ A3.

Let S be an infinite set of prime numbers, say q1 < q2 < · · · < qn < · · · .
Suppose that q1 = pi1 . If i1 > 1, note that i1 = k. Then n = q1q2 · · · qk+1 �∈ A,
because it contains a prime factor q1 = pi1 = pk . The number m = q2q3 · · · qk+2
contains k + 1 factors, all different from pk = q1. Thus m ∈ A. If i1 = 1, take
k = i2, and the same construction will answer the question.

Third example. Let P be the set of all positive primes and let P1 ⊂ P2 ⊂ · · · ⊂
Pn ⊂ · · · be a nested sequence of finite distinct subsets of P such that P =⋃∞

i=1 Pi . Define A to be the set of elements of the form

a = p1 p2 · · · pk ,

where k = i1 < i2 < · · · < ik and p1 ∈ Pi1 \ Pi1−1, p2 ∈ Pi2 , . . . , pk ∈ Pik .
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Let S be an infinite set of prime numbers and let Si = S ∩ Pi . Since S =⋃∞
i=1 Si , there must be infinitely many indices i > 1 such that Si−1 �= Si . Let im

be the mth such index. Then since Sim ⊂ Sim+1 �= Sim+1 , we see that Si1 ⊂ Si2 ⊂
· · · ⊂ Sim ⊂ · · · is an infinite nested subsequence of distinct sets.

Suppose that Sin = Sin+1 = · · · = Sin+1−1 ⊂ Sin+1 . Set i1 = k > 1 and choose
p1 ∈ Si1 \ Si1−1, p2 ∈ Si2 \ Si2−1, . . . , pk ∈ Sik \ Sik−1, and pk+1 ∈ Sik+1 \ Sik .
Then m = p1 p2 · · · pk ∈ A and n = p2 p3 · · · pk+1 �∈ A because p2 �∈ Si1 = Sk .

Problem 1.2.15. Let n be an integer, n ≥ 2. Show that if k2 + k + n is a prime
number for every integer k, 0 ≤ k ≤ √

n/3, then k2 + k + n is a prime number
for any k, 0 ≤ k ≤ n − 2.

(28th International Mathematical Olympiad)

Solution. It is not difficult to verify the property for n = 2, 3, so we may suppose
n ≥ 5. Assume the contrary. Then there is some number

√
n/3 < m ≤ n − 2

such that m2 + m + n is composite and k2 + k + n is prime for k < m. Note
that (−k − 1)2 + (−k − 1) + n = k2 + k + n. Therefore k2 + k + n is prime
for −m ≤ k < m. Let m2 + m + n = ab be a nontrivial decomposition such
that 1 < a ≤ b. Since n < 3m2, ab = m2 + m + n < 4m2 + m < (2m + 1)2.
Therefore a < 2m + 1 and −m ≤ m − a < m. Therefore (m − a)2 + (m − a)+ n
is a prime number. However,

(m − a)2 + (m − a) + n = m2 + m + n + a(a − 2m − 1) = a(b + a − 2m − 1).

It follows that b + a − 2m − 1 = 1 or a + b = 2(m + 1). By the AM–GM
inequality,

m2 + m + n = ab ≤ (a + b)2

4
= (m + 1)2 = m2 + 2m + 1;

hence n ≤ m + 1, contradicting the choice of m ≤ n − 2.

Remark. The problem is related to the famous example of Euler of a polynomial
generator of primes: x2 + x + 41 produces primes for 0 ≤ x ≤ 39. The problem
shows that it suffices to check the primality only for the first four values of x .

Problem 1.2.16. A sequence q1, q2, . . . of primes satisfies the following condi-
tion: for n ≥ 3, qn is the greatest prime divisor of qn−1 +qn−2 +2000. Prove that
the sequence is bounded.

(2000 Polish Mathematical Olympiad)

Solution. Let bn = max{qn, qn+1} for n ≥ 1. We first prove that bn+1 ≤ bn+2002
for all such n. Certainly qn+1 ≤ bn , so it suffices to show that qn+2 ≤ bn + 2002.
If either qn or qn+1 equals 2, then we have qn+2 ≤ qn +qn+1 +2000 = bn +2002.
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Otherwise, qn and qn+1 are both odd, so qn + qn+1 + 2000 is even. In this case
qn+2 �= 2 divides this number; hence we have

qn+2 ≤ 1
2 (qn + qn+1 + 2000) = 1

2 (qn + qn+1) + 1000 ≤ bn + 1000.

This proves the claim.
Choose k large enough that b1 ≤ k · 2003! + 1. We prove by induction that

bn ≤ k · 2003! + 1 for all n. If this statement holds for some n, then bn+1 ≤
bn + 2003 ≤ k · 2003! + 2003. However, the numbers k · 2003! + m for 2 ≤ m ≤
2003 are all composite (since m is a factor). Since bn+1 is prime, it follows that
bn+1 ≤ k · 2003! + 1. Thus, qn ≤ bn ≤ k · 2003! + 1 for all n.

Problem 1.2.17. Let a > b > c > d be positive integers and suppose

ac + bd = (b + d + a − c)(b + d − a + c).

Prove that ab + cd is not prime.

(42nd International Mathematical Olympiad)

Solution. The given equality is equivalent to a2 −ac + c2 = b2 +bd +d2. Hence

(ab + cd)(ad + bc) = ac(b2 + bd + d2) + bd(a2 − ac + c2),

that is,
(ab + cd)(ad + bc) = (ac + bd)(a2 − ac + c2). (1)

Now suppose that ab + cd is prime. It follows from a > b > c > d that

ab + cd > ac + bd > ad + bc; (2)

hence ac + bd is relatively prime to ab + cd. But then (1) implies that ac + bd
divides ad + bc, which is impossible by (2).

Problem 1.2.18. Find the least odd positive integer n such that for each prime p,
n2−1

4 + np4 + p8 is divisible by at least four primes.

(Mathematical Reflections)

First solution. Let n = 2k + 1 with k a nonnegative integer. For k = 0, 1, 2, 3 it
is easy to see that when p = 2 there are fewer than four prime divisors:

M = p8 + np4 + n2 − 1

4

=
(

p4 + n

2

)2 − 1

4

=
(

p4 + n − 1

2

)(
p4 + n + 1

2

)
= (p4 + k)(p4 + k + 1).
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Let k = 4. Then

M = (p4 + 4)(p4 + 5) = (p2 + 2p + 2)(p2 − 2p + 2)(p4 + 5).

If p = 2, then m is divisible by 2, 3, 5, 7. If p is odd we have

gcd(p2 + 2p + 2, p2 − 2p + 2)

= gcd(p2 + 2p + 2, 4p) = 1,

gcd(p2 + 2p + 2, p4 + 5)

= gcd(p2 + 2p + 2, p4 + 5 − p4 − 4 − 4p3 − 4p)

= gcd(p2 + 2p + 2, 4p3 + 8p2 + 4p + 1)

= gcd(p2 + 2p + 2, 4p3 + 8p2 + 4p + 1 − 4p3 − 8p2 − 4p)

= gcd(p2 + 2p + 2, 1) = 1,

and

gcd(p2 − 2p + 2, p4 + 5) = gcd(p2 − 2p + 2, 4p3 − 8p2 + 4p + 1)

= gcd(p2 − 2p + 2, 1) = 1.

Thus p2 + 2p + 2, p2 − 2p + 2, and p4 + 5 are pairwise coprime. Since
p4 + 5 ≡ 2 (mod 4) for all odd p, 21 is the greatest power of 2 dividing p4 + 5.
Since both p2 + 2p + 2 and p2 − 2p + 2 are odd, there is another prime different
from 2 and from the divisors of p2 + 2p + 2 and p2 − 2p + 2 that divides p4 + 5,
and so n = 9 is the least desired number.

Second solution. Let n = 2k + 1. Then

n2 − 1

4
+ np4 + p8 = k(k + 1) + (2k + 1)p4 + p8 = (p4 + k)(p4 + k + 1).

Note that for k = 0, 1, 2, 3 the result does not hold for p = 2. We prove that
k = 4 is the least integer that satisfies the condition. For k = 4 we have

(p4 + 4)(p4 + 5) = (p2 + 2p + 2)(p2 − 2p + 2)(p4 + 5).

Since (p2 + 2p + 2)(p2 − 2p + 2) = (p4 + 5) − 1, we have that

gcd(p2 + 2p + 2, p4 + 5) = gcd(p2 − 2p + 2, p4 + 5) = 1.

This implies that any prime that divides (p2 + 2p + 2)(p2 − 2p + 2) does not
divide p4 + 5 and vice versa. Then, it is enough to prove that two primes divide
(p2 + 2p + 2)(p2 − 2p + 2) and another two divide p4 + 5.
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For p = 2 the result holds. Assume that p is an odd prime. Note that 2 | p4+5.
To prove that another prime divides p4 + 5 it is enough to prove that 4 � p4 + 5.
This results follows from the fact that 4 | p4 + 3.

In order to prove that two primes divide (p2+2p+2)(p2−2p+2) it is enough
to prove that (p2+2p+2, p2−2p+2) = 1. Let gcd(p2+2p+2, p2−2p+2) = d.
Note that d is odd and that d | 4p. This implies that d | p. If d = p then
p | p2 + 2p + 2, which is a contradiction. Therefore, d = 1, as we wanted to
prove. This implies that k = 4 is the least integer value that satisfies the condition
of the problem, from which we conclude that n = 9 is the least odd positive
integer that satisfies the condition.

1.3 The Greatest Common Divisor and
the Least Common Multiple

Problem 1.3.9. A sequence a1, a2, . . . of natural numbers satisfies

gcd(ai , a j ) = gcd(i, j) for all i �= j.

Prove that ai = i for all i .

(1995 Russian Mathematical Olympiad)

Solution. For any integer m, we have gcd(am , a2m) = gcd(2m, m), and so m | am .
This means that for any other integer n, m divides an if and only if m divides
gcd(am, an) = gcd(m, n); hence if and only if m | n. Therefore an has exactly the
same divisors as n and so must equal n for all n.

Problem 1.3.10. The natural numbers a and b are such that

a + 1

b
+ b + 1

a

is an integer. Show that the greatest common divisor of a and b is not greater than√
a + b.

(1996 Spanish Mathematical Olympiad)

Solution. Let d = gcd(a, b). Adding 2, we see that

a + 1

b
+ b + 1

a
+ 2 = (a + b)(a + b + 1)

ab

is an integer. Since d2 divides the denominator and gcd(d, a + b + 1) = 1, we
must have d2 | a + b; hence d ≤ √

a + b.
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Problem 1.3.11. The positive integers m, n, m, n are written on a blackboard. A
generalized Euclidean algorithm is applied to this quadruple as follows: if the
numbers x, y, u, v appear on the board and x > y, then x − y, y, u + v, v are
written instead; otherwise, x, y − x, u, v + u are written instead. The algorithm
stops when the numbers in the first pair become equal (they will equal the greatest
common divisor of m and n). Prove that the arithmetic mean of the numbers in
the second pair at that moment equals the least common multiple of m and n.

(1996 St. Petersburg City Mathematical Olympiad)

Solution. Note that xv + yu does not change under the operation, so it remains
equal to 2mn throughout. Thus when the first two numbers both equal gcd(m, n),
the sum of the latter two is 2mn/ gcd(m, n) = 2 lcm(m, n).

Problem 1.3.12. How many pairs (x, y) of positive integers with x ≤ y satisfy
gcd(x, y) = 5! and lcm(x, y) = 50!?

(1997 Canadian Mathematical Olympiad)

Solution. First, note that there are 15 primes from 1 to 50:

(2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47).

To make this easier, let us define f (a, b) to be greatest power of b dividing a.
(Note that g(50!, b) > g(5!, b) for all b < 50.) Therefore, for each prime p, we
have either f (x, p) = f (5!, p) and f (y, p) = f (50!, p) or f (y, p) = f (5!, p)

and f (x, p) = f (50!, p). Since we have 15 primes, this gives 215 pairs, and
clearly x �= y in any such pair (since the greatest common divisor and least
common multiple are different), so there are 214 pairs with x ≤ y.

Problem 1.3.13. Several positive integers are written on a blackboard. One can
erase any two distinct integers and write their greatest common divisor and least
common multiple instead. Prove that eventually the numbers will stop changing.

(1996 St. Petersburg City Mathematical Olympiad)

Solution. If a, b are erased and c < d are written instead, we have c ≤ min(a, b)

and d ≥ max(a, b); moreover, ab = cd. From this we may conclude that a +b ≤
c + d. Indeed, ab + a2 = cd + a2 ≤ ac + ad (the latter since (d − a)(c − a) ≤ 0)
and divide both sides by a. Thus the sum of the numbers never decreases, and it
is obviously bounded (e.g., by n times the product of the numbers, where n is the
number of numbers on the board); hence it eventually stops changing, at which
time the numbers never change.

Problem 1.3.14. (a) For which positive integers n do there exist positive integers
x, y such that

lcm(x, y) = n!, gcd(x, y) = 1998?

(b) For which n is the number of such pairs x, y with x ≤ y less than 1998?
(1998 Hungarian Mathematical Olympiad)
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Solution. (a) Let x = 1998a, y = 1998b. So a, b are positive integers such that
a < b, gcd(a, b) = 1. We have lcm(x, y) = 1998ab = 2 · 33 · 37ab = n!. Thus
n ≥ 37 and it is easy to see that this condition is also sufficient.

(b) The answers are n = 37, 38, 39, 40. We need to consider only positive
integers n ≥ 37. For 37 ≤ n < 41, let k = ab = n!/1998. Since gcd(a, b) = 1,
any prime factor of k that occurs in a cannot occur in b, and vice versa. There are
11 prime factors of k, namely 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31. For each of
those prime factors, one must decide only whether it occurs in a or in b. These
11 decisions can be made in a total of 211 = 2048 ways. However, only half of
these ways will satisfy the condition a < b. Thus there will be a total of 1024
such pairs of (x, y) for n = 37, 38, 39, 40. Since 41 is a prime, we can see by a
similar argument that there will be at least 2048 such pairs of (x, y) for n ≥ 41.

Problem 1.3.15. Determine all integers k for which there exists a function
f : N → Z such that

(a) f (1997) = 1998;
(b) for all a, b ∈ N, f (ab) = f (a) + f (b) + k f (gcd(a, b)).

(1997 Taiwanese Mathematical Olympiad)

Solution. Such an f exists for k = 0 and k = −1. First take a = b in (b) to get
f (a2) = (k + 2) f (a). Applying this twice, we get

f (a4) = (k + 2) f (a2) = (k + 2)2 f (a).

On the other hand,

f (a4) = f (a) + f (a3) + k f (a) = (k + 1) f (a) + f (a3)

= (k + 1) f (a) + f (a) + f (a2) + k f (a)

= (2k + 2) f (a) + f (a2) = (3k + 4) f (a).

Setting a = 1997, so that f (a) �= 0, we deduce that (k + 2)2 = 3k + 4, which
has roots k = 0, −1. For k = 0, an example is given by

f (pe1
1 · · · pen

n ) = e1g(p1) + · · · + en g(pn),

g(1, 97) = 1998, and g(p) = 0 for all primes p �= 1997. For k = −1, an example
is given by

f (pe1
1 · · · pen

n ) = g(p1) + · · · + g(pn).

Problem 1.3.16. Find all triples (x, y, n) of positive integers such that

gcd(x, n + 1) = 1 and xn + 1 = yn+1.

(1998 Indian Mathematical Olympiad)
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Solution. All solutions are of the form (a2 − 1, a, 1) with a even. We have xn =
yn+1 − 1 = (y − 1)m with m = yn + yn−1 + · · · + y + 1. Thus m | xn and
gcd(m, n + 1) = 1. Rewrite m as

m = (y − 1)(yn−1 + 2yn−2 + 3yn−3 + · · · + (n − 1)y + n) + (n + 1).

Thus we have gcd(m, y−1) | n+1. But gcd(m, n+1) = 1, so gcd(m, y−1) = 1.
Since xn = (y − 1)m, m must be a perfect nth power. But

(y + 1)n = yn +
(

n

1

)
yn−1 + · · · +

(
n

n − 1

)
y + 1 > m > yn,

for n > 1. So m can be a perfect nth power only if n = 1 and x = y2 − 1. Since
x and n + 1 = 2 are relatively prime, y must be even, yielding the presented
solutions.

Problem 1.3.17. Find all triples (m, n, l) of positive integers such that

m + n = gcd(m, n)2, m + l = gcd(m, l)2, n + l = gcd(n, l)2.

(1997 Russian Mathematical Olympiad)

Solution. The only solution is l = m = n = 2. Let d = gcd(l, m, n), and put l =
dl1, m = dm1, n = dn1. Then d(m1 + n1) = d2d2

mn , where dmn = gcd(m1, n1),
so m1 + n1 = dd2

mn . Defining dln and dlm likewise, we get

2(l1 + m1 + n1) = d(d2
lm + d2

ln + d2
mn).

Since d/gcd(d, 2) divides l1 + m1 + n1 as well as m1 + n1, it divides l1
and likewise m1 and n1. Since these three numbers are relatively prime, we have
d/gcd(d, 2) = 1, and so d ≤ 2.

Note that dlm , dln, dmn are pairwise relatively prime; therefore we can write
l1 = l2dlmdln , m1 = m2dlmdmn , n1 = n2dlndmn . Then we have

dlmdmnm2 + dlndmnn2 = dd2
mn,

and so m2dlm + n2dln = ddmn , and so forth. Assuming without loss of generality
that dmn is no larger than dlm, dln , we get

2dmn ≥ ddmn = dlmm2 + dlnn2 ≥ dlm + dln ≥ 2dmn.

Thus we have equality throughout: d = 2, m2 = n2 = 1, and dlm = dln =
dmn . But these three numbers are pairwise relatively prime, so they are all 1. Then
m1 = n1 = 1 and from l1+m1 = dd2

lm , l1 = 1 as well. Therefore l = m = n = 2.

Problem 1.3.18. Let a, b be positive integers such that gcd(a, b) = 1. Find all
pairs (m, n) of positive integers such that am + bm divides an + bn.

(Mathematical Reflections)
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Solution. The solution is any pair of the form (m, (2k + 1)m), where k is any
nonnegative integer, i.e., n must be an odd multiple of m.

Call xi = (−1)i a(2k−i)mbim = a2kmri , where k is any nonnegative integer,
and r = −( b

a

)m
. Clearly, the sum of all xi for i = 0, 1, 2, . . . , 2k is an integer,

and

2k∑
i=0

xi = a2km
2k∑

i=0

r i = a2km 1 − r2k+1

1 − r
= a(2k+1)m + b(2k+1)m

am + bm
.

Thus am+bm divides an+bn for all n = (2k+1)m, where k is any nonnegative
integer. We prove that these are the only possible values of n.

Note that if a and b are relatively prime, then so are am + bm and ab. Let us
assume that for some integer n such that m < n ≤ 2m, am + bm divides an + bn .
Now,

(am + bm)(an−m + bn−m) − (an + bn) = (ab)n−m(a2m−n + b2m−n),

so am + bm must divide a2m−n + b2m−n , since it is relatively prime to (ab)n−m .
But this is absurd, since 2m − n < m. So the only n such that 0 ≤ m ≤ 2m − 1
and am + bm divides an + bn is n = m. Let us complete our proof by showing
by induction that for all nonnegative integers k, if n = 2mk + d, where 0 ≤ d ≤
2m − 1, then am + bm divides d = m. The result is already proved for k = 0. Let
us assume it true for some k − 1. Then

(am + bm)
(
a(2k−1)m+d + b(2k−1)m+d) − (ab)m(

a2(k−1)m+d + b2(k−1)m+d)
= a2km+d + b2km+d = an + bn.

If am +bm divides an+bn , since am +bm is prime to (ab)m , then am +bm must
also divide a2(k−1)m+d + b2(k−1)m+d . But by the induction hypothesis, d = m,
and we are done.

1.4 Odd and Even

Problem 1.4.5. We are given three integers a, b, c such that a, b, c, a + b − c,
a + c − b, b + c − a, and a + b + c are seven distinct primes. Let d be the
difference between the largest and smallest of these seven primes. Suppose that
800 ∈ {a + b, b + c, c + a}. Determine the maximum possible value of d.

Solution. Answer: 1594.
First, observe that a, b, c must all be odd primes; this follows from the as-

sumption that the seven quantities listed are distinct primes and the fact that
there is only one even prime, 2. Therefore, the smallest of the seven primes is
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at least 3. Next, assume without loss of generality that a + b = 800. Because
a + b − c > 0, we must have c < 800. We also know that c is prime; there-
fore, since 799 = 17 · 47, we have c ≤ 797. It follows that the largest prime,
a +b+c, is no more than 1597. Combining these two bounds, we can bound d by
d ≤ 1597−3 = 1594. It remains to observe that we can choose a = 13, b = 787,
c = 797 to achieve this bound. The other four primes are then 3, 23, 1571, and
1597.

Problem 1.4.6. Determine the number of functions f : {1, 2, . . . , n} → {1995,
1996} that satisfy the condition that f (1) + f (2) + · · · + f (1996) is odd.

(1996 Greek Mathematical Olympiad)

Solution. We can send 1, 2, . . . , n − 1 anywhere, and the value of f (n) will then
be uniquely determined. Hence there are 2n−1 such functions.

Problem 1.4.7. Is it possible to place 1995 different natural numbers around a
circle so that for any two adjacent numbers, the ratio of the greatest to the least
is a prime?

(1995 Russian Mathematical Olympiad)

Solution. No, this is impossible. Let a0, . . . , a1995 = a0 be the integers. Then for
i = 1, . . . , 1995, ak−1/ak is either a prime or the reciprocal of a prime; suppose
the former occurs m times and the latter 1995 − m times. The product of all of
these ratios is a0/a1995 = 1, but this means that the product of some m primes
equals the product of some 1995−m primes. This can occur only when the primes
are the same (by unique factorization), and in particular there has to be the same
number on both sides. But m = 1995 − m is impossible, since 1995 is odd,
contradiction.

Problem 1.4.8. Let a, b, c, d be odd integers such that 0 < a < b < c < d and
ad = bc. Prove that if a + d = 2k and b + c = 2m for some integers k and m,
then a = 1.

(25th International Mathematical Olympiad)

Solution. Since ad = bc, we have

a((a + d) − (b + c)) = (a − b)(a − c) > 0.

Thus a + d > b + c, 2k > 2m , and k > m. Since ad = a(2k − a) = bc =
b(2m − b), we obtain

2mb − 2ka = b2 − a2 = (b − a)(b + a).

By the equality 2m(b − 2k−ma) = (b − a)(b + a), we infer that 2m | (b −
a)(b + a). But b − a and b + a differ by 2a, an odd multiple of 2, so either b − a
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or b + a is not divisible by 4. Hence, either 2m−1 | b − a or 2m−1 | b + a. But
0 < b − a < b < 2m−1, so it must be that 2m−1 | b + a.

Since 0 < b+a < b+c = 2m , it follows that b+a = 2m−1 and b = 2m−1−a.
Then c = 2m−1 and ad = bc = (2m−1 − a)(2m−1 + a).

From this equality we obtain a(a + d) = 22m−2; hence a = 1.

1.5 Modular Arithmetic

Problem 1.5.7. Find all integers n > 1 such that every prime divisor of n6 − 1 is
a divisor of (n3 − 1)(n2 − 1).

(2002 Baltic Mathematics Competition)

Solution. We show that n = 2 is the only such integer. It is clear that n = 2
satisfies the conditions. For n > 2, write

n6 − 1 = (n3 − 1)(n3 + 1) = (n3 − 1)(n + 1)(n2 − n + 1);
hence, all prime factors of n2−n+1 must divide n3−1 or n2−1 = (n−1)(n+1).
Note, however, that (n2 −n+1, n3 −1) ≤ (n3 +1, n3 −1) ≤ 2; on the other hand,
n2 − n + 1 = n(n − 1) + 1 is odd, so all prime factors of n2 − n + 1 must divide
n + 1. But n2 − n + 1 = (n + 1)(n − 2) + 3, so we must have n2 − n + 1 = 3k

for some k. Because n > 2, we have k ≥ 2. Now 3 | (n2 − n + 1) gives n ≡ 2
(mod 3); but for each of the cases n ≡ 2, 5, 8 (mod 9), we have n2 − n + 1 ≡ 3
(mod 9), a contradiction.

Problem 1.5.8. Let f (n) be the number of permutations a1, . . . , an of the integers
1, . . . , n such that

(i) a1 = 1;
(ii) |ai − ai+1| ≤ 2, i = 1, . . . , n − 1.
Determine whether f (1996) is divisible by 3.

(1996 Canadian Mathematical Olympiad)

Solution. We will prove the recursion f (n) = f (n − 1)+ f (n − 3)+ 1 for n ≥ 4
as follows:

Call such a permutation “special.” Suppose a2 = 2. Then the sequence bi =
ai+1 − 1, 1 ≤ i ≤ n − 1, is a special permutation of 1, . . . , n − 1. Conversely, if
bi is special permutation of 1, . . . , n − 1, then defining a1 = 1 and ai = bi−1 + 1
for 2 ≤ i ≤ n gives a special permutation of 1, . . . , n. Thus the number of these
is f (n − 1).

If a2 �= 2, then a2 = 3. Suppose a3 = 2; hence a4 = 4. Then the sequence
bi = ai+3 − 3 is a special permutation of 1, . . . , n − 3. As above, the converse
also holds. Hence the number of these is f (n − 3).



234 II Solutions, 1. Divisibility

If a2 = 3 and a3 �= 2, look at which i , 4 ≤ i ≤ n, has ai = 2. Since
|ai−1 −ai | ≤ 2 and 1 and 3 are already used as a1 and a2, we must have ai−1 = 4.
However, if i �= n, the same argument shows that ai+1 = 4, a contradiction. Thus
an = 2 and an−1 = 4. Hence a3 = 5, and iterating this argument shows that
the only such permutation is 1, 3, 5, . . . , 6, 4, 2 with all the odd numbers in order
followed by the even numbers in reverse order. Thus there is exactly one special
permutation of this form.

Combining these three cases, we see that f (n) = f (n − 1) + f (n − 3) + 1
for n ≥ 4. Calculating shows that f (n) (mod 3) is f (1) = 1, 1, 2, 1, 0, 0, 2,
0, 1, 1, 2, 1, . . . , repeating with period 8. Since 1996 ≡ 4 (mod 8), we have
f (1996) ≡ f (4) = 4 (mod 3), so f (1996) is not divisible by 3.

Problem 1.5.9. For natural numbers m, n, show that 2n − 1 is divisible by
(2m − 1)2 if and only if n is divisible by m(2m − 1).

(1997 Russian Mathematical Olympiad)

Solution. Since
2kn+d − 1 ≡ 2d − 1 (mod 2n − 1),

we have that 2m − 1 divides 2n − 1 if and only if m divides n. Thus in either case,
we must have n = km, in which case

2km − 1

2m − 1
= 1 + 2m + · · · + 2m(k−1) ≡ k (mod 2m − 1).

The two conditions are now that k is divisible by 2m −1 and that n is divisible
by m(2m − 1), which are equivalent.

Problem 1.5.10. Suppose that n is a positive integer and let

d1 < d2 < d3 < d4

be the four smallest positive integer divisors of n. Find all integers n such that

n = d2
1 + d2

2 + d2
3 + d2

4 .

(1999 Iranian Mathematical Olympiad)

Solution. The answer is n = 130. Note that x2 ≡ 0 (mod 4) when x is even and
that x2 ≡ 1 (mod 4) when x is odd.

If n is odd, then all the di are odd and n ≡ d2
1 +d2

2 +d2
3 +d2

4 ≡ 1+1+1+1 ≡ 0
(mod 4), a contradiction. Thus, 2 | n.

If 4 | n then d1 = 1 and d2 = 2, and n ≡ 1 + 0 + d2
3 + d2

4 �≡ 0 (mod 4), a
contradiction. Thus, 4 � n.

Therefore {d1, d2, d3, d4} = {1, 2, p, q} or {1, 2, p, 2p} for some odd primes
p, q. In the first case, n ≡ 3 (mod 4), a contradiction. Thus n = 5(1 + p2) and
5 | n, so p = d3 = 5 and n = 130.
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Problem 1.5.11. Let p be an odd prime. For each i = 1, 2, . . . , p − 1 denote by
ri the remainder when i p is divided by p2. Evaluate the sum

r1 + r2 + · · · + r p−1.

(Kvant)

Solution. Denote the sum in question by S. Combine the first summand with the
last, the second one with the next-to-last, and so on, to get

2S = (r1 + rp−1) + (r2 + rp−2) + · · · + (rp−1 + r1). (1)

We have ri +rp−i ≡ i p +(p− i)p (mod p2) by the definition of the numbers
r1, r2, . . . , r p−1. Furthermore, because p is odd,

i p + (p − i)p = p p −
(

p

1

)
p p−1i +

(
p

2

)
p p−2i2 − · · · +

(
p

p − 1

)
pi p−1.

Since p is a prime, each binomial coefficient above is divisible by p, which
yields the conclusion that ri + r p−i is divisible by p2. But 0 < ri < p2, 0 <

r p−i < p2, because p is a prime (so neither one equals 0), and now we may claim
that

ri + r p−i = p2 for i = 1, 2, . . . , p − 1. (2)

The equalities (1) and (2) show that

S = p − 1

2
p2 = p3 − p2

2
.

Problem 1.5.12. Find the number of integers x with |x | ≤ 1997 such that 1997
divides x2 + (x + 1)2.

(1998 Indian Mathematical Olympiad)

Solution. There are four such integers. With congruences all taken modulo 1997,
we have

x2 + (x + 1)2 ≡ 2x2 + 2x + 1 ≡ 4x2 + 4x + 2 ≡ 0,

i.e., (2x+1)2 ≡ −1. Since 1997 is a prime of the form 4k+1, there are exactly two
distinct solutions to u2 ≡ −1 (see Section 9.1 for more details). Each corresponds
to a different solution to (2x + 1)2 ≡ −1.

Also, the two solutions to (2x + 1)2 ≡ −1 are nonzero, since 0 does not
satisfy the equation. Therefore, there are exactly two satisfactory integers x from
−1997 to −1 and two more from 1 to 1997, for a total of four integer solutions,
as claimed.
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Problem 1.5.13. Find the greatest common divisor of the numbers

An = 23n + 36n+2 + 56n+2

when n = 0, 1, . . . , 1999.

(1999 Junior Balkan Mathematical Olympiad)

Solution. We have
A0 = 1 + 9 + 25 = 35 = 5 · 7.

Using congruence mod 5, it follows that

An ≡ 23n + 36n+2 ≡ 23n + 93n+1 ≡ 23n + (−1)3n+1 (mod 5).

For n = 1, A1 ≡ 9 �= 0 (mod 5); hence 5 is not a common divisor.
On the other hand,

An = 8n + 9 · 93n + 25 · 253n

≡ 1 + 2 · 23n + 4 · 43n

≡ 1 + 2 · 8n + 4 · 64n

≡ 1 + 2 · 1n + 4 · 1n

≡ 0 (mod 7).

Therefore 7 divides An for all integers n ≥ 0.
Consequently, the greatest common divisor of the numbers A0, A1, . . . , A1999

is equal to 7.

1.6 Chinese Remainder Theorem

Problem 1.6.3. Let P(x) be a polynomial with integer coefficients. Suppose that
the integers a1, a2, . . . , an have the following property: For any integer x there
exists an i ∈ {1, 2, . . . , n} such that P(x) is divisible by ai . Prove that there is an
i0 ∈ {1, 2, . . . , n} such that ai0 divides P(x) for any integer x.

(St. Petersburg City Mathematical Olympiad)

Solution. Suppose that the claim is false. Then for each i = 1, 2, . . . , n there
exists an integer xi such that P(xi ) is not divisible by ai . Hence, there is a
prime power pki

i that divides ai and does not divide P(xi ). Some of the pow-

ers pk1
1 , pk2

2 , . . . , pkn
n may have the same base. If so, ignore all but the one with

the least exponent. To simplify notation, assume that the sequence obtained this
way is pk1

1 , pk2
2 , . . . , pkm

m , m ≤ n (p1, p2, . . . , pm are distinct primes). Note that
each ai is divisible by some term of this sequence.
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Since pk1
1 , pk2

2 , . . . , pkm
m are pairwise relatively prime, the Chinese remainder

theorem yields a solution of the simultaneous congruences

x ≡ x1 (mod pk1
1 ), x ≡ x2 (mod pk2

2 ), . . . , x ≡ xm (mod pkm
m ).

Now, since P(x) is a polynomial with integer coefficients, the congruence x ≡
x j (mod p

k j
j ) implies P(x) ≡ P(x j ) (mod p

k j
j ) for each index j = 1, 2, . . . , m.

By the definition of p
k j
j , the number P(x j ) is never divisible by p

k j
j , j = 1, 2, . . . ,

m. Thus, for the solution x given by the Chinese remainder theorem, P(x) is not

divisible by any of the powers p
k j
j . And because each ai is divisible by some p

k j
j ,

j = 1, 2, . . . , m, it follows that no ai divides P(x) either, a contradiction.

Problem 1.6.4. For any set {a1, a2, . . . , an} of positive integers there exists a
positive integer b such that the set {ba1, ba2, . . . , ban} consists of perfect powers.

Solution. There is a finite number of primes p1, p2, . . . , pk that participate in the
prime factorization of a1, a2, . . . , an . Let

ai = pαi1
1 pαi2

2 · · · pαik
k for i = 1, 2, . . . , n;

some of the exponents αi j may be zeros. A positive integer with prime factoriza-
tion pu1

1 pu2
2 · · · puk

k is a perfect qth power if and only if all the exponents u j are
divisible by q. Thus it suffices to find positive integers q1, q2, . . . , qn greater than
1 and nonnegative integers l1, l2, . . . , lk such that

l1 + α11, l2 + α12, . . . , lk + α1k are divisible by q1,

l1 + α21, l2 + α22, . . . , lk + α2k are divisible by q2,

. . .

l1 + αn1, l2 + αn2, . . . , lk + αnk are divisible by qn.

Now it is clear that we have many choices; let, for example, qi be the i th prime
number. As far as l1 is concerned, the above conditions translate into

l1 ≡ −α j1 (mod q j ), j = 1, 2, . . . , n.

This system of simultaneous congruences has a solution by the Chinese re-
mainder theorem, because q1, q2, . . . , qn are pairwise relatively prime. Analo-
gously, each of the systems of congruences

l2 ≡ −α j2 (mod q j ), j = 1, 2, . . . , n,

l3 ≡ −α j3 (mod q j ), j = 1, 2, . . . , n,

. . .

lk ≡ −α jk (mod q j ), j = 1, 2, . . . , n,
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is solvable for the same reason. Take l1, l2, . . . , lk such that all these congruences
are satisfied. Multiplying each ai by b = pl1

1 pl2
2 · · · plk

k yields a set {ba1, ba2, . . . ,
ban} consisting of perfect powers (more exactly, bai is a perfect qi th power).

Remarks. (1) The following problem is a direct consequence of the above result:
Prove that for every positive integer n there exists a set of n positive integers

such that the sum of the elements of each of its subsets is a perfect power.
(Korean proposal for the 33rd International Mathematical Olympiad)

Indeed, let {x1, x2, . . . , xm} be a finite set of positive integers and S1, S2, . . . ,
Sr the element sums of its nonempty subsets (r = 2m − 1). Choose a b such that
bS1, bS2, . . . , bSr are all perfect powers. Then the set {bx1, bx2, . . . , bxm} yields
the desired example.

(2) Another consequence is the following: There are arithmetic progressions
of arbitrary finite length consisting only of powers. Yet, no such infinite progres-
sion exists.

1.7 Numerical Systems

Problem 1.7.12. The natural number A has the following property: the sum of the
integers from 1 to A, inclusive, has decimal expansion equal to that of A followed
by three digits. Find A.

(1999 Russian Mathematical Olympiad)

Solution. We know that

k = (1 + 2 + · · · + A) − 1000A

= A(A + 1)

2
− 1000A = A

( A + 1

2
− 1000

)
is between 0 and 999, inclusive. If A < 1999 then k is negative. If A ≥ 2000,
then A+1

2 − 1000 ≥ 1
2 and k ≥ 1000. Therefore A = 1999, and indeed 1 + 2 +

· · · + 1999 = 1999000.

Problem 1.7.13. A positive integer is said to be balanced if the number of its
decimal digits equals the number of its distinct prime factors. For instance, 15
is balanced, while 49 is not. Prove that there are only finitely many balanced
numbers.

(1999 Italian Mathematical Olympiad)

Solution. Let p1 = 2, p2 = 3, . . . be the sequence of primes. If x is balanced and
it has n prime factors, then

10n ≥ p1 p2 · · · pn ≥ 2 · 3 · 5 · · · (2n − 1) > 2 · 2 · 4 · · · (2n − 2) > (n − 1)!,
which implies that n is bounded and so is x , since x ≤ 10n .
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Problem 1.7.14. Let p ≥ 5 be a prime and choose k ∈ {0, . . . , p − 1}. Find the
maximum length of an arithmetic progression none of whose elements contain the
digit k when written in base p.

(1997 Romanian Mathematical Olympiad)

Solution. We show that the maximum length is p − 1 if k �= 0 and p if k = 0.
In a p-term arithmetic progression, the lowest nonconstant digit takes all values
from 0 to p − 1. This proves the upper bound for k �= 0, which is also a lower
bound because of the sequence 1, . . . , p − 1. However, for k = 0, it is possible
that when 0 occurs, it is not actually a digit in the expansion but rather a leading
zero. This can occur only for the first term in the progression, so extending the
progression to p + 1 terms would cause an honest zero to appear. Thus the upper
bound for k = 0 is p, and the sequence 1, p + 1, . . . , (p − 1)p + 1 shows that it
is also a lower bound.

Problem 1.7.15. How many 10-digit numbers divisible by 66667 are there whose
decimal representation contains only the digits 3, 4, 5, and 6?

(1999 St. Petersburg City Mathematical Olympiad)

First solution. Suppose that 66667n had 10 digits, all of which were 3, 4, 5, and
6. Then

3333333333 ≤ 66667n ≤ 6666666666 ⇒ 50000 ≤ n ≤ 99999.

Now consider the following cases:
(i) n ≡ 0 (mod 3). Then

66667n = 2
3 n · 105 + 1

3 n,

the five digits of 3 · n
3 followed by the five digits of n

3 . These digits are all 3, 4, 5,
or 6 if and only if n

3 = 33333 and n = 99999.
(ii) n ≡ 1 (mod 3). Then

66667n = 2
3 (n − 1) · 105 + 1

3(n + 2) + 66666,

the five digits of 2
3(n−1) followed by the five digits of 1

3 (n+2)+66666. Because
1
3 (n + 2) + 66666 must be between 66667 and 99999, its digits cannot be 3, 4, 5,
or 6. Hence there are no satisfactory n ≡ 1 (mod 3).

