Jose Espinosa’s Problems in Mathematical Induction

Problems

1. Let p be an odd prime, and let

F(n)
p—1 p—l ( . 1)

=S kot DN Gt gy PP — [(p—1n+1]
k=1 k=1

for n > 0. Prove that F(n) is divisible by p* for all n > 0.
2. Let F,, denote the n'" Fibonacci number. Prove that
14 22" + 3% 4 2[(—=1)" + 1]
is divisible by 7 for all n > 0.
3. Let F, denote the n'" Fibonacci number. Prove that
2(2%" 4+ 52 + 62") + 3(—1)" (= 1) + 1
is divisible by 13 for all n > 0.

4. Let p and ¢ be odd primes, such that p < ¢, and ¢ — 1 is not divisible
by p.
Let ai, ao, ..., a,, be positive integers such that both Z:’il a; and
S alP? are divisible by p2q?, for any odd positive integer k. Also, a;

i=1""
is not divisible by neither p nor ¢ for all 7.

Let
Zap 1)(g—1)n+1

for n > 0. Prove that F(n) is divisible by p?¢?* for all n > 0.

5. Let a, b, and ¢ be three positive integers, where ¢ = a + b. Let d be an
odd factor of a? + b* + ¢2. Prove that for all positive integers n:

(a) a4 pSn~* 4 O g divisible by d.
(b) a® =2 + 1972 4+ 5772 is divisible by d*.
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10.
11.

(c) a*" +b*" +¢*" is divisible by d.

(d) a*" +b*" + ¢*" is divisible by d?.
The function F'(n) satisfies F'(1) = 1, F(2) = 6, and F(n) = F(n —
1) + F(n — 2) for all n > 3. Prove that for all n > 2,

(a) >0 F(i)*=F(n)F(n+1) —5, and

(b) F(n)>+ F(n+1)>=F(2n +4) — F(2n — 3).
Let p be a prime of the form 4k + 3. Prove that

2k+1

on
2.7
i=1

is divisible by p for all n > 1.
Let p be a prime of the form 4k + 1, where k is odd.

(a) Consider the quadratic residues modulo p, reduced so that they
are between 1 and p — 1 inclusive. Show that exactly k& of these
residues are between 1 and 2k inclusive.

(b) Let aq, as, ..., ax be the quadratic residues specified in part (a).

Prove that i

2”
P

i=1
is divisible by p for all n > 1.

Prove that for all positive integers n,
227171 +42n71 +92n71
is not a perfect square.
Prove that for all positive integers n, 82" — 52" is not a perfect square.

Prove that for all integers n > 0,
2(13%" 30" 4- 100"+ + 200°"*)
+ 2n(n —2)(13" 4+ 30" + 100" + 2007)
—n(n —1)(13" + 30" + 100" + 200'?)
is divisible by 73.



12.

13.

14.

15.
16.

17.

18.

19.

Let f be a function taking the positive integers to the positive integers,
and let p be a prime. There exist positive integers ¢ and k such that
f(n+¢) — kf(n) is divisible by p for all n. Prove that there exists a
positive integer b such that f(n + bc) — f(n) is divisible by p for all n.

Prove that for all integers n > 0,
14 94nt2 | 3ant2 | gdnd42 | pAnt2 4 Gdnt2
is divisible by 13.
Prove that for all integers n > 0,
2(34F3 4 44 +3) _ 25n? 4 65n + 68
is divisible by 125.
Prove that 22" + 32" + 52" is divisible by 19 for all positive integers n.

Let a be a real number, and let f(n) and g(n) be functions satisfying
f(n)=(a—=1)f(n—1)+af(n—2) foralln >3 and g(n) = f(n+2)+
af(n+1)+ (a—1)f(n) for all n > 1. Prove that for all n > 1,

g9(n) = (2a—1)a"'[f(2) + f(1)].

The function f(n) satisfies f(1) = f(2) = 1, and f(n) = 3[f(n — 1) +

f(n—2)] 4+ 1 for all n > 3. Prove that for all positive integers n,

f(3n) + f(3n+ 1) is divisible by 32.

