Jose Espinosa's Problems in Mathematical Induction Problems

1. Let p be an odd prime, and let

$$F(n) = \sum_{k=1}^{p-1} k^{(p-1)n+1} - \frac{n(n-1)}{2} \sum_{k=1}^{p-1} (k^{2p-1} - 3k^2) - \frac{p(p-1)}{2} [(p-1)n + 1]$$

for $n \ge 0$. Prove that F(n) is divisible by p^3 for all $n \ge 0$.

2. Let F_n denote the n^{th} Fibonacci number. Prove that

$$1 + 2^{2n} + 3^{2n} + 2[(-1)^{F_n} + 1]$$

is divisible by 7 for all $n \ge 0$.

3. Let F_n denote the n^{th} Fibonacci number. Prove that

$$2(2^{2n} + 5^{2n} + 6^{2n}) + 3(-1)^{n+1}[(-1)^{F_n} + 1]$$

is divisible by 13 for all $n \ge 0$.

4. Let p and q be odd primes, such that p < q, and q - 1 is not divisible by p.

Let a_1, a_2, \ldots, a_m be positive integers such that both $\sum_{i=1}^m a_i$ and $\sum_{i=1}^m a_i^{kpq}$ are divisible by p^2q^2 , for any odd positive integer k. Also, a_i is not divisible by neither p nor q for all i.

Let

$$F(n) = \sum_{i=1}^{m} a_i^{(p-1)(q-1)n+1}$$

for $n \ge 0$. Prove that F(n) is divisible by p^2q^2 for all $n \ge 0$.

- 5. Let a, b, and c be three positive integers, where c = a + b. Let d be an odd factor of $a^2 + b^2 + c^2$. Prove that for all positive integers n:
 - (a) $a^{6n-4} + b^{6n-4} + c^{6n-4}$ is divisible by *d*.
 - (b) $a^{6n-2} + b^{6n-2} + c^{6n-2}$ is divisible by d^2 .

- (c) $a^{2^n} + b^{2^n} + c^{2^n}$ is divisible by d.
- (d) $a^{4^n} + b^{4^n} + c^{4^n}$ is divisible by d^2 .
- 6. The function F(n) satisfies F(1) = 1, F(2) = 6, and F(n) = F(n 1) + F(n-2) for all $n \ge 3$. Prove that for all $n \ge 2$,
 - (a) $\sum_{i=1}^{n} F(i)^2 = F(n)F(n+1) 5$, and
 - (b) $F(n)^2 + F(n+1)^2 = F(2n+4) F(2n-3).$
- 7. Let p be a prime of the form 4k + 3. Prove that

$$\sum_{i=1}^{2k+1} i^{2^n}$$

is divisible by p for all $n \ge 1$.

- 8. Let p be a prime of the form 4k + 1, where k is odd.
 - (a) Consider the quadratic residues modulo p, reduced so that they are between 1 and p-1 inclusive. Show that exactly k of these residues are between 1 and 2k inclusive.
 - (b) Let a_1, a_2, \ldots, a_k be the quadratic residues specified in part (a). Prove that

$$\sum_{i=1}^{k} a_i^{2^n}$$

is divisible by p for all $n \ge 1$.

4

9. Prove that for all positive integers n,

$$2^{2n-1} + 4^{2n-1} + 9^{2n-1}$$

is not a perfect square.

10. Prove that for all positive integers $n, 8^{2^n} - 5^{2^n}$ is not a perfect square.

11. Prove that for all integers $n \ge 0$,

$$2(13^{6n+1} + 30^{6n+1} + 100^{6n+1} + 200^{6n+1}) + 2n(n-2)(13^7 + 30^7 + 100^7 + 200^7) - n(n-1)(13^{13} + 30^{13} + 100^{13} + 200^{13})$$

is divisible by 7^3 .

- 12. Let f be a function taking the positive integers to the positive integers, and let p be a prime. There exist positive integers c and k such that f(n+c) - kf(n) is divisible by p for all n. Prove that there exists a positive integer b such that f(n+bc) - f(n) is divisible by p for all n.
- 13. Prove that for all integers $n \ge 0$,

$$1 + 2^{4n+2} + 3^{4n+2} + 4^{4n+2} + 5^{4n+2} + 6^{4n+2}$$

is divisible by 13.

14. Prove that for all integers $n \ge 0$,

$$2(3^{4n+3} + 4^{4n+3}) - 25n^2 + 65n + 68$$

is divisible by 125.

- 15. Prove that $2^{2^n} + 3^{2^n} + 5^{2^n}$ is divisible by 19 for all positive integers n.
- 16. Let a be a real number, and let f(n) and g(n) be functions satisfying f(n) = (a-1)f(n-1) + af(n-2) for all $n \ge 3$ and g(n) = f(n+2) + af(n+1) + (a-1)f(n) for all $n \ge 1$. Prove that for all $n \ge 1$,

$$g(n) = (2a - 1)a^{n-1}[f(2) + f(1)].$$

- 17. The function f(n) satisfies f(1) = f(2) = 1, and f(n) = 3[f(n-1) + f(n-2)] + 1 for all $n \ge 3$. Prove that for all positive integers n, f(3n) + f(3n+1) is divisible by 32.
- 18. Let p be a prime greater than 5. Prove that for all integers $n \ge 0$,

$$100(2^{(p-1)n+1} - 3^{(p-1)n+1} - 5^{(p-1)n+1} + 6^{(p-1)n+1}) - n(2^{100(p-1)+1} - 3^{100(p-1)+1} - 5^{100(p-1)+1} + 6^{100(p-1)+1})$$

is divisible by p^2 .

