
Jose Espinosa’s Problems in Mathematical Induction

Problems

1. Let p be an odd prime, and let

F (n)

=

p−1∑
k=1

k(p−1)n+1 − n(n− 1)

2

p−1∑
k=1

(k2p−1 − 3k2)− p(p− 1)

2
[(p− 1)n + 1]

for n ≥ 0. Prove that F (n) is divisible by p3 for all n ≥ 0.

2. Let Fn denote the nth Fibonacci number. Prove that

1 + 22n + 32n + 2[(−1)Fn + 1]

is divisible by 7 for all n ≥ 0.

3. Let Fn denote the nth Fibonacci number. Prove that

2(22n + 52n + 62n) + 3(−1)n+1[(−1)Fn + 1]

is divisible by 13 for all n ≥ 0.

4. Let p and q be odd primes, such that p < q, and q − 1 is not divisible
by p.

Let a1, a2, . . . , am be positive integers such that both
∑m

i=1 ai and∑m
i=1 akpq

i are divisible by p2q2, for any odd positive integer k. Also, ai

is not divisible by neither p nor q for all i.

Let

F (n) =
m∑

i=1

a
(p−1)(q−1)n+1
i

for n ≥ 0. Prove that F (n) is divisible by p2q2 for all n ≥ 0.

5. Let a, b, and c be three positive integers, where c = a + b. Let d be an
odd factor of a2 + b2 + c2. Prove that for all positive integers n:

(a) a6n−4 + b6n−4 + c6n−4 is divisible by d.

(b) a6n−2 + b6n−2 + c6n−2 is divisible by d2.
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(c) a2n
+ b2n

+ c2n
is divisible by d.

(d) a4n
+ b4n

+ c4n
is divisible by d2.

6. The function F (n) satisfies F (1) = 1, F (2) = 6, and F (n) = F (n −
1) + F (n− 2) for all n ≥ 3. Prove that for all n ≥ 2,

(a)
∑n

i=1 F (i)2 = F (n)F (n + 1)− 5, and

(b) F (n)2 + F (n + 1)2 = F (2n + 4)− F (2n− 3).

7. Let p be a prime of the form 4k + 3. Prove that

2k+1∑
i=1

i2
n

is divisible by p for all n ≥ 1.

8. Let p be a prime of the form 4k + 1, where k is odd.

(a) Consider the quadratic residues modulo p, reduced so that they
are between 1 and p − 1 inclusive. Show that exactly k of these
residues are between 1 and 2k inclusive.

(b) Let a1, a2, . . . , ak be the quadratic residues specified in part (a).
Prove that

k∑
i=1

a2n

i

is divisible by p for all n ≥ 1.

9. Prove that for all positive integers n,

22n−1 + 42n−1 + 92n−1

is not a perfect square.

10. Prove that for all positive integers n, 82n − 52n
is not a perfect square.

11. Prove that for all integers n ≥ 0,

2(136n+1 + 306n+1 + 1006n+1 + 2006n+1)

+ 2n(n− 2)(137 + 307 + 1007 + 2007)

− n(n− 1)(1313 + 3013 + 10013 + 20013)

is divisible by 73.
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12. Let f be a function taking the positive integers to the positive integers,
and let p be a prime. There exist positive integers c and k such that
f(n + c) − kf(n) is divisible by p for all n. Prove that there exists a
positive integer b such that f(n + bc)− f(n) is divisible by p for all n.

13. Prove that for all integers n ≥ 0,

1 + 24n+2 + 34n+2 + 44n+2 + 54n+2 + 64n+2

is divisible by 13.

14. Prove that for all integers n ≥ 0,

2(34n+3 + 44n+3)− 25n2 + 65n + 68

is divisible by 125.

15. Prove that 22n
+ 32n

+ 52n
is divisible by 19 for all positive integers n.

16. Let a be a real number, and let f(n) and g(n) be functions satisfying
f(n) = (a− 1)f(n− 1)+ af(n− 2) for all n ≥ 3 and g(n) = f(n+2)+
af(n + 1) + (a− 1)f(n) for all n ≥ 1. Prove that for all n ≥ 1,

g(n) = (2a− 1)an−1[f(2) + f(1)].

17. The function f(n) satisfies f(1) = f(2) = 1, and f(n) = 3[f(n − 1) +
f(n − 2)] + 1 for all n ≥ 3. Prove that for all positive integers n,
f(3n) + f(3n + 1) is divisible by 32.