Let p be a prime greater than 5. Prove that for all integers n > 0,
100(2%~ D+l — 3p=hntl _ 5—lntl | gle—1ntl)

— p(2100(-D+L _ 3100(p—1)+1 _ 5100(p—1)+1 4 g100(p—1)+1)
is divisible by p?.

Let p be an odd prime. The function F(n) takes the non-negative
integers to the integers, and satisfies F'(n + 3) — 3F(n + 2) + 3F(n +
1) — F(n) =0 (mod p?) for all n > 0. Prove that for all n > 0,

(n—1)(n—2)
2

n(n —1)
2

F(n) = F(0)—n(n—2)F(1)+ F(2) (mod p?).



20.

21.

22.

23.

24.

25.

The function a(n) satisfies a(1) = a(2) = 1, and a(n) = a(n — 1) +
2a(n — 2) + 1 for all n > 3. Prove that for all positive integers n,

w1 (D1
a(n) =2""" — —

Let n > 3 be a positive integer. Arrange the first n? Fibonacci numbers
in an n X n array, spiralling counter-clockwise. For example, for n = 3
and n = 4, the arrays are:

987 | 610 | 377 | 233
b1 3|2 5 3 2 | 144
8 111 8 1 1 | 89
1312134 13 | 21 | 34 | 55

Note that 21+ 1 = 2(8+3) and 610+ 5 = 5(89+ 34). Generalize these
results and prove.

What happens if we replace Fibonacci numbers by Lucas numbers in
the previous problem?

Let a and b be positive integers which are relatively prime to each other,
and let p > 3 be a prime dividing a?+ab+b?. Prove that for all integers
n >0,

qP=n+4 o plp—n+d 4 (a + b)(p—l)n+4
is divisible by p?.
Let p be a prime of the form 6k + 5. Prove that

3k+2

.9.Qn
E:Z23

i=1

is divisible by p for all n > 0.

Let F,, denote the n' Fibonacci number. Prove that
Fs +F,3+1 +F3+2 +F3+3 == 3F2n+3

for all n > 0.



26.

27.

28.

29.

30.

31.

Let F,, denote the n'" Fibonacci number. Prove that
Fsnis + Foy
is divisible by 11 for all n > 0.

Let k be a fixed positive integer and let p be an odd prime, such that
p > k. Let F(n) be a function taking the integers to the integers

satisfying
k

k .
Z () (- "F(n+i)=0 (mod p")
i
=0
for all integers n. Prove that if F(ag), F(a1), ..., F(ax—1) are all

divisible by p*, where the a; are all distinct modulo p, then F(n) is
divisible by p* for all n.

Let F, denote the n'® Fibonacci number, and for all n > 0, let G,,(z)
be the polynomial 892" — F,z'' — F,,_1;. Prove that for all n > 0,
G (z) is divisible by 22 — z — 1.

Let p be a prime of the form 4k + 1. Prove that for all n > 0,

2k
Z jan+2
i=1

is divisible by p.

Let p be an odd prime. For all integers n > 0, let

— p—1)n+1 p(p - 1)
N R L

and let G(n) = 500500F (n) — n(n — 1)F(1001)/2. Prove that G(n) is
divisible by p? for all n > 0.

Let p be an odd prime, and let 2 be the greatest power of 2 dividing
p—1.Let 1 <j<k,and let m = (p—1)/2%.

(a) Show that there exist m values of a, from 1 to (p —1)/2 inclusive,
such that a®*™ =1 (mod p).
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(b) Let ay, asg, ..., an, be the m values in part (a). Show that

m
2n
>_q

i=1
is divisible by p for all n > 0, except when n is divisible by m.

32. Prove or disprove the following: Under the assumptions of problem 23,
let
f(n) — gp—Dn+4 + pp—Dn+4 + (a + b)(pfl)n+4.
Then
12f(n) = (n —3)(n —4)f(0) (mod p?).

