Determine the number of odd binomial coefficients in the expansion of $(x+y)^{1000}$.

Theorem 0.1. The number of odd entries in row n of Pascal's Triangle is 2 raised to the number of 1's in the binary expansion of n.

Proof. The binomial theorem says that

$$
(a+b)^{n}=\sum_{k=0}^{n}\binom{n}{k} a^{n-k} b^{k} .
$$

So with $a=1$ and $b=x$ we have

$$
(1+x)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{k} .
$$

If we reduce the coefficients mod 2 , then it's easy to show by induction on n that for $n \geq 0$,

$$
(1+x)^{2^{n}} \equiv\left(1+x^{2^{n}}\right)(\bmod 2) .
$$

Thus:
$(1+x)^{10}=(1+x)^{8}(1+x)^{2} \equiv\left(1+x^{8}\right)\left(1+x^{2}\right)(\bmod 2)=\left(1+x^{2}+x^{8}+x^{10}\right)(\bmod 2)$.
Since the coefficients of these polynomials are equal mod 2, using the binomial theorem we see that $\binom{n}{k}$ is odd for $k=0,2,8,10$, and it is even for all other k. Similarly, the product

$$
(1+x)^{11} \equiv\left(1+x^{8}\right)\left(1+x^{2}\right)\left(1+x^{1}\right)(\bmod 2)
$$

is a polynomial containing $8=2^{3}$ terms, being the product of 3 factors with 2 choices in each.
In general, if n can be expressed as the sum of p distinct powers of 2 , then $\binom{n}{k}$ will be odd for 2^{p} values of k. But p is just the number of 1 's in the binary expansion of n, and $\binom{n}{k}$ are the numbers in the $n^{\text {th }}$ row of Pascal's triangle.