18. Let p be a prime greater than 5. Prove that for all integers n ≥ 0,

100(2(p−1)n+1 − 3(p−1)n+1 − 5(p−1)n+1 + 6(p−1)n+1)

− n(2100(p−1)+1 − 3100(p−1)+1 − 5100(p−1)+1 + 6100(p−1)+1)

is divisible by p2.

19. Let p be an odd prime. The function F (n) takes the non-negative
integers to the integers, and satisfies F (n + 3) − 3F (n + 2) + 3F (n +
1)− F (n) ≡ 0 (mod p3) for all n ≥ 0. Prove that for all n ≥ 0,

F (n) ≡ (n− 1)(n− 2)

2
F (0)−n(n−2)F (1)+

n(n− 1)

2
F (2) (mod p3).
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20. The function a(n) satisfies a(1) = a(2) = 1, and a(n) = a(n − 1) +
2a(n− 2) + 1 for all n ≥ 3. Prove that for all positive integers n,

a(n) = 2n−1 − (−1)n + 1

2
.

21. Let n ≥ 3 be a positive integer. Arrange the first n2 Fibonacci numbers
in an n× n array, spiralling counter-clockwise. For example, for n = 3
and n = 4, the arrays are:

5 3 2
8 1 1
13 21 34

987 610 377 233
5 3 2 144
8 1 1 89
13 21 34 55

Note that 21+1 = 2(8+3) and 610+5 = 5(89+34). Generalize these
results and prove.

22. What happens if we replace Fibonacci numbers by Lucas numbers in
the previous problem?

23. Let a and b be positive integers which are relatively prime to each other,
and let p > 3 be a prime dividing a2+ab+b2. Prove that for all integers
n ≥ 0,

a(p−1)n+4 + b(p−1)n+4 + (a + b)(p−1)n+4

is divisible by p2.

24. Let p be a prime of the form 6k + 5. Prove that

3k+2∑
i=1

i2·3
n

is divisible by p for all n ≥ 0.

25. Let Fn denote the nth Fibonacci number. Prove that

F 2
n + F 2

n+1 + F 2
n+2 + F 2

n+3 = 3F2n+3

for all n ≥ 0.
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26. Let Fn denote the nth Fibonacci number. Prove that

F5n+3 + F 2
5n+4

is divisible by 11 for all n ≥ 0.

27. Let k be a fixed positive integer and let p be an odd prime, such that
p ≥ k. Let F (n) be a function taking the integers to the integers
satisfying

k∑
i=0

(
k

i

)
(−1)k−iF (n + i) ≡ 0 (mod pk)

for all integers n. Prove that if F (a0), F (a1), . . . , F (ak−1) are all
divisible by pk, where the ai are all distinct modulo p, then F (n) is
divisible by pk for all n.

28. Let Fn denote the nth Fibonacci number, and for all n ≥ 0, let Gn(x)
be the polynomial 89xn − Fnx

11 − Fn−11. Prove that for all n ≥ 0,
Gn(x) is divisible by x2 − x− 1.

29. Let p be a prime of the form 4k + 1. Prove that for all n ≥ 0,

2k∑
i=1

i4n+2

is divisible by p.

30. Let p be an odd prime. For all integers n ≥ 0, let

F (n) =

p−1∑
k=1

k(p−1)n+1 − p(p− 1)

2
· [(p− 1)n + 1],

and let G(n) = 500500F (n)− n(n− 1)F (1001)/2. Prove that G(n) is
divisible by p3 for all n ≥ 0.

31. Let p be an odd prime, and let 2k be the greatest power of 2 dividing
p− 1. Let 1 ≤ j ≤ k, and let m = (p− 1)/2j.

(a) Show that there exist m values of a, from 1 to (p− 1)/2 inclusive,
such that a2m ≡ 1 (mod p).
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(b) Let a1, a2, . . . , am be the m values in part (a). Show that

m∑
i=1

a2n
i

is divisible by p for all n ≥ 0, except when n is divisible by m.

32. Prove or disprove the following: Under the assumptions of problem 23,
let

f(n) = a(p−1)n+4 + b(p−1)n+4 + (a + b)(p−1)n+4.

Then
12f(n) ≡ (n− 3)(n− 4)f(0) (mod p3).

Hints and Solutions

1. We claim that F (n + 3)− 3F (n + 2) + 3F (n + 1)−F (n) ≡ 0 (mod p3)
for all n ≥ 0, and that F (2) ≡ F (1) ≡ F (0) ≡ 0 (mod p3). Then the
result follows from induction.

Let

G(n) =

p−1∑
k=1

k(p−1)n+1, and

H(n) = −n(n− 1)

2

p−1∑
k=1

(k2p−1 − 3k2)− p(p− 1)

2
[(p− 1)n + 1],

so F (n) = G(n) + H(n).