(iii) n ≡ 2 (mod 3). Let a = 1
3 (n − 2). Then

66667n = ( 2
3 (n − 2) + 1

) · 105 + 1
3(n − 2) + 33334,

the five digits of x = 2a + 1 followed by the five digits of y = a + 33334. The
units digits in x and y are between 3 and 6 if and only if the units digit in a is 1
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or 2. In this case the other digits in x and y are all between 3 and 6 if and only
if the other digits in a are 2 or 3. Thus there are thirty-two satisfactory a’s (we
can choose each of its five digits from two options), and each a corresponds to a
satisfactory n = 3a + 2.

Therefore there is exactly one satisfactory n ≡ 0 (mod 3), and thirty-two
satisfactory n ≡ 2 (mod 3), making a total of thirty-three values of n and thirty-
three ten-digit numbers.

Second solution. Write 66667n = 105 A + B, where A and B are five digit
numbers. Since 66667 | 2 · 105 + 1 and 66667 | 2 · 105 A + 2B, we have 66667 |
2B − A. Since −66666 ≤ 2B − A ≤ 166662, this leaves only the two possibilities
2B − A = 0 and 2B − A = 66667.

If A = 2B, then working up from the least-significant digit, we see that B =
33333 and A = 66666 is the only solution. If 2B = A + 66667 = 106 + (A −
33333), then 2B must have six digits, with leading digit 1 and the remaining digits
0, 1, 2, or 3. Hence working up from the least significant digit we see that B has
only 5’s and 6’s as digits. Conversely, a B with all digits 5 or 6 gives a 2B of the
desired form and a corresponding A. There is 1 solution in the first case and 32 in
the second, so 33 solutions total.

Problem 1.7.16. Call positive integers similar if they are written using the same
digits. For example, for the digits 1, 1, 2, the similar numbers are 112, 121, and
211. Prove that there exist three similar 1995-digit numbers containing no zero
digit such that the sum of two them equals the third.

(1995 Russian Mathematical Olympiad)

Solution. Noting that 1995 is a multiple of 3, we might first try to find three
similar 3-digit numbers such that the sum of two of them equals the third. There
are various digit arrangements to try, one of which is abc + acb = cba. Since c,
as a leading digit, cannot be zero, the middle column implies c = 9, and there are
carries into and out of this column. Hence 2a + 1 = c and b + c = a + 10. The
first equation gives a = 3, and then the second gives b = 5, and we discover that
459 + 495 = 954.

Problem 1.7.17. Let k and n be positive integers such that

(n + 2)n+2, (n + 4)n+4, (n + 6)n+6, . . . , (n + 2k)n+2k

end in the same digit in decimal representation. At most how large is k?

(1995 Hungarian Mathematical Olympiad)

Solution. We cannot have k ≥ 5, since then one of the terms would be divisible
by 5 and so would end in a different digit from those not divisible by 5. Hence
k ≤ 4. In fact, we will see that k = 3 is the best possible.
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Since x5 ≡ x (mod 10) for all x , xx (mod 10) depends only on x (mod 20).
Hence it suffices to tabulate the last digit of x x for x = 0, . . . , 19 and look for the
longest run. For the evens, we get

0, 4, 6, 6, 6, 0, 6, 6, 6, 4,

while for the odds, we get

1, 7, 5, 3, 9, 1, 3, 5, 7, 9.

Clearly a run of 3 is the best possible.

Problem 1.7.18. Let

1996∏
n=1

(1 + nx3n
) = 1 + a1xk1 + a2xk2 + · · · + am xkm ,

where a1, a2, . . . , am are nonzero and k1 < k2 < · · · < km, Find a1996.

(1996 Turkish Mathematical Olympiad)

Solution. Note that ki/3 is the number obtained by writing i in base 2 and reading
the result as a number in base 3, and ai is the product of the exponents of the
powers of 3 used in ki . Thus

k1996 = 311 + 310 + 39 + 38 + 37 + 34 + 33

and
a1996 = 3 · 4 · 7 · 8 · 9 · 10 · 11 = 665280.

Problem 1.7.19. For any positive integer k, let f (k) be the number of elements in
the set {k +1, k +2, . . . , 2k} whose base-2 representation has precisely three 1’s.

(a) Prove that for each positive integer m, there exists at least one positive
integer k such that f (k) = m.

(b) Determine all positive integers m for which there exists exactly one k with
f (k) = m.

(35th International Mathematical Olympiad)

Solution. (a) Let g : N → N be the function defined as follows: g(k) is the
number of elements in the set {1, 2, . . . , k} having three digits 1 in their binary
representation. The following equalities are obvious:

f (k) = g(2k) − g(k)

and
f (k + 1) − f (k) = g(2k + 2) − g(2k) − (g(k + 1) − g(k)).
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The binary representation of 2k+2 is obtained by adding a final 0 in the binary
representation of k + 1. Thus, we have the following result:

f (k + 1) − f (k) =
⎧⎨
⎩

1 if the binary representation of 2k + 1
contains three digits 1,

0 otherwise.
(1)

Another way to derive formula (1) is the following: Consider going from com-
puting f (k) to computing f (k + 1). The sets of integers used to compute these
are nearly the same. The difference is just that we replace k + 1 with 2k + 1 and
2k + 2. Since k + 1 and 2k + 2 have the same number of ones in their binary
representations, we get (1).

It proves that the function f increases by at most 1 from k to k + 1.
Since g(2n) = (n

3

)
and f (2n) = (n+1

3

) − (n
3

) = (n
2

)
, it follows that f is an

unbounded function. If we combine the above property with the observation that
f (4) = 1, we find that the range of f is the set of all nonnegative integers.

Also, we can obtain the formula f (2n) = (n
2

)
in a different way: The elements

of {2n+1, . . . , 2n+1} whose binary representation has exactly three 1’s are exactly
the (n + 1)-digit binary numbers whose leading digit is 1 and that have ones in 2
of the remaining n places. Hence there are f (n) = (n

2

)
of them.

(b) Let us suppose that the equation f (k) = m has a unique solution. It follows
that

f (k + 1) − f (k) = f (k) − f (k + 1) = 1.

By (1), it follows that the binary representations of 2k + 1 and 2k − 1 contain
three digits 1. Then the binary representation of k contains two digits 1. From
2k − 1 = 2(k − 1) + 1 one obtains that the binary representation of k − 1 also
contains two digits 1. Hence, the last digit of k − 1 is 1, and the last-but-one digit
is 0. Thus, k − 1 = 2n + 1 and k = 2n + 2, where n ≥ 2.

For such a number we have

f (2n + 2) = g(2n+1 + 4) − g(2n + 2) = 1 + g(2n+1) − g(2n) = 1 +
(

n

2

)
.

Thus, we have proved that the equation f (k) = m has a unique solution if and
only if m is a number of the form m = 1 + (n

2

)
, n ≥ 2.

Problem 1.7.20. For each positive integer n, let S(n) be the sum of digits in the
decimal representation of n. Any positive integer obtained by removing several
(at least one) digits from the right-hand end of the decimal representation of n
is called a stump of n. Let T (n) be the sum of all stumps of n. Prove that n =
S(n) + 9T (n).

(2001 Asian Pacific Mathematical Olympiad)
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Solution. Let di be the digit associated with 10i in the base-10 representation of
n, so that n = dmdm−1 . . . d0 for some integer m ≥ 0 (where dm �= 0). The stumps
of n are

∑m
j=k d j 10 j−k for k = 1, 2, . . . , m, and their sum is

T (n) =
m∑

k=1

m∑
j=k

d j 10 j−k =
m∑

j=1

d j

j∑
k=1

10 j−k

=
m∑

j=1

d j

j−1∑
k=0

10k =
m∑

j=1

d j
10 j − 1

10 − 1
.

Hence,

9T (n) =
m∑

j=1

d j (10 j − 1) =
m∑

j=1

10 j d j −
m∑

j=1

d j

=
m∑

j=0

10 j d j −
m∑

j=0

d j = n − S(n),

as desired.

Problem 1.7.21. Let p be a prime number and m a positive integer. Show that
there exists a positive integer n such that there exist m consecutive zeros in the
decimal representation of pn.

(2001 Japanese Mathematical Olympiad)

Solution. It is well known that if gcd(s, t) = 1, then sk ≡ 1 (mod t) for some
k > 0: indeed, of all the positive powers of s, some two sk1 < sk2 must be
congruent modulo t , and then sk2−k1 ≡ 1 (mod t).

First suppose that p �= 2, 5. Then gcd(p, 10m+1) = 1, so there exists a k >

1 such that pk ≡ 1 (mod 10m+1). Then pk = a · 10m+1 + 1, so there are m
consecutive zeros in the decimal representation of pk .

Now suppose that p = 2. We claim that for any a, some power of 2 has
the following final a digits: a − �log 2a
 zeros, followed by the �log 2a
 digits
of 2a . Because gcd(2, 5a) = 1, there exists k such that 2k ≡ 1 (mod 5a). Let
b = k +a. Then 2b ≡ 2a (mod 5a), and 2b ≡ 0 ≡ 2a (mod 2a). Hence, 2b ≡ 2a

(mod 10a). Because 2a < 10a , it follows that 2b has the required property.
Now simply choose a such that a − �log 2a
 ≥ m (for instance, we could

choose a = ⌈ m+1
1−log 2

⌉
). Then 2b contains at least m consecutive zeros, as desired.

Finally, the case p = 5 is done analogously to the case p = 2.

Remark. In fact, the property holds for every integer p ≥ 2. If p is a power of 2,
it is trivial. Otherwise, one can prove using Kronecker’s1 theorem (stating that for

1Leopold Kronecker (1823–1891), German mathematician with many contributions in the theory
of equations. He made major contributions in elliptic functions and the theory of algebraic numbers.
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α ∈ R \ Q the set of {nα} with n ∈ N is dense in [0, 1]) that the numbers pn can
start with any combination of digits we may need, in particular with 1 00 . . . 0︸ ︷︷ ︸

m times

.

Problem 1.7.22. Knowing that 229 is a 9-digit number whose digits are distinct,
without computing the actual number determine which of the ten digits is missing.
Justify your answer.

Solution. It is not difficult to see that when divided by 9, the remainder is 5. The
ten-digit number containing all digits 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 is a multiple of 9,
because the sum of its digits has this property. So, in our nine-digit number, 4 is
missing.

Problem 1.7.23. It is well known that the divisibility tests for division by 3 and
9 do not depend on the order of the decimal digits. Prove that 3 and 9 are the
only positive integers with this property. More exactly, if an integer d > 1 has
the property that d | n implies d | n1, where n1 is obtained from n through an
arbitrary permutation of its digits, then d = 3 or d = 9.

Solution. Let d be a k-digit number. Then among the (k + 2)-digit numbers start-
ing with 10 there is at least one that is divisible by d. Denote it by 10a1a2 · · · ak .
The assumption implies that both numbers a1a2 · · · ak10 and a1a2 · · · ak01 are di-
visible by d, and then so is their difference. This difference equals 9, and the proof
is finished, since d may be only some divisor of 9.

Remark. The following problem, given in an old Russian Mathematical Olympi-
ad, is much more restrictive and difficult:

Suppose that d > 1 has the property that d | n implies d | n1, where n1 is
obtained from n by reversing the order of its digits. Then d | 99. Try to solve this
problem.



2

Powers of Integers

2.1 Perfect Squares

Problem 2.1.14. Let x, y, z be positive integers such that

1

x
− 1

y
= 1

z
.

Let h be the greatest common divisor of x, y, z. Prove that hxyz and h(y − x)

are perfect squares.
(1998 United Kingdom Mathematical Olympiad)

Solution. Let x = ha, y = hb, z = hc. Then a, b, c are positive integers such
that gcd(a, b, c) = 1. Let gcd(a, b) = g. So a = ga′, b = gb′ and a′ and b′ are
positive integers such that

gcd(a′, b′) = gcd(a′ − b′, b′) = gcd(a′, a′ − b′) = 1.

We have

1

a
− 1

b
= 1

c
⇔ c(b − a) = ab ⇔ c(b′ − a′) = a′b′g.

Since gcd(a, b, c) = 1, we have gcd(g, c) = 1 and hence g | b′ − a′. Since
gcd(b′−a′, a′) = gcd(b′−a′, b′) = 1, we also have b′−a′ | g. Hence b′−a′ = g
and c = a′b′. Thus hxyz = h4g2c2 and h(y − x) = h2g2 are perfect squares.

Problem 2.1.15. Let b be an integer greater than 5. For each positive integer n,
consider the number

xn = 11 . . . 1︸ ︷︷ ︸
n−1

22 . . . 2︸ ︷︷ ︸
n

5,

written in base b. Provethat the following condition holds if and only if b = 10:

© Birkhäuser Boston, a part of Springer Science + Business Media, LLC 2009
T. Andreescu and D. Andrica, Number Theory, DOI: 10.1007/b11856_13, 245
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There exists a positive integer M such that for every integer n greater than M, the
number xn is a perfect square.

(44th International Mathematical Olympiad Shortlist)

First solution. Assume that b ≥ 6 has the required property. Consider the se-
quence yn = (b − 1)xn . From the definition of xn we easily find that

yn = b2n + bn+1 + 3b − 5.

Then yn yn+1 = (b − 1)2xn xn+1 is a perfect square for all n > M . Also,
straightforward calculation implies

(
b2n+1 + bn+2 + bn+1

2
− b3

)2
< yn yn+1 <

(
b2n+1 + bn+2 + bn+1

2
+ b3

)2
.

Hence for every n > M there is an integer an such that |an| < b3 and

yn yn+1 = (b2n + bn+1 + 3b − 5)(b2n+2 + bn+2 + 3b − 5)

=
(

b2n+1 + bn+1(b + 1)

2
+ an

)2
. (1)

Now considering this equation modulo bn we obtain (3b − 5)2 ≡ a2
n , so that

assuming that n > 3, we get an = ±(3b − 5).
If an = 3b − 5, then substituting in (1) yields

1
4 b2n(b4 − 14b3 + 45b2 − 52b + 20) = 0,

with b = 10 the only solution greater than 5. Also, if an = −3b + 5, we similarly
obtain

1
4 (b4 − 14b3 − 3b2 + 28b + 20) − 2bn+1(3b2 − 2b − 5) = 0

for each n, which is impossible.
For b = 10 we have xn = ( 10n+5

3

)2
for all n (see Problem 2.1.8). This proves

the statement.

Second solution. In problems of this type, computing zn = √
xn asymptotically

usually works.

From limn→∞ b2n

(b−1)xn
= 1 we infer that limn→∞ bn

zn
= √

b − 1. Furthermore,
from

(bzn + zn+1)(bzn − zn+1) = b2xn − xn+1 = bn+2 + 3b2 − 2b − 5

we obtain

lim
n→∞(bzn − zn+1) = b

√
b − 1

2
.
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Since the zn’s are integers for all n ≥ M , we conclude that

bzn − zn+1 = b
√

b − 1

2

for all n sufficiently large. Hence b−1 is a perfect square, and moreover, b divides
2zn+1 for all large n. Hence b divides 2xn+1 ≡ 10 (mod b) for all large n. It
follows that b | 10; hence the only possibility is b = 10.

Problem 2.1.16. Do there exist three natural numbers greater than 1, such that
the square of each, minus one, is divisible by each of the others?

(1996 Russian Mathematical Olympiad)

Solution. Such integers do not exist. Suppose a ≥ b ≥ c satisfy the desired
condition. Since a2 −1 is divisible by b, the numbers a and b are relatively prime.
Hence the number c2 − 1, which is divisible by a and b, must be a multiple of ab,
so in particular c2 − 1 ≥ ab. But a ≥ c and b ≥ c, so ab ≥ c2, a contradiction.

Problem 2.1.17. (a) Find the first positive integer whose square ends in three 4’s.
(b) Find all positive integers whose squares end in three 4’s.
(c) Show that no perfect square ends with four 4’s.

(1995 United Kingdom Mathematical Olympiad)

Solution. It is easy to check that 382 = 1444 is the first positive integer whose
square ends in three 4’s. Now let n be any such positive integer. Then n2 − 382 =
(n − 38)(n + 38) is divisible by 1000 = 23 · 53. Hence at least one of n − 38,
n + 38 is divisible by 4, and thus both are, since their difference is 76 = 4 · 19.
Since 5 � 76, then 5 divides only one of the two factors. Consequently n − 38 or
n +38 is a multiple of 4 ·53 = 500, so we have n = 500k ±38. It is easy to check
that the square of all numbers of this form (where k is a positive integer) end in
three 4’s.

Note that (c) follows from Problem 2.1.12.
Problem 2.1.18. Let abc be a prime. Prove that b2 − 4ac cannot be a perfect
square.

(Mathematical Reflections)

First solution. Assume that b2−4ac is a perfect square and then let b2−4ac = k2,
k ∈ N. We have

4a · abc = 4a · (100a + 10b + c) = 400a2 + 40ab + 4ac

= (20a + b)2 − (b2 − 4ac) = (20a + b + k)(20a + b − k). (∗)

Since a, b, k ∈ N, then (20a + b + k) ∈ Z and (20a + b − k) ∈ Z. Since abc
is a prime, then according to (∗),

abc | (20a + b + k) or abc | (20a + b − k).
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It follows that abc ≤ 20a + b + k or abc ≤ 20a + b − k. This leads to a
contradiction, since 20a + b + k < abc and 20a + b − k < abc. Hence, abc
cannot be a perfect square. This completes our proof.

Second solution. It is clear that a, b, c ∈ N, a �= 0, and gcd(a, b, c) = 1. If
x1 = u and x2 = v are the solutions of the equation ax2 + bx + c = 0, then we
obtain the factorization ax2 + bx + c = a(x − u)(x − v). On the other hand, if
the discriminant D = b2 − 4ac = h2, h′ ∈ N, is a perfect square, the solutions of
the equation ax2 + bx + c are rational. The factorization is such that

a
(

x − −b + h

2a

)(
x − −b − h

2a

)
= p,

where p is prime. We have x = 10 and abc = a · 102 + b · 10 + c = p; thus

(2ax + b − h)(2ax + b + h) = 4ap.

Since b and h have the same parity, we get(
ax + b − h

2

)(
ax + b + h

2

)
= ap.

One of the factors on the left-hand side should be divisible by p, but clearly(
ax + b−h

2

)
,
(
ax + b+h

2

) ≤ 100, a contradiction. Thus b2 − 4ac cannot be a
perfect square.

Problem 2.1.19. For each positive integer n, denote by s(n) the greatest integer
such that for all positive integers k ≤ s(n), n2 can be expressed as a sum of
squares of k positive integers.

(a) Prove that s(n) ≤ n2 − 14 for all n ≥ 4.
(b) Find a number n such that s(n) = n2 − 14.
(c) Prove that there exist infinitely many positive integers n such that

s(n) = n2 − 14.

(33rd International Mathematical Olympiad)

Solution. (a) Representing n2 as a sum of n2 − 13 squares is equivalent to repre-
senting 13 as a sum of numbers of the form x2 −1, x ∈ N, such as 0, 3, 8, 15, . . . .
But it is easy to check that this is impossible, and hence s(n) ≤ n2 − 14.

(b) Let us prove that s(13) = 132 − 14 = 155. Observe that

132 = 82 + 82 + 42 + 42 + 32

= 82 + 82 + 42 + 42 + 22 + 22 + 12

= 82 + 82 + 42 + 32 + 32 + 22 + 12 + 12 + 12.
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Given any representation of n2 as a sum of m squares one of which is even,
we can construct a representation as a sum of m + 3 squares by dividing the
square into four equal squares. Thus the first equality enables us to construct
representations with 5, 8, 11, . . . , 155 squares, the second to construct ones with
7, 10, 13, . . . , 154 squares, and the third with 9, 12, . . . , 153 squares. It remains
only to represent 132 as a sum of k = 2, 3, 4, 6 squares. This can be done as
follows:

132 = 122 + 52 = 122 + 42 + 32

= 112 + 42 + 42 + 42

= 122 + 32 + 22 + 22 + 22 + 22.

(c) We shall prove that whenever s(n) = n2 − 14 for some n ≥ 13, it also
holds that s(2n) = (2n)2 − 14. This will imply that s(n) = n2 − 14 for any
n = 2t · 13.

If n2 = x2
1 +· · ·+ x2

r , then we have (2n)2 = (2x1)
2 +· · ·+ (2xr )

2. Replacing
(2xi )

2 with x2
i +x2

i +x2
i +x2

i as long as it is possible, we can obtain representations
of (2n)2 consisting of r, r +3, . . . , 4r squares. This gives representations of (2n)2

into k squares for any k ≤ 4n2−62. Further, we observe that each number m ≥ 14
can be written as a sum of k ≥ m numbers of the form x2 − 1, x ∈ N, which is
easy to verify. Therefore if 2n2 ≤ k ≤ 4n2 − 14, it follows that 4n2 − k is a sum
of k numbers of the form x2 − 1 (since k ≥ 4n2 − k ≥ 14), and consequently 4n2

is a sum of k squares.

Remark. One can find exactly the value of s(n) for each n:

s(n) =
⎧⎨
⎩

1, if n has a prime divisor congruent to 3 mod 4,

2, if n is of the form 5 · 2k, k a positive integer,
n2 − 14, otherwise.

Problem 2.1.20. Let A be the set of positive integers representable in the form
a2 + 2b2 for integers a, b with b �= 0. Show that if p2 ∈ A for a prime p, then
p ∈ A.

(1997 Romanian International Mathematical Olympiad Team Selection Test)

Solution. The case p = 2 is easy, so assume p > 2. Note that if p2 = a2 + 2b2,
then 2b2 = (p −a)(p +a). In particular, a is odd, and since a cannot be divisible
by p, gcd(p − a, p + a) = gcd(p − a, 2p) = 2. By changing the sign of a, we
may assume that p − a is not divisible by 4, and so

|p + a| = m2, |p − a| = 2n2.

Since |a| < |p|, both p + a and p − a are actually positive, so we have
2p = m2 + 2n2, so p = n2 + 2(m/2)2.
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Problem 2.1.21. Is it possible to find 100 positive integers not exceeding 25000
such that all pairwise sums of them are different?

(42nd International Mathematical Olympiad Shortlist)

Solution. Yes. The desired result is an immediate consequence of the following
fact applied to p = 101.

Lemma. For any odd prime number p, there exist p positive integers less than
2p2 with all sums distinct.

Proof. We claim that the numbers an = 2np + (n2)p , n = 0, 1, . . . , p − 1, have
the desired property, where (x)p denotes the remainder of x upon division by p.

Suppose that ak + al = am + an . By the construction of ai , we have

2p(k + l) ≤ ak + al ≤ 2p(k + l + 1).

Hence we must have k + l = m + n, and therefore also

(k2)p + (l2)p = (m2)p + (n2)p.

Thus

k + l ≡ m + n and k2 + l2 ≡ m2 + n2 (mod p).

But then it holds that

(k − l)2 = 2(k2 + l2) − (k + l)2 ≡ (m − n)2 (mod p),

so k − l ≡ ±(m − n), which leads to {k, l} = {m, n}. This proves the lemma.

Problem 2.1.22. Do there exist 10 distinct integers, the sum of any 9 of which is
a perfect square?

(1999 Russian Mathematical Olympiad)

Solution. Yes, there do exist 10 such integers. Write S = a1 + a2 +· · ·+ a10, and
consider the linear system of equations

S − a1 = 9 · 12

S − a2 = 9 · 22

. . .

S − a10 = 9 · 102.

Adding all these gives

9S = 9 · (12 + 22 + · · · + 102),
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so that
ak = S − 9k2 = 12 + 22 + · · · + 102 − 9k2.

Then all the ak’s are distinct integers, and any nine of them add up to a perfect
square.

Problem 2.1.23. Let n be a positive integer such that n is a divisor of the sum

1 +
n−1∑
i=1

in−1.

Prove that n is square-free.

(1995 Indian Mathematical Olympiad)

Solution. If n = mp2 for some prime p, then

1 +
n−1∑
i=1

i n−1 = 1 +
p−1∑
j=0

mp−1∑
k=0

(kp + j)n−1

≡ 1 + (mp)
( p−1∑

j=0

j n−1
)

≡ 1 (mod p),

and the sum is not even a multiple of p. Hence if the sum is a multiple of n, n
must have no repeated prime divisors, or equivalently no square divisors greater
than 1.

Remark. The famous Giuga’s conjecture states that if n > 1 satisfies n | 1 +∑n−1
i=1 i n−1, then n is a prime.
The reader can prove instead that for any such n we have that for any prime

divisor p of n, p − 1 | n
p − 1 and p | n

p − 1.

Problem 2.1.24. Let n, p be integers such that n > 1 and p is a prime.
If n | (p − 1) and p | (n3 − 1), show that 4p − 3 is a perfect square.

(2002 Czech–Polish–Slovak Mathematical Competition)

Solution. From n | p − 1 it follows p − 1 ≥ n and p > n. Because

p | n3 − 1 = (n − 1)(n2 + n + 1)

we get p | n2 + n + 1, i.e., pk = n2 + n + 1 for some positive integer k.
On the other hand, n | p − 1 implies p ≡ 1 (mod n) and pk ≡ k (mod n).

We obtain n2 + n + 1 ≡ k (mod n); hence k ≡ 1 (mod n).
It follows that p = an + 1, k = bn + 1 for some integers a > 0, b ≥ 0. We

can write
(an + 1)(bn + 1) = n2 + n + 1,
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so
abn2 + (a + b)n + 1 = n2 + n + 1,

i.e.,
abn + (a + b) = n + 1.

If b ≥ 1, then abn+(a+b) ≥ n+2 > n+1. So b = 0, k = 1, p = n2+n+1.
Therefore

4p − 3 = 4n2 + 4n + 4 − 3 = 4n2 + 4n + 1 = (2n + 1)2.

Problem 2.1.25. Show that for any positive integer n > 10000, there exists a
positive integer m that is a sum of two squares and such that 0 < m − n < 3 4

√
n.

(Russian Mathematical Olympiad)

Solution. Suppose k2 ≤ n + 1 < (k + 1)2 and write n + 1 = k2 + r . Then
r ≤ 2k ≤ 2

√
n + 1. Suppose l2 < r ≤ (l + 1)2 and write r = (l + 1)2 − s. Then

0 ≤ s ≤ 2l < 2
√

r ≤ 23/2(n + 1)1/4. Let m = k2 + (l + 1)2. Then

1 ≤ m − n = s + 1 < 23/2(n + 1)1/4 + 1.

Thus it remains only to show that for n > 10000 we have 23/2(n+1)1/4 +1 <

3n1/4. For this we note that

23/2(n + 1)1/4 + 1

n1/4
= 23/2(1 + 1/n)1/4 + 1/n1/4

≤ 23/2(1 + 1/10000)1/4 + 1/100001/4 ≈ 2.928 < 3.

Problem 2.1.26. Show that a positive integer m is a perfect square if and only if
for each positive integer n, at least one of the differences

(m + 1)2 − m, (m + 2)2 − m, . . . , (m + n)2 − m

is divisible by n.
(2002 Czech and Slovak Mathematical Olympiad)

Solution. First, assume that m is a perfect square. If m = a2, then

(m + c)2 − m = (m + c)2 − a2 = (m + c + a)(m + c − a).

Clearly, there exists some c, with 1 ≤ c ≤ n, for which m + c + a is divisible
by n. Thus, one of the given differences is divisible by n if m is a perfect square.

Now we assume that m is not a perfect square and show that there exists n for
which none of the given differences is divisible by n. Clearly, there exists a prime
p and positive integer k such that p2k−1 is the highest power of p that divides m.
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We may let m = bp2k−1, with b and p being relatively prime. Furthermore, pick
n = p2k . For the sake of contradiction, assume that there exists a positive integer
c for which (m + c)2 − m is divisible by n. By expanding (m + c)2 − m, we note
that

p2k | (
2bcp2k−1 + c2 − bp2k−1).

If p2k divides the quantity, then so does p2k−1. Thus, p2k−1 | c2, and so
pk | c. Let c = r pk . Then, we have

p2k | (
2br p3k−1 + r2 p2k − bp2k−1).

However, this implies that p | b, which contradicts the original assumption
that b and p are relatively prime. Therefore, if m is not a perfect square, n may
be chosen so that none of the given differences are divisible by n. This completes
the proof.

2.2 Perfect Cubes

Problem 2.2.5. Find all positive perfect cubes that are not divisible by 10 such
that the number obtained by erasing the last three digits is also a perfect cube.

Solution. We have (10m + n)3 = 1000a3 + b, where 1 ≤ n ≤ 9 and b < 1000.
The equality gives

(10m + n)3 − (10a)3 = b < 1000,

so

(10m + n − 10a)[(10m + n)2 + (10m + n) · 10a + 100a2] < 1000.

Since (10m+n)2+(10m+n)·10a+100a2 > 100, we obtain 10m+n−10a <

10; hence m = a.
If m ≥ 2, then n(300m2 + 30mn + n2) > 1000, false.
Then m = 1 and n(300 + 30n + n2) < 1000; hence n ≤ 2. For n = 2, we

obtain 123 = 1728, and for n = 1, we get 113 = 1331.

Problem 2.2.6. Find all positive integers n less than 1999 such that n2 is equal to
the cube of the sum of n’s digits.

(1999 Iberoamerican Mathematical Olympiad)

Solution. In order for n2 to be a cube, n must be a cube itself. Because n < 1000
we must have n = 13, 23, . . . , or 93. Quick checks show that n = 1 and n = 27
work, while n = 8, 64, and 125 don’t. As for n ≥ 63 = 216, we have n2 ≥
2162 > 272. However, the sum of n’s digits is at most 9 + 9 + 9 = 27, implying
that no n ≥ 63 has the desired property. Thus n = 1, 27 are the only answers.
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Problem 2.2.7. Prove that for any nonnegative integer n, the number

A = 2n + 3n + 5n + 6n

is not a perfect cube.

Solution. We will use modular arithmetic. A perfect cube has the form 7k, 7k +1,
or 7k − 1, since

(7x + 1)3 ≡ (7x + 2)3 = (7x + 4)3 ≡ 1 (mod 7)

and
(7x + 3)3 ≡ (7x + 5)3 ≡ (7x + 6)3 ≡ −1 (mod 7).

Now observe that

26 = 43 ≡ 1 (mod 7),

36 = 93 ≡ 23 ≡ 1 (mod 7),

56 = (−2)6 = 26 ≡ 1 (mod 7),

66 ≡ (−1)6 ≡ 1 (mod 7).

It follows that 26k ≡ 36k ≡ 57k ≡ 66k ≡ 1 (mod 7).
Let an = 2n + 3n + 5n + 6n for n ≥ 0. Set n = 6k + r , with r ∈ {0, 1, 2, 3, 4,

5, 6}. Since 2n ≡ 2r (mod 7), 3n ≡ 3r (mod 7), 5n ≡ 5r (mod 7), and 6n ≡ 6r

(mod 7), we have an ≡ ar (mod 7).
It is easy to observe that a0 ≡ a2 ≡ a6 ≡ 4 (mod 7), a1 ≡ a4 ≡ 2 (mod 7),

and a3 ≡ 5 (mod 7). Therefore, an is not a perfect cube.

Problem 2.2.8. Prove that every integer is a sum of five cubes.

Solution. For any integer n we have the identity

6n = (n + 1)3 + (n − 1)3 + (−n)3 + (−n)3. (1)

For an arbitrary integer m we choose the integer v such that v3 ≡ m (mod 6).
It follows that m − v3 = 6n for some integer n and we apply identity (1).

The actual representations are given by (1) and

6n + 1 = 6n + 13,

6n + 2 = 6(n − 1) + 23,

6n + 3 = 6(n − 4) + 33,

6n + 4 = 6(n + 1) + (−2)3,

6n + 5 = 6(n + 1) + (−1)3.
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Remark. A direct solution is given by the representation

m = m3 +
[(

m + 1

3

)
+ 1

]3

+
[(

m + 1

3

)
− 1

]3

+
(

−
(

m + 1

3

))3

+
(

−
(

m + 1

3

))3

Problem 2.2.9. Show that every rational number can be written as a sum of three
cubes.

Solution. Let x be a rational number. We would be done if we could find a relation
of the form a3(x) + b3(x) + c3(x) = x , where a, b, c are rational functions. To
make the arithmetic easier, it will actually be convenient to look for a relation
a3(x) + b3(x) + c3(x) = nx for some integer n. Rewrite this as a3(x) + b3(x) =
nx − c3(x). Writing a(x) = f (x)/h(x), b(x) = g(x)/h(x) for polynomials
f, g, h and clearing denominators gives

f 3(x) + g3(x) = (nx − c3(x))h3(x).

To build such an equation let ε = cos 2π
3 + i sin 2π

3 . Then we can write

f 3(x) + g3(x) = ( f (x) + g(x))( f (x) + εg(x))( f (x) + ε2g(x)).

It would be convenient if two of the factors on the right were cubes. Then
we could combine them into h and we could choose c so that the third factor is
nx − c3(x). Since we want f and g to be real, we try

f (x) + εg(x) = (u + εv)3

f (x) + ε2g(x) = (u + ε2v)3.

Solving this system (using ε2 = −1 − ε) gives f (x) = u3 − 3uv2 + v3,
g = 3u2v − 3uv2, and hence we are left with solving

nx − c3(x) = f (x) + g(x) = u3 + 3u2v − 6uv2 + v3.

Notice that the right-hand side is (u + v)3 − 9uv2. Thus we can take u = x ,
v = 1, n = −9, and c(x) = u + v = x + 1. Solving back through the calculation
gives f (x) = x3 − 3x + 1, g(x) = 3x2 − 3x , and h(x) = x2 − x + 1. Hence we
get ( x3 − 3x + 1

x2 − x + 1

)2 +
( 3x2 − 3x

x2 − x + 1

)3 + (x + 1)3 = −9x,

and the desired conclusion follows by applying this for x equal to the desired
rational number divided by −9.

Remark. There are rational numbers that are not the sum of two cubes. We sug-
gest to the reader to find a such example.
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2.3 kth Powers of Integers, k at least 4

Problem 2.3.6. Let p be a prime number and a, n positive integers. Prove that if

2p + 3p = an,

then n = 1.

(1996 Irish Mathematical Olympiad)

Solution. If p = 2, we have 22 + 32 = 13 and n = 1. If p > 2, then p is odd,
so 5 divides 2p + 3p and so 5 divides a. Now if n > 1, then 25 divides an and 5
divides

2p + 3p

2 + 3
= 2p−1 − 2p−2 · 3 + · · · + 3p−1 ≡ p2p−1 (mod 5),

a contradiction if p �= 5. Finally, if p = 5, then 25 + 35 = 375 is not a perfect
power, so n = 1 again.

Problem 2.3.7. Let x, y, p, n, k be natural numbers such that

xn + yn = pk .

Prove that if n > 1 is odd, and p is an odd prime, then n is a power of p.

(1996 Russian Mathematical Olympiad)

Solution. Let m = gcd(x, y). Then x = mx1, y = my1, and by virtue of the given
equation, mn(xn

1 + yn
1 ) = pk , and so m = pα for some nonnegative integer α. It

follows that
xn

1 + yn
1 = pk−nα. (1)

Since n is odd,

xn
1 + yn

1

x1 + y1
= xn−1

1 − xn−2
1 y1 + xn−3

1 y2
1 − · · · − x1 yn−2

1 + yn−1
1 . (2)

Let A denote the right side of equation (2). By the condition p > 2, it follows
that at least one of x1, y1 is greater than 1, so since n > 1, A > 1.

From (1) it follows that A(x1 + y1) = pk−nα, so since x1 + y1 > 1 and
A > 1, both of these numbers are divisible by p; moreover, x1 + y1 = pβ for
some natural number β. Thus

A = xn−1
1 − xn−2

1 (pβ − x1) + · · · − x1(pβ − x1)
n−2 + (pβ − x1)

n−1

= nxn−1
1 + Bp.
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Since A is divisible by p and x1 is relatively prime to p, it follows that n is
divisible by p.

Let n = pq. Then x pq + y pq = pk or (x p)q + (y p)q = pk . If q > 1, then by
the same argument, p divides q. If q = 1, then n = p. Repeating this argument,
we deduce that n = pl for some natural number l.

Problem 2.3.8. Prove that a product of three consecutive integers cannot be a
power of an integer.

Solution. Let n be an integer and assume by contradiction that

n(n + 1)(n + 2) = xz

for some integers x and z, where z ≥ 2. We note that n(n + 2) = (n + 1)2 − 1
and that n + 1 and (n + 1)2 − 1 are relatively prime. It follows that

n + 1 = az,

(n + 1)2 − 1 = bz,

for some integers a and b. It follows that a2z − bz = 1, i.e.,

(a2 − b)((a2)z−1 + (a2)z−2b + · · · + bz−1) = 1.

We get a2 − b = 1; hence a2 = b + 1. The equation (b + 1)z − bz = 1 has
the unique solution z = 1, a contradiction.

Remark. A famous theorem of Erdős and Selfridge, answering a conjecture of
more than 150 years, states that the product of consecutive integers is never a
power.

Problem 2.3.9. Show that there exists an infinite set A of positive integers such
that for any finite nonempty subset B ⊂ A,

∑
x∈B x is not a perfect power.

(Kvant)

Solution. The set
A = {2n3n+1 : n ≥ 1}

has the desired property. Indeed, if B = {2n1 3n1+1, . . . , 2nknk+1} is a finite subset
of A, where n1 < · · · < nk , then∑

x∈B

x = 2n1 3n1+1(1 + 2n2−n1 3n2−n1 + · · · + 2nk−n1 3nk−n1) = 2n1 3n1+1 N ,

where gcd(N , 2) = gcd(N , 3) = 1. Taking into account that n1 and n1 + 1 are
relatively prime, it follows that

∑
x∈B x is not a perfect power.

Problem 2.3.10. Prove that there is no infinite arithmetic progression consisting
only of perfect powers.
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Solution. Assume that we have such an arithmetic progression, an + b, n =
1, 2, . . . . It is well known that

∑
n≥1

1

an + b
= ∞. (1)

But on the other hand, we have

∑
n≥1

1

an + b
≤

∑
m,s≥2

1

ms
< +∞,

contradicting (1).

Remark. There are alternative solutions to Problems 2.3.9 and 2.3.10 using the
following observation, which is a nice result in its own right.

Lemma. There are arbitrarily long stretches of consecutive positive integers
that contain no perfect powers.

Proof. This follows immediately from our observation that
∑

m,s≥2
1

ms con-
verges, or more elementarily by the Chinese remainder theorem by finding an
n with n ≡ 2 (mod 4), n +1 ≡ 3 (mod 9), etc., or with a little analysis by show-
ing that if p(N ) is the number of perfect powers less than N then
limN→∞ p(N )/N = 0.

From this Problem 2.3.10 is obvious: there will be infinitely many of these
stretches longer than the difference of the arithmetic progression and hence the
progression cannot cross them. For Problem 2.3.9, we build A inductively. Then
the nth element an of A is chosen to be the first element of a stretch of 1+ ∑n−1

k=1 ak

consecutive elements with no perfect power.
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Floor Function and Fractional Part

3.1 General Problems

Problem 3.1.10. Let n be a positive integer. Find with proof a closed formula for
the sum ⌊

n + 1

2

⌋
+

⌊
n + 2

22

⌋
+ · · · +

⌊
n + 2k

2k+1

⌋
+ · · · .