Hints and Solutions

1. We claim that F(n+3) —3F(n+2)+3F(n+1) — F(n) =0 (mod p?)
for all n > 0, and that F(2) = F(1) = F(0) = 0 (mod p?). Then the
result follows from induction.

Let
p—1
G(n) =) kPl and
k=1
n(n — 1) = plp—1)
H(n) = Z (k%' — 3k?) — [(p—1)n+1]
k=1

so F'(n) = G(n)+ H(n).

The function H(n) is quadratic in n, so H(n+3) —3H(n+2)+3H (n+
1) — H(n) =0 for all n > 0.

Let k be an integer, 1 < k < p— 1. Then by Fermat’s Little Theorem,



kP~' —1 =0 (mod p). Cubing this, we get

AP — 3=l 4 3l — 1 =0
- k?( 1)(n+3)+1 Sk(p 1)(n+2)+1

+3]€(P—1 (n+1)+1 _ k(p—l)n—i—l =0

p—1 p—1
= Z Le-Dn+3)+1 _ 3 Z L(p=D(n+2)+1
k=1 k—1

p—1
+3Zk<p DO § et =
k=1
= G(n+3)— 3G(n +2)+3G(n+1)-3G(n)=0 (mod p?).

Therefore, F(n +3) — 3F(n+2) +3F(n+1) —3F(n) = 0 (mod p?)
for all n > 0.

Now,

—1
0 X L pp—1) _
)_E —T—O,and
k=1

= — — plp—1)(2p—1)
F2) =) kK" =) kP 4 3k - > = 0.
k=1 k=1

k=1

To calculate F'(1), as before, let k£ be an integer, 1 < k < p—1. Then
by the Binomial Theorem,

kP 4+ (p— k)P = kP 4+ pP — (le)pp1k+"'+(—1)p2(p€2>p2kpl

(e

= p*kP~! (mod p*).

By Fermat’s Little Theorem, kP! —1 = pt for some integer t. Therefore,
p?kP~! = p*(1 4+ pt) = p* (mod p*). Summing from k=1 to (p —1)/2,
we obtain

-1
ka £ -p®  (mod p?).



Therefore,

F(l):pikp—wzo (mod p?).

. Hint: Prove that the expression has period 6 modulo 7.
. Hint: Prove that the expression has period 12 modulo 13.

. Since a; is relatively prime to both p and ¢, by Fermat’s Little Theorem,

al?" DD _ 1 ig divisible by pq. Squaring this, we get
a?(pfl)(qfl) _ 2a§p71)(q71) +1=0
- agpfl)(qfl)("Jr?)Jrl _ 2a(p*1)(qfl)(n+1)+l 4 agpfl)(qfl)mrl -0

ap 1(g—1)(n+1)+1

Ms

:>Z(p1q1n+2 _9

i=1

+Zap D(g—=Dn+1 _ —0

= F(n+2)—2F(n+1)+F(n)EB (mod p*q?).

7

Also,

F(0) = Zai =0 (mod p*¢?).
=1
It is now easy to prove by induction that F(n) = nF(1) (mod p*¢?)
for all n > 0.

Now, p does not divide p — 1, and p does not divide ¢ — 1 by definition.
Also, ¢q does not divide neither p—1 nor ¢ — 1. Therefore, (p—1)(¢—1)
is relatively prime to p?¢®.

By a result in number theory, there exists an n such that n(p—1)(¢—1)+
1 =0 (mod p?¢?). For this n, n is clearly relatively prime to p?q*. Also,
p—1iseven, son(p—1)(¢—1)+1 is an odd multiple of pg. Therefore,
F(n) = 0 (mod p?¢?). However, F(n) = nF (1) (mod p?¢?), and n is
relatively prime to p?q?. We conclude that F(1) = 0 (mod p*¢?), and
hence, that F(n) =nF(1) =0 (mod p%¢?) for all n > 0.
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5. Let s, = a* + b + ¢*" for all n. First, a® + b* + ¢* = 2(a® + ab + b?),
and since d is odd, d divides a?® + ab + b?. Also,

a’b? + a*c® + b*c? = a*b* + (a® + b*)(a + b)?