The function H(n) is quadratic in n, so H(n+3)−3H(n+2)+3H(n+
1)−H(n) = 0 for all n ≥ 0.

Let k be an integer, 1 ≤ k ≤ p− 1. Then by Fermat’s Little Theorem,
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kp−1 − 1 ≡ 0 (mod p). Cubing this, we get

k3(p−1) − 3k2(p−1) + 3kp−1 − 1 ≡ 0

⇒ k(p−1)(n+3)+1 − 3k(p−1)(n+2)+1

+3k(p−1)(n+1)+1 − k(p−1)n+1 ≡ 0

⇒
p−1∑
k=1

k(p−1)(n+3)+1 − 3

p−1∑
k−1

k(p−1)(n+2)+1

+3

p−1∑
k=1

k(p−1)(n+1)+1 −
p−1∑
k=1

k(p−1)n+1 ≡ 0

⇒ G(n + 3)− 3G(n + 2) + 3G(n + 1)− 3G(n) ≡ 0 (mod p3).

Therefore, F (n + 3) − 3F (n + 2) + 3F (n + 1) − 3F (n) ≡ 0 (mod p3)
for all n ≥ 0.

Now,

F (0) =

p−1∑
k=1

k − p(p− 1)

2
= 0, and

F (2) =

p−1∑
k=1

k2p−1 −
p−1∑
k=1

k2p−1 +

p−1∑
k=1

3k2 − p(p− 1)(2p− 1)

2
= 0.

To calculate F (1), as before, let k be an integer, 1 ≤ k ≤ p− 1. Then
by the Binomial Theorem,

kp + (p− k)p = kp + pp −
(

p

1

)
pp−1k + · · ·+ (−1)p−2

(
p

p− 2

)
p2kp−1

+ (−1)p−1

(
p

p− 1

)
pkp−1 + (−1)p

(
p

p

)
kp

≡ p2kp−1 (mod p3).

By Fermat’s Little Theorem, kp−1−1 = pt for some integer t. Therefore,
p2kp−1 = p2(1 + pt) ≡ p2 (mod p3). Summing from k = 1 to (p− 1)/2,
we obtain

p−1∑
k=1

kp ≡ p− 1

2
· p2 (mod p3).
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Therefore,

F (1) =

p−1∑
k=1

kp − p2(p− 1)

2
≡ 0 (mod p3).

2. Hint: Prove that the expression has period 6 modulo 7.

3. Hint: Prove that the expression has period 12 modulo 13.

4. Since ai is relatively prime to both p and q, by Fermat’s Little Theorem,
a

(p−1)(q−1)
i − 1 is divisible by pq. Squaring this, we get

a
2(p−1)(q−1)
i − 2a

(p−1)(q−1)
i + 1 ≡ 0

⇒ a
(p−1)(q−1)(n+2)+1
i − 2a

(p−1)(q−1)(n+1)+1
i + a

(p−1)(q−1)n+1
i ≡ 0

⇒
m∑

i=1

a
(p−1)(q−1)(n+2)+1
i − 2

m∑
i=1

a
(p−1)(q−1)(n+1)+1
i

+
m∑

i=1

a
(p−1)(q−1)n+1
i ≡ 0

⇒ F (n + 2)− 2F (n + 1) + F (n) ≡ 0 (mod p2q2).

Also,

F (0) =
m∑

i=1

ai ≡ 0 (mod p2q2).

It is now easy to prove by induction that F (n) ≡ nF (1) (mod p2q2)
for all n ≥ 0.

Now, p does not divide p− 1, and p does not divide q− 1 by definition.
Also, q does not divide neither p−1 nor q−1. Therefore, (p−1)(q−1)
is relatively prime to p2q2.

By a result in number theory, there exists an n such that n(p−1)(q−1)+
1 ≡ 0 (mod p2q2). For this n, n is clearly relatively prime to p2q2. Also,
p− 1 is even, so n(p− 1)(q− 1)+1 is an odd multiple of pq. Therefore,
F (n) ≡ 0 (mod p2q2). However, F (n) ≡ nF (1) (mod p2q2), and n is
relatively prime to p2q2. We conclude that F (1) ≡ 0 (mod p2q2), and
hence, that F (n) ≡ nF (1) ≡ 0 (mod p2q2) for all n ≥ 0.
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5. Let sn = a2n + b2n + c2n for all n. First, a2 + b2 + c2 = 2(a2 + ab + b2),
and since d is odd, d divides a2 + ab + b2. Also,

a2b2 + a2c2 + b2c2 = a2b2 + (a2 + b2)(a + b)2

= a4 + 2a3b + 3a2b2 + 2ab3 + b4

= (a2 + ab + b2)2,

so a2b2 +a2c2 + b2c2 is divisible by d2. Finally, by results on recursions,

sn = (a2 + b2 + c2)sn−1 − (a2b2 + a2c2 + b2c2)sn−2 + a2b2c2sn−3

for all n ≥ 3.