(10th International Mathematical Olympiad)

Solution. The sum is n. We rewrite the sum as⌊
n

2
+ 1

2

⌋
+

⌊
n

22 + 1

2

⌋
+ · · · +

⌊
n

2k+1 + 1

2

⌋
+ · · · ,

and use a special case of Hermite’s identity:⌊
x + 1

2

⌋
= 
2x� − 
x�.

This allows us to write the sum as


n� −
⌊n

2

⌋
+

⌊n

2

⌋
−

⌊ n

22

⌋
+ · · · +

⌊ n

2k

⌋
−

⌊ n

2k+1

⌋
+ · · · .

The sum telescopes, and 
n/2k+1� = 0 for large enough k’s.

Problem 3.1.11. Compute the sum

∑
0≤i< j≤n

⌊
x + i

j

⌋
,

where x is a real number.
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First solution. Denote the sum in question by Sn . Then

Sn − Sn−1 =
⌊ x

n

⌋
+

⌊
x + 1

n

⌋
+ · · · +

⌊
x + n − 1

n

⌋

=
⌊ x

n

⌋
+

⌊
x

n
+ 1

n

⌋
+ · · · +

⌊
x

n
+ n − 1

n

⌋
,

and according to Hermite’s identity,

Sn − Sn−1 =
⌊

n
x

n

⌋
= 
x�.

Because S1 = 
x�, it follows that Sn = n
x� for all n.

Second solution. By Hermite’s identity applied to x/j we have

j−1∑
i=0

⌊
x + i

j

⌋
=

⌊
j

x

j

⌋
= 
x�.

Summing this over j gives

n∑
j=1

j−1∑
i=0

⌊
x + i

j

⌋
= n
x�.

Problem 3.1.12. Evaluate the difference between the numbers

2000∑
k=0

⌊
3k + 2000

3k+1

⌋
and

2000∑
k=0

⌊
3k − 2000

3k+1

⌋
.

Solution. We can write each term of the difference in question as⌊
1
3 + vk

⌋
−

⌊
1
3 − vk

⌋
,

where vk = 2000/3k+1. Since −
u� = 
−u� + 1 for each nonintegral value of u,
and since 1

3 − vk is never an integer, we have to examine the sum

2000∑
k=0

( ⌊
vk + 1

3

⌋
+

⌊
vk − 1

3

⌋
+ 1

)
.

Taking n = 3 and x = v − 1
3 in (1) yields⌊

v + 1
3

⌋
+

⌊
v − 1

3

⌋
+ 1 = 
3v� − 
v�.
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Hence the desired difference becomes

2000∑
k=0

(⌊
2000

3k

⌋
−

⌊
2000

3k+1

⌋)
,

which telescopes to


2000� −
⌊

2000

3

⌋
+

⌊
2000

3

⌋
−

⌊
2000

32

⌋
+ · · · = 2000.

Problem 3.1.13. (a) Prove that there are infinitely many rational positive numbers
x such that

{x2} + {x} = 0.99.

(b) Prove that there are no rational numbers x > 0 such that

{x2} + {x} = 1.

(2004 Romanian Mathematical Olympiad)

Solution. (a) Since 0.99 = 99
100 , it is natural to look for a rational x of the form n

10 ,
for some positive integer n. It is not difficult to see that x = 13

10 satisfies the given
equality and then that x = 10k + 13

10 also satisfies the equality for any positive
integer k.

(b) Suppose that x = p/q, with p, q positive integers, gcd(p, q) = 1, satisfies

{x2}+{x} = 1. We can see that p2+pq−q2

q2 = x2+x−1 ∈ Z; thus q | p2, and since
gcd(p, q) = 1, one has q = 1. Thus x ∈ Z, and this is obviously impossible.

Problem 3.1.14. Show that the fractional part of the number
√

4n2 + n is not
greater than 0.25.

(2003 Romanian Mathematical Olympiad)

Solution. From the inequalities 4n2 < 4n2 + n < 4n2 + n + 1
16 one obtains

2n <
√

4n2 + n < 2n + 1
4 . So 
√4n2 + n� = 2n and {√4n2 + n} < 1/4.

Problem 3.1.15. Prove that for every natural number n,

n2∑
k=1

{√k} ≤ n2 − 1

2
.

(1999 Russian Mathematical Olympiad)
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Solution. We prove the claim by induction on n. For n = 1, we have 0 ≤ 0. Now
supposing that the claim is true for n, we prove that it is true for n + 1.

Each of the numbers
√

n2 + 1,
√

n2 + 2, . . . ,
√

n2 + 2n is between n and
n + 1. Thus

{
√

n2 + i} =
√

n2 + i − n <

√
n2 + i + i2

4n2
− n = i

2n
, i = 1, 2, . . . , 2n.

Therefore we have

(n+1)2∑
k=1

{√k} =
n2∑

k=1

{√k} +
(n+1)2∑

k=n2+1

{√k} <
n2 − 1

2
+ 1

2n

2n∑
i=1

i + 0

= n2 − 1

2
+ 2n + 1

2
= (n + 1)2 − 1

2
,

completing the inductive step and the proof.

Problem 3.1.16. The rational numbers α1, . . . , αn satisfy

n∑
i=1

{kαi } <
n

2

for any positive integer k.
(a) Prove that at least one of α1, . . . , αn is an integer.
(b) Do there exist α1, . . . , αn that satisfy, for every positive integer k,

n∑
i=1

{kαi } ≤ n

2
,

such that no αi is an integer?

(2002 Belarusian Mathematical Olympiad)

Solution. (a) Assume the contrary. The problem would not change if we replace
αi with {αi }. So we may assume 0 < αi < 1 for all 1 ≤ i ≤ n. Because αi is
rational, let αi = pi

qi
, and D = ∏n

i=1 qi . Because (D − 1)αi + αi = Dαi is an
integer, and αi is not an integer, {(D − 1)αi } + {αi } = 1. Then

n >

n∑
i=1

{(D − 1)αi } +
n∑

i=1

{αi } =
n∑

i=1

1 = n,

contradiction. Therefore, one of the αi has to be an integer.
(b) Yes. Let αi = 1

2 for all i . Then
∑n

i=1{kαi } = 0 when k is even and∑n
i=1{kαi } = n

2 when k is odd.
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3.2 Floor Function and Integer Points

Problem 3.2.3. Prove that

n∑
k=1

⌊
n2

k2

⌋
=

n2∑
k=1

⌊
n√
k

⌋

for all integers n ≥ 1.

Solution. Consider the function f : [1, n] → [1, n2],

f (x) = n2

x2
.

Note that f is decreasing and bijective, and

f −1(x) = n√
x
.

Using the formula in Theorem 3.2.3, we obtain

n∑
k=1

⌊
n2

k2

⌋
−

n2∑
k=1

⌊
n√
k

⌋
= n�1 − 1
 − n2�1 − 1
 = 0,

hence
n∑

k=1

⌊
n2

k2

⌋
=

n2∑
k=1

⌊
n√
k

⌋
, n ≥ 1,

as desired.

Problem 3.2.4. Let θ be a positive irrational number. Then, for any positive inte-
ger m,

m∑
k=1


kθ� +

mθ�∑
k=1

⌊
k

θ

⌋
= m
mθ�.

Solution. Consider the function f : [0, m] → [0, mθ ], f (x) = θx . Because θ

is irrational, we have that n(G f ) = 1 cancels the �a − 1
�c − 1
 = (−1)2 = 1
term, and the conclusion follows from Theorem 3.2.1.

Problem 3.2.5. Let p and q be relatively prime positive integers and let m be a
real number such that 1 ≤ m < p.

(1) If s = ⌊mq
p

⌋
, then


m�∑
k=1

⌊
kq

p

⌋
+

s∑
k=1

⌊
kp

q

⌋
= 
m�s.
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(2) (Landau) If p and q are odd, then

p−1
2∑

k=1

⌊
kq

p

⌋
+

q−1
2∑

k=1

⌊
kp

q

⌋
= (p − 1)(q − 1)

4
.

Solution. (1) Let f : [0, m] → [
0,

mq
p

]
, f (x) = q

p x . Because gcd(p, q) = 1
and m < p, we have n(G f ) = 1, and the desired equality follows from Theorem
3.2.1.

(2) In the previous identity we take m = p
2 . It follows that s = q−1

2 , and the
conclusion follows.

3.3 A Useful Result

Problem 3.3.3. Let p be an odd prime and let q be an integer that is not divisible
by p. Show that

p−1∑
k=1

⌊
(−1)kk2 q

p

⌋
= (p − 1)(q − 1)

2
.

(2005 “Alexandru Myller” Romanian Regional Contest)

Solution. For f : Z∗+ → R, f (s) = (−1)ss2, conditions (i) and (ii) in Theo-
rem 3.3.1 are both satisfied. We obtain

p−1∑
k=1

⌊
(−1)kk2 q

p

⌋
= q

p
(−12 + 22 − · · · + (p − 1)2) − p − 1

2

= q

p
· p(p − 1)

2
− p − 1

2
;

hence
p−1∑
k=1

⌊
(−1)kk2 q

p

⌋
= (p − 1)(q − 1)

2
.

Remarks. (1) By taking q = 1 we get

p−1∑
k=1

⌊
(−1)k k2

p

⌋
= 0.

Using now the identity 
−x� = 1−
x�, x ∈ R, the last display takes the form

p−1∑
k=1

(−1)k
⌊

k2

p

⌋
= 1 − p

2
.
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(2) Similarly, applying Theorem 3.3.1 to f : Z∗+ → R, f (s) = (−1)ss4

yields
p−1∑
k=1

⌊
(−1)kk4 q

p

⌋
= q(p − 1)(p2 − p − 1)

2
− p − 1

2
.

Taking q = 1 gives

p−1∑
k=1

⌊
(−1)k k4

p

⌋
= (p − 2)(p − 1)(p + 1)

2
.

Problem 3.3.4. Let p be an odd prime. Show that

p−1∑
k=1

k p − k

p
≡ p + 1

2
(mod p).

(2006 “Alexandru Myller” Romanian Regional Contest)

Solution. For f (s) = s p

p , conditions (i) and (ii) in Theorem 3.3.1 are also satis-
fied, and for q = 1 we have

p−1∑
k=1

⌊
k p

p2

⌋
= 1

p

p−1∑
k=1

k p

p
− p − 1

2

= 1

p

p−1∑
k=1

k p

p
− 1

p2

p−1∑
k=1

k + 1

p2

p(p − 1)

2
− p − 1

2

= 1

p

p−1∑
k=1

k p − k

p
− 1

p
· (p − 1)2

2
.

It follows that

p−1∑
k=1

k p − k

p
− (p − 1)2

2
= p

p∑
k=1

⌊
k p

p2

⌋
,

i.e.,
p−1∑
k=1

k p − k

p
≡ (p − 1)2

2
(mod p).

The conclusion follows since

(p − 1)2

2
≡ p2 + 1

2
≡ p + 1

2
(mod p).
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Remarks. (1) For each k = 1, 2, . . . , p − 1 denote by rk the remainder when k p

is divided by p2. We have

k p =
⌊

k p

p2

⌋
p2 + rk, k = 1, 2, . . . , p − 1,

hence

p−1∑
k=1

k p = p2
p−1∑
k=1

⌊
k p

p2

⌋
+

p−1∑
k=1

rk = − p2(p − 1)

2
+

p−1∑
k=1

rk +
p−1∑
k=1

k p.

It follows that

r1 + r2 + · · · + r p−1 = p2(p − 1)

2
.

(2) The formula in our problem shows that the sum of the quotients ob-
tained when k p − k is divided by p (Fermat’s little theorem) is congruent to p+1

2
modulo p.
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Digits of Numbers

4.1 The Last Digits of a Number

Problem 4.1.4. In how may zeros can the number 1n + 2n + 3n + 4n end for
n ∈ N?

(1998 St. Petersburg City Mathematical Olympiad)

Solution. There can be no zeros (e.g., n = 4), one zero (n = 1), or two zeros
(n = 2). In fact, for n ≥ 3, 2n and 4n are divisible by 8, while 1n + 3n is
congruent to 2 or 4 mod 8. Thus the sum cannot end in three or more zeros.

Problem 4.1.5. Find the last five digits of the number 51981.

Solution. First, we prove that 51981 = 55 (mod 105). We have

51981 − 55 = (51976 − 1)55 = 55[(58)247 − 1]
= M[55(58 − 1)] = M[55(54 − 1)(54 + 1)]
= M[55(5 − 1)(5 + 1)(52 + 1)(54 + 1)]
= M5225 = M100,000.

Therefore 51981 = M100,000 + 55 = M100,000 + 3125, so 03125 are the
last five digits of the number 51981. Of course, the relation a = Mb means that a
is a multiple of b.

Problem 4.1.6. Consider all pairs (a, b) of natural numbers such that the product
aabb, written in base 10, ends with exactly 98 zeros. Find the pair (a, b) for which
the product ab is smallest.

(1998 Austrian–Polish Mathematics Competition)

Solution. Let a2 be the maximum integer such that 2a2 | a. Define a5, b2, and b5
similarly. Our task translates into the following: find a, b such that

© Birkhäuser Boston, a part of Springer Science + Business Media, LLC 2009
T. Andreescu and D. Andrica, Number Theory, DOI: 10.1007/b11856_15, 267
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min{a5a + b5b, a2a + b2b} = 98 and ab is minimal. Since 5 | a5a + b5b, we
have a5a + b5b > 98 and min{a5a + b5b, a2a + b2b} = a2a + b2b = 98.
Note that if 5 | gcd(a, b), then a2a + b2b �= 98, contradiction. Without loss
of generality, suppose that a5 ≥ 1 and b5 = 0. Let a = 2a2 5a5 x and 2b2 y,
gcd(2, x) = gcd(5, x) = gcd(2, y) = 1. Then a5a = a5(2a2 5a5 x) > 98 and
a2a = a2(2a2 5a5 x) ≤ 98. So a5 > a2. We consider the following cases.

(a) a2 = 0. Then b2(2b2 y) = 98. So b2 = 1, y = 49, b = 98. Since
a5(5a5 x) ≥ 98 and x is odd, a = 5a5 x ≥ 125 for a5 ≥ 3; x ≥ 3 and a ≥ 75 for
a5 = 2; x ≥ 21 and a ≥ 105 for a5 = 1. Hence for a2 = 0, b = 98, a ≥ 75.

(b) a2 ≥ 1. Then a5 ≥ 2. We have 2a2 5a5 x ≤ 98 and 5a5 x ≤ 49. Thus a5 = 2,
x = 1, a2 = 1, a = 50. Then b2b = 48. Let b = 2b2 y. Then b2(2b2 y) = 48,
which is impossible.

From the above, we have (a, b) = (75, 98) or (98, 75).

4.2 The Sum of the Digits of a Number

Problem 4.2.7. Show that there exist infinitely many natural numbers n such that
S(3n) ≥ S(3n+1).

(1997 Russian Mathematical Olympiad)

Solution. If S(3n) < S(3n+1) for large n, we have (since powers of 3 are divisible
by 9, as are their digit sums) S(3n) ≤ S(3n+1) − 9. Thus S(3n) ≥ 9(n − c) for
some c, which is eventually a contradiction, since for large n, 3n < 10n−c.

Problem 4.2.8. Do there exist three natural numbers a, b, c such that S(a + b) <

5, S(b + c) < 5, S(c + a) < 5, but S(a + b + c) > 50?
(1998 Russian Mathematical Olympiad)

Solution. The answer is yes. It is easier to focus on the numbers a + b, b + c,
c +a instead. Each of these has digit sum at most 4. Hence their sum 2(a +b + c)
has digit sum at most 12. However, half this a + b + c has digit sum at least 51.
The only way this can happen is if a + b + c has digits either ten 5’s and a 1
or nine 5’s and a 6. Trying the former, we take a + b + c = 105555555555 and
2(a + b + c) = 211111111110 (many other choices also work). Each of a + b,
b + c, and c + a must have digit sum 4, and they must add to 2(a + b + c), so
there can be no carries. One such choice is

a + b = 100001110000, b + c = 11110000000, c + a = 100000001110.

From these we get

a = 105555555555 − 11110000000 = 94445555555,

b = 105555555555 − 100000001110 = 5555554445,

c = 105555555555 − 100001110000 = 5554445555.
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Problem 4.2.9. Prove that there exist distinct positive integers {ni }1≤i≤50 such
that

n1 + S(n1) = n2 + S(n2) = · · · = n50 + S(n50).

(1999 Polish Mathematical Olympiad)

Solution. We show by induction on k that there exist positive integers n1, . . . , nk

with the desired property. For k = 1 the statement is obvious. For k > 1, let
m1 < · · · < mk−1 satisfy the induction hypothesis for k − 1. Note that we can
make all the mi arbitrarily large by adding some large power of 10 to all of them,
which preserves the described property. Then, choose m with 1 ≤ m ≤ 9 and
m ≡ m1 + 1 (mod 9). Observing that S(x) ≡ x (mod 9), we have m1 − m +
S(m1) − S(m) + 11 = 9l for some integer l. By choosing the mi large enough
we can ensure that 10l > mk−1. Now let ni = 10l+1 + mi for i < k and nk =
m + 10l+1 − 10. It is obvious that ni + S(ni ) = n j + S(n j ) for i, j < k, and

n1 + S(n1) = (10l+1 + m1) + (1 + S(m + 1))

= (m1 + S(m1) + 1) + 10l+1

= (9l + S(m) + m − 10) + 10l+1

= (m + 10l+1 − 10) + (9l + S(m))

= nk + S(nk),

as needed.

Problem 4.2.10. The sum of the decimal digits of the natural number n is 100,
and that of 44n is 800. What is the sum of the digits of 3n?

(1999 Russian Mathematical Olympiad)

Solution. The sum of the digits of 3n is 300.
Suppose that d is a digit between 0 and 9, inclusive. If d ≤ 2 then S(44d) =

8d, and if d = 3 then S(8d) = 6 < 8d. If d ≥ 4, then 44d ≤ 44(9) has at most
three digits so that S(44d) ≤ 27 < 8d.

Now write n = ∑
ni · 10i , so that the ni are the digits of n in base 10. Then∑

8ni = S(44n) ≤
∑

S(44ni · 10i )

=
∑

S(44ni ) ≤
∑

8ni ,

so equality must occur in the second inequality, that is, each of the ni must equal
0, 1, or 2. Then each digit of 3n is simply three times the corresponding digit of
n, and S(3n) = 3S(n) = 300, as claimed.
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Alternative solution. Using properties (3) and (5) involving the sum of digits, we
have

S(3n) ≤ 3S(n) = 300

and

800 = S(11 · 3n + 11n) ≤ S(11 · 3n) + S(11n)

≤ S(11)S(3n) + S(11)S(n) = 2S(3n) + 200,

whence S(3n) ≥ 300. Thus, S(3n) = 300.

Problem 4.2.11. Consider all numbers of the form 3n2 + n + 1, where n is a
positive integer.

(a) How small can the sum of the digits (in base 10) of such a number be?
(b) Can such a number have the sum of its digits (in base 10) equal to 1999?

(1999 United Kingdom Mathematical Olympiad)

Solution. (a) Let f (n) = 3n2 + n + 1. When n = 8, the sum of the digits of
f (8) = 201 is 3. Suppose that there were some m such that f (m) had a smaller
sum of digits. Then the last digit of f (m) must be either 0, 1, or 2. Because
f (n) ≡ 1 (mod 2) for all n, f (m) must have units digit 1.

Because f (n) can never equal 1, this means we must have 3m2 + m + 1 =
10k +1 for some positive integer k, and m(3m +1) = 10k . Because m and 3m +1
are relatively prime, and m < 3m+1, we must have either (m, 3m+1) = (1, 10k),
which is impossible, or (m, 3m + 1) = (2k, 5k). For k = 1, 5k �= 3 · 2k + 1; for
k > 1, we have

5k = 5k−2 · 25 > 2k−2 · (12 + 1) ≥ 3 · 2k + 1.

Therefore, f (m) cannot equal 10k +1, and 3 is indeed the minimum value for
the sum of digits.

(b) Consider n = 10222 − 1. Then

f (n) = 3 · 10444 − 6 · 10222 + 3 + 10222.

Thus, its decimal expansion is

2 9 . . . 9︸ ︷︷ ︸
221

5 0 . . . 0︸ ︷︷ ︸
221

3,

and the sum of digits in f (10222 − 1) is 1999.

Problem 4.2.12. Consider the set A of all positive integers n with the following
properties: the decimal expansion contains no 0, and the sum of the (decimal)
digits of n divides n.
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(a) Prove that there exist infinitely many elements in A with the following
property: the digits that appear in the decimal expansion of A appear the same
number of times.

(b) Show that for each positive integer k, there exists an element in A with
exactly k digits.

(2001 Austrian–Polish Mathematics Competition)

Solution. (a) We can take nk = 11 . . . 1︸ ︷︷ ︸
3k times

and prove by induction that 3k+2 | 103k −

1. Alternatively, one can observe that

103k − 1 = (10 − 1)(102 + 10 + 1)(102·3 + 103 + 1) · · · (102·3k−1 + 103k−1 + 1)

and that 9 | 10 − 1 and 3 | 102·3i + 103i + 1 for 0 ≤ i ≤ k − 1.
(b) We will need the following lemmas.

Lemma 1. For every d > 0 there exists a d-digit number that contains only ones
and twos in its decimal expansion and is a multiple of 2d .

Proof. Exactly in the same way as in the proof of Theorem 1.7.1 one can prove
that any two d-digit numbers that have only ones and twos give different residues
mod 2d . Since there are 2d such numbers, one of them is a multiple of 2d .

Lemma 2. For each k > 2 there exists d ≤ k such that the following inequality
holds: k + d ≤ 2d ≤ 9k − 8d.

Proof. For 3 ≤ k ≤ 5, d = 3 satisfies the inequalities. For 5 ≤ k ≤ 10, d = 4
satisfies the inequalities. We will show that d = 
log2 4k� satisfies the inequality
for all k > 10. If k > 3, then log2 4k ≤ 2k , so d < k. Additionally, k + d ≤ 2k ≤
2d . If k > 10, then 16k2 ≤ 2k , so 4k ≤ 2k/2 ≤ 25k/8, d ≤ log2 4k ≤ 5

8 n, and
8k − 8d ≥ 4k ≥ 2d .

Now return to the original problem. For k = 1, n = 1 has the desired property.
For k = 2, n = 12 has the desired property. Now, for each k > 2 we have some
number d satisfying the condition Lemma 2. Consider a k-digit integer n such
that the last d digits of n have the property described in the first lemma. We can
choose each of the other digits of n to be any number between zero and nine. We
know that the sum of the last d digits of n is between d and 2d, and we can choose
the sum of the other k − d digits to be any number between k − d and 9(k − d).
Since k − d + 2d ≤ 2d ≤ 9(k − d) + d, we can choose the other digits such that
the sum of the digits of n is 2d . This completes the proof because n is a multiple
of 2d .

Remarks. (1) Suppose 3m ≤ k < 3m+1 and choose an integer r with k + 1 − 3m

decimal digits and S(r) = 3, for example, r = 10k−3m + 2. Then the desired
number is n = r · 111 . . . 1, with 3m ones. Since S(r) = 3, 3 | r , and we saw
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in part (a) that 3m | 111 . . . 1. Hence 3m+1 | n. Also since S(r) = 3 < 10, no
carries occur in multiplying out to compute n. Hence n has k decimal digits and
S(n) = 3m S(r) = 3m+1.

(2) A number divisible by the sum of its digits is called a Niven1 number.
It has been proved recently that the number of Niven numbers smaller than x is(14

27 log 10 + o(1)
) x

log x . The courageous reader may try to prove that there are
arbitrarily long sequences of consecutive numbers that are not Niven numbers
(which is easily implied by the above result; yet there is an elementary proof). For
more details one can read the article “Large and small gaps between consecutive
Niven numbers,” Journal of Integer Sequences, 6 (2003), by J.-M. Koninck and
N. Doyon.

4.3 Other Problems Involving Digits

Problem 4.3.3. A wobbly number is a positive integer whose digits in base 10 are
alternately nonzero and zero, the units digit being nonzero. Determine all positive
integers that do not divide any wobbly number.

(35th International Mathematical Olympiad Shortlist)

Solution. If n is a multiple of 10, then the last digit of any multiple of n is 0.
Hence it is not wobbly. If n is a multiple of 25, then the last two digits of any
multiple of n are 25, 50, 75 or 00. Hence it is not wobbly. We now prove that
these are the only numbers not dividing any wobbly number.

We first consider odd numbers m not divisible by 5. Then gcd(m, 10) = 1,
and we have gcd((10k − 1)m, 10) = 1, for any k ≥ 1. It follows that there exists
a positive integer l such that 10l ≡ 1 (mod (10k − 1)m), and we have 10kl ≡ 1
(mod (10k − 1)m). Now

10kl − 1 = (10k − 1)(10k(l−1) + 10k(l−2) + · · · + 10k + 1).

Hence xk = 10k(l−1) + 10k(l−2) + · · · + 10k + 1 is a multiple of m for any
k ≥ 1. In particular, x2 is a wobbly multiple of m. If m is divisible by 5, then 5x2
is a wobbly multiple of m.

Next, we consider powers of 2. We prove by induction on t that 22t+1 has
a wobbly multiple wt with precisely t nonzero digits. For t = 1, take w1 = 8.
Suppose wt exists for some t ≥ 1. Then wt = 22t+1d for some d . Let wt+1 =
102t c + wt , where c ∈ {1, 2, 3, . . . , 9} is to be chosen later. Clearly, wt+1 is
wobbly, and has precisely t + 1 nonzero digits. Since wt+1 = 22t (52t c + 2d), it is
divisible by 22t+3 if and only if 52t c + 2d ≡ 0 (mod 8) or c ≡ 6d (mod 8). We

1Ivan Niven (1915–1999), Canadian mathematician with contributions in the areas of Diophantine
approximation, the study of irrationality and transcendence of numbers, and combinatorics.
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can always choose c to be one of 8, 6, 4, and 2 in order to satisfy this congruence.
Thus the inductive argument is completed. It now follows that every power of 2
has a wobbly multiple.

Finally, consider numbers of the form 2t m, where t ≥ 1 and gcd(m, 10) = 1.
Such a number has wt x2t as a wobbly multiple.

Problem 4.3.4. A positive integer is called monotonic if its digits in base 10, read
from left right, are in nondecreasing order. Prove that for each n ∈ N, there exists
an n-digit monotonic number that is a perfect square.

(2000 Belarusian Mathematical Olympiad)

Solution. Any 1-digit perfect square (namely, 1, 4, or 9) is monotonic, proving
the claim for n = 1. We now assume n > 1.

If n is odd, write n = 2k − 1 for an integer k ≥ 2, and let

xk = (10k + 2)/6 = 1 66 . . . 6︸ ︷︷ ︸
k−2

7.

Then

x2
k = 102k + 4 · 10k + 4

36
= 102k

36
+ 10k

9
+ 1

9
. (1)

Observe that

102k

36
= 102k−2

(
72

36
+ 28

36

)

2 · 102k−2 + 102k−2 · 7

9
= 2 77 . . . 7︸ ︷︷ ︸

2k−2

+7

9
.

Thus, the right-hand side of (1) equals(
2 77 . . . 7︸ ︷︷ ︸

2k−2

+7

9

)
+

(
11 . . . 1︸ ︷︷ ︸

k

+1

9

)
+ 1

9
= 2 77 . . . 7︸ ︷︷ ︸

k−2

88 . . . 8︸ ︷︷ ︸
k−1

9,

an n-digit monotonic perfect square.
If n is even, write n = 2k for an integer k ≥ 1, and let

yk = 10k + 2

3
= 33 . . . 3︸ ︷︷ ︸

k−1

4.

Then

y2
k = 1

9
(102k + 4 · 10k + 4) = 102k

9
+ 4 · 10k

9
+ 4

9

=
(

11 . . . 1︸ ︷︷ ︸
2k

+1

9

)
+

(
44 . . . 4︸ ︷︷ ︸

k

+4

9

)
+ 4

9
= 11 . . . 1︸ ︷︷ ︸

k

55 . . . 5︸ ︷︷ ︸
k−1

6,

an n-digit monotonic perfect square. This completes the proof.





5

Basic Principles in Number Theory

5.1 Two Simple Principles

Problem 5.1.7. Let n1 < n2 < · · · < n2000 < 10100 be positive integers. Prove
that one can find two disjoint subsets A and B of {n1, n2, . . . , n2000} such that

|A| = |B|,
∑
x∈A

x =
∑
x∈B

x, and
∑
x∈A

x2 =
∑
x∈B

x2.

(2001 Polish Mathematical Olympiad)

Solution. Given any subset S ⊆ {n1, n2, . . . , n2000} of size 1000, we have

0 <
∑
x∈S

x < 1000 · 10100,

0 <
∑
x∈S

x2 < 1000 · 10200.

Thus, as S varies, there are fewer than (1000 · 10100)(1000 · 10200) = 10306

values of
( ∑

x∈S x,
∑

x∈S x2
)
.

Because
∑2000

k=0

(2000
k

) = 22000 and
(2000

1000

)
is the biggest term in the sum,(2000

1000

)
> 22000

2001 . There are(
2000

1000

)
>

22000

2001
>

10600

2001
> 10306

distinct subsets of size 1000. By the pigeonhole principle, there exist distinct sub-
sets C and D of size 1000 such that

∑
x∈C x2 = ∑

x∈D x2 and
∑

x∈C x =∑
x∈D x . Removing the common elements from C and D yields sets A and B

with the required properties.

© Birkhäuser Boston, a part of Springer Science + Business Media, LLC 2009
T. Andreescu and D. Andrica, Number Theory, DOI: 10.1007/b11856_16, 275



276 II Solutions, 5. Basic Principles in Number Theory

Problem 5.1.8. Find the greatest positive integer n for which there exist n nonneg-
ative integers x1, x2, . . . , xn, not all zero, such that for any sequence ε1, ε2, . . . ,
εn of elements {−1, 0, 1}, not all zero, n3 does not divide ε1x1+ε2x2+· · ·+εn xn.

(1996 Romanian Mathematical Olympiad)

Solution. The statement holds for n = 9 by choosing 1, 2, 22, . . . , 28, since in
that case

|ε1 + · · · + ε928| ≤ 1 + 2 + · · · + 28 < 93.

However, if n ≥ 10, then 210 > 103, so by the pigeonhole principle, there are
two subsets A and B of {x1, . . . , x10} whose sums are congruent modulo 103. Let
εi = 1 if xi occurs in A but not in B, −1 if xi occurs in B but not in A, and 0
otherwise; then

∑
εi xi is divisible by n3.

Problem 5.1.9. Given a positive integer n, prove that there exists ε > 0 such that
for any n positive real numbers a1, a2, . . . , an, there exists a real number t > 0
such that

ε < {ta1}, {ta2}, . . . , {tan} <
1

2
.

(1998 St. Petersburg City Mathematical Olympiad)

Solution. More generally, we prove by induction on n that for any real number
0 < r < 1, there exists 0 < ε < r such that for a1, . . . , an any positive real
numbers, there exists t > 0 with

{ta1}, . . . , {tan} ∈ (ε, r).

The case n = 1 needs no further comment.
Assume without loss of generality that an is the largest of the ai . By hypoth-

esis, for any r ′ > 0 (which we will specify later) there exists ε′ > 0 such that for
any a1, . . . , an−1 > 0, there exists t ′ > 0 such that

{t ′a1}, . . . , {t ′an−1} ∈ (ε′, r ′).

Let N be an integer also to be specified later. A standard argument using the
pigeonhole principle shows that one of t ′an, 2t ′an, . . . , Nt ′an has fractional part
in (−1/N , 1/N ). Let st ′an be one such term, and take t = st ′ + c for c =
(r − 1/N )/an . Then

tan − 
st ′sn� ∈ (r − 2/N , r).

So we choose N such that 0 < r − 2/N , thus making {tan} ∈ (r − 2/N , r).
Note that this choice of N makes c > 0 and t > 0, as well.
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As for the other tai , for each i we have ki + ε′ < t ′ai < ki + r ′ for some
integer ki , so ski + sε′ < st ′ai < ski + sr ′ and

ski + ε′ < (st ′ + c)ai < ski + sr ′ + ai (r − 1/N )

an
≤ ski + Nr ′ + r − 1/N .

So we choose r ′ such that Nr ′ − 1/N < 0, thus making {tai } ∈ (ε′, r).
Therefore, letting ε = min{r − 2/N , ε′}, we have

0 < ε < {ta1}, {ta2}, . . . , {tan} < r

for any choices of ai . This completes the inductive step, and the claim is true for
all natural numbers n.

Problem 5.1.10. We have 2n prime numbers written on the blackboard in a line.
We know that there are fewer than n different prime numbers on the blackboard.
Prove that there is a subsequence of consecutive numbers in that line whose prod-
uct is a perfect square.

Solution. Suppose that p1, p2, . . . , pm (m < n) are primes that we met in the se-
quence a1, a2, . . . , a2n written on the blackboard. It is enough to prove that there
is a subsequence in which each prime occurs an even number of times. Denote
by ci j the exponent of the prime pi (1 ≤ i ≤ m) in the product a1 · · · a2 · · · a j

of the first j numbers from our sequence. Let di j be the residue modulo 2 of ci j ,
so we can write ci j = 2ti j + di j , di j ∈ {0, 1}. Every system (d1 j , d2 j , . . . , dmj )

is formed from m zeros and ones. The number of possible such systems is 2m ,
which is less than 2n . Hence by the pigeonhole principle there exist two identical
systems

(d1k, d2k, . . . , dmk) = (d1l , d2l , . . . , dml), 1 ≤ k < l ≤ 2n .

We have dik = dil for 1 ≤ i ≤ m, and therefore

cil − cik = 2(til − tik) + (dil − dik) = 2(til − tik),

and cil − cik is divisible by 2 for 1 ≤ i ≤ m.
Thus the exponent of the pi in the product ak+1ak+2 · · · al = a1a2···al

a1a2···ak
is

equal to cil − cik , so every number pi has an even exponent in the product
ak+1ak+2 · · · al . Hence ak+1ak+2 · · · al is a perfect square.

Problem 5.1.11. Let x1 = x2 = x3 = 1 and xn+3 = xn + xn+1xn+2 for all
positive integers n. Prove that for any positive integer m there is an integer k > 0
such that m divides xk.

Solution. Observe that setting x0 = 0, the condition is satisfied for n = 0.
We prove that there is an integer k ≤ m3 such that xk divides m. Let rt be

the remainder of xt when divided by m for t = 0, 1, . . . , m3 + 2. Consider the
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triples (r0, r1, r2), (r1, r2, r3), . . . , (rm3 , rm3+1, rm3+2). Since rt can take m val-
ues, it follows by the pigeonhole principle that at least two triples are equal. Let
p be the smallest number such that the triple (r p, rp+1, rp+2) is equal to another
triple (rq , rq+1, rq+2), p < q ≤ m3. We claim that p = 0.

Assume by way of contradiction that p ≥ 1. Using the hypothesis, we have

rp ≡ rp−1 + rpr p+1 (mod m) and rq+2 ≡ rq−1 + rqrq+1 (mod m).

Since r p = rq , rp+1 = rq+1 and r p+2 = rq+2, it follows that rp−1 = rq−1, so
(rp−1, rp, rp+1) = (rq−1, rq , rq+1), which is a contradiction to the minimality of
p. Hence p = 0, so rq = r0 = 0, and therefore xq ≡ 0 mod m.

Problem 5.1.12. Prove that among seven arbitrary perfect squares there are two
whose difference is divisible by 20.

(Mathematical Reflections)

First solution. It is easy to check that perfect squares can give one of the follow-
ing residues: 1, 2, 4, 8, 16 (mod 20).

By the pigeonhole principle we conclude that among seven perfect squares
we must have at least two that have the same residue modulo 20. Hence their
difference is divisible by 20 and our proof is complete.

Second solution. Note that for all integers x we have x2 ≡ 1, 2, 4, 8, 16 (mod m)

and we have six distinct possible residues. If we have seven arbitrary perfect
squares x2

1 , x2
2 , x2

3 , x2
4 , x2

5 , x2
6 , x2

7 , by the pigeonhole principle, there are two
squares x2

i and x2
j with the same residue and they satisfy the requirement.

Third solution. Observe that by the pigeonhole principle, there are at least four
perfect squares that all have the same parity. Now note that for any integer n,
we have n2 ≡ −1, 0, 1 (mod 5). Again by the pigeonhole principle, out of these
four perfect squares, we have at least two perfect squares, say a2 and b2, such that
a2 ≡ b2 (mod 5). This implies that 5 | a2 − b2. Also, 2 | a − b and 2 | a + b,
since both a and b have the same parity. Hence, 4 | a2 − b2, but gcd(5, 4) = 1;
thus we have 20 | a2 − b2, and we are done.

5.2 Mathematical Induction

Problem 5.2.7. Let p be an odd prime. The sequence (an)n≥0 is defined as fol-
lows: a0 = 0, a1 = 1, . . . , ap−2 = p − 2, and for all n ≥ p − 1, an is the least
positive integer that does not form an arithmetic sequence of length p with any of
the preceding terms. Prove that for all n, an is the number obtained by writing n
in base p − 1 and reading the result in base p.

(1995 USA Mathematical Olympiad)
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Solution. Our proof uses the following result.

Lemma. Let B = {b0, b1, b2, . . . }, where bn is the number obtained by writing n
in base p − 1 and reading the result in base p. Then

(a) for every a �∈ B, there exists d > 0 such that a − kd ∈ B for k =
1, 2, . . . , p − 1; and

(b) B contains no p-term arithmetic progression.

Proof. Note that b ∈ B if and only if the representation of b in base p does not
use the digit p − 1.

(a) Since a �∈ B, when a is written in base p at least one digit is p − 1. Let d
be the positive integer whose representation in base p is obtained from that of a
by replacing each p − 1 by 1 and each digit other than p − 1 by 0. Then none of
the numbers a − d, a − 2d, . . . , a − (p − 1)d has p − 1 as a digit when written
in base p, and the result follows.

(b) Let a, a + d, a + 2d, . . . , a + (p − 1)d be an arbitrary p-term arithmetic
progression of nonnegative integers. Let δ be the rightmost nonzero digit when d
is written in base p, and let α be the corresponding digit in the representation of a
in base p. Then α, α + δ, . . . , α + (p − 1)δ is a complete set of residues modulo
p. It follows that at least one of the numbers a, a +d, . . . , a + (p −1)d has p −1
as a digit when written in base p. Hence at least one term of the given arithmetic
progression does not belong to B.