= a' +2a°b + 3a°b* + 2ab® + b*
= (a® + ab + b*)?,

so a’b? +a*c® + b*c? is divisible by d?. Finally, by results on recursions,

on = (a2 + 0 + P)sp1 — (20 + 2P + B P)s_s + 2B P50
for all n > 3.
(a) Note that a®=* + 9"~ + 71 = 55, 5, and
S3n_o = (a® 4+ b* + ?)s3p_3 — (a*V? + a*c? + b*C?) s34 + a*b*C* 53,5

for all n > 2. For n = 2, s3,_5 = s; = a®+ b + ¢, which is divisible by
d. Also, a?b? + a?c? + b?c? is divisible by d. Hence, by induction, ss,_s
is divisible by d for all n > 1.

(b) Note that a®"2 + =2 4 672 = 53, |, and
San_1 = (a® + V% + *)s3n_g — (a®V? 4 a*c® + b?c?)s3,_5 + a*b?c*s3,_4

foralln > 2. Forn = 2, s3,,_4 = 89 = a*+b*+c* = 2a* +4a3b+6a2b* +
4ab® +2b* = 2(a®+ab+b?)?, which is divisible by d*. By part (a), s3,_2
is divisible by d. Also, a®+b%+c? is divisible by d and a?b? +a?c? +b2c?
is divisible by d?. Hence, by induction, ss,_; is divisible by d? for all
n > 1.

(c) For all n > 1, 2" is even, so 2" is congruent to 0, 2, or 4 modulo 6.
However, congruence to 0 implies divisibility by 3, so 2" is congruent
to 2 or 4. The result then follows from parts (a) and (b).

(d) It is easy to show that 4" = 4 (mod 6) for all n > 1. The result
then follows from part (b).

6. (a) Hint: Show that for all k > 1, F(k)* = F(k+1)F(k)—F(k)F(k—1).
Sum this from k =1 to n.



(b) Let A(n) = F(n)*+F(n+1)%> and B(n) = F(2n+4)— F(2n—3) for
all n > 2. Then A(2) = B(2) = 85 and A(3) = B(3) = 218. We claim
that A(n) —3A(n—1)+ A(n—2)=B(n)—3B(n—1)+B(n—2)=0
for all n > 4. Then it follows that A(n) = B(n) for all n > 2.

Now,

A(n) —3A(n—1)+ A(n —2)

F(n+1)>+ F(n)*=3F(n)*=3F(n -1+ F(n—1)*+ F(n —2)*

=[F(n)+ F(n—1)*—=2F(n)> —2F(n — 1)+ [F(n) — F(n — 1))?
(n)>+2F(n)F(n—1)+ F(n —1)> = 2F(n)* — 2F(n — 1)*

F
+ F(n)?> = 2F(n)F(n — 1)+ F(n — 1)
0.

Also,

B(n) —3B(n—1)+ B(n —2)

= F(2n+4) — F(2n — 3) — 3F(2n + 2) + 3F(2n — 5) + F(2n) — F(2n —7)

=F(2n+4)—-3F2n+2)+ F(2n) — F(2n —3)+3F(2n —5) — F(2n —7)

=F2n+3)+F2n+2)—-3F2n+2)+ F(2n+2) — F(2n+ 1)
—F(2n—4) — F(2n—5) + 3F(2n — 5) — F(2n — 5) + F(2n — 6)

=F2n+3)—F2n+2)—F2n+1)—F@2n—4)+ F(2n—5) + F(2n — 6)

= 0.

. We first prove a lemma:

Lemma. For any prime p and positive integer n not divisible by p — 1,

1
-n

i"=0 (mod p).

p

i=1

Proof. Let s denote the given sum, and let g be a primitive root
modulo p. Since n is not divisible by p—1, g™ Z 1 (mod p). Therefore,

p—1 p—1

g"s = Z(gz)" = Zz” =s (mod p),

i=1 =1
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s0 (" —1)s=0= s=0 (mod p). [
Now, let ¢ denote the sum in the problem, and let v denote

p—1 2k+1 4k+2
=D Y
i=1 i=1 1=2k+2
2k+1 2k+1

=) i+ (-
i=1 i=1

=2t (mod p).

