Problem 1.

Link
Find all functions $f: R \longrightarrow R$ such as:

$$
f\left(x^{2}+y^{2}\right)=f\left(x^{2}\right)+f\left(y^{2}\right)+2 f(x) f(y)
$$

Bài Toán 1.

Link

Tìm các hàm số $f: R \longrightarrow R$ thỏa mãn:

$$
f\left(x^{2}+y^{2}\right)=f\left(x^{2}\right)+f\left(y^{2}\right)+2 f(x) f(y)
$$

Solution.

Let $P(x, y)$ the assertion

$$
\begin{gathered}
f\left(x^{2}+y^{2}\right)=f\left(x^{2}\right)+f\left(y^{2}\right)+2 f(x) f(y) \\
P(x, 0)
\end{gathered} \Longrightarrow f(0)(1+2 f(x))=0
$$

and so, if $f(0) \neq 0$, then $f(x)=-\frac{1}{2} \quad \forall x$ which indeed is a solution.
Let us from now consider that $f(0)=0$
$f(x)=0 \quad \forall x$ is also a solution and let us from now consider that $\exists u$ such that $f(u) \neq 0$
Comparing $P(u, x)$ and $P(u,-x)$, we get $f(-x)=f(x)$ and $f(x)$ is an even function and we can write $f(x)=g\left(x^{2}\right)$
Notice then that $P(x, y)$ becomes

$$
P^{\prime}(x, y): g\left(x^{2}+2 x y+y^{2}\right)=g\left(x^{2}\right)+g\left(y^{2}\right)+2 g(x) g(y) \forall x, y \geq 0
$$

1) $\exists h(x)$ such that we have new assertion

$$
Q(x, y): g(x+y)=g(x) h(y)+g(y) \forall x, y \geq 0
$$

$$
\begin{aligned}
P\left(x, \sqrt{y^{2}+z^{2}}\right) \Longrightarrow f\left(x^{2}+y^{2}+z^{2}\right) & =f\left(x^{2}\right)+f\left(y^{2}+z^{2}\right)+2 f(x) f\left(\sqrt{y^{2}+z^{2}}\right) \\
& =f\left(x^{2}\right)+f\left(y^{2}\right)+f\left(z^{2}\right)+2 f(x) f\left(\sqrt{y^{2}+z^{2}}\right)+2 f(y) f(z)
\end{aligned}
$$

Same, :
$P\left(y, \sqrt{x^{2}+z^{2}}\right) \Longrightarrow f\left(x^{2}+y^{2}+z^{2}\right)=f\left(x^{2}\right)+f\left(y^{2}\right)+f\left(z^{2}\right)+2 f(y) f\left(\sqrt{x^{2}+z^{2}}\right)+2 f(x) f(z)$
And so

$$
f(x) f\left(\sqrt{y^{2}+z^{2}}\right)+f(y) f(z)=f(y) f\left(\sqrt{x^{2}+z^{2}}\right)+f(x) f(z)
$$

Which implies

$$
g\left(x^{2}\right) g\left(y^{2}+z^{2}\right)+g\left(y^{2}\right) g\left(z^{2}\right)=g\left(y^{2}\right) g\left(x^{2}+z^{2}\right)+g\left(x^{2}\right) g\left(z^{2}\right)
$$

And so

$$
\begin{gathered}
g(x) g(y+z)+g(y) g(z)=g(y) g(x+z)+g(x) g(z) \forall x, y, z \geq 0 \\
\Longrightarrow g(x)(g(y+z)-g(z))=g(y)(g(x+z)-g(z))
\end{gathered}
$$