Let (an)n≥0 be the sequence defined in the problem. To prove that an = bn

for all n ≥ 0, we use mathematical induction. Clearly a0 = b0 = 0. Assume
that ak = bk for 0 ≤ k ≤ n − 1, where n ≥ 1. Then an is the smallest integer
greater than bn−1 such that {b0, b1, . . . , bn−1, an} contains no p-term arithmetic
progression. By part (i) of the proposition, an ∈ B, so an ≥ bn . By part (ii) of the
proposition, the choice of an = bn does not yield a p-term arithmetic progression
with any of the preceding terms. It follows by induction that an = bn for all n ≥ 0.

Problem 5.2.8. Suppose that x, y, and z are natural numbers such that xy =
z2 + 1. Prove that there exist integers a, b, c, and d such that x = a2 + b2,
y = c2 + d2, and z = ac + bd.

(Euler’s problem)

Solution. We prove the claim by strong induction on z. For z = 1, we have
(x, y) = (1, 2) or (2, 1); in the former (resp. latter) case, we can set (a, b, c, d) =
(1, 0, 1, 1) (resp. (0, 1, 1, 1)).

Suppose that the claim is true whenever z < z0, and that we wish to prove
it for (x, y, z) = (x0, y0, z0), where x0 y0 = z2

0 + 1. Without loss of generality,
assume that x0 ≤ y0. Consider the triple (x1, y1, z1) = (x0, x0+y0−2z0, z0−x0),
so that (x0, y0, z0) = (x1, x1 + y1 + 2z1, x1 + z1).

First, using the fact that x0 y0 = z2
0 + 1, it is easy to check that (x, y, z) =

(x1, y1, z1) satisfies xy = z2 + 1.
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Second, we claim that x1, y1, z1 > 0. This is obvious for x1. Next, note that
y1 = x0 + y0 − 2z0 ≥ 2

√
x0 y0 − 2z0 > 2z0 − 2z0 = 0. Finally, because x0 ≤ y0

and x0 y0 = z2
0 + 1, we have x0 ≤

√
z2

0 + 1, or x0 ≤ z0. However, x0 �= z0,

because this would imply that z0 y0 = z2
0 +1, but z0 � (z2

0 +1) when z0 > 1. Thus,
z0 − x0 > 0, or z1 > 0.

Therefore, (x1, y1, z1) is a triple of positive integers (x, y, z) satisfying xy =
z2 + 1 and with z < z0. By the inductive hypothesis, we can write x1 = a2 + b2,
y1 = c2 + d2, and z1 = ac + bd. Then

(ac + bd)2 = z2
1 = x1 y1 − 1

= (a2 + b2)(c2 + d2) − 1

= (a2c2 + b2d2 + 2abcd) + (a2d2 + b2c2 − 2abcd) − 1

= (ac + bd)2(ad − bc)2 − 1,

so that |ad − bc| = 1.
Now note that x0 = x1 = a2+b2 and y0 = x1+y1+2z1 = a2+b2+c2+d2+

2(ac+bd) = (a+c)2+(b+d)2. In other words, x0 = a′2+b′2 and y0 = c′2+d ′2
for (a′, b′, c′, d ′) = (a, b, a + c, b + d). Then |a′d ′ − b′c′| = |ad − bc| = 1,
implying (by logic analogous to the reasoning in the previous paragraph) that
z0 = a′c′ + b′d ′, as desired. This completes the inductive step, and the proof.

Problem 5.2.9. Find all pairs of sets A, B, which satisfy the following conditions:
(i) A ∪ B = Z;

(ii) if x ∈ A, then x − 1 ∈ B;
(iii) if x ∈ B and y ∈ B, then x + y ∈ A.

(2002 Romanian International Mathematical Olympiad Team Selection Test)

Solution. We shall prove that either A = B = Z or A is the set of even numbers
and B the set of odd numbers.

First, assume that 0 ∈ B. Then we have x ∈ B, x + 0 ∈ A, and so B ⊂ A.
Then Z = A ∪ B ⊂ A, and so A = Z. From (ii) we also find that B = Z. Now
suppose that 0 �∈ B; thus 0 ∈ A and −1 ∈ B. Then, using (ii) we obtain −2 ∈ A,
−3 ∈ B, −4 ∈ A, and by induction −2n ∈ A and −2n − 1 ∈ B, for all n ∈ N. Of
course, 2 ∈ A (otherwise 2 ∈ B and 1 = 2+ (−1) ∈ A and 0 = 1−1 ∈ B, false),
and so 1 = 2 − 1 ∈ B. Let n > 1 be minimal with 2n ∈ B. Then 2n − 1 ∈ A and
2(n − 1) ∈ B, contradiction. This shows that 2N ⊂ A \ B and all odd integers are
in B \ A. One can also observe that −1 �∈ A (otherwise −2 ∈ B implies −1 ∈ B,
i.e., −1 �∈ A), and so A = 2Z, B = 2Z + 1.

Problem 5.2.10. Find all positive integers n such that

n =
m∏

k=0

(ak + 1),
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where amam−1 · · · a0 is the decimal representation of n.

(2001 Japanese Mathematical Olympiad)

Solution. We claim that the only such n is 18. If n = am · · · a1a0, then let

P(n) =
m∏

j=0

(a j + 1).

Note that if s ≥ 1 and t is a single-digit number, then P(10s + t) =
(t + 1)P(s). Using this we will prove the following two statements.

Lemma 1. If P(s) ≤ s, then P(10s + t) < 10s + t .

Proof. Indeed, if P(s) ≤ s, then

10s + t ≥ 10s ≥ 10P(s) ≥ (t + 1)P(s) = P(10s + t).

Equality must fail either in the first inequality (if t �= 0) or in the third in-
equality (if t �= 9).

Lemma 2. P(n) ≤ n + 1 for all n.

Proof. We prove this by induction on the number of digits of n. First, we know
that for all one-digit n, P(n) = n + 1. Now suppose that P(n) ≤ n + 1 for all
m-digit numbers n. Any (m + 1)-digit number n is of the form 10s + t , where s
is an m-digit number. Then

t (P(s) − 1) ≤ 9((s + 1) − 1),

t P(s) − 10s − t ≤ −s,

P(s)(t + 1) − 10s − t ≤ P(s) − s,

P(10s + t) − (10s + t) ≤ P(s) − s ≤ 1,

completing the inductive step. Thus, P(n) ≤ n + 1 for all n.

If P(n) = n, then n has more than one digit and we may write n = 10s + t .
From the first statement, we have P(s) ≥ s + 1. From the second one, we have
P(s) ≤ s + 1. Thus, P(s) = s + 1. Hence,

(t + 1)P(s) = P(10s + t) = 10s + t,

(t + 1)(s + 1) = 10s + t,

1 = (9 − t)s.

This is possible if t = 8 and s = 1, so the only possible n such that P(n) = n
is 18. Indeed, P(18) = (1 + 1)(8 + 1) = 18.
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Problem 5.2.11. The sequence (un)n≥0 is defined as follows: u0 = 2, u1 = 5
2 and

un+1 = un(u
2
n−1 − 2) − u1 for n = 1, 2, . . . .

Prove that 
un� = 2
2n−(−1)n

3 , for all n > 0 (
x� denotes the integer part of x).

(18th International Mathematical Olympiad)

Solution. To start, we compute a few members of the sequence. Write

u1 = 5
2 = 2 + 1

2 .

Then:

u2 = u1(u
2
0 − 2) −

(
2 + 1

2

)
=

(
2 + 1

2

)
(22 − 2) −

(
2 + 1

2

)
= 2 + 1

2 ,

u3 = u2(u
2
1 − 2) −

(
2 + 1

2

)
=

(
2 + 1

2

) [(
2 + 1

2

)2 − 2

]
−

(
2 + 1

2

)
=

(
2 + 1

2

)(
22 + 1

22

)
−

(
2 + 1

2

)
=

(
2 + 1

2

)(
22 − 1 + 1

22

)
= 23 + 1

23 ,

u4 =
(

23 + 1
23

) [(
2 + 1

2

)2 − 2

]
−

(
2 + 1

2

)
=

(
23 + 1

23

)(
22 + 1

22

)
−

(
2 + 1

2

)
= 25 + 1

2 + 2 + 1
25 −

(
2 + 1

2

)
= 25 + 1

25 ,

u5 =
(

25 + 1
25

) [(
23 + 1

23

)2 − 2

]
−

(
2 + 1

2

)
=

(
25 + 1

25

)(
26 + 1

26

)
−

(
2 + 1

2

)
= 211 + 1

211 .

Taking into account the required result, we claim that un = 2an +2−an , where
an = 2n−(−1)n

3 , for all n ≥ 1. We observe that an is a positive integer, because
2n ≡ (−1)n (mod 3).

Observe that the claimed formula is true for n = 1, 2, 3, 4, 5. Using induction
and the inductive formula that defined un , we have

un+1 = (2an + 2−an )[(2an−1 + 2−an−1) − 2] − (
2 + 1

2

)
= (2an + 2−an )(22an−1 + 2−2an−1) − (

2 + 1
2

)
= 2an+2an−1 + 2−an−2an−1 + 22an−1−an + 2an−2an−1 − 2 − 2−1.

We have only to consider the equalities

an + 2an−1 = an+1,

2an−1 − an = (−1)n,
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which are easy to check. Hence, we obtain the general formula

un = 2
2n−(−1)n

3 + 1

2
2n−(−1)n

3

, for all n ≥ 1.

The required result,


un� = 2
2n−(−1)n

3 ,

is now obvious.

Second solution. We have u0 ≥ 2, u1 ≥ 5
2 . We prove by induction that

un ≥ 5
2 , for all n ≥ 1.

un+1 = un(u
2
n−1 − 2) − 5

2 ≥ 5
2

(
25
4 − 2

)
− 5

2 = 5
2

(
25
4 − 3

)
> 5

2 .

The equation

x + 1

x
= un

has a unique real solution xn , with xn > 1. Indeed, write the equation in the form

x2 − un x + 1 = 0,

and we observe that � = u2
n − 4 ≥ 25

4 − 4 > 0. The equation has two positive
real solutions, only one being greater than 1.

Therefore, there exists a unique real sequence (xn)n≥1 such that xn > 1 and

xn + 1

xn
= un .

Put this formula in the definition for un+1 and obtain

xn+1 + 1

xn+1
= xn x2

n−1 + 1

xn x2
n−1

+
( xn

x2
n−1

+ x2
n−1

xn

)
− 5

2 .

We claim that the sequence (xn)n≥1 is uniquely defined by the conditions

xn+1 = xn x2
n−1, (1)

xn+1

x2
n−1

= 2(−1)n−1
. (2)

Actually, from condition (1) and x1 = 2, x2 = 2 we deduce

x3 = 21+2 = 23, x4 = 21+2 · 21·2 = 25,

and generally, xn = 2
2n−(−1)n

3 . After that, the solution follows as in the first part.
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5.3 Infinite Descent

Problem 5.3.2. Find all primes p for which there exist positive integers x, y, and
n such that pn = x3 + y3.

(2000 Hungarian Mathematical Olympiad)

Solution. Observe that 21 = 13 + 13 and 32 = 23 + 13. We will prove that
the only answers are p = 2 and p = 3. Assume by contradiction that there
exists p ≥ 5 such that pn = x3 + y3 with x, y, n positive integers and n of
the smallest possible value. Hence at least one of x and y is greater than 1. We
have x3 + y3 = (x + y)(x2 − xy + y2) with x + y ≥ 3 and x2 − xy + y2 =
(x − y)2 + xy ≥ 2. It follows that both x + y and x2 − xy + y2 are divisible by
p. Therefore (x + y)2 − (x2 − xy + y2) = 3xy is also divisible by p. However,
3 is not divisible by p, so at least one of x and y must be divisible by p. Since
x + y is divisible by p, both x and y are divisible by p. Then x3 + y3 ≥ 2p3 and
necessarily n > 3. We obtain

pn−3 = pn

p3 = x3

p3 + y3

p3 =
( x

p

)3 +
( y

p

)3
,

and this contradicts the minimality of n (see the remark after FMID Variant 1,
Part I, Section 5.3).

5.4 Inclusion–Exclusion

Problem 5.4.2. The numbers from 1 to 1,000,000 can be colored black or white. A
permissible move consists in selecting a number from 1 to 1,000,000 and chang-
ing the color of that number and each number not relatively prime to it. Initially
all of the numbers are black. Is it possible to make a sequence of moves after
which all of the numbers are colored white?

(1999 Russian Mathematical Olympiad)

First solution. It is possible. We begin by proving the following lemma:

Lemma. Given a set S of positive integers, there is a subset T ⊆ S such that
every element of S divides an odd number of elements in T .

Proof. We prove the claim by induction on |S|, the number of elements in S. If
|S| = 1 then let T = S.

If |S| > 1, then let a be the smallest element of S. Consider the set S′ = S\{a},
the set of the largest |S| − 1 elements in S. By induction there is a subset T ′ ⊆ S′
such that every element in S′ divides an odd number of elements in T ′.

If a also divides an odd number of elements in T ′, then the set T = T ′ suffices.
Otherwise, consider the set T = T ′ ∪ {a}. Thus a divides an odd number of
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elements in T . Every other element in S is bigger than a and can’t divide it, but
divides an odd number of elements in T ′ = T \ {a}. Hence T suffices, completing
the induction and the proof of the lemma.

Now, write each number n > 1 in its prime factorization

n = pa1
1 pa2

2 · · · pak
k ,

where the pi are distinct primes and the ai ate positive integers. Notice that the
color of n will always be the same as the color of P(n) = p1 p2 · · · pk .

Apply the lemma to the set S consisting of all P(i) for i = 2, 3, . . . , 1000000
to find a subset T ⊂ S such that every element of S divides an odd number of
elements in T . For each q ∈ S, let t (q) equal the number of elements in T that q
divides, and let u(q) equal the number of primes dividing q.

Select all the numbers in T , and consider how the color of a number n > 1
changes. By the inclusion–exclusion principle, the number of elements in T not
relatively prime to n equals ∑

q|P(n),q>1

(−1)u(q)+1t (q).

If x ∈ T and either gcd(x, P(n)) or equivalently gcd(x, n) is divisible by
exactly m primes, then it is counted for all q > 1 that divide gcd(x, P(n)). Thus
it is counted

(m
1

) − (m
2

) + (m
3

) − · · · = 1 time in the sum. (For example, if n = 6,
then the number of elements in T divisible by 2 or 3 equals t (2) + t (3) − t (6).)

By the definition of T , each of the values t (q) is odd. Because there are 2k −1
divisors q > 1 of P(n), the above quantity is the sum of 2k − 1 odd numbers and
is odd itself. Therefore after selecting T , every number n > 1 will switch color
an odd number of times and will turn white.

Finally, select 1 to turn 1 white to complete the process.

Note. In fact, a slight modification of the above proof shows that T is unique if
you restrict it to square-free numbers. With some work, this stronger result implies
that there is in essence exactly one way to make all the numbers white up to trivial
manipulations.

Second solution. Yes, it is possible. We prove a more general statement, where
we replace 1000000 in the problem by some arbitrary positive integer m. We also
focus on the numbers divisible by just a few primes instead of all the primes.

Lemma. For a finite set of distinct primes S = {p1, p2, . . . , pn}, let Qm(S) be
the set of numbers between 2 and m divisible only by primes in S. The elements
of Qm(S) can be colored black or white. A permissible move consists in selecting
a number in Qm(S) and changing the color of that number and each number
not relatively prime to it. Then it is possible to reverse the coloring of Qm(S) by
selecting several numbers in a subset Rm(S) ⊆ Qm(S).



286 II Solutions, 5. Basic Principles in Number Theory

Proof. We prove the lemma by induction on n. If n = 1, then selecting p1 suffices.
Now suppose n > 1, and assume without loss of generality that the numbers are
all black to start with.

Let T = {p1, p2, . . . , pn−1}, and define t to be the largest integer such that
tpn ≤ m. We can assume t ≥ 1 because otherwise we could ignore pn and just
use the smaller set T , and we’d be done by our induction hypothesis.

Now select the numbers in Rm(T ), Rt (T ), and pn Rt (T ) = {pn x | x ∈
Rt (T )}, and consider the effect of this action on a number y:

• y is not a multiple of pn . Selecting the numbers in Rm(T ) makes y white.
If selecting x ∈ Rt (T ) changes y’s color, selecting xpn will change it back,
so that y will become white.

• y is a power of pn . Selecting the numbers in Rm(T ) and Rt (T ) has no effect
on y, but each of the |Rt (T )| numbers in x Rt (T ) changes y’s color.

• pn | y but y is not a power of pn . Selecting the numbers in Rm(T ) makes
y white. Because y �= pi

n , it is divisible by some prime in T , so selecting
the numbers in Rt (T ) makes y black again. Finally, each of the |Rt (T )|
numbers in x Rt (T ) changes y’s color.

Therefore, all the multiples of pn are the same color (black if |Rt(T )| is even,
white if |Rt (T )| is odd), while all the other numbers in Qm(S) are white. If the
multiples of pn are still black, we can select pn to make them white, and we are
done.

We now return to the original problem. Set m = 1000000, and let S be the set
of all primes under 1000000. From the lemma, we can select numbers between 2
and 1000000 so that all the numbers 2, 3, . . . , 1000000 are white. Finally, com-
plete the process by selecting 1.

Third solution. Define P(n) as in the first solution and note that n and P(n) are
always the same color. Fix n = p1 p2 · · · pk square-free and consider the effect of
selecting in succession every divisor q > 1 of n. If s is divisible by exactly m of
the pi , then 2k−m divisors of n are relatively prime to s, and thus the color of s
is changed by 2k − 2k−m choices of q. This is even unless m = k. Thus the net
effect of choosing all these values of q is to change the color of all multiples of n
and only these.

Now we argue by induction on n that for any n we can make every number
1, 2, . . . , n white. For n = 1, we simply choose 1. For the inductive step, suppose
we have found a way to make 1, 2, . . . , n − 1 white and we wish to make n
white. If it is already white, then we are done. If it is black, then n is square-free
(otherwise n and P(n) < n are the same color; hence white), and hence applying
the construction above, we can change the color of every multiple of n. This leaves
1, 2, . . . , n − 1 white and flips n to make it white.
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Arithmetic Functions

6.1 Multiplicative Functions

Problem 6.1.6. Let f be a function from the positive integers to the integers sat-
isfying f (m + n) ≡ f (n) (mod m) for all m, n ≥ 1 (e.g., a polynomial with
integer coefficients). Let g(n) be the number of values (including repetitions) of
f (1), f (2), . . . , f (n) divisible by n, and let h(n) be the number of these values
relatively prime to n. Show that g and h are multiplicative functions related by

h(n) = n
∑
d|n

μ(d)
g(d)

d
= n

k∏
j=1

(
1 − g(p j )

p j

)
,

where n = pα1
1 · · · pαk

k is the prime factorization of n.

(American Mathematical Monthly)

Solution. Let m and n be positive integers such that gcd(m, n) = 1 and let 1 ≤
a ≤ m, 1 ≤ b ≤ n. From the Chinese remainder theorem and the properties
of f it follows that m | f (a) and n | f (b) if and only if mn | f (x), where
x = x(a, b) is the unique integer such that x ≡ a (mod m), x ≡ b (mod n), and
1 ≤ x ≤ min{m, n}. Thus g is multiplicative. For d | n, the number of values
of f (1), . . . , f (n) divisible by d is just n

d g(d). By a straightforward inclusion–
exclusion count,

h(n) = n −
k∑

i=1

n

pi
g(pi ) +

∑
1≤i< j≤k

n

pi p j
(pi p j ) − · · · ,

and we get

h(n) = n
k∏

j=1

(
1 − g(p j )

p j

)
.
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Problem 6.1.7. Define λ(1) = 1, and if n = pα1
1 · · · pαk

k , define

λ(n) = (−1)α1+···+αk .

(1) Show that λ is completely multiplicative.
(2) Prove that ∑

d|n
λ(d) =

{
1 if n is a square,
0 otherwise.

(3) Find the convolutive inverse of λ.

Solution. (1) Assume m = pα1
1 · · · pαk

k and n = pβ1
1 · · · pβk

k , where α1, . . . , αk ,

β1, . . . , βk ≥ 0. Then mn = pα1+β1
1 · · · pαk+βk

k and

λ(mn) = (−1)α1+β1+···+αk+βk = (−1)α1+···+αk (−1)β1+···+βk = λ(m)λ(n).

(2) Because λ is multiplicative, according to Theorem 6.1.2, it follows that its
summation function � also has this property. Therefore, it is sufficient to calculate
� for a power of a prime. we have

�(pα) = �(1) + �(p) + · · · + �(pα) =
{

1 if α even,
0 if α odd.

If n = pα1
1 · · · pαk

k , then �(n) = �(pα1
1 ) · · · �(pαk

k ) = 1 if all α1, . . . , αk are
even and 0 otherwise. Hence

�(n) =
{

1 if n is a square,
0 otherwise.

(3) Let g be the convolutive inverse of λ. From Problem 6.1.4(2) it follows
that g is multiplicative; hence it is determined by its values on powers of primes.
From g ∗λ = ε we get (g ∗λ)(p) = g(1)λ(p)+ g(p)λ(1) = −1+ g(p) = 0, i.e.,
g(p) = 1 for any prime p. Also, (g ∗ λ)(p2) = 0 implies 1 − 1 + g(p2) = 0, i.e.,
g(p2) = 0. A simple inductive argument shows that g(pα) = 0 for any positive
integer α ≥ 2. It follows that

g(n) =
⎧⎨
⎩

1 if n = 1,

0 if p2 | n for some prime p > 1,

1 if n = p1 · · · pk, where p1, . . . , pk are distinct primes,

i.e., g = μ2, where μ is the Möbius function. Hence g(n) = 1 if n is square-free,
and 0 otherwise.

Problem 6.1.8. Let an integer n > 1 be factored into primes: n = pα1
1 · · · pαm

m
(pi distinct) and let its own positive integral exponents be factored similarly. The
process is to be repeated until it terminates with a unique “constellation” of prime
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numbers. For example, the constellation for 192 is 192 = 222·3 · 3 and for 10000
is 10000 = 222 · 52. Call an arithmetic function g generally multiplicative if
g(ab) = g(a)g(b) whenever the constellations for a and b have no prime in
common.

(1) Prove that every multiplicative function is generally multiplicative. Is the
converse true?

(2) Let h be an additive function (i.e., h(ab) = h(a) + h(b) whenever
gcd(a, b) = 1). Call a function k generally additive if k(ab) = k(a) + k(b)

whenever the constellations for a and b have no prime in common. Prove that
every additive function is generally additive. Is the converse true?

(American Mathematical Monthly)

Solution. (1) Let f be multiplicative. If the constellations for a and b have no
prime in common, then the same is true of their factorizations, so f (ab) =
f (a) f (b). Hence f is generally multiplicative.

The converse is not true. Indeed, define g(a) to the product of all primes in
the constellation of a, taken once only, regardless of how many times they appear
in the constellation. Then g is clearly generally multiplicative, but g(9) = 6,
g(2) = 2, and g(18) = 6, so g(9 · 2) �= g(9)g(2).

(2) The statement “additive implies generally additive” can be proved in the
same way. If k(a) is the sum of all primes in the constellation of a each taken
once only, then k is generally additive, but k(9) = 5, k(2) = 2, and k(18) = 5.

6.2 Number of Divisors

Problem 6.2.5. Does there exist a positive integer such that the product of its
proper divisors ends with exactly 2001 zeros?

(2001 Russian Mathematical Olympiad)

Solution. Yes. Given an integer n with τ(n) divisors, the product of its divisors is√( ∏
d|n

d
)( ∏

d|n
(n/d)

)
=

√∏
d|n

d(n/d) =
√

nτ(n).

Thus, the product of all proper positive divisors of n equals

n
1
2 τ(n)−1.

Since this number ends in exactly 2001 zeros, 1
2τ(n) − 1 divides 2001. Sup-

pose 1
2τ(n)−1 = 2001. Then 10 | n but 100 � n and τ(n) = 4004 = 2·2·7·11·13.

One way to arrange this is to take n = 21 · 51 · 7·1110 · 1312.
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Problem 6.2.6. Prove that the number of divisors of the form 4k + 1 of each
positive integer is not less than the number of its divisors of the form 4k + 3.

Solution. To solve the problem, consider the function

f (n) =
⎧⎨
⎩

0, if n is even,
1, if n ≡ 1 (mod 4),

−1, if n ≡ 3 (mod 4).

It follows directly from this definition that f (n) is multiplicative. Now we ap-
ply (1). The even divisors of n do not influence its left-hand side. Each divisor of
the form 4k + 1 contributes a 1, and each divisor of the form 4k + 3 contributes
a − 1. Consequently, it suffices to prove that the summation function of f ,∑

d|n f (d) is nonnegative for each positive integer n.
Take any prime divisor pi of n. If pi ≡ 1 (mod 4), then the same congruence

holds for all powers of pi , so the i th factor in the right-hand side of (1) is positive.
If pi is congruent to 3 modulo 4, then so are its odd powers, while the even powers
are congruent to 1 modulo 4. In this case the i th factor in the right-hand side has
the form 1 − 1 + 1 − 1 + · · · , and it equals 1 or 0 according as αi is even or odd.
Summing up, we conclude that the sum in question is nonnegative.

Problem 6.2.7. Let d1, d2, . . . , dl be all positive divisors of a positive integer. For
each i = 1, 2, . . . , l denote by ai the number of positive divisors of di . Then

a3
1 + a3

2 + · · · + a3
l = (a1 + a2 + · · · + al)

2.

Solution. The basic ingredient in the proof is the well-known identity

n∑
k=1

k3 =
(n(n + 1)

2

)2 =
( n∑

k=1

k
)2

.

We have

a1 + a2 + · · · + al =
∑
d|n

τ(d) =
k∏

i=1

(
1 + τ(pi ) + · · · + τ(pαi

i )
)
,

a3
1 + a3

2 + · · · + a3
l =

∑
d|n

τ(d)3 =
k∏

i=1

(
1 + τ(pi )

3 + · · · + τ(pαi
i )3),

where n = pα1
1 · · · pαk

k is the prime factorization of n.
Since

1 + τ(pi ) + · · · + τ(pαi
i ) = 1 + 2 + · · · + (αi + 1)

and

1+τ(pi )
3+· · ·+τ(pαi

i )3 = 13+23+· · ·+(α+i+1)3 = [1+2+· · ·+(α+i+1)]2,

the conclusion follows.
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For example, if n = 12 we have d1 = 1, d2 = 2, d3 = 3, d4 = 4, d5 = 6,
d6 = 12; a1 = 1, a2 = 2, a3 = 2, a4 = 3, a5 = 4, a6 = 6, and

13 + 23 + 23 + 33 + 43 + 63 = 324 = (1 + 2 + 2 + 3 + 4 + 6)2.

Remark. The above identity shows that solving the equation

(x1 + x2 + · · · + xn)
2 = x3

1 + x3
2 + · · · + x3

n

in positive integers is a very difficult job. If we assume that xi �= x j for i �= j ,
there are only a few solutions. Try to prove this last assertion.

6.3 Sum of Divisors

Problem 6.3.5. For any n ≥ 2,

σ(n) < n
√

2τ(n).

(1999 Belarusian Mathematical Olympiad)

Solution. Let d1, d2, . . . , dτ(n) be the divisors of n. They can be rewritten in the
form n

d1
,

n

d2
, . . . ,

n

dτ(n)

.

By the power mean inequality,

σ(n) ≤
√√√√τ(n)

τ(n)∑
i=1

d2
i .

Now,
1

n2

( τ(n)∑
i=1

d2
i

)
=

τ(n)∑
i=1

1

d2
i

≤
τ(n)∑
j=1

1

j2
<

∞∑
j=1

1

j2
= π2

6
.

Hence

σ(n) ≤
√√√√τ(n)

τ(n)∑
i=1

di <

√
τ(n)

n2π2

6
< n

√
2τ(n).

Problem 6.3.6. Find all the four-digit numbers whose prime factorization has the
property that the sum of the prime factors is equal to the sum of the exponents.
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Solution. (1) If the number has at least four prime divisors, then n ≥ 214 ·3·5·7 >

9999, a contradiction.
(2) If n has three prime divisors, these must be 2, 3, and 5. The numbers are

28 · 3 · 5 = 3840, 27 · 32 · 5 = 5760, 26 · 33 · 5 = 8640, and 27 · 3 · 52 = 9600.

(3) If n has 2 prime divisors, at least one of them must be 2, since if neither
is 2, they are at least 3 and 5 and hence n ≥ 37 · 5 = 10935 has more than four
digits. The numbers

24 · 53 = 2000, 23 · 54 = 5000, 28 · 7 = 1792, 27 · 72 = 6272

satisfy the solutions.
(4) If n has only one prime factor, then 55 = 3125.
Therefore there are nine solutions.

Problem 6.3.7. Let m, n, k be positive integers with n > 1. Show that σ(n)k �=
nm.

(2001 St. Petersburg City Mathematical Olympiad)

Solution. Let n = pe1
1 pe2

2 · · · pek
k . Because σ(n) > n, if σ(n)k = nm , then

σ(n) = p f1
1 p f2

2 · · · p fk
k where fi > ei . This implies fi ≥ ei + 1, for all i , and

σ(n) ≥ p1+e1
1 p1+e2

2 · · · p1+ek
k >

p1+e1
1 − 1

p1 − 1

p1+e2
2 − 1

p2 − 1
· · · p1+ek

k − 1

pk − 1

= (1 + p1 + · · · + pe1
1 )(1 + p2 + · · · + pe2

2 ) · · · (1 + pk + · · · + pek
k )

= σ(n).

This is a contradiction.

6.4 Euler’s Totient Function

Problem 6.4.5. For a positive integer n, let ψ(n) be the number of prime factors
of n. Show that if ϕ(n) divides n − 1 and ψ(n) ≤ 3, then n is prime.

(1998 Korean Mathematical Olympiad)

Solution. Note that for prime p, if p2 | n then p | ϕ(n) but p � n − 1, contradic-
tion. So we need only show that n �= pq, n �= pqr for primes p < q < r .

First assume n = pq, so (p − 1)(q − 1) | pq − 1. Note that q ≥ 3 implies
that the left side is even, so the right is too and p, q are odd. But if p = 3, q = 5
then

pq − 1

(p − 1)(q − 1)
< 2;
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the left side is decreasing in each variable and is always greater than 1, so it cannot
be an integer, contradiction.

Now let n = pqr . As before, p, q, r are odd; if p = 3, q = 7, and r = 11
then

pqr − 1

(p − 1)(q − 1)(r − 1)
< 2

and again the left side is decreasing and greater than 1; this eliminates all cases
except where p = 3, q = 5. Then for r = 7 we have

pqr − 1

(p − 1)(q − 1)(r − 1)
< 3,

so the only integer value ever attainable is 2. Note that (15r − 1)/8(r − 1) = 2
gives r = 15, which is not a prime, and we have eliminated all cases.

Remarks. (1) The problem is a direct consequence of Problem 1.1.16.
(2) A long standing conjecture due to Lehmer asserts that if ϕ(n) | n −1, then

n is a prime. This has been proved so far for ψ(n) ≤ 14. The proofs are very long
and computational and no further progress has been made on this conjecture.

Problem 6.4.6. Show that the equation ϕ(n) = τ(n) has only the solutions n =
1, 3, 8, 10, 18, 24, 30.

Solution. We check directly that the listed integers satisfy the equation and there
are no others ≤ 30 with this property. We will prove that for n ≥ 31, ϕ(n) > τ(n).
For this we consider the multiplicative function f (n) = ϕ(n)/τ(n). If n is a
prime, we have f (n) = n−1

2 ; hence f increases on the set of primes.
For a prime p, define Sp = {pα | α ≥ 1}. Because

f (pα) = pα−1(p − 1)

α + 1
and

p

α + 2
≥ 2

α + 2
>

1

α + 1
,

we obtain f (pα+1) > f (pα), that is, f increases on Sp. Using the fact that
minp,α f (pα) = f (2) = 1

2 , it follows that in order to solve the given equation we
need to consider the integers pα with f (pα) ≤ 2. These are 2, 3, 4, 5, 8, 9, 16,
with f (2) = 1

2 , f (3) = 2
3 , f (3) = f (8) = 1 and f (5) = f (9) = f (16) = 2.

The only way to write 1 as a product of these values of f is to use only ones or a
single 1

2 , a single 2, and possibly some 1’s. These gives the possibilities n = 1, 3,
8, 3 · 8 = 24, and n = 2 · 5 = 10, 2 · 9 = 18, 2 · 3 · 5 = 30, respectively. Thus
these are exactly the values given in the statement.

Problem 6.4.7. Let n > 6 be an integer and let a1, a2, . . . , ak be all positive
integers less than n and relatively prime to n. If

a2 − a1 = a3 − a2 = · · · = ak − ak−1 > 0,

prove that n must be either a prime number or a power of 2.
(32nd International Mathematical Olympiad)
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Solution. It is given that the reduced system of residues mod n chosen from the
set {1, 2, . . . , n − 1} is an arithmetic progression. We write it as an increasing
sequence 1 = a1 < a2 < · · · < ak = n − 1.

Suppose the reduced system of residues for n is an arithmetic progression
with difference 1. Since 1 and n − 1 are relatively prime to n, this system must be
1 < 2 < · · · < n − 1. Hence n has no factors in {2, . . . , n − 1} and n is prime. If
the reduced system of residues for n is an arithmetic progression with difference
2, then it must be 1 < 3 < · · · < n − 1. Hence n has no odd factors and n is a
power of 2. The problem asks us to prove that only these cases can appear.

Let a2 be the second member of the progression. Because a2 > 1 is the least
positive number relatively prime to n, it is a prime number, say p and p > 3.
Then, the difference of the progression is a2 − a1 = p − 1, and ak = n − 1 =
1 + (k − 1)(p − 1). We obtain a “key” formula:

n − 2 = (k − 1)(p − 1).

Remembering the choice of p, n is divisible by 3, and then n−2 ≡ 1 (mod 3).
Thus, by the key formula we cannot have p ≡ 1 (mod 3). Since p > 3, we have
p ≡ 2 (mod 3). Then a3 = 1 + 2(p − 1) ≡ 0 (mod 3), and this contradicts the
supposition that a3 and n are relatively prime numbers.

6.5 Exponent of a Prime and Legendre’s Formula

Problem 6.5.7. (a) If p is a prime, prove that for any positive integer n,

−
⌊

ln n

ln p

⌋
+ n

⌊
ln n
ln p

⌋∑
k=1

1

pk
< ep(n) <

n

p − 1
.

(b) Prove that

lim
n→∞

ep(n)

n
= 1

p − 1
.

Solution. (a) From Legendre’s formula,

ep(n) =
∑
k≥1

⌊
n

pk

⌋
≤

∑
k≥1

n

pk
< n

∞∑
j=1

1

p j
= n

p − 1
.

For the left bound note that
⌊ ln n

ln p

⌋
is the least nonnegative integer s such that

n < ps+1. That is,
⌊ n

pk

⌋ = 0 for k ≥ s + 1. It follows that

ep(n) =
s∑

k=1

⌊
n

pk

⌋
>

s∑
k=1

( n

pk
− 1

)
= n

s∑
k=1

1

pk
− s,

and we are done.
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(b) From the inequalities

−1

n

⌊
ln n

ln p

⌋
+

⌊
ln n
ln p

⌋∑
k=1

1

pk
<

ep(n)

n
<

1

p − 1

and the fact that

lim
n→∞

1

n

⌊
ln n

ln p

⌋
= 0 and lim

n→∞

⌊
ln n
ln p

⌋∑
k=1

1

pk
= 1

p − 1
,

the desired formula follows.

Remark. An easier to understand lower bound on ep(n) is

ep(n) >
n

p − 1
−

⌈
log n

log p

⌉
,

which follows easily from the fact that n has at most
⌈ log n

log p

⌉
digits in base p. This

lower bound suffices to prove (b).

Problem 6.5.8. Show that for all nonnegative integers m, n the number

(2m)!(2n)!
m!n!(m + n)!

is also an integer.

(14th International Mathematical Olympiad)

Solution. It is sufficient to prove that for any prime number p,

ep(2m) + ep(2n) ≥ ep(m) + ep(n) + ep(m + n).

Again, it is sufficient to prove that for all i, j ≥ 1, the following inequality
holds: ⌊

2m

pi

⌋
+

⌊
2n

pi

⌋
≥

⌊
m

pi

⌋
+

⌊
n

pi

⌋
+

⌊
m + n

pi

⌋
.

This follows from a more general result.

Lemma. For any real numbers a, b,


2a� + 
2b� ≥ 
a� + 
b� + 
a + b�.
Proof. Let a = 
a� + x , b = 
b� + y, where 0 ≤ x, y < 1. If x + y < 1 we have

a + b� = 
a� + 
b�, and the required inequality becomes


2a� + 
2b� ≥ 2(
a� + 
b�).
In this form, it is obvious.
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Let 1 ≤ x + y < 2. Then 2x ≥ 1 or 2y ≥ 1. Let 2x ≥ 1. Then


2a� = 2
a� + 1 and 
a + b� = 
a� + 
b� + 1.

Thus


2a� + 
2b� = 2
a� + 1 + 
2b� ≥ 2
a� + 1 + 2
b� = 
a� + 
b� + 
a + b�.
The other cases follow in a similar way.

Problem 6.5.9. Prove that (3a+3b)!(2a)!(3b)!(2b)!
(2a+3b)!(a+2b)!(a+b)!a!(b!)2 is an integer for all pairs of

positive integers a, b.
(American Mathematical Monthly)

Solution. First, let us clarify something. When we write⌊
n

p

⌋
+

⌊
n

p2

⌋
+

⌊
n

p3

⌋
+ · · · ,

we write in fact
∑

k≥1

⌊ n
pk

⌋
, and this sum has clearly a finite number of nonzero

terms. Now let us take a prime p and apply Legendre’s formula as well as the first
observations. We find that

vp((3a +3b)!(2a)!(3b)!(2b)!) =
∑
k≥1

(⌊
3a + 3b

pk

⌋
+

⌊
2a

pk

⌋
+

⌊
3b

pk

⌋
+

⌊
2b

pk

⌋)

and also

vp
(
(2a + 3b)!(a + 2b)!(a + b)!a!(b!)2)

=
∑
k≥1

(⌊
2a + 3b

pk

⌋
+

⌊
a + 2b

pk

⌋
+

⌊
a + b

pk

⌋
+

⌊
a

pk

⌋
+ 2

⌊
b

pk

⌋)
.

Of course, it is enough to prove that for each k ≥ 1, the term corresponding
to k in the first sum is greater than or equal to the term corresponding to k in the
second sum. With the substitution x = a

pk , y = b
pk , we have to prove that for any

nonnegative real numbers x, y we have


3x +3y�+
2x�+
3y�+
2y� ≥ 
2x +3y�+
x +2y�+
x + y�+
x�+2
y�.
This isn’t easy, but with another useful idea the inequality will become easy.