Since 2" is not divisible by p — 1 = 4k 4+ 2 = 2(2k + 1), by the Lemma,
u=0 (mod p), sot =0 (mod p).

. (a) Let a be a quadratic residue modulo p, 1 < a < p—1. We claim
that p — a is also a quadratic residue modulo p.

Since a is a quadratic residue, a = 2 (mod p) for some z. A result in

number theory states that there exists a u such that u* = —1 (mod p).
Then (zu)?> = —a = p—a (mod p), so p— a is also a quadratic residue
modulo p. Also, if a < 2k, then p — a > 2k 4 1, and vice-versa.

Now, there are exactly p— 1 = 4k quadratic residues modulo p. There-
fore, exactly half must be between 1 and 2k, and half between 2k + 1
and 4k.

(b) For k+ 1 < i < 2k, let a; = p — aggy1-;. Then by the solution to
part (a), the numbers ay, as, ..., ag; represent the quadratic residues
modulo p.

Let s denote the given sum, and let ¢ denote

2k k 2k
27L o 27L 2n
E a; = E a; + E a;
i=1 i=1 i=k+1
k k
on on
= a; + (p - al)
=1 =1
=2s (mod p)



10.

11.

12.

13.

14.

As i varies from 1 to p — 1, i? takes on every quadratic residue exactly
twice. Therefore,

—_
—_

p— p—

2k
S =03 == as (o)
=1

1 =1

(2

Now p — 1 = 4k, where k is odd, so it cannot divide 2"*!. Therefore,
4s =0 (mod p), which implies that s =0 (mod p).

. The expression is congruent to 2 - (2"7!)2 modulo 13. Since 2 is not a

square modulo 13, neither is the expression.

The expression factors as
(87" 57 ) (8 T +5%7) - (82 +5%)(8+ 5)(8 — 5).

The last factor is 3, and all the other factors are congruent to 2 modulo
3. Therefore, the expression has exactly one factor of 3, and cannot be
a perfect square.

2n71 2n72

Hint: See the solution to Problem 1. For an alternative approach, see
the solution to Problem 14.

If k is divisible by p, then it follows that f(n) is also divisible by p for
all n, and the result follows trivially, so assume that & is not divisible
by p.

By induction, it is easy to prove that f(n+mc) = k™ f(n) for all m > 0,
for all n. Take m = p — 1; then by Fermat’s Little Theorem, kP~! = 1
mod p, so f(n+(p—1)c) = f(n) for all n. Thus, we can take b = p—1.

For all n > 0,
1+24n+2+34n+2+44n+2+54n+2+64n+2
=1+4-3"+9-3"4+3-9"+12-1"+10-9"
=0 (mod 13).

By the Binomial Theorem,
34t = 97. 81"
=27 (1+80)"
= 27 - [1 4 80n + 6400(n)(n — 1)/2]
=27+ 10n +25n* (mod 125).
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Similarly,

4443 = 64 . 256"
=64-(1+5)"
=64-[1+5n+25n(n —1)/2]
= 64 + 20n + 50n>  (mod 125).

Therefore,

2(34F3 4 44 +3) 2502 4 65n + 68
= 2(27 + 10n + 25n® + 64 + 20n + 50n%) — 25n° + 651 + 68
=0 (mod 125).

15. Let F(n) = 22" +3* +52". Then F(1) =38 =2-19 and F(2) = 38-19.
Also, forn > 1,

2n+2 2n+2 2n+2

Fn+2)=2"""+3" " +5
_ 24~2" + 34~2” + 54~2"
=16>" + 81%" + 625%"
= F(n) (mod 19).

Therefore, by induction, F'(n) is divisible by 19 for all n > 1.

Note that this problem is also a special case of Problem 5(c).