(a) Note that a6n−4 + b6n−4 + c6n−4 = s3n−2, and

s3n−2 = (a2 + b2 + c2)s3n−3 − (a2b2 + a2c2 + b2c2)s3n−4 + a2b2c2s3n−5

for all n ≥ 2. For n = 2, s3n−5 = s1 = a2 + b2 + c2, which is divisible by
d. Also, a2b2 + a2c2 + b2c2 is divisible by d. Hence, by induction, s3n−2

is divisible by d for all n ≥ 1.

(b) Note that a6n−2 + b6n−2 + c6n−2 = s3n−1, and

s3n−1 = (a2 + b2 + c2)s3n−2 − (a2b2 + a2c2 + b2c2)s3n−3 + a2b2c2s3n−4

for all n ≥ 2. For n = 2, s3n−4 = s2 = a4+b4+c4 = 2a4+4a3b+6a2b2+
4ab3 +2b4 = 2(a2 +ab+b2)2, which is divisible by d2. By part (a), s3n−2

is divisible by d. Also, a2 +b2 +c2 is divisible by d and a2b2 +a2c2 +b2c2

is divisible by d2. Hence, by induction, s3n−1 is divisible by d2 for all
n ≥ 1.

(c) For all n ≥ 1, 2n is even, so 2n is congruent to 0, 2, or 4 modulo 6.
However, congruence to 0 implies divisibility by 3, so 2n is congruent
to 2 or 4. The result then follows from parts (a) and (b).

(d) It is easy to show that 4n ≡ 4 (mod 6) for all n ≥ 1. The result
then follows from part (b).

6. (a) Hint: Show that for all k ≥ 1, F (k)2 = F (k+1)F (k)−F (k)F (k−1).
Sum this from k = 1 to n.
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(b) Let A(n) = F (n)2+F (n+1)2 and B(n) = F (2n+4)−F (2n−3) for
all n ≥ 2. Then A(2) = B(2) = 85 and A(3) = B(3) = 218. We claim
that A(n)− 3A(n− 1) + A(n− 2) = B(n)− 3B(n− 1) + B(n− 2) = 0
for all n ≥ 4. Then it follows that A(n) = B(n) for all n ≥ 2.

Now,

A(n)− 3A(n− 1) + A(n− 2)

= F (n + 1)2 + F (n)2 − 3F (n)2 − 3F (n− 1)2 + F (n− 1)2 + F (n− 2)2

= [F (n) + F (n− 1)]2 − 2F (n)2 − 2F (n− 1)2 + [F (n)− F (n− 1)]2

= F (n)2 + 2F (n)F (n− 1) + F (n− 1)2 − 2F (n)2 − 2F (n− 1)2

+ F (n)2 − 2F (n)F (n− 1) + F (n− 1)2

= 0.

Also,

B(n)− 3B(n− 1) + B(n− 2)

= F (2n + 4)− F (2n− 3)− 3F (2n + 2) + 3F (2n− 5) + F (2n)− F (2n− 7)

= F (2n + 4)− 3F (2n + 2) + F (2n)− F (2n− 3) + 3F (2n− 5)− F (2n− 7)

= F (2n + 3) + F (2n + 2)− 3F (2n + 2) + F (2n + 2)− F (2n + 1)

− F (2n− 4)− F (2n− 5) + 3F (2n− 5)− F (2n− 5) + F (2n− 6)

= F (2n + 3)− F (2n + 2)− F (2n + 1)− F (2n− 4) + F (2n− 5) + F (2n− 6)

= 0.

7. We first prove a lemma:

Lemma. For any prime p and positive integer n not divisible by p− 1,

p−1∑
i=1

in ≡ 0 (mod p).

Proof. Let s denote the given sum, and let g be a primitive root
modulo p. Since n is not divisible by p−1, gn 6≡ 1 (mod p). Therefore,

gns =

p−1∑
i=1

(gi)n ≡
p−1∑
i=1

in ≡ s (mod p),
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so (gn − 1)s ≡ 0 ⇒ s ≡ 0 (mod p). �

Now, let t denote the sum in the problem, and let u denote

p−1∑
i=1

i2
n

=
2k+1∑
i=1

i2
n

+
4k+2∑

i=2k+2

i2
n

=
2k+1∑
i=1

i2
n

+
2k+1∑
i=1

(p− i)2n

≡ 2t (mod p).