The idea is that


3x + 3y� = 3
x� + 3
y� + 
3{x} + 3{y}�,
and similar relations for the other terms of the inequality. After this operation, we
see that it suffices to prove the inequality only for 0 ≤ x, y < 1. Because we
can easily compute all terms, after splitting in some cases, it suffices to see when

2{x}�, 
3{y}�, 
2{y}� are 0, 1, or 2.
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Remark. A graphical solution to this problem is the following. The problem re-
duces (as in the text) to showing that


3x +3y�+
2x�+
3y�+
2y� ≥ 
2x +3y�+
x +2y�+
x + y�+
x�+2
y�.
Now observe that it suffices to show this for 0 ≤ x < 1 and 0 ≤ y < 1.

For this draw two copies of the unit square. On the first plot the regions on which
the left-hand side is constant and the corresponding value, and for the second do
the same thing for the right-hand side. Then one just compares and sees that the
left-hand side is always greater.

Problem 6.5.10. Prove that there exists a constant c such that for any positive
integers a, b, n for which a! · b!|n! we have a + b < n + c ln n.

(Paul Erdős)

Solution. This time, the second formula for ep(n) is useful. Of course, there is no
reasonable estimation of this constant, so we should see what happens if a! · b! |
n!. Then e2(a) + e2(b) ≤ e2(n), which can be translated as a − S2(a) + b −
S2(b) ≤ n − S2(n) < n. So, we have found almost exactly what we needed:
a + b < n + S2(a) + S2(b). Now we need another observation: the sum of digits
of a number A when written in binary is at most the number of digits of A in
base 2, which is 1 + 
log2 A� (this follows from the fact that 2k−1 ≤ A < 2k ,
where k is the number of digits of A in base 2). So, we have the estimations
a + b < n + S2(a) + S2(b) ≤ n + 2 + log2 ab ≤ n + 2 + 2 log2 n (since we have
of course a, b ≤ n). And now the conclusion is immediate.

Problem 6.5.11. Prove that for any integer k ≥ 2, the equation

1

10n = 1

n1! + 1

n2! + · · · + 1

nk !
does not have integer solutions such that 1 ≤ n1 < n2 < · · · < nk.

(Tuymaada Olympiad)

Solution. Suppose we have found a solution of the equation and let us consider

P = n1!n2! · · · nk !.
We have

10n((n1 + 1) · · · (nk − 1)nk + · · · + (nk−1 + 1) · · · (nk − 1)nk + 1
) = nk !,

which shows that nk divides 10n . Let us write nk = 2x · 5y . First of all, suppose
that x, y are positive. Thus,

(n1 + 1) · · · (nk − 1)nk + · · · + (nk−1 + 1) · · · (nk − 1)nk + 1
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is relatively prime to 10, and it follows that e2(nk) = e5(nk). This implies of
course that

⌊ nk
2 j

⌋ = ⌊ nk
5 j

⌋
for all j (because we clearly have

⌊ nk
2 j

⌋
>

⌊ nk
5 j

⌋
). Take

j = 1, then from
nk

2
≥

⌊nk

2

⌋
≥

⌊nk

5

⌋
≥ nk

5
− 1

we get nk ≤ 3. Checking by hand shows that the inequality does not hold for
nk = 2 or nk = 3, so we get only k = 1, which is not possible, since k ≥ 2.

Next, suppose that y = 0. Then

(n1 + 1) · · · (nk − 1)nk + · · · + (nk−1 + 1) · · · (nk − 1)nk + 1

is odd and thus e2(nk) = n ≤ e5(nk). Again this implies e2(nk) = e5(nk), and we
have seen that this gives no solution. So, actually x = 0. A crucial observation is
that if nk > nk−1 + 1, then

(n1 + 1) · · · (nk − 1)nk + · · · + (nk−1 + 1) · · · (nk − 1)nk + 1

is again odd, and thus we find again that e2(nk) = n ≤ e5(nk), impossible. So,
nk = nk−1 + 1. But then, taking into account that nk is a power of 5, we deduce
that

(n1 + 1) · · · (nk − 1)nk + · · · + (nk−1 + 1) · · · (nk − 1)nk + 1

is congruent to 2 modulo 4 and thus e2(nk) = n + 1 ≤ e5(nk) + 1. It follows that⌊ nk
2

⌋ ≤ 1 + ⌊ nk
5

⌋
and thus nk ≤ 6. Since nk is a power of 5, we find that nk = 5,

nk−1 = 1, and a quick search of all possibilities shows that there are no solutions.
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More on Divisibility

7.1 Congruences Modulo a Prime:
Fermat’s Little Theorem

Problem 7.1.11. Let 3n − 2n be a power of a prime for some positive integer n.
Prove that n is a prime.

Solution. Let 3n − 2n = pα for some prime p and some α ≥ 1, and let q be
a prime divisor of n. Assume that q �= n; then n = kq, where k > 1. Since
pα = 3kq − 2kq = (3k)q − (2k)q , we observe that pα is divisible by 3k − 2k .
Hence 3k − 2k = pβ for some β ≥ 1. Now we have

pα = (2k + pβ)q − 2kq

= q2k(q−1) pβ + q(q − 1)

2
2k(q−2) p2β + · · · + pqβ.

Since α > β (because pβ = 3k−2k is less than pα = 3kq−2kq ), it follows that
pα is divisible by a power of p at least as great as pβ+1. Then the above equality
implies that p divides q2k(q−1). On the other hand, p is obviously odd, and hence
it divides q. Being a prime, q must then be equal to p. Therefore n = kq = kp,
and pα = (3p)k − (2p)k is divisible by 3p − 2p , implying 3p − 2p = pγ for
some γ ≥ 1. In particular, we infer that 3p ≡ 2p (mod p). Now, observing that
p �= 2, 3, we reach a contradiction to Fermat’s little theorem, by which

3p ≡ 3 (mod p), 2p ≡ 2 (mod p).

Problem 7.1.12. Let f (x1, . . . , xn) be a polynomial with integer coefficients of
total degree less than n. Show that the number of ordered n-tuples (x1, . . . , xn)

with 0 ≤ xi ≤ 12 such that f (x1, . . . , xn) ≡ 0 (mod 13) is divisible by 13.

(1998 Turkish Mathematical Olympiad)

© Birkhäuser Boston, a part of Springer Science + Business Media, LLC 2009
T. Andreescu and D. Andrica, Number Theory, DOI: 10.1007/b11856_18, 299
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Solution. (All congruences in this problem are modulo 13.) We claim that

12∑
x=0

xk ≡ 0 for 0 ≤ k < 12.

The case k = 0 is obvious, so suppose k > 0.
Note that the twelve powers 1, 2, 4, . . . , 211 represent all twelve nonzero resi-

dues mod 13. Thus 2k ≡ 1 (mod 13) if and only if 12 | k. Since the numbers
2, 4, . . . , 24 are congruent (in some order) to 1, 2, . . . , 12 (mod 13), we have

12∑
x=0

xk ≡
12∑

x=0

(2x)k = 2k
12∑

x=0

xk;

since gk �≡ 1, we must have
∑12

x=0 xk ≡ 0. This proves our claim.
Now let S = {(x1, . . . , xn) | 0 ≤ xi ≤ 12}. It suffices to show that the number

of n-tuples (x1, . . . , xn) ∈ S with f (x1, . . . , xn) �≡ 0 is divisible by 13, since
|S| = 13n is divisible by 13. Consider the sum∑

(x1,...,xn)∈S

( f (x1, . . . , xn))
12.

This sum counts mod 13 the number of n-tuples (x1, . . . , xn) ∈ S such that
f (x1, . . . , xn) �≡ 0, since by Fermat’s little theorem,

( f (x1, . . . , xn))
12 ≡

{
1, if f (x1, . . . , xn) �≡ 0,

0, if f (x1, . . . , xn) ≡ 0.

On the other hand, we can expand ( f (x1, . . . , xn))
12 in the form

( f (x1, . . . , xn))
12 =

N∑
j=1

c j

n∏
i=1

x
e ji
i

for some integers N , c j , e ji . Since f is a polynomial of total degree less than n,
we have e j1 + e j2 + · · · + e jn < 12n for every j , so for each j there exists an i
such that e ji < 12. Thus by our claim,

∑
(x1,...,xn)∈S

c j

n∏
i=1

x
e ji
i = c j

n∏
i=1

12∑
x=0

x
e ji
i ≡ 0,

since one of the sums in the product is 0. Therefore

∑
(x1,...,xn)∈S

( f (x1, . . . , xn))12 =
∑

(x1,...,xn)∈S

N∑
j=1

c j

n∏
i=1

x
e ji
i ≡ 0,

so the number of (x1, . . . , xn) such that f (x1, . . . , xn) �≡ 0 (mod 13) is divisible
by 13, and we are done.
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Problem 7.1.13. Find all pairs (m, n) of positive integers, with m, n ≥ 2, such
that an − 1 is divisible by m for each a ∈ {1, 2, . . . , n}.

(2001 Romanian International Mathematical Olympiad Team Selection Test)

Solution. The solution is the set of all (p, p − 1), for odd primes p. The fact that
all of these pairs are indeed solutions follows immediately from Fermat’s little
theorem. Now we show that no other solutions exist.

Suppose that (m, n) is a solution. Let p be a prime dividing m. We first observe
that p > n. Otherwise, we could take a = p, and then pn − 1 would not be
divisible by p, let alone m. Then because n ≥ 2, we have p ≥ 3, and hence p is
odd.

Now we prove that p < n + 2. Suppose to the contrary that p ≥ n + 2. If n
is odd, then n + 1 is even and less than p. Otherwise, if n is even, then n + 2 is
even and hence less than p as well, because p is odd. In either case, there exists
an even d such that n < d < p with d

2 ≤ n. Setting a = 2 and a = d
2 in the given

condition, we find that

dn ≡ 2n
(d

2

)n ≡ 1 · 1 ≡ 1 (mod m),

so that dn − 1 ≡ 0 (mod m) as well. Because n < d < p < m, we see that
1, 2, . . . , n, d are n + 1 distinct roots of the polynomial congruence xn − 1 ≡ 0
(mod p). By Lagrange’s theorem, however, this congruence can have at most n
roots, a contradiction.

Thus, we have sandwiched p between n and n + 2, and the only possibility is
that p = n + 1. Therefore, all solutions are of the form (pk, p − 1) with p an odd
prime. It remains to prove that k = 1. Using a = n = p − 1, it suffices to prove
that

pk � ((p − 1)p−1 − 1).

Expanding the term (p − 1)p−1 modulo p2, and recalling that p is odd, we
have

(p − 1)p−1 =
p−1∑
i=0

(
p − 1

i

)
(−1)p−1−i pi

≡
(

p − 1

0

)
(−1)p−1 +

(
p − 1

1

)
(−1)p−2 p

≡ 1 − p(p − 1)

≡ p + 1 �≡ 1 (mod p2).

It follows immediately that k cannot be greater than 1, completing the proof.
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Problem 7.1.14. Let p be a prime and b0 an integer, 0 < b0 < p. Prove that
there exists a unique sequence of base-p digits b0, b1, b2, . . . , bn, . . . with the
following property: If the base-p representation of a number x ends in the group
of digits bnbn−1 . . . b1b0, then so does the representation of x p.

Solution. We are looking for a sequence b0, b1, b2, . . . , bn, . . . of base p digits
such that the numbers xn = b0 + b1 p + · · · + bn pn and x p

n are congruent mod-
ulo pn+1 for each n = 0, 1, 2, . . . Of course, the choice of the first term b0 is
predetermined, and given in the problem statement; let us note that the numbers
x0 = b0 and x p

0 are congruent modulo p by Fermat’s little theorem. Suppose that
the base p digits b1, b2, . . . , bn are already chosen in such a way that x p

n ≡ xn
(mod pn+1). We shall prove that there is a unique digit bn+1 such that

(xn + bn+1 pn+1)p ≡ xn + bn+1 pn+1 (mod pn+2);
this proves the existence and the uniqueness at the same time. Since

(xn + bn+1 pn+1)p = x p
n +

(
p

1

)
x p−1

n bn+1 pn+1 + Cpn+2

for some integer constant C , and since
(p

1

)
is divisible by p, we get

(xn + bn+1 pn+1)p ≡ x p
n (mod pn+2).

Hence bn+1 should satisfy the congruence

x p
n − xn − bn+1 pn+1 ≡ 0 (mod pn+2). (1)

By the induction hypothesis, the number x p
n − xn is divisible by pn+1. This

implies that its (n +2)nd base p digit (from right to left) is indeed the only choice
for bn+1 such that (1) holds. The inductive proof is complete.

Problem 7.1.15. Determine all integers n > 1 such that 2n+1
n2 is an integer.

(31st International Mathematical Olympiad)

Solution. We will prove that the problem has only the solution n = 3. First,
observe that n is an odd number. Then, we prove that 3 | n.

Let p be the least prime divisor of n. Since n2 | 2n + 1, 2n + 1 ≡ 0 (mod p)

and 22n ≡ 1 (mod p). By Fermat’s little theorem, 2p−1 ≡ 1 (mod p). Then
2d ≡ 1 (mod p), where d = gcd(p − 1, 2n). By the definition of p, d has no
prime divisor greater than 2, which shows that d = 2. It follows that p = 3.

Let n = 3km, where k ≥ 1 and (3, m) = 1. Using the identity

x3k + 1 = (x + 1)(x2 − x + 1)(x2·3 − x3 + 1) · · · (x2·3k−1 − x3k−1 + 1)
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we obtain the decomposition

23km+1 = (2m+1)(22m−2m+1)(22·3m−23m+1) · · · (22·3k−1m−23k−1m+1). (1)

Let us remark that 23 ≡ −1 (mod 9); hence 23k ≡ −1 (mod 9) for all k ≥ 1.
Since 22s − 2s + 1 ≡ 3 (mod 9) for s of the form 3 j , we obtain in (1) that

3k | (22m − 2m + 1)(22·3m − 23m + 1) · · · (22·3k−1m − 23k−1m + 1)

but 3k+1 does not divides the product. Therefore, 3k | 2m + 1. Since 3 does not
divide m and

2m +1 = (3−1)m +1 = 3m −
(

m

1

)
3m−1 +· · ·−

(
m

m − 1

)
3 ≡ −3m (mod 9),

we obtain k = 1.
Now we have n = 3m and 9m2 | 23m +1. We repeat, in some way, the starting

argument. Take q the least prime divisor of m, 26m ≡ 1 (mod q), 2q−1 ≡ 1
(mod q), and δ = gcd(6m, q − 1). By the definition of q we can have δ = 1, 2, 3
or 6 and we also have 2δ ≡ 1 (mod q). Thus q can be chosen among prime
divisors of the numbers 3, 7, 63. Since q > 3, we can have only q = 7. Returning
to m2 | 23m + 1, we obtain 49 | 23m + 1. But we have 23m + 1 ≡ 2 (mod 7), and
we get a contradiction.

Thus, m = 1 and n = 3.

Problem 7.1.16. Prove that n | 2n−1 + 1 fails for all n > 1.

(Sierpiński)

Solution. Although very short, the proof is tricky. Let n = ∏s
i=1 pki

i , where
p1 < · · · < ps are prime numbers. The idea is to look at v2(pi −1). Choose the pi

that minimizes this quantity and write pi = 1+2ri mi with mi odd. Then of course
we have n ≡ 1 (mod 2ri ). Hence we can write n − 1 = 2mt . We have 22ti t ≡ −1
(mod pi ); thus we surely have −1 ≡ 22ri tmi ≡ 2(pi −1)t ≡ 1 (mod pi ) (the last
congruence being derived from Fermat’s theorem). Thus pi = 2, which is clearly
impossible.

Problem 7.1.17. Prove that for any natural number n, n! is a divisor of

n−1∏
k=0

(2n − 2k).

Solution. Let us take a prime number p. Of course, for the argument to be nontriv-
ial, we take p ≤ n (otherwise, it doesn’t divide n!). First, let us see what happens
with p = 2. We have

e2(n) = n − S2(n) ≤ n − 1
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and also

v2

( n−1∏
k=0

(2n − 2k)
)

=
n−1∑
k=0

v2(2
n − 2k) ≥ n − 1

(since 2n − 2k is even for k ≥ 1), so we are done with this case. Now let us
assume that p > 2. We have p | 2p−1 − 1 from Fermat’s theorem, so we also
have p | 2k(p−1) − 1 for all k ≥ 1. Now,

n−1∏
k=0

(2n − 2k) = 2
n(n−1)

2

n∏
k=1

(2k − 1)

and so from the above remarks we infer that

vp

( n−1∏
k=0

(2n − 2k)
)

=
n∑

k=1

vp(2
k − 1),

≥
∑

1≤k(p−1)≤n

vp(2
k(p−1) − 1) ≥ card{k | 1 ≤ k(p − 1) ≤ n}.

Since

card{k | 1 ≤ k(p − 1) ≤ n} =
⌊

n

p − 1

⌋
,

we have found that

vp

( n−1∏
k=0

(2n − 2k)
)

≥
⌊

n

p − 1

⌋
.

But we know that

ep(n) = n − sp(n)

p − 1
≤ n − 1

p − 1
<

n

p − 1
,

and since ep(n) is an integer, we must have

ep(n) ≤
⌊

n

p − 1

⌋
.

From these two inequalities, we conclude that

vp

(
n−1∏
k=0

(2n − 2k)

)
≥ ep(n),

and now the problem is solved.
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7.2 Euler’s Theorem

Problem 7.2.5. Prove that for every positive integer n, there exists a polynomial
with integer coefficients whose values at 1, 2, . . . , n are different powers of 2.

(1999 Hungarian Mathematical Olympiad)

Solution. It suffices to prove the claim when n ≥ 4, because the same polynomial
that works for n ≥ 4 works for n ≤ 3. For each i = 1, 2, . . . , n, consider the
product si = ∏n

j=1, j �=i (i − j). Because n ≥ 4, one of the terms i − j equals 2,
and si is even. Thus, we can write si = 2qi mi for positive integers qi , mi with mi
odd. Let L = max(qi ). For each i there are infinitely many powers of 2 that are
congruent to 1 mod mi . (Specifically, by Euler’s theorem, 2φ(mi ) j ≡ 1 (mod mi )

for all j ≥ 0.) Thus there are integers ci such that ci mi +1 is a power of 2. Choose
such a ci so that ci mi + 1 are distinct powers of 2, and define

P(x) = 2L +
n∑

i=1

ci 2
L−qi

∏
j �=i

(x − j).

For each k, 1 ≤ k ≤ n, the term
∏

j �=i (x − j) vanishes at x = k unless k = i .
Therefore

P(k) = 2L + ck2L−qk
∏
j �=k

(k − j) = 2L(ckmk + 1),

a power of 2. Moreover, since we choose the ci mi + 1 to be distinct, they are
different powers of 2, as needed.

Problem 7.2.6. Let a > 1 be an odd positive integer. Find the least positive integer
n such that 22000 is a divisor of an − 1.

(2000 Romanian International Mathematical Olympiad Team Selection Test)

Solution. Since a is odd, (a, 2k) = 1, for any k ≥ 0. Hence, by Euler’s the-
orem, aϕ(2k ) ≡ 1 (mod 2k). Since ϕ(2k) = 2k−1 and we are looking for the
least exponent n such that an ≡ 1 (mod 22000), it follows that n is a divisor of
21999 = ϕ(22000).

If a ≡ 1 (mod 22000), it follows that n = 1. We shall omit this case.
Consider the decomposition

a2m − 1 = (a − 1)(a + 1)(a2 + 1)(a22 + 1) · · · (a2m−1 + 1).

Assume a ≡ 1 (mod 2s) and a �≡ 1 (mod 2s+1), where 2 ≤ s ≤ 1999.
That is, a = 2sb + 1, where b is an odd number. Equivalently, a has the binary
representation

a = 1 . . . 1 00 . . . 1︸ ︷︷ ︸
s digits

.
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It is easy to show that for any integer x , x2 + 1 is not divisible by 4. Then, by
the above decomposition, a2m − 1 is divisible by 2s+m and it is not divisible by
2s+m+1. Hence, the required number is 22000−s .

Assume that a ≡ −1 (mod 2s) and a �≡ −1 (mod 2s+1), where s ≥ 2.
Equivalently, a has the binary representation

a = 1 . . . 0 11 . . . 1︸ ︷︷ ︸
s digits

.

As before, a−1 is divisible by 2 and not divisible by 22, and a2k +1 is divisible
by 2 and not divisible by 22, for all k ≥ 1. From the above decomposition, a2m −1
is divisible by 2s+m and not divisible by 2s+m+1. Hence, in this case, the required
exponent is n = 22000−s when s ≤ 1999, and n = 2 when s ≥ 2000.

Problem 7.2.7. Let n = pr1
1 · · · prk

k be the prime factorization of the positive
integer n and let r ≥ 2 be an integer. Prove that the following are equivalent:

(a) The equation xr ≡ a (mod n) has a solution for every a.
(b) r1 = r2 = · · · = rk = 1 and gcd(pi−1, r) = 1 for every i ∈ {1, 2, . . . , k}.

(1995 UNESCO Mathematical Contest)

Solution. If (b) holds, then ϕ(n) = (p1−1) · · · (pk −1) is coprime to r ; thus there
exists s with rs ≡ 1 (mod φ(n)), and the unique solution of xr ≡ a (mod n) is
x ≡ as (mod n). Conversely, suppose xr ≡ a (mod n) has a solution for every
a; then xr ≡ a (mod pri

i ) also has a solution for every a. However, if ri > 1
and a is a number divisible by p but not by p2, then xr cannot be congruent to a,
since it is not divisible by p unless x is divisible by p, in which case it is already
divisible by p2. Hence r1 = 1.

If d = gcd(pi − 1, r) and every a is congruent to xr for some x , then
a(pi −1)/d ≡ 1 (mod pi ) for all a. Hence by Lagrange’s theorem, the polynomial
P(t) = t (pi −1)/d − 1 must have degree pi − 1, that is, d = 1.

7.3 The Order of an Element

Problem 7.3.6. Find all ordered triples of primes (p, q, r) such that

p | qr + 1, q | r p + 1, r | pq + 1.

(2003 USA International Mathematical Olympiad Team Selection Test)

Solution. It is quite clear that p, q, r are distinct. Indeed, if, for example, p = q,
then the relation p | qr + 1 is impossible. We will prove that we cannot have
p, q, r > 2. Suppose this is the case. The first condition p | qr + 1 implies
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p | q2r − 1, and so op(q) | 2r . If op(q) is odd, it follows that p | qr − 1,
which combined with p | qr + 1 yields p = 2, which is impossible. Thus, op(q)

is either 2 or 2r . Could we have op(q) = 2r? No, since this would imply that
2r | p − 1, and so 0 ≡ pq + 1 ≡ 2 (mod r), that is, r = 2, false. Therefore,
the only possibility is op(q) = 2, and so p | q2 − 1. We cannot have p | q − 1,
because p | qr + 1 and p �= 2. Thus, p | q + 1 and in fact p | q+1

2 . In the same

way, we find that q | r+1
2 and r | p+1

2 . This is clearly impossible, just by looking
at the largest among p, q, r . So, our assumption was wrong, and indeed one of the
three primes must equal 2. Suppose without loss of generality that p = 2. Then q
is odd, q | r2 +1, and r | 2q +1. Similarly, or (2) | 2q. If q | or (2), then q | r −1,
and so q | r2 + 1 − (r2 − 1) = 2, which contradicts the already established result
that q is odd. Thus, or (2) | 2 and r | 3. As a matter of fact, this implies that r = 3
and q = 5, yielding the triple (2, 5, 3). It is immediate to verify that this triple
satisfies all conditions of the problem. Moreover, all solutions are given by cyclic
permutations of the components of this triple.

Problem 7.3.7. Find all primes p, q such that pq | 2p + 2q .

Solution. Note that (p, q) = (2, 2), (2, 3), (3, 2) satisfy this property and let us
show that there are no other such pairs. Assume, by contradiction, that p �= 2 and
q �= 2. Write p − 1 = 2l n, q − 1 = 2km, where m, n are odd positive integers.
Because pq | 2p + 2q , using Fermat’s little theorem, we obtain 0 ≡ 2p + 2q ≡
2p + 2 (mod q). It follows that 2p−1 ≡ −1 (mod q). If we set x = 2n , then
we have x2l ≡ −1 (mod q); hence o(x) = 2l+1 (since x2l+1 ≡ 1 (mod q) and
x2l �≡ 1 (mod q)). It follows that 2l+1 = oq(x) | ϕ(q) = q − 1 = 2km, i.e.,
l + 1 ≤ k.

In a similar way we can prove that k + 1 ≤ l, and we get l ≤ k − 1 ≤ l − 2, a
contradiction. Therefore, it is necessary to have p = 2 or q = 2. If, for example,
q = 2, then p | 2p + 2q = 2p + 22, 0 ≡ 2p + 22 ≡ 2 + 22 = 6 (mod p), and we
get p ∈ {2, 3}.
Problem 7.3.8. Prove that for any integer n ≥ 2, 3n − 2n is not divisible by n.

Solution. Assume by contradiction that n | 3n − 2n for some positive integer n.
Let us denote by p the smallest prime divisor of n. Since n | 3n−2n , it follows that
p ≥ 5. Consider a positive integer a such that 2a ≡ 1 (mod p). From 3n ≡ 2n

(mod p) we obtain (3a)n ≡ 1 (mod p). Let d = op(3a). It follows that d | p−1
and d | n. But d < p and d | n implies d = 1, because of the minimality of p. We
get 3a ≡ 1 (mod p) and 2a ≡ 1 (mod p), i.e., a ≡ 0 (mod p), a contradiction
to 2a ≡ 1 (mod p).

Problem 7.3.9. Find all positive integers m, n such that n | 1 + m3n + m2·3n
.

(Bulgarian International Mathematical Olympiad Team Selection Test)

Solution. From n | 1+m3n +m2·3n
it follows that n | m3n+1 −1; hence d = on(m)

divides 3n+1, i.e., d = 3k for some positive integer k. If k ≤ n, then d | 3n implies
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n | m3n −1. Combining with n | 1+m3n +m2·3n
it follows that n = 3. If k ≥ n+1,

then d = 3n+1 and d | ϕ(n) implies d < n, impossible, since 3n+1 > n. Therefore
n = 3 and, consequently, m ≡ 1 (mod 3).

Problem 7.3.10. Let a, n > 2 be positive integers such that n | an−1 − 1 and n
does not divide any of the numbers ax − 1, where x < n − 1 and x | n − 1. Prove
that n is a prime number.

Solution. Set d = on(a). Since n | an−1−1, it follows that d | n−1. If d < n−1,
then we contradict the hypothesis that n does not divide ad − 1. Hence d ≥ n − 1
and consequently d = n − 1.

On the other hand, we have d | ϕ(n); hence n − 1 | ϕ(n). Taking into account
that ϕ(n) ≤ n − 1, we find that ϕ(n) = n − 1, and it follows that n must be a
prime number.

Problem 7.3.11. Find all prime numbers p, q for which the congruence

α3pq ≡ α (mod 3pq)

holds for all integers α.

(1996 Romanian Mathematical Olympiad)

Solution. Without loss of generality assume p ≤ q; the unique solution will be
(11, 17), for which one may check the congruence using the Chinese remainder
theorem. We first have 23pq ≡ 2 (mod 3), which means that p and q are odd. In
addition, if α is a primitive root mod p, then α3pq−1 ≡ 1 (mod p) implies that
p − 1 divides 3pq − 1 as well as 3pq − 1 − 3q(p − 1) = 3q − 1, and conversely
that q − 1 divides 3p − 1. If p = q, we now deduce p = q = 3, but 427 ≡ 1
(mod 27), so this fails. Hence p < q.

Since p and q are odd primes, q ≥ p + 2, so (3p − 1)/(q − 1) < 3. Since
this quantity is an integer, and it is clearly greater than 1, it must be 2. That is,
2q = 3p + 1. On the other hand, p − 1 divides 3q − 1 = (9p + 1)/2 as well as
(9p + 1) − (9p − 9) = 10. Hence p = 11, q = 17.

Remark. A composite integer n such that an ≡ a (mod n) for all integers a is
called a Carmichael number. Very recently, W.R. Alford, A. Granville, and C.
Pomerance [Annals Math., 139(1994), 703–722] proved that there are infinitely
many Carmichael numbers. Using the ideas outlined in the solution of the above
problem, one can show that n is a Carmichael number if and only if it is of the
form p1 p2 · · · pk , with pi different prime numbers such that pi − 1 | n − 1 for all
i = 1, 2, . . . , k and k > 1.

Problem 7.3.12. Let p be a prime number. Prove that there exists a prime number
q such that for every integer n, the number n p − p is not divisible by q.

(44th International Mathematical Olympiad)
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Solution. Note that p p−1
p−1 = p p−1+· · ·+ p+1 must have at least one prime factor

q that is not congruent to 1 (mod p2). We will show that this q works. Note that
p p ≡ 1 (mod q) and that q � p − 1. For the latter, we note that if q | p − 1 then
p p−1 + · · · + p + 1 ≡ p ≡ 1 (mod q), a contradiction. Hence oq(p) = p and
q ≡ 1 (mod p). Suppose now that q | n p − p for some integer n. Then n p ≡ p
(mod q) and n p2 ≡ p p ≡ 1 (mod q). Hence oq(n) = p2 and q ≡ 1 (mod p2),
contrary to our assumption.

Remark. Taking q ≡ 1 (mod p) is natural, because for every other q, n p takes
all possible residues modulo p (including p too). Indeed, if p � q −1, then there is
an r ∈ N satisfying pr ≡ 1 (mod q −1); hence for any a the congruence n p ≡ a
(mod q) has the solution n ≡ ar (mod q) (see also the lemma from Problem
7.1.10).

7.4 Wilson’s Theorem

Problem 7.4.5. Let p be an odd prime. Prove that

12 · 32 · · · (p − 2)2 ≡ (−1)
p+1

2 (mod p)

and
22 · 42 · · · (p − 1)2 ≡ (−1)

p+1
2 (mod p).

Solution. Using Wilson’s theorem, we have (p − 1)! ≡ −1 (mod p); hence(
1 · 3 · · · (p − 2)

)(
2 · 4 · · · (p − 1)

) ≡ −1 (mod p).

On the other hand,

1 ≡ −(p − 1) (mod p), 3 ≡ −(p − 3) (mod p), . . . ,

p − 2 ≡ −(
p − (p − 2)

)
(mod p).

Therefore

1 · 3 · · · (p − 2) ≡ (−1)
p−1

2 (2 · 4 · · · (p − 1)) (mod p),

and the conclusion follows.

Problem 7.4.6. Show that there do not exist nonnegative integers k and m such
that k! + 48 = 48(k + 1)m.

(1996 Austrian–Polish Mathematics Competition)
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Solution. Suppose such k, m exist. We must have 48 | k!, so k ≥ 6; one checks
that k = 6 does not yield a solution, so k ≥ 7. In that case k! is divisible by 32
and by 9, so that (k! + 48)/48 is relatively prime to 6, as then is k + 1.

If k+1 is not prime, it has a prime divisor greater than 3, but this prime divides
k! and not k! + 48. Hence k + 1 is prime, and by Wilson’s theorem, k! + 1 is a
multiple of k + 1. Since k! + 48 is as well, we find that k + 1 = 47, and we need
only check that 46!/48 + 1 is not a power of 47. We check that 46!/48 + 1 ≡ 29
(mod 53) (by canceling as many terms as possible in 46! before multiplying), but
that 47 has order 13 modulo 53 and that none of its powers is congruent to 29
modulo 53.

Remark. Another argument for why (46!/48) + 1 is not a power of 47 is the
following. One has that (46!/48) + 1 ≡ 329 = 7 · 47 (mod 472). The least
computational argument I could find was that clearly (46!/48)+ 1 is congruent to
1 mod 5, 7, and 11 (as well as many other primes) and that o5(47) = o5(2) = 4,
o7(47) = o7(5) = 6, and o11(47) = o11(3) = 5. Thus the least power of 47 that
is congruent to 1 mod all three of these primes is 47lcm(4,6,5) = 4760. But clearly
(46!/48) + 1 < 4746 < 4760. Thus (46!/48) + 1 is not a power of 47.

Problem 7.4.7. For each positive integer n, find the greatest common divisor of
n! + 1 and (n + 1)!.

(1996 Irish Mathematical Olympiad)

Solution. Let f (n) = gcd(n!+1, (n +1)!). If n +1 is composite, then each prime
divisor of (n + 1)! is a prime less than n, which also divides n! and so does not
divide n! + 1. Hence f (n) = 1. If n + 1 is prime, the same argument shows that
f (n) is a power of n +1, and in fact n +1 | n!+1 by Wilson’s theorem. However,
(n + 1)2 does not divide (n + 1)!, and thus f (n) = n + 1.

Problem 7.4.8. Let p ≥ 3 be a prime and let σ be a permutation of {1, 2, . . . ,
p − 1}. Prove that there are i �= j such that p | iσ(i) − jσ( j).

(1986 Romanian International Mathematical Olympiad Team Selection Test)

Solution. Assume by contradiction that p does not divide iσ(i) − jσ( j) for any
i, j = 1, 2, . . . , p − 1, i �= j . Then, the integers iσ(i), i = 1, 2, . . . , p − 1, are
all not divisible by p and give distinct residues modulo p. We have

p−1∏
i=1

(iσ(i)) ≡
p−1∏
i=1

i = (p − 1)! ≡ −1 (mod p).

On the other hand,
∏p−1

i=1 (iσ(i)) = ∏p−1
i=1 ((p − 1)!)2 ≡ 1 (mod p), a con-

tradiction.
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Diophantine Equations

8.1 Linear Diophantine Equations

Problem 8.1.4. Solve in integers the equation

(x2 + 1)(y2 + 1) + 2(x − y)(1 − xy) = 4(1 + xy).

Solution. The equation is equivalent to

x2 y2 − 2xy + 1 + x2 + y2 − 2xy + 2(x − y)(1 − xy) = 4,

or
(xy − 1)2 + (x − y)2 + 2(x − y)(1 − xy) = 4.

Hence (1 − xy + x − y)2 = 4, and consequently, |(1 + x)(1 − y)| = 2.
We have two cases:
(i) |x + 1| = 1 and |y − 1| = 2, giving (0, 3), (0, −1), (−2, 3) and (−2, −1),

and
(ii) |x + 1| = 2 and |y − 1| = 1, giving (1, 2), (1, 0), (−3, 2) and (−3, 0).

Problem 8.1.5. Determine the side lengths of a right triangle if they are integers
and the product of the legs’ lengths equals three times the perimeter.

(1999 Romanian Mathematical Olympiad)

First solution. Let a, b, c be the lengths of the triangle’s sides. We have

a2 = b2 + c2

and
bc = 3(a + b + c).

© Birkhäuser Boston, a part of Springer Science + Business Media, LLC 2009
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Let P = a + b + c. Then bc = 3P and

b2 + c2 = (b + c)2 − 2bc = (P − a)2 − 6P = P2 + a2 − 2a P − 6P.

It follows that
a2 = P2 + a2 − 2a P − 6P,

so
P = 2a + 6,

that is,
a = b + c − 6.

We have then

b2 + c2 = b2 + c2 + 2bc − 12b − 12c + 36

if and only if
bc − 6b − 6c + 18 = 0,

that is,
(b − 6)(c − 6) = 18.

Analyzing the ways in which 18 can be written as a product of integers, we
find the following solutions:

(a, b, c)∈{(25, 7, 24),(25, 24, 7),(17, 8, 15),(17, 15, 8),(15, 9, 12),(15, 12, 9)}.
Second solution. From bc = 3(a + b + c), we get bc − 3b − 3c = 3a and square
to get (bc − 3b − 3c)2 = 9a2 = 9(b2 + c2). From there multiplying out gives
bc[(b − 6)(c − 6) − 18] = 0. Since bc �= 0, we get (b − 6)(c − 6) = 18, and
enumerating the factors of 18 gives the list of solutions.

Problem 8.1.6. Let a, b, and c be positive integers, each two of them being rel-
atively prime. Show that 2abc − ab − bc − ca is the largest integer that cannot
be expressed in the form xbc + yca + zab, where x, y, and z are nonnegative
integers.

(24th International Mathematical Olympiad)

Solution. We will solve the problem in two steps.
First step. The number 2abc−ab−bc−ca cannot be expressed in the required

form. Assume the contrary, that

2abc − ab − bc − ca = xbc + yca + zab,

where x, y, z ≥ 0. Then, one obtains the combination

2abc = bc(x + 1) + ca(y + 1) + ab(z + 1),
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where x +1 > 0, y +1 > 0, z +1 > 0. This leads to the divisibility a | bc(x +1).
Since a is relatively prime to b and c, a divides x + 1 and then a ≤ x + 1.

Using similar arguments, b ≤ y + 1 and c ≤ z + 1. Thus, 2abc = bc(x + 1) +
ca(y + 1) + ab(z + 1) ≥ 3abc. This is a contradiction.

Second step. Any number N , N > 2abc − ab − bc − ca, can be expressed in
the form N = xbc + yca + zab.

Since gcd(ab, bc, ca) = 1, by Theorem 8.1.1 we can write N = abx +bcy +
caz for some integers x, y, z. If (x, y, z) is one solution, then so is (x±c, y∓a, z).
Hence we may assume 0 ≤ x ≤ c − 1. Similarly, if (x, y ± a, z ∓ b) is a solution,
so we may assume 0 ≤ y ≤ a − 1. But then

z = 1

ac
[N −abx−bcy] >

1

ac
[2abc−ab−bc−ca−ab(c−1)−bc(b−1)] = −1.

Thus z is again a nonnegative integer and we are done.

Remark. One can prove that if a1, a2, . . . , ak ∈ Z are positive integers such that
gcd(a1, . . . , ak) = 1, then any sufficiently large n is a linear combination with
nonnegative coefficients of a1, . . . , ak . The smallest such n for k ≥ 4 is unknown.
This is the famous problem of Frobenius.

8.2 Quadratic Diophantine Equations

8.2.1 Pythagorean Equations

Problem 8.2.3. Find all Pythagorean triangles whose areas are numerically equal
to their perimeters.

First solution. From (3), the side lengths of such a triangle are

k(m2 − n2), 2kmn, k(m2 + n2).

The condition in the problem is equivalent to

k2mn(m2 − n2) = 2km(m + n),

which reduces to
kn(m − n) = 2.

A simple case analysis shows that the only possible triples (k, m, n) are
(2, 2, 1), (1, 3, 2), (1, 3, 1), yielding the Pythagorean triangles 6 − 8 − 10 and
5 − 12 − 13.

Second solution. This solution does not use Theorem 8.2.1, and it is similar to
the solution of Problem 8.1.5. Rewrite the equation a + b + c = ab/2 as 2c =
ab−2a −2b and square to get 4(a2 +b2) = 4c2 = (ab−2a −2b)2 and rearrange
to get ab[(a −4)(b −4)−8] = 0. Then the solutions follow from the factors of 8.
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Problem 8.2.4. Prove that for every positive integer n there is a positive integer k
such that k appears in exactly n nontrivial Pythagorean triples.