16. Foralln > 1, f(n+1)+ f(n) =af(n)+af(n—1) =al[f(n)+ f(n—1)].
Therefore, f(n+ 1) + f(n) = a" *[f(2) + f(1)], and

g(n) = fn+2)+af(n+1)+(a—1)f(n)
=(2a—1)f(n+1)+ (2a—1)f(n)

= (2a=D[f(n+ 1)+ f(n)]

= (2a—1)a" '[f(2) + f(1)].

17. Hint: Show that f(n) has period 12 modulo 32.

18. Hint: See the solution to Problem 1.
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19.

20.
21.

22.

Hint: Show that f(n) = an?® + bn + ¢ (mod p?) for some constants a,
b, and c. By substituting n = 0, 1, and 2, find a, b, and ¢ in terms of

f(0), f(1), and f(2).
This is a straight-forward induction problem.

The problem boils down to showing that Fi,2 o, o+ Fy240, = Fon_1(Fl2+
F,2,) for all n > 1.

Let o = (1++/5)/2 and 3 = (1 — /5)/2. Then a and 3 are the roots
of the equation 22 — 2 —1 =0, and so a8 = —1, and 1/a = a — 1 and

1/8=6-1

Binet’s Formula states that

for all n. Hence,

F2n—1(Fn2 + Fn2+2>

a2n71 . ﬁanl an2 . an + an2+2 . 5n2+2
:< V5 )( V5 )
1

5

o an2ﬁ2nfl 4 /Bn2+2n71 _ an2+262n71 + ﬁn2+2n+1)
_ l(an2+2n—1 + ﬁn2—2n+1 + @n2+2n+1 + ﬁn2—2n+3

5

+ an2—2n+1 + ﬁn2+2n—1 + an2—2n+3 + ﬁn2+2n+1)

-1 Ké i a) (o -2mt2 | g | (% ; ﬁ) (22 ﬁ””?”)]

1 2 2 2 2
— g |:(20é . 1)(0[” —2n+2 +a” +2n) 4 (26 _ 1)<ﬁn —2n+2 4 ﬂn +2n>]
an2—2n+2 _ ﬁn2—2n+2 an2+2n _ 6n2+2n

- V5 TR

= Fn2—2n+2 + Fn2+2n'

2 _ _ 2 2 _ 2
(an +2n—1 a2n lﬁn +a” +2n+1 Oé2n lﬂn +2

Hint: See the solution to Problem 21.
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23. If p divided b, then p would also divide a, contradicting that a and b
are relatively prime. Therefore, b= modulo p exists, and

a’+ab+b* =0

= (ab™ ') 4+ab ' +1=0

= 4(ab™ 1)’ +4ab ' +4=0
= (2ab' +1)>=-3 (mod p).

Hence, —3 is a quadratic residue modulo p. By results in number
theory, this implies that p = 1 (mod 6). Therefore, the result follows
from Problem 5(b).

24. Let s denote the given sum, and let ¢t denote

p—1 3k+2 6k+4

i=1 i=1 i=3k+3
3k+2 3k+2
SRS WS
i=1 i=1
=2s (mod p).

Now, p—1 = 6k+4 = 2(3k+2), which cannot divide 2-3". Therefore,
t =0 (mod p), and so s =0 (mod p).

25. Hint: See the solution to Problem 6(b). Alternatively, show that F? +

F?. | = Fy,yq for all n.

26. Hint: Show that F, has period 10 modulo 11.

27. The given relation implies that F' can be modelled by a polynomial of
degree at most k — 1.

For 0 <:<k—1,let
Fi(n) = (n— ao)(n — ar) -+ (n — a;1)(n — ais1) -+~ (n — ay_1).

Then by the Lagrange Interpolation Formula,

FWE%&V%”Q%

Fk—l (n)
Fr—1(ak-1)

F(ay)+- -+ F(ay-1) (mod p*).
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Since a, — a; is not divisible by p for all s # t, Fj(a;)~! exists modulo
k
pr.

Finally, F(a;) =0 (mod p*) for all i, so F((n) =0 (mod p*) for all n.