19. Let p be an odd prime. The function F(n) takes the non-negative integers to the integers, and satisfies $F(n+3) - 3F(n+2) + 3F(n+1) - F(n) \equiv 0 \pmod{p^3}$ for all $n \ge 0$. Prove that for all $n \ge 0$,

$$F(n) \equiv \frac{(n-1)(n-2)}{2} F(0) - n(n-2)F(1) + \frac{n(n-1)}{2} F(2) \pmod{p^3}.$$

20. The function a(n) satisfies a(1) = a(2) = 1, and a(n) = a(n-1) + 2a(n-2) + 1 for all $n \ge 3$. Prove that for all positive integers n,

$$a(n) = 2^{n-1} - \frac{(-1)^n + 1}{2}.$$

21. Let $n \ge 3$ be a positive integer. Arrange the first n^2 Fibonacci numbers in an $n \times n$ array, spiralling counter-clockwise. For example, for n = 3 and n = 4, the arrays are:

5	2	2		987	610	377	233
0)	4	_	5	3	2	144
ð	1	1		8	1	1	89
10	41	- 34		13	21	34	55

Note that 21 + 1 = 2(8+3) and 610 + 5 = 5(89+34). Generalize these results and prove.

- 22. What happens if we replace Fibonacci numbers by Lucas numbers in the previous problem?
- 23. Let a and b be positive integers which are relatively prime to each other, and let p > 3 be a prime dividing $a^2 + ab + b^2$. Prove that for all integers $n \ge 0$,

$$a^{(p-1)n+4} + b^{(p-1)n+4} + (a+b)^{(p-1)n+4}$$

is divisible by p^2 .

24. Let p be a prime of the form 6k + 5. Prove that

$$\sum_{i=1}^{3k+2} i^{2 \cdot 3^n}$$

is divisible by p for all $n \ge 0$.

25. Let F_n denote the n^{th} Fibonacci number. Prove that

$$F_n^2 + F_{n+1}^2 + F_{n+2}^2 + F_{n+3}^2 = 3F_{2n+3}$$

for all $n \ge 0$.

26. Let F_n denote the n^{th} Fibonacci number. Prove that

$$F_{5n+3} + F_{5n+4}^2$$

is divisible by 11 for all $n \ge 0$.

27. Let k be a fixed positive integer and let p be an odd prime, such that $p \ge k$. Let F(n) be a function taking the integers to the integers satisfying

$$\sum_{i=0}^{k} \binom{k}{i} (-1)^{k-i} F(n+i) \equiv 0 \pmod{p^k}$$

for all integers n. Prove that if $F(a_0)$, $F(a_1)$, ..., $F(a_{k-1})$ are all divisible by p^k , where the a_i are all distinct modulo p, then F(n) is divisible by p^k for all n.

- 28. Let F_n denote the n^{th} Fibonacci number, and for all $n \ge 0$, let $G_n(x)$ be the polynomial $89x^n F_n x^{11} F_{n-11}$. Prove that for all $n \ge 0$, $G_n(x)$ is divisible by $x^2 x 1$.
- 29. Let p be a prime of the form 4k + 1. Prove that for all $n \ge 0$,

$$\sum_{i=1}^{2k} i^{4n+2}$$

is divisible by p.

30. Let p be an odd prime. For all integers $n \ge 0$, let

$$F(n) = \sum_{k=1}^{p-1} k^{(p-1)n+1} - \frac{p(p-1)}{2} \cdot [(p-1)n+1],$$

and let G(n) = 500500F(n) - n(n-1)F(1001)/2. Prove that G(n) is divisible by p^3 for all $n \ge 0$.

- 31. Let p be an odd prime, and let 2^k be the greatest power of 2 dividing p-1. Let $1 \le j \le k$, and let $m = (p-1)/2^j$.
 - (a) Show that there exist m values of a, from 1 to (p-1)/2 inclusive, such that $a^{2m} \equiv 1 \pmod{p}$.

(b) Let a_1, a_2, \ldots, a_m be the *m* values in part (a). Show that

$$\sum_{i=1}^{m} a_i^{2n}$$

is divisible by p for all $n \ge 0$, except when n is divisible by m.

32. Prove or disprove the following: Under the assumptions of problem 23, let

$$f(n) = a^{(p-1)n+4} + b^{(p-1)n+4} + (a+b)^{(p-1)n+4}.$$

Then

$$12f(n) \equiv (n-3)(n-4)f(0) \pmod{p^3}.$$

Hints and Solutions

1. We claim that $F(n+3) - 3F(n+2) + 3F(n+1) - F(n) \equiv 0 \pmod{p^3}$ for all $n \geq 0$, and that $F(2) \equiv F(1) \equiv F(0) \equiv 0 \pmod{p^3}$. Then the result follows from induction.

Let

$$\begin{split} G(n) &= \sum_{k=1}^{p-1} k^{(p-1)n+1}, \text{ and} \\ H(n) &= -\frac{n(n-1)}{2} \sum_{k=1}^{p-1} (k^{2p-1}-3k^2) - \frac{p(p-1)}{2} \; [(p-1)n+1], \end{split}$$

so F(n) = G(n) + H(n).

The function H(n) is quadratic in n, so H(n+3) - 3H(n+2) + 3H(n+1) - H(n) = 0 for all $n \ge 0$.