Since 2n is not divisible by p− 1 = 4k + 2 = 2(2k + 1), by the Lemma,
u ≡ 0 (mod p), so t ≡ 0 (mod p).

8. (a) Let a be a quadratic residue modulo p, 1 ≤ a ≤ p − 1. We claim
that p− a is also a quadratic residue modulo p.

Since a is a quadratic residue, a ≡ x2 (mod p) for some x. A result in
number theory states that there exists a u such that u2 ≡ −1 (mod p).
Then (xu)2 ≡ −a ≡ p− a (mod p), so p− a is also a quadratic residue
modulo p. Also, if a ≤ 2k, then p− a ≥ 2k + 1, and vice-versa.

Now, there are exactly p−1 = 4k quadratic residues modulo p. There-
fore, exactly half must be between 1 and 2k, and half between 2k + 1
and 4k.

(b) For k + 1 ≤ i ≤ 2k, let ai = p − a2k+1−i. Then by the solution to
part (a), the numbers a1, a2, . . . , a2k represent the quadratic residues
modulo p.

Let s denote the given sum, and let t denote

2k∑
i=1

a2n

i =
k∑

i=1

a2n

i +
2k∑

i=k+1

a2n

i

=
k∑

i=1

a2n

i +
k∑

i=1

(p− ai)
2n

≡ 2s (mod p).
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As i varies from 1 to p− 1, i2 takes on every quadratic residue exactly
twice. Therefore,

p−1∑
i=1

i2
n+1

=

p−1∑
i=1

(i2)2n ≡ 2
2k∑
i=1

a2n

i ≡ 2t ≡ 4s (mod p).

Now p − 1 = 4k, where k is odd, so it cannot divide 2n+1. Therefore,
4s ≡ 0 (mod p), which implies that s ≡ 0 (mod p).

9. The expression is congruent to 2 · (2n−1)2 modulo 13. Since 2 is not a
square modulo 13, neither is the expression.

10. The expression factors as

(82n−1

+ 52n−1

)(82n−2

+ 52n−2

) · · · (82 + 52)(8 + 5)(8− 5).

The last factor is 3, and all the other factors are congruent to 2 modulo
3. Therefore, the expression has exactly one factor of 3, and cannot be
a perfect square.

11. Hint: See the solution to Problem 1. For an alternative approach, see
the solution to Problem 14.

12. If k is divisible by p, then it follows that f(n) is also divisible by p for
all n, and the result follows trivially, so assume that k is not divisible
by p.

By induction, it is easy to prove that f(n+mc) ≡ kmf(n) for all m ≥ 0,
for all n. Take m = p− 1; then by Fermat’s Little Theorem, kp−1 ≡ 1
mod p, so f(n+(p−1)c) ≡ f(n) for all n. Thus, we can take b = p−1.

13. For all n ≥ 0,

1 + 24n+2 + 34n+2 + 44n+2 + 54n+2 + 64n+2

≡ 1 + 4 · 3n + 9 · 3n + 3 · 9n + 12 · 1n + 10 · 9n

≡ 0 (mod 13).

14. By the Binomial Theorem,

34n+3 ≡ 27 · 81n

≡ 27 · (1 + 80)n

≡ 27 · [1 + 80n + 6400(n)(n− 1)/2]

≡ 27 + 10n + 25n2 (mod 125).
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Similarly,

44n+3 ≡ 64 · 256n

≡ 64 · (1 + 5)n

≡ 64 · [1 + 5n + 25n(n− 1)/2]

≡ 64 + 20n + 50n2 (mod 125).

Therefore,

2(34n+3 + 44n+3)− 25n2 + 65n + 68

≡ 2(27 + 10n + 25n2 + 64 + 20n + 50n2)− 25n2 + 65n + 68

≡ 0 (mod 125).

15. Let F (n) = 22n
+32n

+52n
. Then F (1) = 38 = 2 ·19 and F (2) = 38 ·19.

Also, for n ≥ 1,

F (n + 2) = 22n+2

+ 32n+2

+ 52n+2

= 24·2n

+ 34·2n

+ 54·2n

= 162n

+ 812n

+ 6252n

≡ 32n

+ 52n

+ 22n

≡ F (n) (mod 19).

Therefore, by induction, F (n) is divisible by 19 for all n ≥ 1.