28. Let a = (1++/5)/2 and 3 = (1 —+/5)/2, so that a and 3 are the roots
of ¥ —x — 1 = 0. Then it suffices to show that G, (a) = G,(3) = 0.
Note that a3 = —1, so o' g = —1.

By Binet’s Formula,
a™ — ﬁn

F, =
V5

for all n > 0. Hence,

n __ An n—11 _ Agn—11
Gn(a) = 89a™ — (u) all — %

Vb v
QL glign el gl
V5
QI g1l g g1l ge=1l

V5

11 —11
o (89 _ u)
NG

. - all — g1
- (89 NG )
— a"(89 — Fy)

=0.

= 89a" —

= 89" —

That G,,(3) = 0 is similarly shown.

29. Let s denote the given sum, and let ¢ denote

p—1 2k 4k
Z jant2 Z jAn+2 + Z jAn+2
i=1 i=1 i=2k+1
2k 2k
_ Z Z~4n+2 + Z(p _ i)4n+2
i=1 i=1
=2s (mod p).

Since p—1 = 4k cannot divide 4n+2,¢ =0 (mod p), so s =0 (mod p).
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30. By Problem 1,

p—1

—1) —
F(n)= ———= n(n Z (K1 — 3k%) EMC (mod p?),
k=1

where C' is a constant independent of n.

Therefore,

G(n) = 500500F (n) —n(n —1)/2 - F(1001)
= 500500 - n(n — 1)/2 - C — n(n — 1)/2 - 1001 - 1000/2 - C
=0 (mod p*).

31. (a) A result in number theory states that the congruence a" = 1
(mod p) has ged(n, p — 1) solutions modulo p. Since 2m divides p — 1,
ged(2m,p — 1) = 2m.

Now, if a satisfies a®” = 1 (mod p), then (p — a)*™ = 1 (mod p).
Therefore, half of the solutions, when reduced, are between 1 and (p —
1)/2 inclusive.

(b) For m 4+ 1 <i < 2m, let a; = p — agms1-4, so by part (a), ai, as,
, G2y are the 2m solutions to a®™ =1 (mod p).

Let g be a primitive root of modulo p. Then another result in number
theory states that aq, as, ..., as, are, in some order, congruent to 1,

21—1  9.9i—1 3.97—1 2m—1).29—1
g y g y g IR g( ) .

Let s denote the given sum, and let ¢ denote the sum

i=m-+1
o - 2n - n
= Z a;” + (p — ai)
i=1 i=1
=2s (mod p)
Also,
2m—1 2m—1
t = i-27=1.9n = Z gz2 n (mod p>
=0 =0



If n is divisible by m, then n = md for some d, and

2m—1 2m—1 2m—1

t= Z g"¥md = Z gdr=b = Z 1=2m (mod p),
i=0

=0 1=0
so t is not divisible by p, and neither is s.

On the other hand, if n is not divisible by m, then
(1 _ ngn)t = 1 _ 92m'2jn
=1— 92n(p—1)
=0 (mod p).
Since n is not divisible by m, 2/n = n(p—1)/m is not divisible by p—1,

so 1 — ¢¥™ is not congruent to 0, so finally ¢ is divisible by p, which
implies that s is divisible by p.

. We have that a and b are relatively prime to p, so by Fermat’s little
theorem, a?~! —1 =0 (mod p). Cubing, we get

a>P=) — 302~ L 30771 1 =0 (mod p?).

Multiplying by a®—1n+4

, we get
aP~D+3)+4 _ g, (p—1)(n+2)+4
+ 3a(p—1)(n+1)+4 . a(p—l)n+4 =0 (HlOd p3)
for all integers n > 0.
Similarly,
b(p—l)(n+3)+4 _ 3b(p—1)(n+2)+4
+ 3b(p—1)(n+1)+4 _ b(p—l)n+4 = (HlOd p3>7
and
((l + b)(p—l)(n+3)+4 . 3(a + b)(p—l)(n+2)+4
+ 3(a 4 b)PDOHDH _ (g 4 p)e-Untd = (mod p?)

for all n > 0.
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Adding, we get f(n+3) —3f(n+2)+3f(n+1) — f(n) =0 (mod p?)
for all n > 0. Then by problem 19, there exist constants A, B, C, such
that f(n) = An? + Bn+ C (mod p?) for all n > 0.