Let k be an integer, $1 \le k \le p-1$. Then by Fermat's Little Theorem,

 $k^{p-1} - 1 \equiv 0 \pmod{p}$. Cubing this, we get

$$\begin{aligned} k^{3(p-1)} - 3k^{2(p-1)} + 3k^{p-1} - 1 &\equiv 0 \\ \Rightarrow \ k^{(p-1)(n+3)+1} - 3k^{(p-1)(n+2)+1} \\ + 3k^{(p-1)(n+1)+1} - k^{(p-1)n+1} &\equiv 0 \end{aligned}$$
$$\Rightarrow \ \sum_{k=1}^{p-1} k^{(p-1)(n+3)+1} - 3\sum_{k=1}^{p-1} k^{(p-1)(n+2)+1} \\ + 3\sum_{k=1}^{p-1} k^{(p-1)(n+1)+1} - \sum_{k=1}^{p-1} k^{(p-1)n+1} &\equiv 0 \end{aligned}$$
$$\Rightarrow \ G(n+3) - 3G(n+2) + 3G(n+1) - 3G(n) &\equiv 0 \pmod{p^3}.\end{aligned}$$

Therefore, $F(n+3) - 3F(n+2) + 3F(n+1) - 3F(n) \equiv 0 \pmod{p^3}$ for all $n \ge 0$.

Now,

$$F(0) = \sum_{k=1}^{p-1} k - \frac{p(p-1)}{2} = 0, \text{ and}$$

$$F(2) = \sum_{k=1}^{p-1} k^{2p-1} - \sum_{k=1}^{p-1} k^{2p-1} + \sum_{k=1}^{p-1} 3k^2 - \frac{p(p-1)(2p-1)}{2} = 0.$$

To calculate F(1), as before, let k be an integer, $1 \le k \le p-1$. Then by the Binomial Theorem,

$$k^{p} + (p-k)^{p} = k^{p} + p^{p} - {p \choose 1} p^{p-1}k + \dots + (-1)^{p-2} {p \choose p-2} p^{2}k^{p-1} + (-1)^{p-1} {p \choose p-1} pk^{p-1} + (-1)^{p} {p \choose p} k^{p} \equiv p^{2}k^{p-1} \pmod{p^{3}}.$$

By Fermat's Little Theorem, $k^{p-1}-1 = pt$ for some integer t. Therefore, $p^2k^{p-1} = p^2(1+pt) \equiv p^2 \pmod{p^3}$. Summing from k = 1 to (p-1)/2, we obtain

$$\sum_{k=1}^{p-1} k^p \equiv \frac{p-1}{2} \cdot p^2 \pmod{p^3}.$$

Therefore,

$$F(1) = \sum_{k=1}^{p-1} k^p - \frac{p^2(p-1)}{2} \equiv 0 \pmod{p^3}.$$

- 2. Hint: Prove that the expression has period 6 modulo 7.
- 3. Hint: Prove that the expression has period 12 modulo 13.
- 4. Since a_i is relatively prime to both p and q, by Fermat's Little Theorem, $a_i^{(p-1)(q-1)} - 1$ is divisible by pq. Squaring this, we get

$$\begin{aligned} a_i^{2(p-1)(q-1)} - 2a_i^{(p-1)(q-1)} + 1 &\equiv 0 \\ \Rightarrow \ a_i^{(p-1)(q-1)(n+2)+1} - 2a_i^{(p-1)(q-1)(n+1)+1} + a_i^{(p-1)(q-1)n+1} &\equiv 0 \\ \Rightarrow \ \sum_{i=1}^m a_i^{(p-1)(q-1)(n+2)+1} - 2\sum_{i=1}^m a_i^{(p-1)(q-1)(n+1)+1} \\ &+ \sum_{i=1}^m a_i^{(p-1)(q-1)n+1} &\equiv 0 \\ \Rightarrow \ F(n+2) - 2F(n+1) + F(n) &\equiv 0 \pmod{p^2q^2}. \end{aligned}$$

Also,

$$F(0) = \sum_{i=1}^{m} a_i \equiv 0 \pmod{p^2 q^2}.$$

It is now easy to prove by induction that $F(n) \equiv nF(1) \pmod{p^2q^2}$ for all $n \geq 0$.

Now, p does not divide p-1, and p does not divide q-1 by definition. Also, q does not divide neither p-1 nor q-1. Therefore, (p-1)(q-1) is relatively prime to p^2q^2 .

By a result in number theory, there exists an n such that $n(p-1)(q-1)+1 \equiv 0 \pmod{p^2q^2}$. For this n, n is clearly relatively prime to p^2q^2 . Also, p-1 is even, so n(p-1)(q-1)+1 is an odd multiple of pq. Therefore, $F(n) \equiv 0 \pmod{p^2q^2}$. However, $F(n) \equiv nF(1) \pmod{p^2q^2}$, and n is relatively prime to p^2q^2 . We conclude that $F(1) \equiv 0 \pmod{p^2q^2}$, and hence, that $F(n) \equiv nF(1) \equiv 0 \pmod{p^2q^2}$ for all $n \ge 0$.

5. Let $s_n = a^{2n} + b^{2n} + c^{2n}$ for all *n*. First, $a^2 + b^2 + c^2 = 2(a^2 + ab + b^2)$, and since *d* is odd, *d* divides $a^2 + ab + b^2$. Also,

$$a^{2}b^{2} + a^{2}c^{2} + b^{2}c^{2} = a^{2}b^{2} + (a^{2} + b^{2})(a + b)^{2}$$

= $a^{4} + 2a^{3}b + 3a^{2}b^{2} + 2ab^{3} + b^{4}$
= $(a^{2} + ab + b^{2})^{2}$,

so $a^2b^2 + a^2c^2 + b^2c^2$ is divisible by d^2 . Finally, by results on recursions,

$$s_n = (a^2 + b^2 + c^2)s_{n-1} - (a^2b^2 + a^2c^2 + b^2c^2)s_{n-2} + a^2b^2c^2s_{n-3}$$

for all $n \geq 3$.