Note that this problem is also a special case of Problem 5(c).

16. For all n ≥ 1, f(n+1)+f(n) = af(n)+af(n−1) = a[f(n)+f(n−1)].
Therefore, f(n + 1) + f(n) = an−1[f(2) + f(1)], and

g(n) = f(n + 2) + af(n + 1) + (a− 1)f(n)

= (2a− 1)f(n + 1) + (2a− 1)f(n)

= (2a− 1)[f(n + 1) + f(n)]

= (2a− 1)an−1[f(2) + f(1)].

17. Hint: Show that f(n) has period 12 modulo 32.

18. Hint: See the solution to Problem 1.
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19. Hint: Show that f(n) ≡ an2 + bn + c (mod p3) for some constants a,
b, and c. By substituting n = 0, 1, and 2, find a, b, and c in terms of
f(0), f(1), and f(2).

20. This is a straight-forward induction problem.

21. The problem boils down to showing that Fn2−2n+2+Fn2+2n = F2n−1(Fn2+
Fn2+2) for all n ≥ 1.

Let α = (1 +
√

5)/2 and β = (1−
√

5)/2. Then α and β are the roots
of the equation x2 − x− 1 = 0, and so αβ = −1, and 1/α = α− 1 and
1/β = β − 1.

Binet’s Formula states that

Fn =
αn − βn

√
5

for all n. Hence,

F2n−1(Fn2 + Fn2+2)

=

(
α2n−1 − β2n−1

√
5

)(
αn2 − βn2

+ αn2+2 − βn2+2

√
5

)
=

1

5
(αn2+2n−1 − α2n−1βn2

+ αn2+2n+1 − α2n−1βn2+2

− αn2

β2n−1 + βn2+2n−1 − αn2+2β2n−1 + βn2+2n+1)

=
1

5
(αn2+2n−1 + βn2−2n+1 + αn2+2n+1 + βn2−2n+3

+ αn2−2n+1 + βn2+2n−1 + αn2−2n+3 + βn2+2n+1)

=
1

5

[(
1

α
+ α

)
(αn2−2n+2 + αn2+2n) +

(
1

β
+ β

)
(βn2−2n+2 + βn2+2n)

]
=

1

5

[
(2α− 1)(αn2−2n+2 + αn2+2n) + (2β − 1)(βn2−2n+2 + βn2+2n)

]
=

αn2−2n+2 − βn2−2n+2

√
5

+
αn2+2n − βn2+2n

√
5

= Fn2−2n+2 + Fn2+2n.

22. Hint: See the solution to Problem 21.
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23. If p divided b, then p would also divide a, contradicting that a and b
are relatively prime. Therefore, b−1 modulo p exists, and

a2 + ab + b2 ≡ 0

⇒ (ab−1)2 + ab−1 + 1 ≡ 0

⇒ 4(ab−1)2 + 4ab−1 + 4 ≡ 0

⇒ (2ab−1 + 1)2 ≡ −3 (mod p).

Hence, −3 is a quadratic residue modulo p. By results in number
theory, this implies that p ≡ 1 (mod 6). Therefore, the result follows
from Problem 5(b).

24. Let s denote the given sum, and let t denote

p−1∑
i=1

i2·3
n

=
3k+2∑
i=1

i2·3
n

+
6k+4∑

i=3k+3

i2·3
n

=
3k+2∑
i=1

i2·3
n

+
3k+2∑
i=1

(p− i)2·3n

≡ 2s (mod p).

Now, p− 1 = 6k +4 = 2(3k +2), which cannot divide 2 · 3n. Therefore,
t ≡ 0 (mod p), and so s ≡ 0 (mod p).

25. Hint: See the solution to Problem 6(b). Alternatively, show that F 2
n +

F 2
n+1 = F2n+1 for all n.

26. Hint: Show that Fn has period 10 modulo 11.

27. The given relation implies that F can be modelled by a polynomial of
degree at most k − 1.

For 0 ≤ i ≤ k − 1, let

Fi(n) = (n− a0)(n− a1) · · · (n− ai−1)(n− ai+1) · · · (n− ak−1).

Then by the Lagrange Interpolation Formula,

F (n) ≡ F0(n)

F0(a0)
F (a0)+

F1(n)

F1(a1)
F (a1)+· · ·+

Fk−1(n)

Fk−1(ak−1)
F (ak−1) (mod pk).
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Since as − at is not divisible by p for all s 6= t, Fi(ai)
−1 exists modulo

pk.

Finally, F (ai) ≡ 0 (mod pk) for all i, so F (n) ≡ 0 (mod pk) for all n.