(American Mathematical Monthly)

First solution. We will prove by induction that 2n+1 appears in exactly n Pythag-
orean triples. The base case n = 1 holds for (3, 22, 5), and that is the only such
triple. Assume that (xk, yk, zk), where xk = u2

k − v2
k , yk = 2ukvk , zk = u2

k +
v2

k , k = 1, . . . , n, are the n triples containing 2n+1. Then (2xk, 2yk, 2zk), k =
1, . . . , n, are n imprimitive Pythagorean triples containing 2n+2, and (22n+2 −
1, 2n+2, 22n+2 + 1) is the only such primitive triple.

No other triple with this property exists. Indeed, if (u2 − v2, 2uv, u2 + v2)

were a triple containing 2n+2, then we would have the following cases:
(i) u2 + v2 = 2n+2. Simplifying by the greatest possible power of 2, we get

a2+b2 = 2k , where a and b are not both even. Then the left-hand side is congruent
to 1 or 2 (mod 4), while the right-hand side is 0 (mod 4), a contradiction.

(ii) 2uv = 2n+2. We simplify again by the greatest power of 2 and obtain
ab = 2s , where a > b are not both even and s ≥ 1. It follows that a = 2s and
b = 1, yielding the triple generated by (22s − 1, 2s+1, 22s + 1) multiplied by a
power of 2, which is clearly among the imprimitive triples (2xk, 2yk, 2zk).

(iii) u2−v2 = 2n+2. Simplifying again by the greatest power of 2, we arrive at
a2 −b2 = 2t , where a and b are not both even and t ≥ 3. If one of a and b is even,
then the left-hand side is odd, while the right-hand side is even, a contradiction.
If a and b are both odd, then a − b = 2 and a + b = 2t−1, yielding a − 2t−2 and
b = 2t−2 −1. Again, we get a triple generated by (2t , 2(22t−4 −1), 2(22t−4 +1))

multiplied by a power of 2, which is clearly already an imprimitive triple of the
form (2xk, 2yk, 2zk).

Second solution. We show that 3N appears in exactly N Pythagorean triples.
Obviously 3N cannot be the even side. To see that 3N cannot be the hypotenuse,
suppose N is the least power of 3 that occurs as the hypotenuse. Squares are 0 or 1
(mod 3); hence 3 | x2 + y2 implies 3 | x and 3 | y. But then canceling a common
factor of 3 gives a Pythagorean triple with 3N−1 as the hypotenuse, contradicting
the choice of N . Thus the number of Pythagorean triples in which it appears is
exactly the number of solutions to 3N = k(m2 − n2) with gcd(m, n) = 1. For
such a solution k = 3r for some 0 ≤ r ≤ N −1 and (m −n)(m +n) = 3N−r . But
if m + n and m − n are both nontrivial powers of 3, then we get 3 | m and 3 | n,
contradicting the fact that gcd(m, n) = 1. Thus m + n = 3N−r and m − n = 1.
Thus we get exactly N solutions.

Problem 8.2.5. Find the least perimeter of a right-angled triangle whose sides
and altitude are integers.

(Mathematical Reflections)
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Solution. The answer for the least possible perimeter is 60. It holds for a right-
angled triangle (15, 20, 25), whose altitude is 12.

Let x, y, z be a Pythagorean triple with z the hypotenuse and let h be the
altitude of the triangle. Let d = gcd(x, y, z) be the greatest common divisor of
x, y, z. We have that x = d · a, y = d · b, and z = d · c for a, b, c a primitive
Pythagorean triple. Now calculating the area of the triangle in two ways, we obtain
that h = xy

z = abd
c . Using the fact that gcd(ab, c) = 1, we get c | d , which tells

us that c ≤ d, since both are positive integers. Because the perimeter is equal to
d(a + b + c) ≥ c(a + b + c), we can minimize it by taking c = d. Then the
altitude of a right-angled triangle having sides ca, cb, c2 (with c2 the hypotenuse)
is ab, an integer. We get the perimeter

p = c(a + b + c). (1)

We know that a, b, c is a primitive Pythagorean triple if and only if there exist
m, n ∈ Z+ such that gcd(m, n) = 1, m �≡ n (mod 2), m > n > 0, that satisfy
a = m2 − n2, b = 2mn, c = m2 + n2. Replacing in (1), we notice that all we
need to find is the minimum value of

p = (m2 + n2)(2m2 + 2mn).

Clearly m > n > 0; therefore m ≥ 2 and n ≥ 1. Thus

p ≥ (22 + 1)(2 · 22 + 2 · 2 · 1) = 60.

Now the triangle with sides (15, 20, 25) satisfies all the conditions of the orig-
inal problem, and its perimeter is 60. the problem is solved.

8.2.2 Pell’s Equation

Problem 8.2.6. Let p be a prime number congruent to 3 modulo 4. Consider the
equation

(p + 2)x2 − (p + 1)y2 + px + (p + 2)y = 1.

Prove that this equation has infinitely many solutions in positive integers, and
show that if (x, y) = (x0, y0) is a solution of the equation in positive integers,
then p | x0.

(2001 Bulgarian Mathematical Olympiad)

Solution. We show first that p | x . Substituting y = z + 1 and rewriting, we
obtain

x2 = (z − x)((p + 1)(z + x) + p).

Let q = gcd(z − x, (p + 1)(z + x) + p). Then q | x , and therefore q | z,
and also q | p. On the other hand, q �= 1, because otherwise both factors on the
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right-hand side must be perfect squares, yet (p + 1)(z + x) + p ≡ 3 (mod 4).
Thus q = p and p | x as desired.

Now write x = px1 and z = pz1 to obtain

x2
1 = (z1 − x1)((p + 1)(z1 + x1) + 1).

By what we showed above, the two terms on the right are coprime and thus
must be perfect squares. Therefore, for some a, b we have

z1 − x1 = a2, (p + 1)(z1 + x1) + 1 = b2, x1 = ab.

The above equality implies

b2 = (p + 1)(a2 + 2ab) + 1,

i.e.,
(p + 2)b2 − (p + 1)(a + b)2 = 1.

Conversely, given a and b satisfying the last equation, there exists a unique
pair (x1, y1) satisfying the equation above, and hence a unique pair (x, y) satisfy-
ing the original equation.

Thus, we reduced the original equation to a “Pell-type” equation. To get some
solutions, look at the odd powers of

√
p + 2 + √

p + 1. It follows easily that

(
√

p + 2 + √
p + 1)2k+1 = mk

√
p + 2 + nk

√
p + 1

for some positive integers mk, nk . Then

(
√

p + 2 − √
p + 1)2k+1 = mk

√
p + 2 − nk

√
p + 1,

and multiplying the left and right sides gives

(p + 2)m2
k − (p + 1)n2

k = 1.

Clearly, nk > mk , so setting bk = mk , ak = nk−mk gives a solution for (a, b).
Finally, it is easy to see that the sequences {mk}, {nk} are strictly increasing, so
we obtain infinitely many solutions this way.

Problem 8.2.7. Determine all integers a for which the equation

x2 + axy + y2 = 1

has infinitely many distinct integer solutions (x, y).

(1995 Irish Mathematical Olympiad)
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Solution. The equation has infinitely many solutions if and only if a2 ≥ 4.
Rewrite the given equation in the form

(2x + ay)2 − (a2 − 4)y2 = 4.

If a2 < 4, the real solutions to this equation form an ellipse, and so only
finitely many integer solutions occur. If a = ±2, there are infinitely many solu-
tions, since the equation becomes (x ± y)2 = 1. If a2 > 4, then a2 − 4 is not a
perfect square, and so the Pell’s equation u2 − (a2 −4)v2 = 1 has infinitely many
solutions. But setting x = u − av, y = 2v gives infinitely many solutions of the
given equation.

Problem 8.2.8. Prove that the equation

x3 + y3 + z3 + t3 = 1999

has infinitely many integral solutions.

(1999 Bulgarian Mathematical Olympiad)

Solution. Observe that (m − n)3 + (m + n)3 = 2m3 + 6mn2. Now suppose we
want a general solution of the form

(x, y, z, t) =
(

a − b, a + b,
c

2
− d

2
,

c

2
+ d

2

)
for integers a, b and odd integers c, d. One simple solution to the given equation
is (x, y, z, t) = (10, 10, −1, 0), so we try setting a = 10 and c = −1. Then

(x, y, z, t) =
(

10 − b, 10 + b, −1

2
− d

2
, −1

2
+ d

2

)
is a solution exactly when

(2000 + 60b2) − 1 + 3d2

4
= 1999, i.e., d2 − 80b2 = 1.

The second equation is a Pell’s equation with solution (d1, b1) = (9, 1). We
can generate infinitely many more solutions by setting

(dn+1, bn+1) = (9dn + 80bn, 9bn + dn) for n = 1, 2, 3, . . .

This can be proved by induction, and it follows from a general recursion

(pn+1, qn+1) = (p1 pn + q1qn D, p1qn + q1 pn)

for generating solutions to p2 − Dq2 = 1 given a nontrivial solution (p1, q1).
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A quick check also shows that each dn is odd. Thus because there are infinitely
many solutions (bn, dn) to the Pell’s equation (and with each dn odd), there are
infinitely many integral solutions

(xn, yn, zn, tn) =
(

10 − bn, 10 + bn, −1

2
− dn

2
, −1

2
+ dn

2

)
to the original equation.

8.2.3 Other Quadratic Equations

Problem 8.2.11. Prove that the equation

x2 + y2 + z2 + 3(x + y + z) + 5 = 0

has no solutions in rational numbers.

(1997 Bulgarian Mathematical Olympiad)

Solution. Let u = 2x + 3, v = 2y + 3, w = 2z + 3. Then the given equation is
equivalent to

u2 + v2 + w2 = 7.

It is equivalent to show that the equation

x2 + y2 + z2 = 7w2

has no nonzero solutions in integers; assume to the contrary that (x, y, z, w)

is a nonzero solution with |w| + |x | + |y| + |z| minimal. Modulo 8, we have
x2 + y2 + z2 ≡ 7w2, but every perfect square is congruent to 0, 1, or 4 mod-
ulo 8. Thus we must have x, y, z, w even, and (x/2, y/2, z/2, w/2) is a smaller
solution, contradiction.

Remark. Try to prove the following theorem of Davenport and Cassels: for n ∈ Z,
the equation x2 + y2 + z2 = n has rational solutions if and only if it has integer
solutions. There is a beautiful elementary geometric proof. Try to find it!

Problem 8.2.12. Find all integers x, y, z such that 5x2 − 14y2 = 11z2.

(2001 Hungarian Mathematical Olympiad)

Solution. The only solution is (0, 0, 0).
Assume, for the sake of contradiction, that there is a triple of integers (x, y, z)

�= (0, 0, 0) satisfying the given equation, and let (x, y, z) = (x0, y0, z0) be a
nonzero solution that minimizes |x | + |y| + |z| > 0.

Because 5x2
0 − 14y2

0 = 11z2
0, we have

−2x2
0 ≡ 4z2

0 (mod 7),
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or x2
0 ≡ −2z2

0 ≡ 5z2
0 (mod 7). Therefore, we have z0 ≡ 0 (mod 7), because

otherwise we have
5 ≡ (x0z−1

0 )2 (mod 7),

which is impossible because 5 is not a square modulo 7. (The squares modulo 7
are 0, 1, 2, and 4.)

It follows that x0 and z0 are divisible by 7, so that 14y2 = 5x2 − 11z2 is
divisible by 49. Therefore, 7 | y0. Then

( x0
7 ,

y0
7 ,

z0
7

)
is also a solution, but

∣∣ x0
7

∣∣ +∣∣ y0
7

∣∣ + ∣∣ z0
7

∣∣ < |x0| + |y0| + |z0|, contradicting the minimality of (x0, y0, z0).
Therefore, our original assumption was false, and the only integer solution is

(0, 0, 0).

Remark. A solution mod 8 also works. If x or z is even, then so is the other, and
hence y is even. Thus we can cancel a 2 and get a smaller solution. Suppose we
have a solution with x and z odd; then we get 5 − (0 or 6) ≡ 3 (mod 8), which
cannot occur.

Problem 8.2.13. Let n be a nonnegative integer. Find the nonnegative integers
a, b, c, d such that

a2 + b2 + c2 + d2 = 7 · 4n.

(2001 Romanian JBMO Team Selection Test)

Solution. For n = 0, we have 22 + 12 + 12 + 12 = 7; hence (a, b, c, d) =
(2, 1, 1, 1) and all permutations. If n ≥ 1, then a2 + b2 + c2 + d2 ≡ 0 (mod 4);
hence the numbers have the same parity. We analyze two cases.

(a) The numbers a, b, c, d are odd. We write a = 2a′ + 1, etc. We obtain

4a′(a′ + 1) + 4b′(b′ + 1) + 4c′(c′ + 1) + 4d ′(d ′ + 1) = 4(7 · 4n−1 − 1).

The left-hand side of the equality is divisible by 8; hence 7 · 4n−1 − 1 must be
even. This happens only for n = 1. We obtain a2 + b2 + c2 + d2 = 28, with the
solutions (3, 3, 3, 1) and (1, 1, 1, 5).

(b) The numbers a, b, c, d are even. Write a = 2a′, etc. We obtain

a′2 + b′2 + c′2 + d ′2 = 7 · 4n−1,

so we proceed recursively.
Finally, we obtain the solutions (2n+1, 2n, 2n, 2n), (3 · 2n−1, 3 · 2n−1, 3 · 2n−1,

2n−1), (2n−1, 2n−1, 2n−1, 5 · 2n−1), and the respective permutations.

Problem 8.2.14. Prove that the equation

x2 + y2 + z2 + t2 = 22004,

where 0 ≤ x ≤ y ≤ x ≤ t , has exactly two solutions in the set of integers.

(2004 Romanian Mathematical Olympiad)
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Solution. The solutions are (0, 0, 0, 21002) and (21001, 21001, 21001, 21001).
In order to prove the statement, let (x, y, z, t) be a solution. Observe that for

odd a we have a = 4n ± 1, and a2 gives the remainder 1 when divided by 8.
Since the right-hand side is 0 (mod 8), the equation has no solution with an odd
component.

We thus must have x = 2x1, y = 2y1, z = 2z1, t = 2t1, where 0 ≤ x1 ≤
y1 ≤ z1 ≤ t1 are integers and x2

1 + y2
1 + z2

1 + t2
1 = 22002. By the same argument,

x1 = 2x2, y1 = 2y2, z1 = 2z2, t1 = 2t2, where 0 ≤ x2 ≤ y2 ≤ z2 ≤ t2 are
integers and x2

2 + y2
2 + z2

2 + t2
2 = 22000.

We can proceed recursively as long as the right-hand side is zero mod 8. Even-
tually we will arrive at x = 22001a, y = 22001b, z = 22001c, t = 22001d , where
0 ≤ a ≤ b ≤ c ≤ d are integers and a2 + b2 + c2 + d2 = 4. The only solutions
to this are (1, 1, 1, 1) and (0, 0, 0, 2) and the conclusion follows.

Problem 8.2.15. Let n be a positive integer. Prove that the equation

x + y + 1

x
+ 1

y
= 3n

does not have solutions in positive rational numbers.

Solution. Suppose x = a
b , y = c

d satisfies the given equation, where gcd(a, b) =
gcd(c, d) = 1. Clearing denominators,

(a2 + b2)cd + (c2 + d2)ab = 3nabcd.

Thus, ab | (a2 + b2)cd and cd | (c2 + d2)ab. Now gcd(a, b) = 1 implies
gcd(a, a2 + b2) = gcd(a, b2) = 1, so ab | cd; likewise, cd | ab, and together
these give ab = cd. Thus,

a2 + b2 + c2 + d2 = 3nab.

Now each square on the left is congruent to either 0 or 1 modulo 3. Hence,
either all terms are divisible by 3 or exactly one is. The first case is impossible by
the assumption gcd(a, b) = gcd(c, d) = 1, and the second is impossible because
ab = cd.

8.3 Nonstandard Diophantine Equations

8.3.1 Cubic Equations

Problem 8.3.5. Find all triples (x, y, z) of natural numbers such that y is a prime
number, y and 3 do not divide z, and x3 − y3 = z2.

(1999 Bulgarian Mathematical Olympiad)
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Solution. We rewrite the equation in the form

(x − y)(x2 + xy + y2) = z2.

Any common divisor of x − y and x2 + xy + y2 also divides both z2 and
(x2 + xy + y2) − (x + 2y)(x − y) = 3y2. Because z2 and 3y2 are relatively
prime by assumption, x − y and x2 + xy + y2 must be relatively prime as well.
Therefore, both x − y and x2 + xy + y2 are perfect squares.

Writing a = √
x − y, we have

x2 + xy + y2 = (a2 + y)2 + (a2 + y)y + y2 = a4 + 3a2 y + 3y2

and
4(x2 + xy + y2) = (2a2 + 3y)2 + 3y2.

Writing m = 2
√

x2 + xy + y2 and n = 2a2 + 3y, we have

m2 = n2 + 3y2,

or
(m − n)(m + n) = 3y2,

so (m − n, m + n) = (1, 3y2), (y, 3y), or (3, y2).
In the first case, 2n = 3y2 − 1 and 4a2 = 2n − 6y = 3y2 − 6y − 1. Hence,

a2 ≡ 2 (mod 3), which is impossible.
In the second case, n = y < 2a2 + 3y = n, a contradiction.
In the third case, write 4a2 = 2n − 6y = y2 − 6y − 3 as 4a2 = (y − 3)2 − 12,

and so 12 = (y − 3)2 − a2 = (y − a − 3)(y + a − 3). Since these factors are
congruent mod 2, we must have y − a − 3 = 2 and y + a + 3 = 6, so a = 1,
y = 7. This yields the unique solution (x, y, z) = (8, 7, 13).

Problem 8.3.6. Find all the positive integers a, b, c such that

a3 + b3 + c3 = 2001.

(2001 Junior Balkan Mathematical Olympiad)

Solution. Assume without loss of generality that a ≤ b ≤ c.
It is obvious that 13 +103 +103 = 2001. We prove that (1, 10, 10) is the only

solution of the equation, except for its permutations.
We start by proving a useful lemma:

Lemma. Suppose n is an integer. The remainder of n3 when divided by 9 is 0, 1,
or −1.

Indeed, if n = 3k, then 9 | n3, and if n = 3k ± 1, then n3 = 27k3 ± 27k2 +
9k ± 1 = M9 ± 1.
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Since 2001 = 9 · 222 + 3 = M9 + 3, then a3 + b3 + c3 = 2001 implies
a3 = M9 + 1, b3 = M9 + 1 and c3 = M9 + 1; hence a, b, c are numbers of the
form M3 + 1. We search for a, b, c in the set {1, 4, 7, 10, 13, . . . }.

If c ≥ 13 then c3 ≥ 2197 > 2001 = a3 + b3 + c3, which is false. If c ≤ 7
then 2001 = a3 + b3 + c3 ≤ 3 · 343, which again is false. Hence c = 10 and
consequently a3 + b3 = 1001. If b < c = 10 then a ≤ b ≤ 7 and 1001 =
a3 + b3 ≤ 2 · 73 = 2 · 343, a contradiction. Thus b = 10 and a = 1.

Therefore (a, b, c) ∈ {(1, 10, 10), (10, 1, 10), (10, 10, 1)}.
Problem 8.3.7. Determine all ordered pairs (m, n) of positive integers such that

n3 + 1

mn − 1

is an integer.

(35th International Mathematical Olympiad)

First solution. Let n3+1
mn−1 = k, k a positive integer.

From n3 + 1 = k(mn − 1), one obtains k + 1 = n(km − n2). Thus, n divides
k + 1 and by noting km − n2 = q one has k = nq − 1. Using this form of k we
have

n3 + 1 = (nq − 1)(mn − 1) ⇔ n(mq − n) = m + q.

Since m + q > 0, it follows that x = mq − n > 0. Thus we have the system{
xn = m + q,

x + n = mq.

By adding these equations we obtain

xn + mq = x + n + m + q ⇔ xn + mq − x − n − m − q + 2 = 2 ⇔
(x − 1)(n − 1) + (m − 1)(q − 1) = 2.

The equation

(x − 1)(n − 1) + (m − 1)(q − 1) = 2

has only a finite number of positive integer solutions. These are listed below:

(1) x = 1, m − 1 = 2, q − 1 = 1 ⇒ x = 1, m = 3, q = 2 ⇒ m = 3,
n = 5.

(2) x = 1, m − 1 = 1, q − 1 = 2 ⇒ m = 2, n = 5.

(3) n = 1, m − 1 = 2, q − 1 = 1 ⇒ n = 1, m = 3.
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(4) n = 1, m − 1 = 1, q − 1 = 2 ⇒ n = 1, m = 2.

(5) m = 1, x − 1 = 2, n − 1 = 1 ⇒ m = 1, n = 2.

(6) m = 1, x − 1 = 1, n − 1 = 2 ⇒ m = 1, n = 3.

(7) q = 1, x − 1 = 1, n − 1 = 2 ⇒ n = 3, m = 5.

(8) q = 1, x − 1 = 2, n − 1 = 1 ⇒ n = 2, m = 5.

(9) x − 1 = n − 1 = m − 1 = q − 1 = 1 ⇒ m = n = 2.

Thus, we have obtained the following nine pairs (m, n): (5, 3), (3, 5), (5, 2),
(2, 5), (3, 1), (1, 3), (2, 1), (1, 2), (2, 2). All pairs are solutions of the problem.

Second solution. Note that (m, n) is a solution if and only if

m2n2 + mn + 1 + n3 + 1

mn − 1
= n3(m3 + 1)

mn − 1

is an integer. Since gcd(n, mn − 1) = 1, this occurs if and only if m3+1
mn−1 is a

solution. That is, (m, n) is a solution if and only if (n, m) is a solution. Suppose
(m, n) is a solution and mn > 1; then defining q as in the current solution, we
see (q, n) is a solution. Further, since (n2 − 1)2 ≥ n3 + 1 for n ≥ 2, we see that
q < n. Similarly, if m = n > 2, we get q < n. Thus following the steps

(i) If m < n, interchange m and n,

(ii) If m > n > 1 or m = n > 2, replace (m, n) by (q, n),

starting from any solution we can always reduce to a smaller solution until we
get to either m = n = 2 or n = 1. In the latter case we have m = 2 or 3.
Backtracking gives the chains of solutions (3, 5(→ (5, 3) → (1, 3) → (3, 1),
(2, 5) → (5, 2) → (1, 2) → (2, 1) and the single solution (2, 2). Thus these nine
pairs are all solutions to the problem.

8.3.2 High-Order Polynomial Equations

Problem 8.3.12. Prove that there are no positive integers x and y such that

x5 + y5 + 1 = (x + 2)5 + (y − 3)5.

Solution. Notice that z5 ≡ z (mod 5); hence x + y + 1 ≡ (x + 2) + (y − 3)

(mod 5), impossible.

Problem 8.3.13. Prove that the equation y2 = x5 − 4 has no integer solutions.

(1998 Balkan Mathematical Olympiad)
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Solution. We consider the equation mod 11. Since

(x5)2 = x10 ≡ 0 or 1 (mod 11)

for all x , we have x5 ≡ −1, 0, or 1 (mod 11), so the right-hand side is either 6,
7, or 8 modulo 11. However, all squares are 0, 1, 3, 4, 5, or 9 modulo 11, so the
equation y2 = x5 − 4 has no integer solutions.

Problem 8.3.14. Let m, n > 1 be integers. Solve in positive integers the equation

xn + yn = 2m .

(2003 Romanian Mathematical Olympiad)

Solution. Let d = gcd(x, y) and x = da, y = db, where (a, b) = 1. it is easy to
see that a and b are both odd numbers and an + bn = 2k , for some integer k.

Suppose that n is even. Since a2 ≡ b2 ≡ 1 (mod 8), we have also an ≡
bn ≡ 1 (mod 8). Since 2k = an + bn ≡ 2 (mod 8), we conclude that k = 1 and
a = b = 1, and thus x = y = d. The equation becomes xn = 2m−1, and it has an

integer solution if and only if n is a divisor of m − 1 and x = y = 2
m−1

n .
Consider the case that n is odd. From the decomposition

an + bn = (a + b)(an−1 − an−2b + an−3b2 − · · · + bn−1),

we easily get a + b = 2k = an + bn , since the second factor above is odd. In this
case a = b = 1, and the proof goes along the lines of the previous case.

To conclude, the given equations have solutions if and only if m−1
n is an inte-

ger, and in this case x = y = 2
m−1

n .

Problem 8.3.15. For a given positive integer m, find all pairs (n, x, y) of positive
integers such that m, n are relatively prime and (x2+y2)m = (xy)n, where n, x, y
can be represented in terms of m.

(1995 Korean Mathematical Olympiad)

Solution. If (n, x, y) is a solution, then the AM–GM inequality yields

(xy)n = (x2 + y2)m ≥ (2xy)m > (xy)m,

so n > m. Let p be a common prime divisor of x and y and let pa ‖ x , pb ‖ y.
Then p(a+b)n ‖(xy)n = (x2 + y2)m . Suppose b > a. Since p2a ‖ x2, p2b ‖ y2, we
see that p2a ‖ x2 + y2 and p2am ‖(x2 + y2)m . Thus 2am = (a + b)n > 2an and
m > n, a contradiction. Likewise, a > b produces a contradiction, so we must
have a = b and x = y. This quickly leads to x = 2t for some integer t , and all
solutions are of the form

(n, x, y) = (2t + 1, 2t , 2t )

for nonnegative integers t . Substituting into the equation, we conclude that there
is a solution only if m is even, and then t = m

2 .
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8.3.3 Exponential Diophantine Equations

Problem 8.3.19. Determine all triples (x, k, n) of positive integers such that

3k − 1 = xn.

(1999 Italian Mathematical Olympiad)

Solution. All triples of the form (3k −1, k, 1) for positive integers k, and (2, 2, 3).
The solutions when n = 1 are obvious. Now, n cannot be even because then 3

could not divide 3k = (x
n
2 )2 + 1 (because no square is congruent to 2 modulo 3).

Also, we must have x �= 1.
Assume that n > 1 is odd and x ≥ 2. Then 3k = (x + 1)

∑n−1
i=0 (−x)i ,

implying that both x + 1 and
∑n−1

i=0 (−x)i are powers of 3. Because x + 1 ≤
x2 − x + 1 ≤ ∑n−1

i=0 (−x)i , we must have 0 ≡ ∑n−1
i=0 (−x)i ≡ n (mod x + 1),

so that x + 1 | n. Specifically, this means that 3 | n.
Write x ′ = xn/3, then we have 3k − 1 = (x ′)3. Thus repeating the argument

of the previous paragraph, now with n = 3, shows x ′ + 1 | 3. Hence x ′ = 2 and
therefore x = 2 and n = 3.

Remark. In fact, 8 and 9 are the only consecutive powers (other than the trivial
0, 1), as recently proved.

Problem 8.3.20. Find all pairs of nonnegative integers x and y that satisfy the
equation

px − y p = 1,

where p is a given odd prime.

(1995 Czech–Slovak Match)

Solution. If (x, y) is a solution, then

px = y p + 1 = (y + 1)(y p−1 − · · · + y2 − y + 1),

and so y + 1 = pn for some n. If n = 0, then x = y = 0 and p may be arbitrary.
Otherwise,

px = (pn − 1)p + 1

= pnp − p · pn(p−1) +
(

p

2

)
pn(p−2) + · · · −

(
p

p − 2

)
p2n + p · pn.

Since p is a prime, all of the binomial coefficients are divisible by p. Hence
all terms are divisible by pn+1, and all but the last by pn+2. Therefore the highest
power of p dividing the right side is pn+1, and so x = n + 1. We also have

0 = pnp − p · pn(p−1) +
(

p

2

)
pn(p−2) + · · · −

(
p

p − 2

)
p2n .
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For p = 3 this reads 0 = 33n − 3 · 32n , which occurs only for n = 1, yielding
x = y = 2. For p ≥ 5, the coefficient

( p
p−2

)
is not divisible by p2, so every term

but the last on the right side is divisible by p2n+2, while the last term is not. Since
the terms sum to 0, this is impossible.

Hence the only solutions are x = y = 0 for all p and x = y = 2 for p = 3.

Problem 8.3.21. Let x, y, z be integers with z > 1. Show that

(x + 1)2 + (x + 2)2 + · · · + (x + 99)2 �= yz .

(1998 Hungarian Mathematical Olympiad)

Solution. Suppose, to the contrary, that there are integers x, y, z such that z > 1,
and

(x + 1)2 + (x + 2)2 + · · · + (x + 99)2 = yz .

We notice that

yz = (x + 1)2 + (x + 2)2 + · · · + (x + 99)2

= 99x2 + 2(1 + 2 + · · · + 99)x + (12 + 22 + · · · + 992)

= 99x2 + 2 · 99 · 100

2
x + 99 · 100 · 199

6
= 33(3x2 + 300x + 50 · 199),

which implies that 3 | y. Since z ≥ 2, 32 | yz , but 32 does not divide 33(3x2 +
300x +50 ·199), we have a contradiction. So our assumption in fact must be false,
and the original statement in the problem is correct.

Problem 8.3.22. Determine all solutions (x, y, z) of positive integers such that

(x + 1)y+1 + 1 = (x + 2)z+1.

(1999 Taiwanese Mathematical Olympiad)

Solution. Let a = x + 1, b = y + 1, c = z + 1. Then a, b, c ≥ 2 and

ab + 1 = (a + 1)c,

((a + 1) − 1)b + 1 = (a + 1)c.

Taking the equations mod (a + 1) yields (−1)b + 1 ≡ 0, so b is odd.
Taking the second equation mod (a + 1)2 after applying the binomial expan-

sion yields (
b

1

)
(a + 1)(−1)b−1 + (−1)b + 1 ≡ 0 (mod (a + 1)2),
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so (a + 1) | b and a is even. On the other hand, taking the first equation mod a2

after applying the binomial expansion yields

1 ≡
(

c

1

)
a + 1 (mod a2),

so c is divisible by a and is even as well. Write a = 2a1 and c = 2c1. Then

2bab
1 = ab = (a + 1)c − 1 = ((a + 1)c1 − 1)((a + 1)c1 + 1).

It follows that gcd((a + 1)c1 − 1, (a + 1)c1 + 1) = 2. Therefore, using the fact
that 2a1 is a divisor of (a + 1)c1 − 1, we may conclude that

(a + 1)c1 − 1 = 2ab
1

(a + 1)c1 + 1 = 2b−1.

We must have 2b−1 > 2ab
1 ⇒ a1 = 1. Then these equations give c1 = 1 and

b = 3. Therefore the only solution is (x, y, z) = (1, 2, 1).





9

Some Special Problems in
Number Theory

9.1 Quadratic Residues; the Legendre Symbol

Problem 9.1.7. Let f, g : Z+ → Z+ be functions with the following properties:
(i) g is surjective;

(ii) 2 f 2(n) = n2 + g2(n) for all positive integers n.
If, moreover, | f (n) − n| ≤ 2004

√
n for all n, prove that f has infinitely many

fixed points.

(2005 Moldavian International Mathematical Olympiad Team Selection Test)

Solution. Let pn be the sequence of prime numbers of the form 8k + 3. There are
infinitely many such integers. This is a trivial consequence of Dirichlet’s theorem,
but you can find an elementary proof at the end of solution to Problem 9.1.8. It is
obvious that for all n we have( 2

pn

)
= (−1)

p2
n−1
8 = −1.

Using the condition (i) we can find xn such that g(xn) = pn for all n. It follows
that 2 f 2(xn) = x2

n + p2
n , which can be rewritten as 2 f 2(xn) ≡ x2

n (mod pn).
Because

( 2
pn

) = −1, the last congruence shows that pn | xn and pn | f (xn). Thus
there exist sequences of positive integers an, bn such that xn = an pn , f (xn) =
bn pn for all n. Clearly, (ii) implies the relation 2b2

n = a2
n + 1. Finally, using the

property | f (n) − n| ≤ 2004
√

n, we infer that

2004√
xn

≥
∣∣∣∣ f (xn)

xn
− 1

∣∣∣∣ =
∣∣∣∣bn

an
− 1

∣∣∣∣ ,
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that is,

lim
n→∞

√
a2

n + 1

an
= √

2.

The last relation immediately implies that limn→∞ an = 1. Therefore, starting
from a certain n, we have an = 1 = bn , that is, f (pn) = pn . The conclusion now
follows.

Problem 9.1.8. Suppose that the positive integer a is not a perfect square. Then( a
p

) = −1 for infinitely many primes p.

Solution. One may assume that a is square-free. Let us write a = 2eq1q2 · · · qn ,
where qi are distinct odd primes and e ∈ {0, 1}. Let us assume first that n ≥ 1
and consider some odd distinct primes r1, . . . , rk each of them different from
q1, . . . , qn . We will show that there exists a prime p, different from r1, . . . , rk ,

such that
(

a
p

)
= −1. Let s be a quadratic nonresidue modulo qn .

Using the Chinese remainder theorem, we can find a positive integer b such
that ⎧⎪⎪⎨

⎪⎪⎩
b ≡ 1 (mod ri ), 1 ≤ i ≤ k,

b ≡ 1 (mod 8),

b ≡ 1 (mod qi ), 1 ≤ i ≤ n − 1,

b ≡ s (mod qn).

Now write b = p1 · · · pm with pi odd primes, not necessarily distinct. Using
the quadratic reciprocity law, it follows immediately that

m∏
i=1

( 2

pi

)
=

m∏
i=1

(−1)
p2
i −1
8 = (−1)

b2−1
8 = 1

and

m∏
j=1

( qi

p j

)
=

m∏
j=1

(−1)
p j −1

2 · qi −1
2

( p j

qi

)
= (−1)

qi −1
2 · b−1

2

( b

qi

)
=

( b

qi

)

for all i ∈ {1, 2, . . . , n}. Hence

m∏
i=1

( a

pi

)
=

[ m∏
j=1

( 2

p j

)]e n∏
i=1

m∏
j=1

( qi

p j

)

=
n∏

i=1

( b

qi

)
=

( b

qn

)
=

( s

qn

)
= −1.

Thus, there exists i ∈ {1, 2, . . . , m} such that
( a

pi

) = −1. Because b ≡ 1
(mod ri ), 1 ≤ i ≤ k, we also have pi ∈ {1, 2, . . . } \ {r1, . . . , rk}, and the claim is
proved.
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The only remaining case is a = 2. By Theorem 9.1.2,
( 2

p

) = −1 if and only if
p2−1

8 is odd, i.e., if and only if p ≡ ±3 (mod 8). Thus we need to show there are
infinitely many primes congruent to ±3 (mod 8). Suppose to the contrary that
there are only finitely many such primes p1, . . . , pn with p1 = 3 and consider
N = 8p2 · · · pn + 3. None of the pi divide N and neither does 2. Hence every
prime divisor of N must be ±1 (mod 8). But this is impossible, since N ≡ 3
(mod 8). Thus there must be infinitely many primes of this form.

Problem 9.1.9. Suppose that a1, a2, . . . , a2004 are nonnegative integers such that
an

1 + an
2 + · · · + an

2004 is a perfect square for all positive integers n. What is the
maximal possible number of nonzero ai ’s?

(2004 Mathlinks Contest)

Solution. Suppose that a1, a2, . . . , ak are positive integers such that an
1 + an

2 +
· · · + an

k is a perfect square for all n. We will show that k is a perfect square.
In order to prove this, we will use Problem 9.1.8 and show that

( k
p

) = 1 for all
sufficiently large prime p. This is not a difficult task. Indeed, consider a prime
p greater than any prime divisor of a1a2 · · · ak . Using Fermat’s little theorem,
a p−1

1 + a p−1
2 +· · ·+ a p−1

k ≡ k (mod p), and since a p−1
1 + a p−1

2 +· · ·+ a p−1
k is

a perfect square, it follows that
( k

p

) = 1. Thus k is a perfect square. And now the
problem becomes trivial, since we must find the greatest perfect square smaller
than 2004. A quick computation shows that this is 442 = 1936, and so the desired
minimal number is 68.

Problem 9.1.10. Find all positive integers n such that 2n − 1 | 3n − 1.

(American Mathematical Monthly)

Solution. We will prove that n = 1 is the only solution to the problem. Suppose
that n > 1 is a solution. Then 2n − 1 cannot be a multiple of 3; hence n is odd.
Therefore, 2n ≡ 8 (mod 12). Because any odd prime different from 3 is of one
of the forms 12k ± 1, 12k ± 5, and since 2n − 1 ≡ 7 (mod 12), it follows that
2n − 1 has at least one prime divisor of the form 12k ± 5; call it p. Obviously,
we must have (3/p) = 1, and using the quadratic reciprocity law we finally
obtain (p/3) = (−1)(p−1)/2. On the other hand (p/3) = (±2/3) = −(±1).
Consequently, −(±1) = (−1)(p−1)/2 = ±1, which is the desired contradiction.
Therefore the only solution is n = 1.

Problem 9.1.11. Find the smallest prime factor of 12215 + 1.

Solution. Let p be this prime number. Because p | 12216 − 1, we find that
op(12) | 216. Since 12215 ≡ −1 �≡ 1 (mod p), we find that op(12) = 216,
and so 216 | p − 1. Therefore p ≥ 1 + 216. But it is well known that 216 + 1 is a
prime (and if you do not believe it, you can check; it is not that difficult). So, we
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might try to see whether this number divides 12215 + 1. Let q = 216 + 1. Then

12215 + 1 = 2q−1 · 3
q−1

2 + 1 ≡ 3
q−1

2 + 1 (mod q).

It remains to see whether (3/q) = −1. The answer is positive (use the quad-
ratic reciprocity law), so indeed 3(q−1)/2 + 1 ≡ 0 (mod 2) and 216 + 1 is the
smallest prime factor of the number 12215 + 1.

9.2 Special Numbers

9.2.1 Fermat Numbers

Problem 9.2.4. Find all positive integers n such that 2n − 1 is a multiple of 3 and
2n−1

3 is a divisor of 4m2 + 1 for some integer m.

(1999 Korean Mathematical Olympiad)

Solution. The answer is all n = 2k , where k = 1, 2, . . . .
First observe that 2 ≡ −1 (mod 3). Hence 3 | 2n − 1 if and only if n is even.
Suppose, by way of contradiction, that l ≥ 3 is a positive odd divisor of n.

Then 2l − 1 is not divisible by 3 but it is a divisor of 2n − 1, so it is a divisor of
4m2+1 as well. On the other hand, 2l −1 has a prime divisor p of the form 4r +3.
Then (2m)2 ≡ −1 (mod 4r + 3), but we have that a square cannot be congruent
to −1 modulo a prime of the form 4r + 3 (see also Problem 1 in Section 7.1).

Therefore, n is indeed of the form 2k for k ≥ 1. For such n, we have

2n − 1

3
= (221 + 1)(222 + 1)(223 + 1) · · · (22k−1 + 1).