(a) Note that $a^{6n-4} + b^{6n-4} + c^{6n-4} = s_{3n-2}$, and

$$s_{3n-2} = (a^2 + b^2 + c^2)s_{3n-3} - (a^2b^2 + a^2c^2 + b^2c^2)s_{3n-4} + a^2b^2c^2s_{3n-5}$$

for all $n \ge 2$. For n = 2, $s_{3n-5} = s_1 = a^2 + b^2 + c^2$, which is divisible by d. Also, $a^2b^2 + a^2c^2 + b^2c^2$ is divisible by d. Hence, by induction, s_{3n-2} is divisible by d for all $n \ge 1$.

(b) Note that
$$a^{6n-2} + b^{6n-2} + c^{6n-2} = s_{3n-1}$$
, and
 $s_{3n-1} = (a^2 + b^2 + c^2)s_{3n-2} - (a^2b^2 + a^2c^2 + b^2c^2)s_{3n-3} + a^2b^2c^2s_{3n-4}$

for all $n \geq 2$. For n = 2, $s_{3n-4} = s_2 = a^4 + b^4 + c^4 = 2a^4 + 4a^3b + 6a^2b^2 + 4ab^3 + 2b^4 = 2(a^2 + ab + b^2)^2$, which is divisible by d^2 . By part (a), s_{3n-2} is divisible by d. Also, $a^2 + b^2 + c^2$ is divisible by d and $a^2b^2 + a^2c^2 + b^2c^2$ is divisible by d^2 . Hence, by induction, s_{3n-1} is divisible by d^2 for all $n \geq 1$.

(c) For all $n \ge 1$, 2^n is even, so 2^n is congruent to 0, 2, or 4 modulo 6. However, congruence to 0 implies divisibility by 3, so 2^n is congruent to 2 or 4. The result then follows from parts (a) and (b).

(d) It is easy to show that $4^n \equiv 4 \pmod{6}$ for all $n \ge 1$. The result then follows from part (b).

6. (a) Hint: Show that for all $k \ge 1$, $F(k)^2 = F(k+1)F(k) - F(k)F(k-1)$. Sum this from k = 1 to n. (b) Let $A(n) = F(n)^2 + F(n+1)^2$ and B(n) = F(2n+4) - F(2n-3) for all $n \ge 2$. Then A(2) = B(2) = 85 and A(3) = B(3) = 218. We claim that A(n) - 3A(n-1) + A(n-2) = B(n) - 3B(n-1) + B(n-2) = 0 for all $n \ge 4$. Then it follows that A(n) = B(n) for all $n \ge 2$.

Now,

$$\begin{split} &A(n) - 3A(n-1) + A(n-2) \\ &= F(n+1)^2 + F(n)^2 - 3F(n)^2 - 3F(n-1)^2 + F(n-1)^2 + F(n-2)^2 \\ &= [F(n) + F(n-1)]^2 - 2F(n)^2 - 2F(n-1)^2 + [F(n) - F(n-1)]^2 \\ &= F(n)^2 + 2F(n)F(n-1) + F(n-1)^2 - 2F(n)^2 - 2F(n-1)^2 \\ &+ F(n)^2 - 2F(n)F(n-1) + F(n-1)^2 \\ &= 0. \end{split}$$

Also,

$$\begin{split} B(n) &- 3B(n-1) + B(n-2) \\ &= F(2n+4) - F(2n-3) - 3F(2n+2) + 3F(2n-5) + F(2n) - F(2n-7) \\ &= F(2n+4) - 3F(2n+2) + F(2n) - F(2n-3) + 3F(2n-5) - F(2n-7) \\ &= F(2n+3) + F(2n+2) - 3F(2n+2) + F(2n+2) - F(2n+1) \\ &- F(2n-4) - F(2n-5) + 3F(2n-5) - F(2n-5) + F(2n-6) \\ &= F(2n+3) - F(2n+2) - F(2n+1) - F(2n-4) + F(2n-5) + F(2n-6) \\ &= 0. \end{split}$$

7. We first prove a lemma:

Lemma. For any prime p and positive integer n not divisible by p-1,

$$\sum_{i=1}^{p-1} i^n \equiv 0 \pmod{p}.$$

Proof. Let s denote the given sum, and let g be a primitive root modulo p. Since n is not divisible by p-1, $g^n \not\equiv 1 \pmod{p}$. Therefore,

$$g^{n}s = \sum_{i=1}^{p-1} (gi)^{n} \equiv \sum_{i=1}^{p-1} i^{n} \equiv s \pmod{p},$$

so $(g^n - 1)s \equiv 0 \Rightarrow s \equiv 0 \pmod{p}$.

Now, let t denote the sum in the problem, and let u denote

$$\sum_{i=1}^{p-1} i^{2^n} = \sum_{i=1}^{2k+1} i^{2^n} + \sum_{i=2k+2}^{4k+2} i^{2^n}$$
$$= \sum_{i=1}^{2k+1} i^{2^n} + \sum_{i=1}^{2k+1} (p-i)^{2^i}$$
$$\equiv 2t \pmod{p}.$$

Since 2^n is not divisible by p-1 = 4k+2 = 2(2k+1), by the Lemma, $u \equiv 0 \pmod{p}$, so $t \equiv 0 \pmod{p}$.

8. (a) Let a be a quadratic residue modulo $p, 1 \le a \le p-1$. We claim that p-a is also a quadratic residue modulo p.

Since a is a quadratic residue, $a \equiv x^2 \pmod{p}$ for some x. A result in number theory states that there exists a u such that $u^2 \equiv -1 \pmod{p}$. Then $(xu)^2 \equiv -a \equiv p - a \pmod{p}$, so p - a is also a quadratic residue modulo p. Also, if $a \leq 2k$, then $p - a \geq 2k + 1$, and vice-versa.