28. Let α = (1 +
√

5)/2 and β = (1−
√

5)/2, so that α and β are the roots
of x2 − x − 1 = 0. Then it suffices to show that Gn(α) = Gn(β) = 0.
Note that αβ = −1, so α11β11 = −1.

By Binet’s Formula,

Fn =
αn − βn

√
5

for all n ≥ 0. Hence,

Gn(α) = 89αn −
(

αn − βn

√
5

)
α11 − αn−11 − βn−11

√
5

= 89αn − αn+11 − α11βn + αn−11 − βn−11

√
5

= 89αn − αn+11 + βn−11 + αn−11 − βn−11

√
5

= αn

(
89− α11 + α−11

√
5

)
= αn

(
89− α11 − β11

√
5

)
= αn(89− F11)

= 0.

That Gn(β) = 0 is similarly shown.

29. Let s denote the given sum, and let t denote

p−1∑
i=1

i4n+2 =
2k∑
i=1

i4n+2 +
4k∑

i=2k+1

i4n+2

=
2k∑
i=1

i4n+2 +
2k∑
i=1

(p− i)4n+2

≡ 2s (mod p).

Since p−1 = 4k cannot divide 4n+2, t ≡ 0 (mod p), so s ≡ 0 (mod p).
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30. By Problem 1,

F (n) ≡ n(n− 1)

2

p−1∑
k=1

(k2p−1 − 3k2) ≡ n(n− 1)

2
C (mod p3),

where C is a constant independent of n.

Therefore,

G(n) = 500500F (n)− n(n− 1)/2 · F (1001)

≡ 500500 · n(n− 1)/2 · C − n(n− 1)/2 · 1001 · 1000/2 · C
≡ 0 (mod p3).

31. (a) A result in number theory states that the congruence an ≡ 1
(mod p) has gcd(n, p− 1) solutions modulo p. Since 2m divides p− 1,
gcd(2m, p− 1) = 2m.

Now, if a satisfies a2m ≡ 1 (mod p), then (p − a)2m ≡ 1 (mod p).
Therefore, half of the solutions, when reduced, are between 1 and (p−
1)/2 inclusive.

(b) For m + 1 ≤ i ≤ 2m, let ai = p − a2m+1−i, so by part (a), a1, a2,
. . . , a2m are the 2m solutions to a2m ≡ 1 (mod p).

Let g be a primitive root of modulo p. Then another result in number
theory states that a1, a2, . . . , a2m are, in some order, congruent to 1,
g2j−1

, g2·2j−1
, g3·2j−1

, . . . , g(2m−1)·2j−1
.

Let s denote the given sum, and let t denote the sum

2m∑
i=1

a2n
i =

m∑
i=1

a2n
i +

2m∑
i=m+1

a2n
i

=
m∑

i=1

a2n
i +

m∑
i=1

(p− ai)
2n

≡ 2s (mod p).

Also,

t ≡
2m−1∑
i=0

gi·2j−1·2n ≡
2m−1∑
i=0

gi·2jn (mod p).
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If n is divisible by m, then n = md for some d, and

t ≡
2m−1∑
i=0

gi·2jmd ≡
2m−1∑
i=0

gid(p−1) ≡
2m−1∑
i=0

1 ≡ 2m (mod p),

so t is not divisible by p, and neither is s.

On the other hand, if n is not divisible by m, then

(1− g2jn)t ≡ 1− g2m·2jn

≡ 1− g2n(p−1)

≡ 0 (mod p).

Since n is not divisible by m, 2jn = n(p−1)/m is not divisible by p−1,
so 1 − g2jn is not congruent to 0, so finally t is divisible by p, which
implies that s is divisible by p.

32. We have that a and b are relatively prime to p, so by Fermat’s little
theorem, ap−1 − 1 ≡ 0 (mod p). Cubing, we get

a3(p−1) − 3a2(p−1) + 3ap−1 − 1 ≡ 0 (mod p3).

Multiplying by a(p−1)n+4, we get

a(p−1)(n+3)+4 − 3a(p−1)(n+2)+4

+ 3a(p−1)(n+1)+4 − a(p−1)n+4 ≡ 0 (mod p3)

for all integers n ≥ 0.