The factors on the right side are all relatively prime, since they are Fermat
numbers. Therefore by the Chinese remainder theorem, there is a positive integer
c simultaneously satisfying

c ≡ 22i−1
(mod 22i + 1) for all i = 1, 2, . . . , k − 1

and c ≡ 0 (mod 2). Putting c = 2m, 4m2 + 1 is a multiple of 2n−1
3 , as desired.

Problem 9.2.5. Prove that the greatest prime factor of fn, n ≥ 2, is greater than
2n+2(n + 1).

(2005 Chinese International Mathematical Olympiad Team Selection Test)

Solution. From Problem 9.2.3 we can write

fn =
s∏

i=1

(1 + 2n+2ri )
ki , (1)
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where pi = 1+2n+2ri are distinct primes and ki ≥ 1. Taking relation (1) modulo
4n+2, it follows that

0 ≡
s∑

i=1

kiri (mod 2n+2),

and hence
s∑

i=1

kiri ≥ 2n+2.

From (1) it is clear that

fn ≥ (1 + 2n+2)k1+···+ks ;
hence

k1 + · · · + ks ≤ lg(1 + 22n
)

lg(1 + 2n+2)
,

where lg x is log2 x .
It follows that

2n+2 ≤ (
max

1≤i≤s
ri

) s∑
j=1

k j ≤ (
max

1≤i≤s
ri

) lg(1 + 22n
)

lg(1 + 2n+2)
.

Assume that
(

max1≤i≤s ri
) ≤ n. Applying the last inequality, we get

2n+2 ≤ n
lg(1 + 22n

)

lg(1 + 2n+2)
< n

lg(1 + 22n
)

(n + 2) lg 2
,

i.e.,
n + 2

n
· 2n+2 < log2(1 + 22n

),

hence 22n+2
< 1 + 22n

, a contradiction. Therefore max1≤i≤s ri ≥ n + 1, and
max1≤i≤s pi > 2n+2(n + 1).

9.2.2 Mersenne Numbers

Problem 9.2.7. Let P∗ denote the set of all odd primes less than 10000, and
suppose p ∈ P∗. For each subset S = {p1, p2, . . . , pk} of P∗, with k ≥ 2 and
not including p, there exists a q ∈ P∗ \ S such that

(q + 1) | (p1 + 1)(p2 + 1) · · · (pk + 1).

Find all such possible values of p.

(1999 Taiwanese Mathematical Olympiad)
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Solution. Direct calculation shows that the set T of Mersenne primes less that
10000 is

{M2, M3, M5, M7, M13} = {3, 7, 31, 127, 8191}.
The number 211 − 1 is not prime; it equals 23 · 89. We claim that this is the set of
all possible values of p.

If some prime p is not in T , then look at the set S = T . Then there must be
some prime q �∈ S less than 10000 such that

(q + 1) | (M2 + 1)(M3 + 1)(M5 + 1)(M7 + 1)(M13 + 1) = 230.

Thus, q + 1 is a power of 2 and q is a Mersenne prime less than 10000, and
therefore q ∈ T = S, a contradiction.

On the other hand, suppose p is in T . Suppose we have a set S = {p1, p2, . . . ,
pk} ⊆ P∗ not including p, with k ≥ 2 and p1 < p2 < · · · < pk . Suppose, by
way of contradiction that for all q ∈ P∗ such that (q + 1) | (p1 + 1) · · · (pk + 1),
we have q ∈ S. Then

4 | (p1 + 1)(p2 + 1) ⇒ M2 ∈ S,

8 | (M2 + 1)(p2 + 1) ⇒ M3 ∈ S,

32 | (M2 + 1)(M3 + 1) ⇒ M5 ∈ S,

128 | (M2 + 1)(M5 + 1) ⇒ M7 ∈ S,

8192 | (M3 + 1)(M5 + 1)(M7 + 1) ⇒ M13 ∈ S.

Then p, a Mersenne prime under 10000, must be in S, a contradiction. There-
fore there is some prime q < 10000 not in S with q + 1 | (p1 + 1) · · · (pk + 1),
as desired. This completes the proof.

9.2.3 Perfect Numbers

Problem 9.2.9. Prove that if n is an even perfect number, then 8n + 1 is a perfect
square.

Solution. From Problem 1, we have n = m(m+1)
2 for some positive integer m;

hence
8n + 1 = 4m(m + 1) + 1 = (2m + 1)2.

Problem 9.2.10. Show that if k is an odd positive integer, then 2k−1 Mk can be

written as the sum of the cubes of the first 2
k−1

2 odd positive integers. In particular,
any perfect number has this property.

Solution. Standard summation formulas verify that

n∑
i=1

(2i − 1)3 = n2(2n2 − 1).
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With n = 2
k−1

2 , the right-hand side becomes 2k−1(2k − 1); that is, 2k−1Mk ,
and we are done.

9.3 Sequences of Integers

9.3.1 Fibonacci and Lucas Sequences

Problem 9.3.5. Determine the maximum value of m2 + n2, where m and n are
integers satisfying 1 ≤ m, n ≤ 1981 and (n2 − mn − m2)2 = 1.

(22nd International Mathematical Olympiad)

Solution. Let S be the set of pairs (n, m) of positive integers satisfying the equa-
tion

(x2 − xy − y2)2 = 1. (1)

If n = m, then n = m = 1. Hence (1, 1) ∈ S. It is clear that (1, 0) and (0, 1)

are also solutions to equation (1).
We will consider solutions (n, m) with distinct components. Using Fermat’s

method of infinite descent we obtain the following important result on the set S.

Lemma. If (n, m) is a positive solution to equation (1) and n �= m, then n > m >

n − m and (m, n − m) is also a solution to (1).

Proof. From n2 − nm − m2 = ±1, we obtain n2 = m2 + nm ± 1 < m2; thus
n > m. Also from n2 − nm − m2 = ±1, we obtain

m2 − m(n − m) − (n − m)2 = m2 + mn − n2 = ∓1.

Apply the first part to the solution (m, n − m) and obtain m > n − m.

From the lemma we deduce that any pair (n, m) ∈ S gives rise to a pair
(m, n − m) ∈ M , which gives rise to a pair (a + b, a) ∈ M . In this way, by the
method of descent (n, m) → (m, n − m), or by the method of ascent (a, b) →
(a + b, a), we obtain a new solution of the equation. The methods of ascent and
descent are the reverse of each other.

By applying the descending method to a pair (n, m) ∈ S we can only have
finitely many steps, because n − m < m. Hence, in a finite number of steps we
obtain a pair with n = m, the pair (1, 1). Thus, all solutions (n, m) ∈ S are
obtained from the pair (1, 0) by applying the ascending method:

(1, 0) → (1, 1) → (2, 1) → (3, 2) → (5, 3) → . . .

The components of all such pairs are Fibonacci numbers Fn . In this way, the
ascending transformation is exactly the following:

(Fn, Fn−1) → (Fn+1, Fn).
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Thus, to obtain the solution (n, m) with maximum value of n2 + m2 we con-
sider the members of the Fibonacci sequence, not exceeding 1981:

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597.

So, the required maximum is 9872 + 15972.

Remark. Fibonacci numbers Fn have the property

F2
n+1 − Fn Fn+1 − F2

n = ±1, for all n ≥ 0.

To prove it for n = 0 or n = 1 it is equivalent to see that (1, 0) ∈ S and that
(1, 1) ∈ S. Further, we can use induction. The relation

F2
n+1 − Fn Fn+1 − F2

n = ±1

implies

F2
n+2 − Fn+1 Fn+2 − F2

n+1 = (Fn+1 + Fn)
2 − Fn+1(Fn+1 + Fn) − F2

n+1

= −(F2
n+1 − Fn Fn+1 − F2

n ) = ∓1.

So in fact,
F2

n+1 − Fn Fn+1 − F2
n = (−1)n .

Another way to prove this relation is to use the matrix form for the Fibonacci
numbers and get (

1 1
1 0

)n+1

=
(

Fn+2 Fn+1
Fn+1 Fn

)
.

Passing to determinants on both sides yields

(−1)n+1 = Fn+2 Fn − F2
n+1 = (Fn+1 + Fn)Fn − F2

n+1 = F2
n + Fn Fn+1 − F2

n+1.

Problem 9.3.6. Prove that for any integer n ≥ 4, Fn + 1 is not a prime.

First solution. We have the identity

F4
n − 1 = Fn−2 Fn−1 Fn+1 Fn+2. (2)

Assume that Fn + 1 is a prime for some positive integer n ≥ 4. Using (1), it
follows that Fn + 1 divides at least one of the integers Fn−2, Fn−1, Fn+1, Fn+2.
Since Fn + 1 is greater than Fn−2 and Fn−1, it follows that Fn + 1 divides Fn+1
or Fn+2. But Fn+1 < 2Fn and Fn+2 < 4Fn; hence Fn + 1 cannot divide Fn+1 or
Fn+2, and the desired conclusion follows.
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Second solution. Note the four equalities

F4m+1 + 1 = L2n+1 F2n−1,

F4n+1 + 1 = L2n F2n+1,

F4n+2 + 1 = L2n F2n+2,

F4n+3 + 1 = L2n+2 F2n+1,

which follow from the Binet formula or induction.

Problem 9.3.7. Let k be an integer greater than 1, a0 = 4, a1 = a2 = (k2 − 2)2,
and

an+1 = anan−1 − 2(an + an−1) − an−2 + 8 for n ≥ 2.

Prove that 2 + √
an is a perfect square for all n.

Solution. The Fibonacci numbers are involved here again, but it is much harder
to guess how they are related to the solution.

Let λ, μ be the roots of the equation t2 − kt + 1 = 0. Notice that λ + μ = k,
λμ = 1. Augmenting the Fibonacci sequence by setting F0 = 0, we claim that

an = (λ2Fn + μ2Fn )2 for n = 0, 1, 2, . . .

This is readily checked for n = 0, 1, 2. Assume that it holds for all k ≤ n.
Note that the given recursion can be written as

an+1 − 2 = (an − 2)(an−1 − 2) − (an−2 − 2),

and that ak = (λ2Fk + μ2Fk )2 is equivalent to ak − 2 = λ4Fk + μ4Fk . Using the
induction hypothesis for k = n − 2, n − 1, n, we obtain

an+1 − 2 = (λ4Fn + μ4Fn )(λ4Fn−1 + μ4Fn−1) − (λ4Fn−2 + μ4Fn−2)

= λ4(Fn+Fn−1) + μ4(Fn+Fn−1) + λ4(Fn−1+Fn−2)μ4Fn−1

+ μ4(Fn−1+Fn−2)λ4Fn−1 − (λ4Fn−2 + μ4Fn−2)

= λ4Fn+1 +μ4Fn+1 +(λμ)4Fn−1(λ4Fn−2 +μ4Fn−2) − (λ4Fn−2 +μ4Fn−2).

Since λμ = 1, it follows that

an+1 = 2 + λ4Fn+1 + μ4Fn+1 = (λ2Fn+1 + μ2Fn+1)2,

and the induction is complete.
Now

2 + √
an = 2 + λ2Fn + μ2Fn = (λFn + μFn )2.

Since

(λm−1 + μm−1)(λ + μ) = (λm + μm) + λμ(λm−2 + μm−2),
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we have
λm + μm = k(λm−1 + μm−1) − (λm−2 + μm−2),

leading to an easy proof by induction that λm +μm is an integer for all nonnegative
integers m. The solution is complete.

9.3.2 Problems Involving Linear Recursive Relations

Problem 9.3.12. Let a, b be integers greater than 1. The sequence x1, x2, . . . is
defined by the initial conditions x0 = 0, x1 = 1 and the recursion

x2n = ax2n−1 − x2n−2, x2n+1 = bx2n − x2n−1

for n ≥ 1. Prove that for any natural numbers m and n, the product xn+m xn+m−1
· · · xn+1 is divisible by xm xm−1.

(2001 St. Petersburg City Mathematical Olympiad)

Solution. We will show that xm | xkm , and then show that
gcd(xm, xm−1) = 1.

First, consider our sequence modulo xm for some m. Each xk+1 is uniquely
determined by xk, xk−1 and the parity of k. Express each xi as a function fi (a, b).
We have xi ≡ fi (a, b)x1 (mod xm). Suppose xr ≡ 0 (mod xm) for some r .
Since each term is a linear combination of two preceding ones,

xi+r ≡ fi (a, b)xr+1 (mod xm) if m is even, (1)

xi+r ≡ fi (b, a)xr+1 (mod xm) if m is odd. (2)

Now we need to prove the following statement.

Lemma. The function fi (a, b) is symmetric for any odd i .

Proof. We will prove also that for i even, fi (a, b) is a symmetric function multi-
plied by a. Now we are to prove that f2k−1(a, b) is symmetric and f2k−2(a, b) =
ag2k−2(a, b), where g2k−2 is symmetric too, for any positive integer k. Proceed
by induction on k. For k = 1 we have f1(a, b) = 1 and g0(a, b) = 0. Suppose
that f2k−1(a, b) is symmetric and f2k−2(a, b) = ag2k−2(a, b), where g2k−2(a, b)

is symmetric too. Then we can write

f2k(a, b) = x2k = ax2k−1 − x2k−2

= a(x2k−1 − g2k−2(a, b))

= a( f2k−1(a, b) − g2k−2(a, b))

and

f2k+1(a, b) = x2k+1 = abx2k−1 − bx2k−2 − x2k−1

= abx2k−1 − abg2k−2 − x2k−1

= (ab − 1) f2k−1(a, b) − abg2k−2(a, b).
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Thus f2k+1 and g2k are symmetric too, which completes the step of induction.

Remark. An alternative proof for lemma is the following. Let yn = √
bxn for n

even and yn = √
axn for n odd. Then one sees that yn = √

abyn−1 − yn−2 for all
n. It follows that f2n+1 = y2n+1/

√
a and g2n = y2n/(a

√
b) are symmetric.

Now we are to prove that xm | xkm . Proceed by induction on k. For k = 0 and
k = 1 this statement is true. Let xm | xkm . Then from (1) and (2) putting r = km
and i = m, we obtain the following. If km is even, then

xm(k+1) ≡ fm(a, b)xkm+1 ≡ xm xkm+1 ≡ 0 (mod xm).

For km odd, m is odd too, and fm(a, b) = fm(b, a). Hence, we have

xm(k+1) ≡ fm(b, a)xkm+1 ≡ fm(a, b)xkm+1 ≡ xm xkm+1 ≡ 0 (mod xm).

So, for each pair of nonnegative integers k, m we have xm | xkm .
Since the product xn+1xn+2 · · · xn+m has m terms, one term’s index is divisi-

ble by m and another’s index is divisible by m −1. Thus both xm and xm−1 divide
the product. If we can show that xm is relatively prime to xm−1, we will be done.
We will prove this by induction. For the base case, x0 is relatively prime to x1.
Now, x2n = ax2n−1 − x2n−2. Any prime factor common to x2n and x2n−1 must
also divide x2n−2, but because x2n−2 is relatively prime to x2n−1, there is no such
prime factor. A similar argument holds for x2n+1 because x2n+1 = bx2n − x2n−1.
Thus xm xm−1 | (xn+1xn+2 · · · xn+m).

Problem 9.3.13. Let m be a positive integer. Define the sequence {an}n≥0 by a0 =
0, a1 = m, and an+1 = m2an − an−1 for n ≥ 1. Prove that an ordered pair (a, b)

of nonnegative integers, with a ≤ b, is a solution of the equation

a2 + b2

ab + 1
= m2

if and only if (a, b) = (an, an+1) for some n ≥ 0.

(1998 Canadian Mathematical Olympiad)

First solution. The “if” direction of the claim is easily proved by induction on n;
we prove the “only if” direction by contradiction. Suppose, to the contrary, that
there exist pairs satisfying the equation but not of the described form; let (a, b)

be such a pair with minimal sum a + b. We claim that (c, a) = (m2a − b, a) is
another such a pair but with smaller sum c + a, which leads to a contradiction.
Taking cases on the value of a:

(a) a = 0. Then (a, b) = (0, m) = (a0, a1), a contradiction.
(b) a = m. Then (a, b) = (m, m3) = (a1, a2), a contradiction.
(c) a = 1. Then b ≥ 1 = 1 and (b + 1) | (b2 + 1); but (b + 1) | (b2 − 1),

thus (b + 1) | [(b2 + 1) − (b2 − 1)] = 2. We have b = 1, thus m = 1 and
(a, b) = (1, 1) = (a1, a2), a contradiction.
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(d) 2 ≤ a < m. Rewrite (a2 + b2)/(ab + 1) = m2 as

b2 − m2ab + a2 − m2 = 0.

We know that t = b is a root of the quadratic equation

t2 − m2at + a2 − m2 = 0. (1)

Thus m4a2 + 4m2 − 4a2, the discriminant of the equation, must be a perfect
square. But

(m2a + 1)2 = m4a2 + 2m2a + 1

> m4a2 + 4m2 − 4a2 > (m2a)2

for 2 ≤ a < m. So the discriminant cannot be a perfect square, a contradiction.
(e) a > m. Again t = b is a root of (1). It is easy to check that t = m2a−b = c

also satisfies the equation. We have bc = a2 − m2 > 0; since b ≥ 0, c > 0. Since
a > 0 and c > 0, ac + 1 > 0, we have

c2 + a2

ca + 1
= m2.

Since c > 0, b ≥ a, and bc = a2 − m2 < a2, we have c < a. Thus (c, a) is a
valid pair. Also, it cannot be of the form (an, an+1), or else

(a, b) = (an+1, m2an+1 − an) = (an+1, an+2).

But then, c + a < a + a ≤ b + a, as desired.
From the above, we see that our assumption is false. Therefore every pair

satisfying the original equation must be of the described form.

Second solution. Note that if a = 0, then necessarily b = m, so (a, b) = (a0, a1).
Also note that there is no solution with a, b both nonzero but of opposite signs.
Thus any other solution has b ≥ a > 0. If (a, b) is a solution, then one easily
checks that (a, m2a−b) is again a solution. Since a > 0, this means we must have
m2a − b ≥ 0. Since b(m2a − b) = a2 − m2 < a2 and b > a, we must also have
m2a − b < a. Thus we have produced a smaller nonnegative solution. Because
we cannot reduce the solution indefinitely, reducing in this way must eventually
reach (0, m). Therefore the original solution must have been (an, an+1) for some
n.

Problem 9.3.14. Let b, c be positive integers, and define the sequence a1, a2, . . .

by a1 = b, a2 = c, and
an+2 = |3an+1 − 2an|

for n ≥ 1. Find all such (b, c) for which the sequence a1, a2, . . . has only a finite
number of composite terms.

(2002 Bulgarian Mathematical Olympiad)
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Solution. The only solutions are (p, p) for p not composite, (2p, p) for p not
composite, and (7, 4).

The sequence a1, a2, . . . cannot be strictly decreasing because each an is a
positive integer, so there exists a smallest k ≥ 1 such that ak+1 ≥ ak . Define a
new sequence b1, b2, . . . by bn = an+k−1, so b2 ≥ b1, bn+2 = |3bn+1 − 2bn |
for n ≥ 1, and b1, b2, . . . has only a finite number of composite terms. Now, if
bn+1 ≥ bn ,

bn+2 = |3bn+1 − 2bn| = 3bn+1 − 2bn = bn+1 + 2(bn+1 − bn) ≥ bn+1,

so by induction bn+2 = 3bn+1 − 2bn for n ≥ 1.
Using the general theory of linear recursion relations (a simple induction proof

also suffices), we have
bn = A · 2n−1 + B

for n ≥ 1, where A = b2 − b1, B = 2b1 − b2. Suppose (for contradiction) that
A �= 0. Then bn is an increasing sequence, and since it contains only finitely
many composite terms, bn = p for some prime p > 2 and some n ≥ 1. But then
bn+l(p−1) would be divisible by p and thus composite for l ≥ 1, because

bn+l(p−1) = A · 2n−1 · 2l(p−1) + B ≡ A · 2n−1 + B ≡ bn ≡ 0 (mod p)

by Fermat’s little theorem. This is a contradiction, so A = 0 and bn = b1 for
n ≥ 1. Therefore b1 is not composite; let b1 = p, where p = 1 or p is prime.

We now return to the sequence a1, a2, . . . , and consider different possible
values of k. If k = 1, we have a1 = b1 = b2 = a2 = p, so b = c = p
for p not composite. If k > 1, consider that ak−1 > ak by the choice of k, but
ak+1 = |3ak − 2ak−1|, and ak+1 = b2 = b1 = ak , so ak+1 = 2ak−1 − 3ak , and
thus ak−1 = 2p. For k = 2, this means that b = 2p, c = p for p not composite.
If k > 2, the same approach yields

ak−2 = 3ak−1 ± ak

2
= 7

2 p or 5
2 p,

so p = 2. For k = 3, this gives solutions b = 7 or b = 5, c = 4. Because 3·5±4
2

and 3·7±4
2 are not integers, there are no solutions for k > 3.

Remark. The reader may try to prove the following more general statement: Let
f ∈ Z[X1, . . . , Xk] be a polynomial and F(n) = f (n, 2n, 3n, . . . , (k − 1)n),
n ≥ 1. If limn→∞ F(n) = ∞, then the set of primes dividing the terms of the
sequence (F(n))n≥1 is infinite.
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9.3.3 Nonstandard Sequences of Integers

Problem 9.3.21. Let {an} be a sequence of integers such that for n ≥ 1,

(n − 1)an+1 = (n + 1)an − 2(n − 1).

If 2000 divides a1999, find the smallest n ≥ 2 such that 2000 divides an.

(1999 Bulgarian Mathematical Olympiad)

Solution. First, we note that the sequence an = 2n − 2 works. Then writing
bn = an − (2n − 2) gives the recursion

(n − 1)bn+1 = (n + 1)bn.

For n ≥ 2, observe that

bn = b2

n−1∏
k=2

k + 1

k − 1
= b2

∏n
k=3 k∏n−2
k=1 k

= n(n − 1)

2
b2.

Thus when n ≥ 2, the solution to the original equation of the form

an = 2(n − 1) + n(n − 1)

2
c

for some constant c. Plugging in n = 2 shows that c = a2 − 2 is an integer.
Now, because 2000 | a1999 we have

2(1999 − 1) + 1999 · 1998

2
c ≡ 0 (mod 2000).

This implies −4 + 1001c ≡ 0 (mod 2000), hence c ≡ 4 (mod 2000).

Then 2000 | an exactly when

2(n − 1) + 2n(n − 1) ≡ 0 (mod 2000)

⇔ (n − 1)(n + 1) ≡ 0 (mod 1000).

The number (n−1)(n+1) is divisible by 8 exactly when n is odd, and it is divisible
by 125 exactly when either n − 1 or n + 1 is divisible by 125. The smallest n ≥ 2
satisfying these requirements is n = 249.

Problem 9.3.22. The sequence (an)n≥0 is defined by a0 = 1, a1 = 3, and

an+2 =
{

an+1 + 9an if n is even,

9an+1 + 5an if n is odd.

Prove that
(a)

∑2000
k=1995 a2

k is divisible by 20,
(b) a2n+1 is not a perfect square for any n = 0, 1, 2, . . . .

(1995 Vietnamese Mathematical Olympiad)
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Solution. (a) We will first prove that the sum is divisible by 4, then by 5. Note
that an+2 ≡ an+1 + an (mod 4) whether n is odd or even. The sequence modulo
4 thus proceeds 1, 3, 0, 3, 3, 2, 1, 3, . . . in a cycle of 6, so the sum of squares
of any six consecutive terms is congruent to 12 + 32 + 02 + 32 + 32 + 22 ≡ 0
(mod 4).

Now let us work modulo 5, in which case an+2 ≡ an+1 + 4an if n is even and
an+2 ≡ 4an+1 if n is odd. Hence the sequence modulo 5 proceeds 1, 3, 2, 3, 1, 4,
3, 2, 4, 1, 2, 3, . . . in a cycle of 8 beginning with a2. This means that

a2
1995 +· · ·+a2

2000 ≡ a2
3 +· · ·+a2

8 ≡ 32 +12 +42 +32 +22 +42 ≡ 0 (mod 5).

(b) From part (a) we have a2n+1 ≡ 2 or 3 (mod 4), which implies that a2n+1
is not a square.

Problem 9.3.23. Prove that for any natural number a1 > 1, there exists an in-
creasing sequence of natural numbers a1, a2, . . . such that a2

1 + a2
2 + · · · + a2

k is
divisible by a1 + a2 + · · · + ak for all k ≥ 1.

(1995 Russian Mathematical Olympiad)

Solution. We will prove in fact that any finite sequence a1, . . . , ak with the prop-
erty can be extended by a suitable ak+1. Let sk = a1 + · · · + ak and tk =
a2

1 + · · · + a2
k . Then we are seeking ak+1 such that ak+1 + sk | a2

k+1 + tk . This is
clearly equivalent to ak+1+sk | s2

k +tk . Why not, then, choose ak+1 = s2
k −sk +tk?

Certainly this is greater than ak and ensures that the desired property is satisfied.

Problem 9.3.24. The sequence a0, a1, a2, . . . satisfies

am+n + am−n = 1
2 (a2m + a2n)

for all nonnegative integers m and n with m ≥ n. If a1 = 1, determine an.

(1995 Russian Mathematical Olympiad)

Solution. The relations a2m +a2m = 2(a2m+a0) = 4(am +am) imply a2m = 4am ,
as well as a0 = 0. Thus we compute a2 = 4, a4 = 16. Also, a1 + a3 = (a2 +
a4)/2 = 10 so a3 = 9. At this point we guess that ai = i2 for all i ≥ 1.

We prove our guess by induction on i . Suppose that a j = j2 for j < i . Then
the given equation with m = i − 1, j = 1 gives

ai = 1
2 (a2i−2 + a2) − ai−2

= 2ai−1 + 2a1 − ai−2

= 2(i2 − 2i + 1) + 2 − (i2 − 4i + 4) = i2.

Problem 9.3.25. The sequence of real numbers a1, a2, a3, . . . satisfies the initial
conditions a1 = 2, a2 = 500, a3 = 2000 as well as the relation

an+2 + an+1

an+1 + an−1
= an+1

an−1
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for n = 2, 3, 4, . . . Prove that all the terms of this sequence are positive integers
and that 22000 divides the number a2000.

(1999 Slovenian Mathematical Olympiad)

First solution. From the recursion relation it follows that an+2an−1 = a2
n+1 for

n = 2, 3, . . . . No term of our sequence can equal 0, and hence it is possible to
write an+2

an+1an
= an+1

anan−1
(1)

for n = 2, 3, . . . . It follows by induction that the value of the expression

an+1

anan−1

is constant, namely equal to a3/a2a1 = 2. Thus an+2 = 2anan+1 and all terms of
the sequence are positive integers.

From this new relation, we also know that an+1/an is an even integer for all
positive integers n. Write

a2000 = a2000

a1999

a1999

a1998
· · · a2

a1
a1.

In this product each of the 1999 fractions is divisible by 2, and a1 = 2 is even
as well. Thus a2000 is indeed divisible by 22000.

Second solution. Note that an = 2Fn+2−1 · 53Fn−1, proved by induction by using
equation (1) in the previous solution, where Fn are the Fibonacci numbers, n ≥ 1.
Hence the divisibility is a consequence of F2002 ≥ 2001.

Problem 9.3.26. Let k be a fixed positive integer. We define the sequence a1, a2,
. . . by a1 = k + 1 and the recursion an+1 = a2

n − kan + k for n ≥ 1. Prove that
am and an are relatively prime for distinct positive integers m and n.

First solution. We claim that

an =
n−1∏
i=0

ai + k, n > 0,

assuming that a0 = 1. Since a j+1 − k = a j (a j − k), we have

an − k =
n−1∏
j=1

a j+1 − k

a j − k
=

n−1∏
j=1

a j ,

which is what we wanted.
Therefore, we have that an ≡ k (mod ai ) for i < n. Hence, if there exist

integers d > 1, x, y ≥ 1 such that d | ax and d | ay , d divides k. We now show
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that for i > 0, ai ≡ 1 (mod k) by induction on i . For the base case, a1 = k +1 ≡
1 (mod k). Now assume that ai ≡ 1 (mod k). Then, ai+1 ≡ a2

i −kai +k ≡ a2
i ≡

1 (mod k). Thus, because all common divisors d of ax and ay must be divisors
of k, we have ax ≡ 1 (mod d) and ay ≡ 1 (mod d). Therefore, no such divisors
exist and ai is relatively prime to a j for all i, j > 0, as desired.

Second solution. First, by induction on n, it follows that an ≡ 1 (mod k) for
all n. Then it follows by induction on m that am ≡ k (mod an) for all m > n.
Therefore for m > n we have gcd(am, an) = gcd(k, an) = gcd(k, 1) = 1.

Problem 9.3.27. Suppose the sequence of nonnegative integers a1, a2, . . . , a1997
satisfies

ai + a j ≤ ai+ j ≤ ai + a j + 1

for all i, j ≥ 1 with i + j ≤ 1997. Show that there exists a real number x such
that an = 
nx� for all 1 ≤ n ≤ 1997.

(1997 USA Mathematical Olympiad)

Solution. Any x that lies in all of the half-open intervals

In =
[

an

n
,

an + 1

n

)
, n = 1, 2, . . . , 1997,

will have the desired property. Let

L = max
1≤n≤1997

an

n
= ap

p
and U = min

1≤n≤1997

an + 1

n
= aq + 1

q
.

We shall prove that
an

n
<

am + 1

m
,

or equivalently,
man < n(am + 1) (∗)

for all m, n ranging from 1 to 1997. Then L < U , since L ≥ U implies that (∗) is
violated when n = p and m = q. Any point x in [L , U ) has the desired property.

We prove (∗) for all m, n ranging from 1 to 1997 by strong induction. The
base case m = n = 1 is trivial. The induction step splits into three cases. If
m = n, then (∗) certainly holds. If m > n, then the induction hypothesis gives
(m −n)an < n(am−n +1), and adding n(am−n +an) ≤ nam yields (∗). If m < n,
then the induction hypothesis yields man−m < (n − m)(am + 1), and adding
man ≤ m(am + an−m + 1) gives (∗).

Problem 9.3.28. The sequence {an} is given by the following relation:

an+1 =
{ an−1

2 , if an ≥ 1,

2an
1−an

, if an < 1.
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Given that a0 is a positive integer, an �= 2 for each n = 1, 2, . . . , 2001, and
a2002 = 2, find a0.

(2002 St. Petersburg City Mathematical Olympiad)

Solution. Answer: a0 = 3 · 22002 − 1.
Suppose we are given an+1. Then there are exactly two possibilities for an . If

an ≥ 1, then the first rule gives an = 2an+1 +1 (which is at least 1 as required). If
an < 1, then the second rule gives an = an+1

an+1+2 (which is less than 1 as required).
Thus the problem amounts to the following: Start with a2002 = 2 and repeatedly
apply one of the two transformations

an = 2an+1 + 1,
an+1

an+1 + 2
.

Suppose you never again get an = 2 and suppose a0 is an integer. Then what
is a0?

If we apply the first rule 2002 times, then an + 1 doubles every step (and in
particular an �= 2) and we get a0 = 3 · 22002 − 1. We will show that this is the
only possibility. Using the two rules, there are two possibilities for a2001, namely
5 or 1/2. Using the two rules a second time, there are four possibilities for a2000,
namely 11, 5/7, 2, and 1/5. Since we are not allowed to reuse 2, the third is not
actually permitted. Note that the other three are all of the form p/q for p and q
odd and relatively prime. We will show by (downward) induction on n that all
subsequent an’s have this form, that the denominator never decreases, and that if
we ever use the second rule, then we have q > 1. It follows that the only way to
get a0 an integer is always to apply the first rule, as claimed above.

Suppose an+1 = p/q with p and q odd and relatively prime and that we apply
the first rule. Then an = 2p/q +1 = (2p+q)/q. The numerator and denominator
are clearly both odd and gcd(2p + q, q) = gcd(2p, q) = 1, since q is odd and
relatively prime to p. Thus an again has the desired form and the denominator
was unchanged.

Suppose an+1 = p/q with p and q odd and relatively prime and that we
apply the second rule. Then an = p/(2q + p). The numerator and denominator
are clearly both odd and gcd(p, 2q + p) = gcd(p, 2q) = 1, since p is odd and
relatively prime to q. Thus again an has the desired form and the denominator has
increased. Thus if we ever apply this rule, the denominator will be greater than 1.

Problem 9.3.29. Let x1 = x2 = x3 = 1 and xn+3 = xn + xn+1xn+2 for all
positive integers n. Prove that for any positive integer m there is an integer k > 0
such that m divides xk.

Solution. Observe that setting x0 = 0, the condition is satisfied for n = 0.
We prove that there is an integer k ≤ m3 such that xk divides m. Let rt be the

remainder of xt when divided by m for t = 0, 1, . . . , m3 + 2. Consider the triples
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(r0, r1, r2), (r1, r2, r3), . . . , (rm3, rm3+1, rm3+2). Since rt can take m values, it
follows by the pigeonhole principle that at least two triples are equal. Let p be
the smallest number such that triple (r p, rp+1, rp+2) is equal to another triple
(rq , rq+1, rq+2), p < q ≤ m3. We claim that p = 0.

Assume by way of contradiction that p ≥ 1. Using the hypothesis we have

r p+2 ≡ rp−1 + r prp+1 (mod m)

and
rq+2 ≡ rq−1 + rqrq+1 (mod m).

Since rp = rq , rp+1 = rq+1, and r p+2 = rq+2, it follows that rp−1 = rq−1 so
(rp−1, rp, rp+1) = (rq−1, rq , rq+1), which is a contradiction to the minimality of
p. Hence p = 0, so rq = r0 = 0, and therefore xq ≡ 0 (mod m).

Problem 9.3.30. Find all infinite bounded sequences a1, a2, . . . of positive inte-
gers such that for all n > 2,

an = an−1 + an−2

gcd(an−1, an−2)
.

(1999 Russian Mathematical Olympiad)

Solution. The only such sequence is 2, 2, 2, . . . , which clearly satisfies the given
condition.

Suppose gcd(ak−1, ak−2) = 1 for some k. Then ak = ak−1 + ak−2 and hence
gcd(ak, ak−1) = gcd(ak−2, ak−1) = 1. Hence by induction it follows that an =
an−1 + an−2 for all n ≥ k, and the sequence is unbounded.

Therefore we must have gcd(an−1, an−2) ≥ 2 for all n and

an = an−1 + an−2

gcd(an−1, an−2)
≤ an−1 + an−2

2
≤ max(an−1, an−2)

for all n. Thus max(an, an−1) ≤ max(an−1, an−2). Since this is a decreasing
sequence of positive integers, it is eventually constant. If an−1 < an−2, then
the argument above gives an < (an−1 + an−2)/2 and hence max(an, an−1) <

max(an−1, an−2). Thus we must eventually have an−1 = max(an−1, an−2). Hence
the sequence an must be eventually constant. But if an−1 = an−2, then we com-
pute gcd(an−1, an−2) = an−1 = an−2 and an = 2. Thus the sequence must be
eventually constant at 2.

Suppose now that an+1 = an = 2. Then since gcd(an, an−1) > 1, we must
have gcd(an, an−1) = an = 2 and 2 = an+1 = (an−1 + 2)/2, implying an−1 = 2.
Thus the only way the sequence can be eventually constant at the value 2 is if it
always has the value 2.
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Problem 9.3.31. Let a1, a2, . . . be a sequence of positive integers satisfying the
condition 0 < an+1 − an ≤ 2001 for all integers n ≥ 1. Prove that there exists an
infinite number of ordered pairs (p, q) of distinct positive integers such that ap is
a divisor of aq .

(2001 Vietnamese Mathematical Olympiad)

Solution. Obviously, if (an)n is such a sequence, so is (an+k)n for all k. Thus it
suffices to find p < q such that ap | aq . Observe that from any 2001 consecutive
natural numbers, at least one is a term of the sequence. Now, consider the table

a1 + 1 a1 + 2 . . . a1 + 2001
a1 + 1 + x1 a1 + 2 + x1 . . . a1 + 2001 + x1

a1 + 1 + x1 + x2 a1 + 2 + x1 + x2 . . . a1 + 2001 + x1 + x2
...

where

x1 =
2001∏
i=1

(a1 + i), x2 =
2001∏
i=1

(a1 + i + x1), x3 =
2001∏
i=1

(a1 + x1 + x2 + i),

and so on. Observe then that if x, y are in the same column, then x | y or y | x .
Now look at the first 2002 lines. We find in this 2002 × 2001 matrix at least 2002
terms of the sequence (at least one on each line). Thus there are two terms of the
sequence in the same column, and one will divide the other.

Problem 9.3.32. Define the sequence {xn}n≥0 by x0 = 0 and

xn =
⎧⎨
⎩ xn−1 + 3r+1−1

2 , if n = 3r (3k + 1),

xn−1 − 3r+1+1
2 , if n = 3r (3k + 2),

where k and r are nonnegative integers. Prove that every integer appears exactly
once in this sequence.

(1999 Iranian Mathematical Olympiad)

First solution. We prove by induction on t ≥ 1 that

(i) {x0, x1, . . . , x3t −2} =
{

− 3t −3
2 , − 3t −5

2 , . . . , 3t −1
2

}
;

(ii) x3t −1 = − 3t −1
2 .

These claims imply the desired result, and they are easily verified for t = 1.
Now supposing they are true for t , we show they are true for t + 1.

For any positive integer m, write m = 3r (3k + s) for nonnegative integers
r, k, s, with s ∈ {1, 2}, and define rm = r and sm = s.
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Then for m < 3t , observe that

rm = rm+3t = rm+2·3t and sm = sm+3t = sm+2·3t ,

so that
xm − xm−1 = x3t +m − x3t +m−1 = x2·3t +m − x2·3t +m−1.

Setting m = 1, 2, . . . , k < 3t and adding the resulting equations, we have

xk = x3t +k − x3t

xk = x2·3t +k − x2·3t .

Now setting n = 3t in the recursion and using (ii) from the induction hypoth-
esis, we have x3t = 3t , and

{x3t , . . . , x2·3t −2} =
{

3t + 3

2
, . . . ,

3t+1 − 1

2

}
,

x2·3t −1 = 3t + 1

2
.

Then setting n = 2 · 3t in the recursion, we have x2·3t = −3t , giving

{x2·3t , . . . , x3t+1−2} =
{

−3t+1 − 3

2
, . . . ,

3t + 1

2

}

x2·3t+1−1 = −3t+1 − 1

2
.

Combining this with (i) and (ii) from the induction hypothesis proves the
claims for t + 1. This completes the proof.

Second solution. For ni ∈ {−1, 0, 1}, let the number

[nmnm−1 · · · n0]
in base 3 equals

∑m
i=0 ni · 3i . It is simple to prove by induction on k that the

base-3 numbers with at most k digits equal{
−3k − 1

2
, −3k − 3

2
, . . . ,

3k − 1

2

}
,

which implies that every integer has a unique representation in base 3.
Now we prove by induction on n that if n = amam−1 · · · a0 in base 3, then

xn = [bmbm−1 . . . b0] in base 3, where bi = −1 if ai = 2 and bi = ai for all
other cases.
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For the base case, x0 = 0 = [0]. Now assume that the claim is true for n − 1.
If n = amam−1 · · · ar+11 00 . . . 0︸ ︷︷ ︸

r

, then

xn = xn−1 + 3r+1 − 1

2
= [bmbm−1 . . . bi 0 −1 − 1 · · · − 1︸ ︷︷ ︸

r

] + [11 . . . 1︸ ︷︷ ︸
r+1

]

= [bmbm−1 . . . bi 1 00 . . . 0︸ ︷︷ ︸
r

].