Now, there are exactly p-1 = 4k quadratic residues modulo p. Therefore, exactly half must be between 1 and 2k, and half between 2k + 1and 4k.

(b) For $k + 1 \leq i \leq 2k$, let $a_i = p - a_{2k+1-i}$. Then by the solution to part (a), the numbers a_1, a_2, \ldots, a_{2k} represent the quadratic residues modulo p.

Let s denote the given sum, and let t denote

$$\sum_{i=1}^{2k} a_i^{2^n} = \sum_{i=1}^k a_i^{2^n} + \sum_{i=k+1}^{2k} a_i^{2^n}$$
$$= \sum_{i=1}^k a_i^{2^n} + \sum_{i=1}^k (p - a_i)^{2^n}$$
$$\equiv 2s \pmod{p}.$$

As i varies from 1 to p - 1, i^2 takes on every quadratic residue exactly twice. Therefore,

$$\sum_{i=1}^{p-1} i^{2^{n+1}} = \sum_{i=1}^{p-1} (i^2)^{2^n} \equiv 2 \sum_{i=1}^{2k} a_i^{2^n} \equiv 2t \equiv 4s \pmod{p}.$$

Now p - 1 = 4k, where k is odd, so it cannot divide 2^{n+1} . Therefore, $4s \equiv 0 \pmod{p}$, which implies that $s \equiv 0 \pmod{p}$.

- 9. The expression is congruent to $2 \cdot (2^{n-1})^2$ modulo 13. Since 2 is not a square modulo 13, neither is the expression.
- 10. The expression factors as

$$(8^{2^{n-1}} + 5^{2^{n-1}})(8^{2^{n-2}} + 5^{2^{n-2}}) \cdots (8^2 + 5^2)(8+5)(8-5).$$

The last factor is 3, and all the other factors are congruent to 2 modulo 3. Therefore, the expression has exactly one factor of 3, and cannot be a perfect square.

- 11. Hint: See the solution to Problem 1. For an alternative approach, see the solution to Problem 14.
- 12. If k is divisible by p, then it follows that f(n) is also divisible by p for all n, and the result follows trivially, so assume that k is not divisible by p.

By induction, it is easy to prove that $f(n+mc) \equiv k^m f(n)$ for all $m \geq 0$, for all n. Take m = p - 1; then by Fermat's Little Theorem, $k^{p-1} \equiv 1$ mod p, so $f(n+(p-1)c) \equiv f(n)$ for all n. Thus, we can take b = p-1.

13. For all $n \ge 0$,

$$1 + 2^{4n+2} + 3^{4n+2} + 4^{4n+2} + 5^{4n+2} + 6^{4n+2}$$

$$\equiv 1 + 4 \cdot 3^n + 9 \cdot 3^n + 3 \cdot 9^n + 12 \cdot 1^n + 10 \cdot 9^n$$

$$\equiv 0 \pmod{13}.$$

14. By the Binomial Theorem,

 3^{4}

Similarly,

$$4^{4n+3} \equiv 64 \cdot 256^n$$

$$\equiv 64 \cdot (1+5)^n$$

$$\equiv 64 \cdot [1+5n+25n(n-1)/2]$$

$$\equiv 64+20n+50n^2 \pmod{125}.$$

Therefore,

$$2(3^{4n+3} + 4^{4n+3}) - 25n^2 + 65n + 68$$

$$\equiv 2(27 + 10n + 25n^2 + 64 + 20n + 50n^2) - 25n^2 + 65n + 68$$

$$\equiv 0 \pmod{125}.$$

15. Let $F(n) = 2^{2^n} + 3^{2^n} + 5^{2^n}$. Then $F(1) = 38 = 2 \cdot 19$ and $F(2) = 38 \cdot 19$. Also, for $n \ge 1$,

$$F(n+2) = 2^{2^{n+2}} + 3^{2^{n+2}} + 5^{2^{n+2}}$$

= $2^{4 \cdot 2^n} + 3^{4 \cdot 2^n} + 5^{4 \cdot 2^n}$
= $16^{2^n} + 81^{2^n} + 625^{2^n}$
= $3^{2^n} + 5^{2^n} + 2^{2^n}$
= $F(n) \pmod{19}$.

Therefore, by induction, F(n) is divisible by 19 for all $n \ge 1$.

Note that this problem is also a special case of Problem 5(c).

16. For all $n \ge 1$, f(n+1) + f(n) = af(n) + af(n-1) = a[f(n) + f(n-1)]. Therefore, $f(n+1) + f(n) = a^{n-1}[f(2) + f(1)]$, and

$$g(n) = f(n+2) + af(n+1) + (a-1)f(n)$$

= $(2a-1)f(n+1) + (2a-1)f(n)$
= $(2a-1)[f(n+1) + f(n)]$
= $(2a-1)a^{n-1}[f(2) + f(1)].$

- 17. Hint: Show that f(n) has period 12 modulo 32.
- 18. Hint: See the solution to Problem 1.

- 19. Hint: Show that $f(n) \equiv an^2 + bn + c \pmod{p^3}$ for some constants a, b, and c. By substituting n = 0, 1, and 2, find a, b, and c in terms of f(0), f(1), and f(2).
- 20. This is a straight-forward induction problem.
- 21. The problem boils down to showing that $F_{n^2-2n+2}+F_{n^2+2n}=F_{2n-1}(F_{n^2}+F_{n^2+2})$ for all $n \ge 1$.