Now, we claim we can assume that b = 1. This is because if p divides
a® + ab + b2, then p also divides 1 + ab™! + a?b2.

Let
gn(z) =1+ 25 + (1 4 2)%

We claim that g,(z) = Q,(z)(1 + =z + 2%)® + R,(1 + = + 2*)? for some
polynomial @, (x) with integer coefficients and integer R,,, for all n > 0.
We prove this by induction.

For n =0,
L4+a*+ (14+2)* =201+ + 2%,
so we can take Ry = 2.

For n =1,

1+$10+<1+$)10
= (=13 + 192 + 212 + 42° + 22M) (1 + 2 + 233 + 15(1 + x + 2°)?,

so we can take R; = 15.

For n = 2,

1+x16+(1+x>16
= (=38 + 50z + 78z% + 2122° + 5542 + 7022°
+ 5142° + 25227 + 782° + 102” + 22'%)(1 + o + 2*)?
+40(1 + x + 2%)?,

so we can take Ry = 40.

Now, assume the claim is true for some n =k, k+ 1, and k + 2, so

ge(7) = Qr(@)(1 4+ 2 + 2% + Ri(1 + 2 + 2*)?,
Gri1(2) = Qi () (1 + 2+ 22)° + Repr (1 + 2 + 27)?,
gh2(t) = Qraa()(1 + 2+ 2°)° + Rpya(1 + 2 + 22)%.
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We can calculate that

Gre43(2) = 3gri2(x) + 3gri1(z) — gr(T)
6(k+8)+4 _ 3, 6(k+2)4+4 | 3, 6(k+1)+4 _  6h+4

s
+ (1 + :13)6(k+3)+4 o 3(1 + :E)6(k+2)+4 + 3(1 + x)G(k+1)+4 . (1 + $)6k+4
2% (2% — 1) 4+ (1 + 2)F (1 + 2)8 — 1]°.

Both 2% — 1 and (1 + )% — 1 are divisible by 1 + x + 2%, so the whole
expression is divisible by (1 + x + 2%)® — say it is equal to Py(z)(1 +
z + x?)®. Then

gi+3(7) = 3gk12(2) — 3gr11(2) + gr(x) + Pela)(1 + 2 + 2°)°
= [BQrr2(2) = 3Qu41(2) + Qu(x) + Pr(x)](1 4 x + 2*)°
+ <3Rk+2 — 3Rk+1 + Rk)(l +x + .732)2,
which proves the claim for n = k£ + 3. Furthermore, we have that
R, 3—3R,2+3R,s1 — R, =0 for all n > 0, so R, is quadratic in n.
From Ry = 2, R, = 15, and R, = 40, we have that R, = 6n’>+Tn+2 =
(2n+1)(3n +2).

By the solution to problem 23, p =1 (mod 6). Let p = 6t + 1. Then
f(n) =1+ qP~Dnt+d (1+ a)(pfl)n+4
— 14 a® 4 (1 4 q)0tn+d
= gin(a)
= Rin(1+a+a*)?
= (2tn+1)(3tn +2)(1 +a+a*)? (mod p*)

for all n > 0.
Then
f(3) = (6t +1)(9t +2)(1 + a + a*)?
= p(9t +2)(1 + a + a?)?
=0 (mod p*),
and

(8t + 1)(12t + 2)(1 + a + a?)?
= (8t +1)(2p)(1 +a+a*)’
0 (mod p*).

f(4)
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As stated above, there exist constants A, B, C, such that f(n) =

An? + Bn + C (mod p?) for all n > 0, so f(n) = A( —3)(n —4)
(mod p3) for all n > 0. Taking n = 0 gives f(0) = 124 (mod p?).
We conclude that 12f(n) = 12A(n — 3)(n —4) = (n — 3)(n — 4) f(0)

(mod p?) for all n > 0.
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