Similarly,

b(p−1)(n+3)+4 − 3b(p−1)(n+2)+4

+ 3b(p−1)(n+1)+4 − b(p−1)n+4 ≡ 0 (mod p3),

and

(a + b)(p−1)(n+3)+4 − 3(a + b)(p−1)(n+2)+4

+ 3(a + b)(p−1)(n+1)+4 − (a + b)(p−1)n+4 ≡ 0 (mod p3)

for all n ≥ 0.
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Adding, we get f(n + 3)− 3f(n + 2) + 3f(n + 1)− f(n) ≡ 0 (mod p3)
for all n ≥ 0. Then by problem 19, there exist constants A, B, C, such
that f(n) ≡ An2 + Bn + C (mod p3) for all n ≥ 0.

Now, we claim we can assume that b = 1. This is because if p divides
a2 + ab + b2, then p also divides 1 + ab−1 + a2b−2.

Let
gn(x) = 1 + x6n+4 + (1 + x)6n+4.

We claim that gn(x) = Qn(x)(1 + x + x2)3 + Rn(1 + x + x2)2 for some
polynomial Qn(x) with integer coefficients and integer Rn, for all n ≥ 0.
We prove this by induction.

For n = 0,
1 + x4 + (1 + x)4 = 2(1 + x + x2)2,

so we can take R0 = 2.

For n = 1,

1 + x10 + (1 + x)10

= (−13 + 19x + 21x2 + 4x3 + 2x4)(1 + x + x2)3 + 15(1 + x + x2)2,

so we can take R1 = 15.

For n = 2,

1 + x16 + (1 + x)16

= (−38 + 50x + 78x2 + 212x3 + 554x4 + 702x5

+ 514x6 + 252x7 + 78x8 + 10x9 + 2x10)(1 + x + x2)3

+ 40(1 + x + x2)2,

so we can take R2 = 40.

Now, assume the claim is true for some n = k, k + 1, and k + 2, so

gk(x) = Qk(x)(1 + x + x2)3 + Rk(1 + x + x2)2,

gk+1(x) = Qk+1(x)(1 + x + x2)3 + Rk+1(1 + x + x2)2,

gk+2(x) = Qk+2(x)(1 + x + x2)3 + Rk+2(1 + x + x2)2.
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We can calculate that

gk+3(x)− 3gk+2(x) + 3gk+1(x)− gk(x)

= x6(k+3)+4 − 3x6(k+2)+4 + 3x6(k+1)+4 − x6k+4

+ (1 + x)6(k+3)+4 − 3(1 + x)6(k+2)+4 + 3(1 + x)6(k+1)+4 − (1 + x)6k+4

= x6k+4(x6 − 1)3 + (1 + x)6k+4[(1 + x)6 − 1]3.

Both x6 − 1 and (1 + x)6 − 1 are divisible by 1 + x + x2, so the whole
expression is divisible by (1 + x + x2)3 – say it is equal to Pk(x)(1 +
x + x2)3. Then

gk+3(x) = 3gk+2(x)− 3gk+1(x) + gk(x) + Pk(x)(1 + x + x2)3

= [3Qk+2(x)− 3Qk+1(x) + Qk(x) + Pk(x)](1 + x + x2)3

+ (3Rk+2 − 3Rk+1 + Rk)(1 + x + x2)2,

which proves the claim for n = k + 3. Furthermore, we have that
Rn+3 − 3Rn+2 + 3Rn+1 −Rn = 0 for all n ≥ 0, so Rn is quadratic in n.
From R0 = 2, R1 = 15, and R2 = 40, we have that Rn = 6n2 +7n+2 =
(2n + 1)(3n + 2).

By the solution to problem 23, p ≡ 1 (mod 6). Let p = 6t + 1. Then

f(n) = 1 + a(p−1)n+4 + (1 + a)(p−1)n+4

= 1 + a6tn+4 + (1 + a)6tn+4

= gtn(a)

≡ Rtn(1 + a + a2)2

≡ (2tn + 1)(3tn + 2)(1 + a + a2)2 (mod p3)

for all n ≥ 0.

Then

f(3) ≡ (6t + 1)(9t + 2)(1 + a + a2)2

≡ p(9t + 2)(1 + a + a2)2

≡ 0 (mod p3),

and

f(4) ≡ (8t + 1)(12t + 2)(1 + a + a2)2

≡ (8t + 1)(2p)(1 + a + a2)2

≡ 0 (mod p3).
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As stated above, there exist constants A, B, C, such that f(n) ≡
An2 + Bn + C (mod p3) for all n ≥ 0, so f(n) ≡ A(n − 3)(n − 4)
(mod p3) for all n ≥ 0. Taking n = 0 gives f(0) ≡ 12A (mod p3).
We conclude that 12f(n) ≡ 12A(n − 3)(n − 4) ≡ (n − 3)(n − 4)f(0)
(mod p3) for all n ≥ 0.
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