Let $y=u^{2}$ such that $g(y)=f(u) \neq 0$. the above equation becomes

$$
g(x+z)-g(z)=g(x) \frac{g\left(u^{2}+z\right)-g(z)}{g\left(u^{2}\right)}
$$

And so $g(x+z)-g(z)=g(x) h(z)$ for some function $h(x)$ Q.E.D.
2) The only possibilities are $h(x)=0$ and $h(x)=1$

$$
\begin{aligned}
& Q\left(x, u^{2}\right) \Longrightarrow g\left(x+u^{2}\right)=g(x) h\left(u^{2}\right)+g\left(u^{2}\right) \\
& Q\left(y^{2}, x\right) \Longrightarrow g\left(x+u^{2}\right)=g\left(u^{2}\right) h(x)+g(x)
\end{aligned}
$$

Subtracting, we get $g\left(u^{2}\right)(h(x)-1)=g(x)\left(h\left(u^{2}\right)-1\right)$
If $h\left(u^{2}\right)=1$, we get $h(x)=1 \quad \forall x$ and so $g(x+y)=g(x)+g(y)$
Then $P^{\prime}(x, y)$ implies $g(x y)=g(x) g(y)$
And this double equation is very classical and has a unique non constant solution $g(x)=x$ and so $f(x)=x^{2}$ which indeed is a solution
If $h\left(u^{2}\right)=\neq 1$, we get $g(x)=a(h(x)-1)$ But then :

$$
\begin{aligned}
Q\left(u^{2}, x+y\right) & \Longrightarrow g\left(u^{2}+x+y\right)=g\left(u^{2}\right) h(x+y)+g(x+y)=g\left(u^{2}\right) h(x+y)+g(x) h(y)+g(y) \\
Q\left(u^{2}+x, y\right) & \Longrightarrow g\left(u^{2}+x+y\right)=g\left(u^{2}+x\right) h(y)+g(y)=g\left(u^{2}\right) h(x) h(y)+g(x) h(y)+g(y)
\end{aligned}
$$

And so $h(x+y)=h(x) h(y) \quad \forall x, y \geq 0$
This is a classical equation which gives : either $h(x)=0 \quad \forall x$, either $h(x)=e^{c(x)}$ where $c(x)$ is any solution of Cauchy equation.
$h(x)=0 \quad \forall x \Longrightarrow g(x)$ is constant and so $f(x)$ is constant and so the two solutions we already know $f(x)=0$ or $f(x)=-\frac{1}{2}$
$h(x)=e^{c(x)}$: we get $g(x)=a\left(e^{c(x)}-1\right)$ Plugging this in $P^{\prime}(x, y) \Longrightarrow g(x)=0$ and so $f(x)=0$ Notice that this point is not obvious at all and I had a lot of difficulties to show it. I could give the directions I used if somebody asked.
3) Synthesis of solutions :

We found three solutions : $f(x)=0 \quad \forall x ; f(x)=-\frac{1}{2} \quad \forall x ; f(x)=x^{2} \quad \forall x$.

Problem 2.

Link
Solve this inequation for $x \in R$

$$
\sqrt{x^{2}-x-2}+3 \sqrt{x} \leq \sqrt{5 x^{2}-4 x-6}
$$

Bài Toán 2.

Link

Giải bất phương trình sau với $x \in R$

$$
\sqrt{x^{2}-x-2}+3 \sqrt{x} \leq \sqrt{5 x^{2}-4 x-6}
$$

Solution.

$\Longleftrightarrow(x+1)(x-2) \geq 0$ and $x \geq 0$ and $5 x^{2}-4 x-6 \geq 0$
and (squaring) $3 \sqrt{x^{3}-x^{2}-2 x} \leq 2 x^{2}-6 x-2$
$\Longleftrightarrow x \geq 2$ and $2 x^{2}-6 x-2 \geq 0$ and (squaring) $4 x^{4}-33 x^{3}+37 x^{2}+42 x+4 \geq 0$
$\Longleftrightarrow x \geq \frac{3+\sqrt{13}}{2}$ and $\left(x^{2}-6 x-4\right)\left(4 x^{2}-9 x-1\right) \geq 0 \Longleftrightarrow x \geq 3+\sqrt{13}$

Problem 3.

Link
$0<x_{1}<2, x_{n+1}=x_{n}\left(x_{n}-1\right)$. Find $\lim x_{n}$

Bài Toán 3.