Let $\alpha = (1 + \sqrt{5})/2$ and $\beta = (1 - \sqrt{5})/2$. Then α and β are the roots of the equation $x^2 - x - 1 = 0$, and so $\alpha\beta = -1$, and $1/\alpha = \alpha - 1$ and $1/\beta = \beta - 1$.

Binet's Formula states that

$$F_n = \frac{\alpha^n - \beta^n}{\sqrt{5}}$$

for all n. Hence,

$$\begin{split} F_{2n-1}(F_{n^{2}}+F_{n^{2}+2}) \\ &= \left(\frac{\alpha^{2n-1}-\beta^{2n-1}}{\sqrt{5}}\right) \left(\frac{\alpha^{n^{2}}-\beta^{n^{2}}+\alpha^{n^{2}+2}-\beta^{n^{2}+2}}{\sqrt{5}}\right) \\ &= \frac{1}{5}(\alpha^{n^{2}+2n-1}-\alpha^{2n-1}\beta^{n^{2}}+\alpha^{n^{2}+2n+1}-\alpha^{2n-1}\beta^{n^{2}+2}\\ &-\alpha^{n^{2}}\beta^{2n-1}+\beta^{n^{2}+2n-1}-\alpha^{n^{2}+2}\beta^{2n-1}+\beta^{n^{2}+2n+1}) \\ &= \frac{1}{5}(\alpha^{n^{2}+2n-1}+\beta^{n^{2}-2n+1}+\alpha^{n^{2}+2n+1}+\beta^{n^{2}-2n+3}\\ &+\alpha^{n^{2}-2n+1}+\beta^{n^{2}+2n-1}+\alpha^{n^{2}-2n+3}+\beta^{n^{2}+2n+1}) \\ &= \frac{1}{5}\left[\left(\frac{1}{\alpha}+\alpha\right)(\alpha^{n^{2}-2n+2}+\alpha^{n^{2}+2n})+\left(\frac{1}{\beta}+\beta\right)(\beta^{n^{2}-2n+2}+\beta^{n^{2}+2n})\right] \\ &= \frac{1}{5}\left[(2\alpha-1)(\alpha^{n^{2}-2n+2}+\alpha^{n^{2}+2n})+(2\beta-1)(\beta^{n^{2}-2n+2}+\beta^{n^{2}+2n})\right] \\ &= \frac{\alpha^{n^{2}-2n+2}-\beta^{n^{2}-2n+2}}{\sqrt{5}}+\frac{\alpha^{n^{2}+2n}-\beta^{n^{2}+2n}}{\sqrt{5}} \\ &= F_{n^{2}-2n+2}+F_{n^{2}+2n}. \end{split}$$

22. Hint: See the solution to Problem 21.

23. If p divided b, then p would also divide a, contradicting that a and b are relatively prime. Therefore, b^{-1} modulo p exists, and

$$a^{2} + ab + b^{2} \equiv 0$$

$$\Rightarrow (ab^{-1})^{2} + ab^{-1} + 1 \equiv 0$$

$$\Rightarrow 4(ab^{-1})^{2} + 4ab^{-1} + 4 \equiv 0$$

$$\Rightarrow (2ab^{-1} + 1)^{2} \equiv -3 \pmod{p}.$$

Hence, -3 is a quadratic residue modulo p. By results in number theory, this implies that $p \equiv 1 \pmod{6}$. Therefore, the result follows from Problem 5(b).

24. Let s denote the given sum, and let t denote

$$\sum_{i=1}^{p-1} i^{2 \cdot 3^n} = \sum_{i=1}^{3k+2} i^{2 \cdot 3^n} + \sum_{i=3k+3}^{6k+4} i^{2 \cdot 3^n}$$
$$= \sum_{i=1}^{3k+2} i^{2 \cdot 3^n} + \sum_{i=1}^{3k+2} (p-i)^{2 \cdot 3^n}$$
$$\equiv 2s \pmod{p}.$$

Now, p-1 = 6k + 4 = 2(3k + 2), which cannot divide $2 \cdot 3^n$. Therefore, $t \equiv 0 \pmod{p}$, and so $s \equiv 0 \pmod{p}$.

- 25. Hint: See the solution to Problem 6(b). Alternatively, show that $F_n^2 + F_{n+1}^2 = F_{2n+1}$ for all n.
- 26. Hint: Show that F_n has period 10 modulo 11.
- 27. The given relation implies that F can be modelled by a polynomial of degree at most k 1.

For $0 \le i \le k-1$, let

$$F_i(n) = (n - a_0)(n - a_1) \cdots (n - a_{i-1})(n - a_{i+1}) \cdots (n - a_{k-1}).$$

Then by the Lagrange Interpolation Formula,

$$F(n) \equiv \frac{F_0(n)}{F_0(a_0)} F(a_0) + \frac{F_1(n)}{F_1(a_1)} F(a_1) + \dots + \frac{F_{k-1}(n)}{F_{k-1}(a_{k-1})} F(a_{k-1}) \pmod{p^k}$$

Since $a_s - a_t$ is not divisible by p for all $s \neq t$, $F_i(a_i)^{-1}$ exists modulo p^k .

Finally, $F(a_i) \equiv 0 \pmod{p^k}$ for all i, so $F(n) \equiv 0 \pmod{p^k}$ for all n.

28. Let $\alpha = (1 + \sqrt{5})/2$ and $\beta = (1 - \sqrt{5})/2$, so that α and β are the roots of $x^2 - x - 1 = 0$. Then it suffices to show that $G_n(\alpha) = G_n(\beta) = 0$. Note that $\alpha\beta = -1$, so $\alpha^{11}\beta^{11} = -1$.