If instead n = amam−1 · · · ai 2 00 . . . 0︸ ︷︷ ︸
r

, then

xn = xn−1 +
(

−3r+1 + 1

2

)

= [bmbm−1 . . . bi 1 −1 − 1 · · · − 1︸ ︷︷ ︸
r

] + [−1 11 . . . 1︸ ︷︷ ︸
r+1

]

= [bmbm−1 . . . bi − 1 00 . . . 0︸ ︷︷ ︸
r

].

In either case, the claim is true for n, completing the induction.
To finish the proof, note that every integer appears exactly once in base 3.

Thus each integer appears exactly once in {xn}n≥0, as desired.

Problem 9.3.33. Suppose that a1, a2, . . . is a sequence of natural numbers such
that for all natural numbers m and n, gcd(am, an) = agcd(m,n). Prove that there
exists a sequence b1, b2, . . . of natural numbers such that an = ∏

d|n bd for all
integers n ≥ 1.

(2001 Iranian Mathematical Olympiad)

First solution. For each n, let rad(n) denote the largest square-free divisor of n
(i.e., the product of all distinct prime factors of n). We let bn equal to the ratio of
the following two numbers:

• En , the product of all an/d such that d is square-free, divides n, and has an
even number of prime factors.

• On , the product of all an/d such that d is square-free, divides n, and has an
odd number of prime factors.

Lemma 1.
∏

d|an
bd = an .
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Proof. Fix n, and observe that
∏

d|n bn equals∏
d|n Ed∏
d|n Od

=
∏
d|n

aμ(d)
n/d , (∗)

where μ is the Möbius function.
In the numerator of (∗), each Ed is the product of am such that m | d . Also,

d | n, implying that the numerator is the product of various am such that m | n.
For fixed m that divides n, how many times does am appears in the numerator∏

d|n Ed of (∗)?
If am appears in Ed and d | n, then let t = d/m. By the definition of Ed ,

we know that (i) t is square-free and (ii) t has an even number of prime factors.
Because d | n and t = d/m, we further know that (iii) t divides n/m.

Conversely, suppose that t is any positive integer satisfying (i), (ii), and (iii),
and write d = tm. By (iii), d is a divisor of n. Also, t is square-free by (i), is a
divisor of d, and has an even number of prime factors by (ii). Thus, am appears in
Ed .

Suppose that n/m has l distinct prime factors. Then it has
(l

0

) + (l
2

) + · · ·
factors t satisfying (i), (ii), and (iii), implying that am appears in the numerator of
(∗) exactly (

l

0

)
+

(
l

2

)
+ · · ·

times. Similarly, am appears in the denominator of (∗) exactly(
l

1

)
+

(
l

3

)
+ · · ·

times. If m < n, then l ≥ 1, and these expressions are equal, so that the am’s
in the numerator and denominator of (∗) cancel each other out. If m = n, then
l = 0, so that an appears in the numerator once and in the denominator zero times.
Therefore, ∏

d|n
bd =

∏
d|n Ed∏
d|n Od

= an,

as desired.

Lemma 2. For any integer α that divides some term in a1, a2, . . . , there exists an
integer d such that

α|an ⇔ d|n.

Proof. Of all the integers n such that α | an , let d be the smallest.
If α |an , then α |gcd(ad , an) = agcd(d,n). By the minimality of d , gcd(d, n) ≥

d. But gcd(d, n) | n as well, implying gcd(d, n) = d. Hence, d | n.
If d | n, then gcd(ad , an) = agcd(d,n) = ad . Thus, ad | an . Because α | ad , it

follows that α | an as well.
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Lemma 3. For each positive integer n, bn = En/On is an integer.

Proof. Fix n. Call an integer d a top divisor (resp. a bottom divisor) if d | n,
n/d is square-free, and n/d has an even (resp. odd) number of prime factors. By
definition, Ed is the product of ad over all top divisors d, and Od is the product
of ad over all bottom divisors d.

Fix any prime p. We show that p divides En at least as many times as it
divides On . To do this, it suffices to show the following for any positive integer k:

(1) The number of top divisors d with ad divisible by pk is greater than or
equal to the number of bottom divisors d with ad divisible by pk .

Let k be any positive integer. If pk divides none of a1, a2, . . . , then (1) holds
trivially. Otherwise, by the previous lemma, there exists an integer d0 such that

pk | am ⇔ d0 | m.

Hence, to show (1) it suffices to show:
(2) The number of top divisors d such that d0 | d, is greater than or equal to

the number of bottom divisors d such that d0 | d.
If d0 � n, then (2) holds because d0 does not divide d for any divisor d of n,

including top or bottom divisors.
Otherwise, d0 | n. For which top and bottom divisors d does d0 divide d?

Precisely those for which n/d divides n/d0. If n/d0 has l ≥ 1 distinct prime
factors, then there are as many top divisors with this property as there are bottom
divisors, namely(

l

0

)
+

(
l

2

)
+ · · · = 2l−1 =

(
l

1

)
+

(
l

3

)
+ · · · .

If instead d0 = n and l = 0, then the top divisor 1 is the only value d with
d | (n/d0). In either case, there are at least as many top divisors d with d | (n/d0)

as there are bottom divisors with the same property. Therefore, (2) holds. This
completes the proof.

Therefore, an = ∏
d|n bd , and bn = En/On is an integer for each n.

Second solution. (Gabriel Dospinescu) Let us define b1 = a1 and bn =
an/lcmd|n,d �=n ad for n > 1. Of course, if d | n, then ad | an and so
lcmd|n,d �=n ad | an and bn ∈ Z.

Now comes the hard part, proving that
∏

d|n bd = an , which is the same as∏
d|n

d �=n

bd = lcm
d|n

d �=n

ad . (1)

We will prove (1) by strong induction. For n = 1 it is clear.
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Now, for all d | n, d �= n, by the inductive hypothesis we have

ad =
∏
d ′|d

bd ′ |
∏
d|n

d �=n

bd;

thus
∏

d|n,d �=n bd is a multiple of lcmd|n,d �=n ad . It remains to prove that∏
d|n,d �=n bd | lcmd|n,d �=n ad .

The essential observation is:

Lemma. If gcd(bu, bv) > 1, then u | v or v | u.

Proof. We may assume that u < v. Assume that u does not divide v. Then

bu = au

lcm
d|u

d �=u

ad
| au

agcd(u,v)

.

Remark. From Problem 9.3.6 (2) we have gcd(Fm , Fn) = Fgcd(m,n), where Fn is
the nth Fibonacci number, so this holds for Fn . We have

Fn =
∏
d|n

bd ,

where (bn)n≥0 is the sequence

0, 1, 1, 2, 3, 5, 4, 13, 7, 17, 11, 89, 6, 233, 29, 61, 47, 1597, 152, . . . .
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Problems Involving Binomial
Coefficients

10.1 Binomial Coefficients

Problem 10.1.7. Show that the sequence(
2002

2002

)
,

(
2003

2002

)
,

(
2004

2002

)
, . . . ,

considered modulo 2002, is periodic.

(2002 Baltic Mathematical Competition)

Solution. We will show that the sequence, taken modulo 2002, has period m =
2002 · 2002!. Indeed,(

x + m

2002

)
= (x + m)(x − 1 + m) · · · (x − 2001 + m)

2002!
= x(x − 1) · · · (x − 2001) + km

2002!
= x(x − 1) · · · (x − 2001)

2002! + 2002k

≡
(

x

2002

)
(mod 2002).

Problem 10.1.8. Prove that (
2p

p

)
≡ 2 (mod p2)

for every prime number p.

© Birkhäuser Boston, a part of Springer Science + Business Media, LLC 2009
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Solution. A short solution uses the popular Vandermonde identity

k∑
i=0

(
m

i

)(
n

k − i

)
=

(
m + n

k

)
.

Set m = n = k = p to get(
2p

p

)
=

(
p

0

)(
p

p

)
+

(
p

1

)(
p

p − 1

)
+ · · · +

(
p

p − 1

)(
p

1

)
+

(
p

p

)(
p

0

)
.

The first and the last terms on the right-hand side equal 1. Since p is a prime, it
divides each binomial coefficient

(p
k

)
for 1 ≤ k ≤ p −1. So each of the remaining

terms is divisible by p2, and hence
(2p

p

)
is congruent to 2 modulo p2, as required.

Problem 10.1.9. Let k, m, n be positive integers such that m + k + 1 is a prime
number greater than n + 1. Let us set Cs = s(s + 1). Show that the product

(Cm+1 − Ck)(Cm+2 − Ck) · · · (Cm+n − Ck)

is divisible by C1C2 · · · Cn.

(18th International Mathematical Olympiad)

Solution. We use the identity

C p − Cq = p(p + 1) − q(q + 1) = (p − q)(p + q + 1),

which is valid for all positive integers p and q. Then one has

Cm+i − Ck = (m − k + i)(m + k + i + 1), for all i = 1, 2, . . . , n.

For the given products we obtain respectively the formulas

(Cm+1 − Ck) · · · (Cm+n − Ck) =
n∏

i=1

(m − k + i)
n∏

i=1

(m + k + 1 + i),

C1C2 · · · Cn = n!(n + 1)!.
Their quotient is the product of two rational fractions:∏n

i=1(m − k + i)

n! and

∏n
i=1(m + k + 1 + i)

(n + 1)! .

It is known that the product of any n consecutive integers is divisible by n!
and their quotient is zero or a binomial coefficient, possibly multiplied by −1. In
our case we have

1

n!
n∏

i=1

(m − k + i) =
(

m − k + n

n

)
.
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For the second fraction, a factor is missing in the numerator. We support our
argument by using the fact that m + k + 1 is a prime number greater than n + 1:

1

(n + 1)!
n∏

i=1

(m + k + 1 + i) = 1

m + k + 1
· 1

(n + 1)!
n∏

i=0

(m + k + 1 + i)

= 1

m + k + 1

(
m + k + n + 1

n + 1

)
.

Note that

1

m + k + 1

(
m + k + n + 1

n + 1

)
= 1

n + 1

(
m + k + n + 1

n

)
.

Since the first expression has denominator 1 or the prime m + k + 1 and the
second expression has denominator at most n + 1 < m + k + 1, both must be
integers.

Hence the binomial coefficient
(m+k+n+1

n+1

)
is an integer that is divisible by

m + k + 1, so our number is integer.

Problem 10.1.10. Let n, k be arbitrary positive integers. Show that there exist
positive integers a1 > a2 > a3 > a4 > a5 > k such that

n = ±
(

a1

3

)
±

(
a2

3

)
±

(
a3

3

)
±

(
a4

3

)
±

(
a5

3

)
.

(2000 Romanian International Mathematical Olympiad Team Selection Test)

Solution. For fixed k, choose m > k such that n + (m
3

)
is an odd number. We see

that this is possible by considering the parity of n. If n is an odd number, take
m ≡ 0 (mod 4), and if n is an even number, take m ≡ 3 (mod 4).

Since n + (m
3

)
is an odd number, we express it in the form

n +
(

m

3

)
= 2a + 1.

Then use the identity

2a + 1 =
(

a

3

)
−

(
a + 1

3

)
−

(
a + 2

3

)
+

(
a + 3

3

)

to obtain

n =
(

a

3

)
−

(
a + 1

3

)
−

(
a + 2

3

)
+

(
a + 3

3

)
−

(
m

3

)
.
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Notice that for m ≥ 3 we may ensure that

a = n − 1 + (m
3

)
2

> m,

yielding the desired representation.

Problem 10.1.11. Prove that if n and m are integers, and m is odd, then

1

3mn

m∑
k=0

(
3m

3k

)
(3n − 1)k

is an integer.

(2004 Romanian International Mathematical Olympiad Team Selection Test)

Solution. Let ω = e
2π i

3 . Then

3
m∑

k=0

(
3m

3k

)
(3n − 1)k

= (1 + 3
√

3n − 1)3m + (1 + ω
3
√

3n − 1)3m + (1 + ω2 3
√

3n − 1)3m . (1)

The right side of the above equality is the sum of the 3mth powers of the roots
x1, x2, x3 of the polynomial

(X − 1)3 − (3n − 1) = X3 − 3X2 + 3X − 3n.

Let sk = xk
1 + xk

2 + xk
3 . Then s0 = s1 = s2 = 3 and

sk+3 = 3sk+2 − 3sk+1 + 3nsk . (2)

It follows by induction that each sk is an integer divisible by 3
k/3�+1. A re-
peated application of (2) yields

sk+7 = 63nsk+2 − 9(n2 − 3n − 3)sk+1 + 27n(2n + 1)sk .

Since s3 = 9n, it follows inductively that s6k+3 is divisible by 32k+2n for all
nonnegative integers k, and the conclusion follows by (1).

Problem 10.1.12. Show that for every positive integer n the number

n∑
k=0

(
2n + 1

2k + 1

)
23k

is not divisible by 5.

(16th International Mathematical Olympiad)
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Solution. Let us consider the binomial formula:

(1 + 2
√

2)2n+1 = (1 + 2
3
2 )2n+1 =

2n+1∑
i=0

(
2n + 1

i

)
2

3i
2

=
n∑

i=0

(
2n + 1

2i

)
23i +

n∑
i=0

(
2n + 1

2i + 1

)
23i · 2

3
2 = an + bn

√
8,

where

an =
n∑

i=0

(
2n + 1

2i

)
23i and bn =

n∑
i=0

(
2n + 1

2i + 1

)
23i .

In a similar way,

(1 − 2
√

2)2n+1 = an − bn
√

8.

After multiplying these two equalities, we obtain −72n+1 = a2
n − 8b2

n . If
bn ≡ 0 (mod 5), the above equality gives a2

n ≡ −2 (mod 5) ≡ 3 (mod 5).
Since 3 is not a perfect square modulo 5, we obtain a contradiction.

Problem 10.1.13. Prove that for a positive integer k there is an integer n ≥ 2
such that

(n
1

)
, . . . ,

( n
n−1

)
are all divisible by k if and only if k is a prime.

Solution. If k is a prime we take n = k, and the property holds (see property 7 in
Part I, Section 10.1).

We prove that the set of positive integers k for which the claim holds is exactly
the set of primes.

Suppose now that k is not a prime. Then consider two cases:
(a) k = pr , where p is a prime and r > 1. We find a value of i for which

k �
(n

i

)
.

Suppose, to the contrary, that there is a positive integer n such that for all
1 ≤ i ≤ n − 1,

(n
i

)
is divisible by pr . Clearly, n is divisible by pr , and we write

n = pαβ for some β with gcd(β, p) = 1. Take i = pα−1. Then

(
n

i

)
=

pα−1−1∏
j=0

βpα − j

pα−1 − j
.

If j = 0, then βpα− j
pα−1− j

= βp. If gcd( j, p) = 1, then both the above numerator

and denominator are coprime to p. In all other cases, we write j = δpγ for some
δ coprime to p and γ ≤ α − 2. Thus,

βpα − j

pα−1 − j
= βpα − δpγ

pα−1 − δpγ
= pγ (βpα−γ − δ)

pγ (pα−γ−1 − δ)
.
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Now, since α − γ − 1 ≥ 1, we have βpα−γ − δ and pα−γ−1 − δ coprime to
p. In this case, the power of p in the above numerator and denominator is γ , and
the power of p in the above product of fractions, which is an integer, is 1. This
contradicts the assumption that pr | n.

(b) k is divisible by at least two distinct primes p, q . Assume by contradiction
that there is a positive integer n as required. Then n is divisible by pq and we can
write n = pαβ where gcd(p, β) = 1 and β > 1 (since q divides β). Take i = pα .
Then (

n

i

)
=

pα−1∏
j=0

βpα − j

pα − j
.

When j = 0, βpα− j
pα− j = β is coprime to p. In all other cases, both the numer-

ator and the denominator of βpα− j
pα− j are either coprime to p or are divisible by the

same power of p, and therefore the product of those fractions is not divisible by
p. But p divides k, and hence

(n
i

)
is not divisible by k, contrary to our assumption.

Therefore the only positive integers k for which the claim holds are the primes.

10.2 Lucas’s and Kummer’s Theorems

Problem 10.2.4. Let p be an odd prime. Find all positive integers n such that(n
1

)
,
(n

2

)
, . . . ,

( n
n−1

)
are all divisible by p.

Solution. Express n in base p: n = n0 + n1 p + · · · + nm pm , where 0 ≤
n0, n1, . . . , nm ≤ p − 1 and nm ≤ 0. We also write k = k0 + k1 p + · · · + km pm ,
where 0 ≤ k0, k1, . . . , km ≤ p − 1, where km can be zero. From Lucas’s theorem
we have (

n

k

)
≡

m∏
j=0

(
n j

k j

)
(mod p).

For n = pm , the property clearly holds. Assume by way of contradiction that
n �= pm . If nm > 1, then letting k = pm < n, we have(

n

k

)
≡ nm · 1 · 1 · 1 · · · 1︸ ︷︷ ︸

m−1 times

≡ nm �≡ 0 (mod p),

a contradiction.

Problem 10.2.5. Let p be a prime. Prove that p does not divide any of
(n

1

)
, . . . ,( n

n−1

)
if and only if n = spk − 1 for some positive integer k and some integer s

with 1 ≤ s ≤ p − 1.
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Solution. If n is of the form spk − 1, then its representation in base p is

n = (s − 1) (p − 1) · · · (p − 1)︸ ︷︷ ︸
k times

.

For 1 ≤ i ≤ n − 1, i = i0 + i1 p + · · · + im pm , where 0 ≤ ih ≤ p − 1,
h = 1, . . . , m − 1, and 0 ≤ im ≤ s − 1. Because p is a prime, it follows that p
does not divide either

(p−1
ih

)
or

(s−1
im

)
. Applying Lucas’s theorem, we obtain that

p does not divide
(n

i

)
, for all i = 1, . . . , n − 1.

Conversely, if n cannot be written in the form spk − 1, then n j < p − 1 for
some 0 ≤ j ≤ m − 1, where n0n1 · · · nm is the representation of n in base p. For

i = (p − 1) 0 . . . 0︸ ︷︷ ︸
j−1 times

in base p, applying again Lucas’s theorem, we have(
n

i

)
≡ 0 (mod p).
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Miscellaneous Problems

Problem 11.6. Let a, b be positive integers. By integer division of a2 + b2 by
a +b we obtain the quotient q and the remainder r . Find all pairs (a, b) such that
q2 + r = 1977.

(19th International Mathematical Olympiad)

Solution. There are finitely many possibilities to obtain 1977 = q2 + r . Since
1977 is not a perfect square, 0 < r < a + b. Also, q ≤ 
√1977� = 44. From
a2 + b2 = q(a + b) + r , we obtain

q =
⌊

a2 + b2

a + b

⌋
≥ a2 + b2

a + b
− 1 ≥ 1

2
(a + b) − 1 >

r

2
− 1.

Suppose q ≤ 43. Then r = 1977 − q2 ≥ 1977 − 432 = 128 and 43 ≥ q >
r
2 − 1 ≥ 63, contradiction.

We have obtained q = 44 and r = 1977 − 442 = 41. To finish, we have to
solve in integers the equation

a2 + b2 = 44(a + b) + 41.

Write it in the form

(a − 22)2 + (b − 22)2 = 1009.

It is not difficult to find all pairs of perfect squares having the sum 1009. There
exists only the representation 1009 = 282 + 152. Then the solutions are a = 50,
b = 37 and a = 37, b = 50.

Problem 11.7. Let m, n be positive integers. Show that 25n − 7m is divisible by
3 and find the least positive integer of the form |25n − 7m − 3m |, where m, n run
over the set of positive integers.

(2004 Romanian Mathematical Regional Contest)

© Birkhäuser Boston, a part of Springer Science + Business Media, LLC 2009
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Solution. Because 25 ≡ 1 (mod 3) and 7 ≡ 1 (mod 3), it follows that 25n −
7m ≡ 0 (mod 3).

For the second part of the problem, we first remark that if m is odd, then any
number a = 25n − 7m − 3m is divisible by 15. This follows from the first part
together with

7m + 3m ≡ 2m + (−2)m ≡ 0 (mod 5).

Moreover, for m = n = 1 one obtains 25 − 7 − 3 = 15.
Assume now that m is even, say m = 2k. Then

7m + 3m = 72k + 32k ≡ ((−3)2k + 32k) (mod 10)

≡ 2 · 9k (mod 10) ≡ ±2 (mod 10) ≡ 2 or 8 (mod 10).

So, the last digit of the number 25n − 7m − 3m is either 3 or 7. Because the
number 25n − 7m − 3m is divisible by 3, the required number cannot be 7. The
situation |25n − 7m − 3m | = 3 also cannot occur, because 25n − 7m − 3m ≡ −1
(mod 8).

Problem 11.8. Given an integer d, let

S = {m2 + dn2 | m, n ∈ Z}.
Let p, q ∈ S be such that p is a prime and r = q

p is an integer. Prove that
r ∈ S.

(1999 Hungary–Israel Mathematical Competition)

Solution. Note that

(x2 + dy2)(u2 + dv2) = (xu ± dyv)2 + d(xv ∓ yu)2.

Write q = a2 + db2 and p = x2 + dy2 for integers a, b, x, y. Reversing
the above construction yields the desired result. Indeed, solving for u and v after
setting a = xu + dyv, b = xv − yu, and a = xu − dyv, b = xv + yu gives

u1 = ax − dby

p
, v1 = ay + bx

p
,

u2 = ax + dby

p
, v2 = ay − bx

p
.

Note that

(ay + bx)(ay − bx) = (a2 + db2)y2 − (x2 + dy2)b2 ≡ 0 (mod p).

Hence p divides one of ay + bx , ay − bx so that one of v1, v2 is an integer.
Without loss of generality, assume that v1 is an integer. Because r = u2

1 + dv2
1 is

an integer and u1 is rational, u1 is an integer as well and r ∈ S, as desired.
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Problem 11.9. Prove that every positive rational number can be represented in
the form

a3 + b3

c3 + d3 ,

where a, b, c, d are positive integers.

(1999 International Mathematical Olympiad Shortlist)

Solution. We first claim that if m, n are positive integers such that the rational
number r = m

n belongs to the interval (1, 2), then r can be represented in the
form

a3 + b3

c3 + d3
.

This can be realized by taking a2 − ab + b2 = a2 − ad + d2, i.e., b + d = a
and a + b = 3m, a + d = 2a − b = 3n; that is, a = m + n, b = 2m − n,
d = 2n − m.

We will prove now the required conclusion. If s > 0 is a rational number, take

positive integers p, q such that 1 <
p3

q3 s < 2. There exist positive integers a, b, d

such that p3

q3 s = a3+b3

a3+d3 , whence s = (aq)3+(bq)3

(ap)3+(dp)3 .

Problem 11.10. Two positive integers are written on the board. The following
operation is repeated: if a < b are the numbers on the board, then a is erased

are equal. Prove that again they are positive integers.

(1998 Russian Mathematical Olympiad)

Solution. Call the original numbers x and y and let L = lcm(x, y). For each num-
ber n on the board consider the quotient L/n; during each operation, the quotients
L/b and L/a become L/b and L/a − L/b. Thus in terms of the quotients L/a
and L/b, the operation is subtracting the smaller quotient from the larger. This is
the Euclidean algorithm, so the quantity gcd(L/a, L/b) is unchanged. Hence the
two equal numbers on the board are L/ gcd(L/x, L/y). But gcd(L/x, L/y) = 1,
because otherwise x and y would both divide L/ gcd(L/x, L/y) and L would not
be a least common multiple. So, the two equal numbers equal L = lcm(x, y), an
integer.

numbers eventually equal N . We prove by induction on the number of steps k
before we obtain (N , N ) that all previous numbers divide N in the sense that N/c
is an integer. Specifically, x | N , so N must be an integer.

The claim is clear for k = 0. Now assume that k steps before we obtain
(N , N ), the numbers on the board are (c, d) = (N/p, N/q) for some integers
p < q. Then reversing the operation, the number erased in the (k +1)st step must
be cd/(c + d) = N/(p + q), completing the inductive step.

Second solution. Again, let x and y be the original numbers and suppose both

and ab/(b − a) is written in its place. At some point the numbers on the board
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Problem 11.11. Let f (x) + a0 + a1x + · · · + am xm, with m ≥ 2 and am �= 0,

that:
(i) a2, a3, . . . , am are divisible by all the prime factors of n;

(ii) a1 and n are relatively prime.
Prove that for every positive integer k, there exists a positive integer c such

that f (c) is divisible by nk.

(2001 Romanian International Mathematical Olympiad Team Selection Test)

Solution. Consider any integers c1, c2 such that c1 �≡ c2 (mod nk). Observe that
if nk | st for some integers s, t where t is relatively prime to n, then nk | s. In
particular, nk � (c1 − c2)t if t is relatively prime to n.

Note that

f (c1) − f (c2) =
m∑

i=1

ai (c
i
1 − ci

2) = (c1 − c2)

m∑
i=1

ai

i−1∑
j=0

c j
1ci−1− j

2 ,

since we have

ci − di = (c − d)

i−1∑
j=0

c j di−1− j .

For any prime p dividing n, p divides a2, . . . , am but not a1. Hence, p does
not divide the second factor t in the expression above. This implies that t is rela-
tively prime to n, so nk does not divide the product (c1 − c2)t = f (c1) − f (c2).

Therefore, f (0), f (1), . . . , f (nk−1) are distinct modulo nk , and one of them,
say f (c), must be congruent to 0 modulo nk . That is, nk | f (c), as desired.

Problem 11.12. Let x, a, b be positive integers such that xa+b = abb. Prove that
a = x and b = xx .

(1998 Iranian Mathematical Olympiad)

Solution. If x = 1, then a = b = 1 and we are done. So we may assume x > 1.
Write x = ∏n

i=1 pγi
i , where the pi are the distinct prime factors of x . Since a

and b divide xa+b, we have a = ∏
pαi

i and b = ∏
pβi

i for some nonnegative
integers αi , βi .

First suppose that some βi is zero, that is, pi does not divide b. Then the given
equation implies that γi (a + b) = αi b, so that (αi − γi )b = aγi . Now pαi

i divides
a but is coprime to b, so pαi

i divides αi − γi also. But pαi
i > αi for αi > 0,

contradiction. We conclude that βi > 0.
Now from the fact that

γi (a + b) = βi + bαi

be a polynomial with integer coefficients. Let n be a positive integer, and suppose
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and the fact that pβi does not divide βi (again for size reasons), we deduce that
pβi also does not divide a; that is, αi < βi for all i and so a divides b. Moreover,
the equation above implies that a divides βi , so we may write b = ca with c ≥ 2
a positive integer.

Write x/a = p/q in lowest terms (so gcd(p, q) = 1). Then the original
equation becomes xa pb = bqb. Now pb must divide b, which can occur only if
p = 1. That is, x divides a.

If x �= a, then there exists an i with αi ≥ γi + 1, so

γi (a + b) = βi + αi b ≥ (γi + 1)b

and so γi a ≥ b. On the other hand, a is divisible by pγi
i , so in particular a > γi .

Thus a2 > b = ca , or
√

c < a1/a ; however, a1/a ≤ √
2 for a �= 3, so this can

hold only for c = 2 and a = 3, in which case b = 8 is not divisible by a, contrary
to our earlier observation.

Thus x = a, and from the original equation we get b = xx , as desired.

Problem 11.13. Let m, n be integers with 1 ≤ m < n. In their decimal repre-
sentations, the last three digits of 1978m are equal, respectively, to the last three
digits of 1978n. Find m and n such that m + n is minimal.

(20th International Mathematical Olympiad)

Solution. Since 1978n and 1978m agree in their last three digits, we have

1978n − 1978m = 1978m(1978n−m − 1) ≡ 0 (mod 103).

From the decomposition 103 = 23 · 53 and since 1978n−m − 1 is odd, we
obtain 23 | 1978m . From 1978 = 2 · 989, it follows that m ≥ 3.

Let us write m + n = (n − m) + 2m. Our strategy is to minimize m + n by
taking m = 3 and seek the smallest value of n − m such that

1978n−m ≡ 1 (mod 53).

Since (1978, 5) = 1, the problem is to find the order h of the residue class
1978 (mod 125). It is known that the order h of an invertible residue class modulo
m is a divisor of ϕ(m), where ϕ is the Euler function. In our case,

ϕ(125) = 52(5 − 1) = 100.

Hence, h | 100. From 1978h ≡ 1 (mod 125) we also have 1978h ≡ 1 (mod 5).
But 1978h ≡ 3h (mod 5). Since the order of the residue class 3 (mod 5) is 4, it
follows that 4 | h. Using the congruence 1978 ≡ −22 (mod 125), we obtain

19784 ≡ (−22)4 ≡ 24 · 114 ≡ 42 · 1212

≡ (4 · (−4))2 ≡ (−1)2 ≡ 256 ≡ 6 �≡ 1 (mod 125).
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So we rule out the case h = 4. Because h | 100, the next possibilities are
h = 20 and h = 100. By a standard computation we have

197820 ≡ 65 ≡ 25 ·35 ≡ 32 ·(−7) ≡ −224 ≡ 26 (mod 125) �≡ 1 (mod 125).

Hence we necessarily have h = m − n = 100 and n + m = 106.
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Arithmetic function
A complex-valued function defined on the positive integers.

Arithmetic–geometric mean inequality (AM–GM)
If n is a positive integer and a1, a2, . . . , an are nonnegative real numbers, then

1

n

n∑
i=1

ai ≥ (a1a2 · · · an)
1/n,

with equality if and only if a1 = a2 = · · · = an . This inequality is a special case
of the power mean inequality.

Arithmetic–harmonic mean inequality (AM–HM)
If a1, a2, . . . , an are n positive numbers, then

1

n

n∑
i=1

ai ≥ 1
1
n

∑n
i=1

1
ai

,

with equality if and only if a1 = a2 = · · · = an . This inequality is a special case
of the power mean inequality.

Base-b representation
Let b be an integer greater than 1. For any integer n ≥ 1 there is a unique system
(k, a0, a1, . . . , ak) of integers such that 0 ≤ ai < b, i = 0, 1, . . . , k, ak �= 0, and

n = akbk + ak−1bk−1 + · · · + a1b + a0.

Beatty’s theorem
Let α and β be two positive irrational real numbers such that

1

α
+ 1

β
= 1.

The sets {
α�, 
2α�, 
3α�, . . . }, {
β�, 
2β�, 
3β�, . . . } form a partition of the set
of positive integers.
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Bernoulli’s inequality
For x > −1 and a > 1,

(1 + x)a ≥ 1 + ax,

with equality when x = 0.

Bézout’s identity
For positive integers m and n, there exist integers x and y such that mx + by =
gcd(m, n).

Binomial coefficient (
n

k

)
= n!

k!(n − k)! ,

the coefficient of xk in the expansion of (x + 1)n .

Binomial theorem
The expansion

(x + y)n =
(

n

0

)
xn +

(
n

1

)
xn−1y +

(
n

2

)
xn−2y +· · ·+

(
n

n − 1

)
xyn−1 +

(
n

n

)
yn .

Canonical factorization
Any integer n > 1 can be written uniquely in the form

n = pα1
1 · · · pαk

k and p1 < p2 < · · · < pk,

where p1, . . . , pk are distinct primes and α1, . . . , αk are positive integers.

Carmichael numbers
The composite integers n satisfying an ≡ a (mod n) for any integer a.

Ceiling function
The integer −
−x� is called the ceiling of x and is denoted by �x
.

Complete set of residue classes modulo n
A set S of integers such that for each 0 ≤ i < n there is an element s ∈ S with
i ≡ s (mod n).

Congruence relation
Let a, b, and m be integers. We say that a and b are congruent modulo m if
m | a − b. We denote this by a ≡ b (mod m). The relation “≡” on the set Z of
integers is called the congruence relation.
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Convolution product
The arithmetic function defined by

( f ∗ g)(n) =
∑
d|n

f (d)g
(n

d

)
,

where f and g are two arithmetic functions.

Division algorithm
For any positive integers a and b there exists a unique pair (q, r) of nonnegative
integers such that b = aq + r and r < a.

Euclidean algorithm
Repeated application of the division algorithm:

m = nq1 + r1, 1 ≤ r1 < n,

n = r1q2 + r2, 1 ≤ r2 < r1,

. . .

rk−2 = rk−1qk + rk, 1 ≤ rk < rk−1,

rk−1 = rkqk+1 + rk+1, rk+1 = 0 and rk = gcd(m, n).

This chain of equalities is finite because n > r1 > r2 > · · · > rk > 0.

Euler’s theorem
Let a and m be relatively prime positive integers. Then

aϕ(m) ≡ 1 (mod m).

Euler’s totient function
The function ϕ defined by ϕ(m) = the number of all positive integers n less than
or equal to m that are relatively prime to m.

Factorial base expansion
Every positive integer k has a unique expansion

k = 1! · f1 + 2! · f2 + 3! · f3 + · · · + m! · fm,

where each fi is an integer, 0 ≤ fi ≤ i and fm > 0.

Fermat’s little theorem
Let a be any integer and let p be a prime. Then

a p ≡ a (mod p).
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Fermat numbers
The integers fn = 22n + 1, n ≥ 0.

Fibonacci sequence
The sequence defined by F0 = 0, F1 = 1, and Fn+1 = Fn + Fn−1 for every
positive integer n.

Floor function
For a real number x there is a unique integer n such that n ≤ x < n + 1. We say
that n is the greatest integer less than or equal to x or the floor of x and we write
n = 
x�.

Fractional part
The difference x − 
x� is called the fractional part of x and is denoted by {x}.
Fundamental theorem of arithmetic
Every integer greater than 1 has a unique representation (up to a permutation) as
a product of primes.

Hermite’s identity
For any real number x and for any positive integer n,


x� +
⌊

x + 1

n

⌋
+

⌊
x + 2

n

⌋
+ · · · +

⌊
x + n − 1

n

⌋
= 
nx�.

Lagrange’s theorem
If the polynomial f (x) with integer coefficients has degree d modulo p (where p
is a prime), then the number of distinct roots of f (x) modulo p is at most p.

Legendre’s formula
For any prime p and any positive integer n,

ep(n) =
∑
i≥1

⌊
n

pi

⌋
, where n! =

∏
p≤n

prime

pep(n).

Legendre function
Let p be a prime. For any positive integer n, ep(n) is the exponent of p in the
prime factorization of n!.
Legendre symbol
Let p be an odd prime and let a be a positive integer not divisible by p. The
Legendre symbol of a with respect to p is defined by(

a

p

)
=

{
1 if a is a quadratic residue mod p,

−1 otherwise.



Glossary 373

Linear Diophantine equation
An equation of the form

a1x1 + · · · + an xn = b,

where a1, a2, . . . , an, b are fixed integers.

Linear recursion of order k
A sequence x0, x1, . . . , x2, . . . of complex numbers defined by

xn = a1xn−1 + a2xn−2 + · · · + ak xn−k, n ≥ k,

where a1, a2, . . . , ak are given complex numbers and x0 = α0, x1 = α1, . . . ,
xk−1 = αk−1 are also given.

Lucas’s sequence
The sequence defined by L0 = 2, L1 = 1, Ln+1 = Ln + Ln−1 for every positive
integer n.

Mersenne numbers
The integers Mn = 2n − 1, n ≥ 1.

Möbius function
The arithmetic function μ defined by

μ(n) =
⎧⎨
⎩

1 if n = 1,

0 if p2 | n for some prime p > 1,

(−1)k if n = p1 · · · pk, where p1, . . . , pk are distinct primes.

Möbius inversion formula
Let f be an arithmetic function and let F be its summation function. Then

f (n) =
∑
d|n

μ(d)F
(n

d

)
.

Multiplicative function
An arithmetic function f �= 0 with the property that for any relatively prime
positive integers m and n,

f (mn) = f (m) f (n).

Number of divisors
For a positive integer n denote by τ(n) the number of its divisors. It is clear that

τ(n) =
∑
d|n

1.
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Order modulo m
We say that a has order d modulo m, denoted by om(a) = d, if d is the smallest
positive integer such that ad ≡ 1 (mod m). We have on(1) = 1 and on(0) = 0.

Pell’s equation
The quadratic equation u2 − Dv2 = 1, where D is a positive integer that is not a
perfect square.

Perfect number
An integer n with the property that the sum of its divisors is equal to 2n.

Power mean inequality
Let a1, a2, . . . , an be any positive numbers for which a1 +a2 +· · ·+an = 1. For
positive numbers x1, x2, . . . , xn we define

M−∞ = min{x1, x2, . . . , xk},
M∞ = max{x1, x2, . . . , xk},
M0 = xa1

1 xa2
2 · · · xan

n

Mt = (
a1xt

1 + a2xt
2 + · · · + ak xt

k

)1/t
,

where t is a nonzero real number. Then

M−∞ ≤ Ms ≤ Mt ≤ M∞

for s ≤ t .

Prime number theorem
The relation

lim
n→∞

π(n)

n/ log n
= 1,

where π(n) denotes the number of primes ≤ n.

Prime number theorem for arithmetic progressions
Let π

(n)
r,a be the number of primes in the arithmetic progression a, a+r, a+2r, a+

3r, . . . , less than n, where a and r are relatively prime. Then

lim
n→∞

πr,a(n)

n/ log n
= 1

ϕ(r)
.

This was conjectured by Legendre and Dirichlet and proved by de la Vallée
Poussin.
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Pythagorean equation
The Diophantine equation x2 + y2 = z2.

Pythagorean triple
A triple of the form (a, b, c) where a2+b2 = c2. All primitive Pythagorean triples
are given by (m2 − n2, 2mn, m2 + n2), where m and n are positive integers.

Quadratic residue mod m
Let a and m be positive integers such that gcd(a, m) = 1. We say that a is a
quadratic residue mod m if the congruence x2 ≡ a (mod m) has a solution.

Quadratic reciprocity law of Gauss
If p and q are distinct odd primes, then(

q

p

) (
p

q

)
= (−1)

p−1
2 · q−1

2 .

Root mean square–arithmetic mean inequality
For positive numbers x1, x2, . . . , xn ,√

x2
1 + x2

2 + · · · + x2
k

n
≥ x1 + x2 + · · · + xk

n
.

Sum of divisors
For a positive integer n denote by σ(n) the sum of its positive divisors including
1 and n itself. It is clear that

σ(n) =
∑
d|n

d.

Summation function
For an arithmetic function f , the function F defined by

F(n) =
∑
d|n

f (d).

Wilson’s theorem
For any prime p, (p − 1)! ≡ −1 (mod p). So n is prime if and only if (n − 1)! ≡
−1 (mod n).
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