Link

Cho $0<x_{1}<2, x_{n+1}=x_{n}\left(x_{n}-1\right)$.Tìm $\lim x_{n}$

Solution.

We get $x_{n} \in\left[-\frac{1}{4}, 2\right)$ and $x_{n+2}=x_{n}^{4}-2 x_{n}^{3}+x_{n}=x_{n} g\left(x_{n}\right)$ with $g(x)=x^{3}-2 x^{2}+1$
If $x_{k}=0$ for some k, then $x_{n}=0 \forall n \geq k$
If $x_{n} \neq 0 \forall n$, it's easy to show that for $x \in\left[-\frac{1}{4}, 0\right) \cup(0,2):|g(x)|<1$ and so $\left|x_{n+2}\right|<\left|x_{n}\right|$
So $\left|x_{2 n}\right|$ is a positive decreasing sequence. So it has a limit $\in[0,2)$, which is root of $x^{4}-2 x^{2}+$ $x=x$, and so is zero. Same for $x_{2 n+1}$
Hence the answer : $\lim _{n \rightarrow+\infty} x_{n}=0$

Problem 4.

Link

Solve the system of equation:

$$
\left\{\begin{array}{l}
x^{4}-y^{4}=\frac{121 x-122 y}{4 x y} \\
x^{4}+14 x^{2} y^{2}+y^{4}=\frac{122 x+121 y}{x^{2}+y^{2}}
\end{array}\right.
$$

Bài Toán 4.

Link

Giải hệ phương trình:

$$
\left\{\begin{array}{l}
x^{4}-y^{4}=\frac{121 x-122 y}{4 x y} \\
x^{4}+14 x^{2} y^{2}+y^{4}=\frac{122 x+121 y}{x^{2}+y^{2}}
\end{array}\right.
$$

Solution.

Problem 5.

Link
Solve in integers the following equation

$$
(x y-1)^{2}=(x+1)^{2}+(y+1)^{2}
$$

Bài Toán 5.

Link

Giải trong tập số nguyên phương trình sau

$$
(x y-1)^{2}=(x+1)^{2}+(y+1)^{2}
$$

Solution.

Firstly, we will show that if $|x|,|y|>2$ then there is no solution.
i) $x, y>0$. In this case by symmetry, we can assume that $x \geq y$

Then $x y-1 \geq 3 x-1>\sqrt{2}(x+1)$ since $x, y>2$ and so $(x y-1)^{2}>2(x+1)^{2} \geq(x+1)^{2}+(y+1)^{2}$ which is a contradiction.
ii) $x, y<0$. In this case let $x=-a, y=-b$ where $a, b>2$ and $a \leq b$

Hence $a b+1 \geq 3 b+1>\sqrt{2}(b+1)>\sqrt{2}(b-1)$. Hence $(a b+1)^{2}>2(b-1)^{2} \geq(a-1)^{2}+(b-1)^{2}$ which is a contradiction.
iii) $x y<0$. In this case since $x \geq y, x>0, y<0$. Let $y=-z, x, z>2$
$(x z+1)^{2}=(x+1)^{2}+(z-1)^{2}$
We can show that $(x z+1)^{2}>(x+1)^{2}+(z+1)^{2}$ when $x, z>2$ in a similar way in part $\left.\mathbf{i}\right)$
So, the only remaining case is $\min \{|x|,|y|\} \leq 2$
$x=0 \Longrightarrow y=-1$
$x=1 \Longrightarrow y=-1$
$x=-1 \Longrightarrow$ the equation holds for all $y \in \mathbb{Z}$
$x=2 \Longrightarrow y=-1 \vee y=3$
$x=-2 \Longrightarrow y=-1$
So, all solutions are $\{(2,3),(3,2)\} \cup\{(x, y) \in \mathbb{Z} \times \mathbb{Z}: x=-1 \vee y=-1\}$
Another way: Rearrange to $(x+1)(y+1)((x-1)(y-1)-2)=0$