By Binet's Formula,

$$F_n = \frac{\alpha^n - \beta^n}{\sqrt{5}}$$

for all $n \ge 0$. Hence,

$$G_{n}(\alpha) = 89\alpha^{n} - \left(\frac{\alpha^{n} - \beta^{n}}{\sqrt{5}}\right)\alpha^{11} - \frac{\alpha^{n-11} - \beta^{n-11}}{\sqrt{5}}$$

$$= 89\alpha^{n} - \frac{\alpha^{n+11} - \alpha^{11}\beta^{n} + \alpha^{n-11} - \beta^{n-11}}{\sqrt{5}}$$

$$= 89\alpha^{n} - \frac{\alpha^{n+11} + \beta^{n-11} + \alpha^{n-11} - \beta^{n-11}}{\sqrt{5}}$$

$$= \alpha^{n} \left(89 - \frac{\alpha^{11} + \alpha^{-11}}{\sqrt{5}}\right)$$

$$= \alpha^{n} \left(89 - \frac{\alpha^{11} - \beta^{11}}{\sqrt{5}}\right)$$

$$= \alpha^{n} (89 - F_{11})$$

$$= 0.$$

That $G_n(\beta) = 0$ is similarly shown.

29. Let s denote the given sum, and let t denote

$$\sum_{i=1}^{p-1} i^{4n+2} = \sum_{i=1}^{2k} i^{4n+2} + \sum_{i=2k+1}^{4k} i^{4n+2}$$
$$= \sum_{i=1}^{2k} i^{4n+2} + \sum_{i=1}^{2k} (p-i)^{4n+2}$$
$$\equiv 2s \pmod{p}.$$

Since p-1 = 4k cannot divide $4n+2, t \equiv 0 \pmod{p}$, so $s \equiv 0 \pmod{p}$.

30. By Problem 1,

$$F(n) \equiv \frac{n(n-1)}{2} \sum_{k=1}^{p-1} (k^{2p-1} - 3k^2) \equiv \frac{n(n-1)}{2} C \pmod{p^3},$$

where C is a constant independent of n.

Therefore,

$$G(n) = 500500F(n) - n(n-1)/2 \cdot F(1001)$$

$$\equiv 500500 \cdot n(n-1)/2 \cdot C - n(n-1)/2 \cdot 1001 \cdot 1000/2 \cdot C$$

$$\equiv 0 \pmod{p^3}.$$

31. (a) A result in number theory states that the congruence $a^n \equiv 1 \pmod{p}$ has gcd(n, p-1) solutions modulo p. Since 2m divides p-1, gcd(2m, p-1) = 2m.

Now, if a satisfies $a^{2m} \equiv 1 \pmod{p}$, then $(p-a)^{2m} \equiv 1 \pmod{p}$. Therefore, half of the solutions, when reduced, are between 1 and (p-1)/2 inclusive.

(b) For $m + 1 \leq i \leq 2m$, let $a_i = p - a_{2m+1-i}$, so by part (a), a_1, a_2, \ldots, a_{2m} are the 2m solutions to $a^{2m} \equiv 1 \pmod{p}$.

Let g be a primitive root of modulo p. Then another result in number theory states that a_1, a_2, \ldots, a_{2m} are, in some order, congruent to 1, $g^{2^{j-1}}, g^{2 \cdot 2^{j-1}}, g^{3 \cdot 2^{j-1}}, \ldots, g^{(2m-1) \cdot 2^{j-1}}$.

Let s denote the given sum, and let t denote the sum

$$\sum_{i=1}^{2m} a_i^{2n} = \sum_{i=1}^m a_i^{2n} + \sum_{i=m+1}^{2m} a_i^{2n}$$
$$= \sum_{i=1}^m a_i^{2n} + \sum_{i=1}^m (p - a_i)^{2n}$$
$$\equiv 2s \pmod{p}.$$

Also,

$$t \equiv \sum_{i=0}^{2m-1} g^{i \cdot 2^{j-1} \cdot 2n} \equiv \sum_{i=0}^{2m-1} g^{i \cdot 2^{j}n} \pmod{p}.$$

If n is divisible by m, then n = md for some d, and

$$t \equiv \sum_{i=0}^{2m-1} g^{i \cdot 2^{j}md} \equiv \sum_{i=0}^{2m-1} g^{id(p-1)} \equiv \sum_{i=0}^{2m-1} 1 \equiv 2m \pmod{p},$$

so t is not divisible by p, and neither is s.

On the other hand, if n is not divisible by m, then

$$(1 - g^{2^{j_n}})t \equiv 1 - g^{2m \cdot 2^{j_n}}$$
$$\equiv 1 - g^{2n(p-1)}$$
$$\equiv 0 \pmod{p}.$$

Since n is not divisible by m, $2^{j}n = n(p-1)/m$ is not divisible by p-1, so $1 - g^{2^{j}n}$ is not congruent to 0, so finally t is divisible by p, which implies that s is divisible by p.

32. We have that a and b are relatively prime to p, so by Fermat's little theorem, $a^{p-1} - 1 \equiv 0 \pmod{p}$. Cubing, we get

$$a^{3(p-1)} - 3a^{2(p-1)} + 3a^{p-1} - 1 \equiv 0 \pmod{p^3}.$$

Multiplying by $a^{(p-1)n+4}$, we get

$$a^{(p-1)(n+3)+4} - 3a^{(p-1)(n+2)+4} + 3a^{(p-1)(n+1)+4} - a^{(p-1)n+4} \equiv 0 \pmod{p^3}$$

for all integers $n \ge 0$.

Similarly,

$$b^{(p-1)(n+3)+4} - 3b^{(p-1)(n+2)+4} + 3b^{(p-1)(n+1)+4} - b^{(p-1)n+4} \equiv 0 \pmod{p^3},$$

and

$$(a+b)^{(p-1)(n+3)+4} - 3(a+b)^{(p-1)(n+2)+4} + 3(a+b)^{(p-1)(n+1)+4} - (a+b)^{(p-1)n+4} \equiv 0 \pmod{p^3}$$

for all $n \ge 0$.

Adding, we get $f(n+3) - 3f(n+2) + 3f(n+1) - f(n) \equiv 0 \pmod{p^3}$ for all $n \geq 0$. Then by problem 19, there exist constants A, B, C, such that $f(n) \equiv An^2 + Bn + C \pmod{p^3}$ for all $n \geq 0$.

Now, we claim we can assume that b = 1. This is because if p divides $a^2 + ab + b^2$, then p also divides $1 + ab^{-1} + a^2b^{-2}$.

Let

$$g_n(x) = 1 + x^{6n+4} + (1+x)^{6n+4}.$$

We claim that $g_n(x) = Q_n(x)(1 + x + x^2)^3 + R_n(1 + x + x^2)^2$ for some polynomial $Q_n(x)$ with integer coefficients and integer R_n , for all $n \ge 0$. We prove this by induction.

For n = 0,

$$1 + x^4 + (1 + x)^4 = 2(1 + x + x^2)^2$$

so we can take $R_0 = 2$.

For n = 1,

$$1 + x^{10} + (1+x)^{10}$$

= $(-13 + 19x + 21x^2 + 4x^3 + 2x^4)(1 + x + x^2)^3 + 15(1 + x + x^2)^2$,

so we can take $R_1 = 15$.

For n = 2,

$$\begin{aligned} 1 + x^{16} + (1+x)^{16} \\ &= (-38 + 50x + 78x^2 + 212x^3 + 554x^4 + 702x^5 \\ &+ 514x^6 + 252x^7 + 78x^8 + 10x^9 + 2x^{10})(1+x+x^2)^3 \\ &+ 40(1+x+x^2)^2, \end{aligned}$$

so we can take $R_2 = 40$.

Now, assume the claim is true for some n = k, k + 1, and k + 2, so

$$g_k(x) = Q_k(x)(1+x+x^2)^3 + R_k(1+x+x^2)^2,$$

$$g_{k+1}(x) = Q_{k+1}(x)(1+x+x^2)^3 + R_{k+1}(1+x+x^2)^2,$$

$$g_{k+2}(x) = Q_{k+2}(x)(1+x+x^2)^3 + R_{k+2}(1+x+x^2)^2.$$

We can calculate that

$$g_{k+3}(x) - 3g_{k+2}(x) + 3g_{k+1}(x) - g_k(x)$$

= $x^{6(k+3)+4} - 3x^{6(k+2)+4} + 3x^{6(k+1)+4} - x^{6k+4}$
+ $(1+x)^{6(k+3)+4} - 3(1+x)^{6(k+2)+4} + 3(1+x)^{6(k+1)+4} - (1+x)^{6k+4}$
= $x^{6k+4}(x^6-1)^3 + (1+x)^{6k+4}[(1+x)^6 - 1]^3.$

Both $x^6 - 1$ and $(1 + x)^6 - 1$ are divisible by $1 + x + x^2$, so the whole expression is divisible by $(1 + x + x^2)^3$ – say it is equal to $P_k(x)(1 + x + x^2)^3$. Then

$$g_{k+3}(x) = 3g_{k+2}(x) - 3g_{k+1}(x) + g_k(x) + P_k(x)(1+x+x^2)^3$$

= $[3Q_{k+2}(x) - 3Q_{k+1}(x) + Q_k(x) + P_k(x)](1+x+x^2)^3$
+ $(3R_{k+2} - 3R_{k+1} + R_k)(1+x+x^2)^2$,

which proves the claim for n = k + 3. Furthermore, we have that $R_{n+3} - 3R_{n+2} + 3R_{n+1} - R_n = 0$ for all $n \ge 0$, so R_n is quadratic in n. From $R_0 = 2$, $R_1 = 15$, and $R_2 = 40$, we have that $R_n = 6n^2 + 7n + 2 = (2n+1)(3n+2)$.

By the solution to problem 23, $p \equiv 1 \pmod{6}$. Let p = 6t + 1. Then

$$f(n) = 1 + a^{(p-1)n+4} + (1+a)^{(p-1)n+4}$$

= 1 + a^{6tn+4} + (1+a)^{6tn+4}
= g_{tn}(a)
\equiv R_{tn}(1+a+a^2)^2
\equiv (2tn+1)(3tn+2)(1+a+a^2)^2 \pmod{p^3}

for all $n \ge 0$.

Then

$$f(3) \equiv (6t+1)(9t+2)(1+a+a^2)^2 \equiv p(9t+2)(1+a+a^2)^2 \equiv 0 \pmod{p^3},$$

and

$$f(4) \equiv (8t+1)(12t+2)(1+a+a^2)^2$$

$$\equiv (8t+1)(2p)(1+a+a^2)^2$$

$$\equiv 0 \pmod{p^3}.$$

As stated above, there exist constants A, B, C, such that $f(n) \equiv An^2 + Bn + C \pmod{p^3}$ for all $n \geq 0$, so $f(n) \equiv A(n-3)(n-4) \pmod{p^3}$ for all $n \geq 0$. Taking n = 0 gives $f(0) \equiv 12A \pmod{p^3}$. We conclude that $12f(n) \equiv 12A(n-3)(n-4) \equiv (n-3)(n-4)f(0) \pmod{p^3}$ for all $n \geq 0$.