Jose Espinosa's Problems in Mathematical Induction Problems

1. Let p be an odd prime, and let
$F(n)$
$=\sum_{k=1}^{p-1} k^{(p-1) n+1}-\frac{n(n-1)}{2} \sum_{k=1}^{p-1}\left(k^{2 p-1}-3 k^{2}\right)-\frac{p(p-1)}{2}[(p-1) n+1]$
for $n \geq 0$. Prove that $F(n)$ is divisible by p^{3} for all $n \geq 0$.
2. Let F_{n} denote the $n^{\text {th }}$ Fibonacci number. Prove that

$$
1+2^{2 n}+3^{2 n}+2\left[(-1)^{F_{n}}+1\right]
$$

is divisible by 7 for all $n \geq 0$.
3. Let F_{n} denote the $n^{\text {th }}$ Fibonacci number. Prove that

$$
2\left(2^{2 n}+5^{2 n}+6^{2 n}\right)+3(-1)^{n+1}\left[(-1)^{F_{n}}+1\right]
$$

is divisible by 13 for all $n \geq 0$.
4. Let p and q be odd primes, such that $p<q$, and $q-1$ is not divisible by p.
Let $a_{1}, a_{2}, \ldots, a_{m}$ be positive integers such that both $\sum_{i=1}^{m} a_{i}$ and $\sum_{i=1}^{m} a_{i}^{k p q}$ are divisible by $p^{2} q^{2}$, for any odd positive integer k. Also, a_{i} is not divisible by neither p nor q for all i.

Let

$$
F(n)=\sum_{i=1}^{m} a_{i}^{(p-1)(q-1) n+1}
$$

for $n \geq 0$. Prove that $F(n)$ is divisible by $p^{2} q^{2}$ for all $n \geq 0$.
5 . Let a, b, and c be three positive integers, where $c=a+b$. Let d be an odd factor of $a^{2}+b^{2}+c^{2}$. Prove that for all positive integers n :
(a) $a^{6 n-4}+b^{6 n-4}+c^{6 n-4}$ is divisible by d.
(b) $a^{6 n-2}+b^{6 n-2}+c^{6 n-2}$ is divisible by d^{2}.
(c) $a^{2^{n}}+b^{2^{n}}+c^{2^{n}}$ is divisible by d.
(d) $a^{4^{n}}+b^{4^{n}}+c^{4^{n}}$ is divisible by d^{2}.
6. The function $F(n)$ satisfies $F(1)=1, F(2)=6$, and $F(n)=F(n-$ $1)+F(n-2)$ for all $n \geq 3$. Prove that for all $n \geq 2$,
(a) $\sum_{i=1}^{n} F(i)^{2}=F(n) F(n+1)-5$, and
(b) $F(n)^{2}+F(n+1)^{2}=F(2 n+4)-F(2 n-3)$.
7. Let p be a prime of the form $4 k+3$. Prove that

$$
\sum_{i=1}^{2 k+1} i^{2^{n}}
$$

is divisible by p for all $n \geq 1$.
8. Let p be a prime of the form $4 k+1$, where k is odd.
(a) Consider the quadratic residues modulo p, reduced so that they are between 1 and $p-1$ inclusive. Show that exactly k of these residues are between 1 and $2 k$ inclusive.
(b) Let $a_{1}, a_{2}, \ldots, a_{k}$ be the quadratic residues specified in part (a). Prove that

$$
\sum_{i=1}^{k} a_{i}^{2^{n}}
$$

is divisible by p for all $n \geq 1$.
9. Prove that for all positive integers n,

$$
2^{2 n-1}+4^{2 n-1}+9^{2 n-1}
$$

is not a perfect square.
10. Prove that for all positive integers $n, 8^{2^{n}}-5^{2^{n}}$ is not a perfect square.
11. Prove that for all integers $n \geq 0$,

$$
\begin{aligned}
& 2\left(13^{6 n+1}+30^{6 n+1}+100^{6 n+1}+200^{6 n+1}\right) \\
& \quad+2 n(n-2)\left(13^{7}+30^{7}+100^{7}+200^{7}\right) \\
& \quad-n(n-1)\left(13^{13}+30^{13}+100^{13}+200^{13}\right)
\end{aligned}
$$

is divisible by 7^{3}.
12. Let f be a function taking the positive integers to the positive integers, and let p be a prime. There exist positive integers c and k such that $f(n+c)-k f(n)$ is divisible by p for all n. Prove that there exists a positive integer b such that $f(n+b c)-f(n)$ is divisible by p for all n.
13. Prove that for all integers $n \geq 0$,

$$
1+2^{4 n+2}+3^{4 n+2}+4^{4 n+2}+5^{4 n+2}+6^{4 n+2}
$$

is divisible by 13 .
14. Prove that for all integers $n \geq 0$,

$$
2\left(3^{4 n+3}+4^{4 n+3}\right)-25 n^{2}+65 n+68
$$

is divisible by 125 .
15. Prove that $2^{2^{n}}+3^{2^{n}}+5^{2^{n}}$ is divisible by 19 for all positive integers n.
16. Let a be a real number, and let $f(n)$ and $g(n)$ be functions satisfying $f(n)=(a-1) f(n-1)+a f(n-2)$ for all $n \geq 3$ and $g(n)=f(n+2)+$ $a f(n+1)+(a-1) f(n)$ for all $n \geq 1$. Prove that for all $n \geq 1$,

$$
g(n)=(2 a-1) a^{n-1}[f(2)+f(1)] .
$$

17. The function $f(n)$ satisfies $f(1)=f(2)=1$, and $f(n)=3[f(n-1)+$ $f(n-2)]+1$ for all $n \geq 3$. Prove that for all positive integers n, $f(3 n)+f(3 n+1)$ is divisible by 32 .
18. Let p be a prime greater than 5 . Prove that for all integers $n \geq 0$,

$$
\begin{aligned}
& 100\left(2^{(p-1) n+1}-3^{(p-1) n+1}-5^{(p-1) n+1}+6^{(p-1) n+1}\right) \\
& \quad-n\left(2^{100(p-1)+1}-3^{100(p-1)+1}-5^{100(p-1)+1}+6^{100(p-1)+1}\right)
\end{aligned}
$$

is divisible by p^{2}.
19. Let p be an odd prime. The function $F(n)$ takes the non-negative integers to the integers, and satisfies $F(n+3)-3 F(n+2)+3 F(n+$ $1)-F(n) \equiv 0\left(\bmod p^{3}\right)$ for all $n \geq 0$. Prove that for all $n \geq 0$,
$F(n) \equiv \frac{(n-1)(n-2)}{2} F(0)-n(n-2) F(1)+\frac{n(n-1)}{2} F(2) \quad\left(\bmod p^{3}\right)$.
20. The function $a(n)$ satisfies $a(1)=a(2)=1$, and $a(n)=a(n-1)+$ $2 a(n-2)+1$ for all $n \geq 3$. Prove that for all positive integers n,

$$
a(n)=2^{n-1}-\frac{(-1)^{n}+1}{2}
$$

21. Let $n \geq 3$ be a positive integer. Arrange the first n^{2} Fibonacci numbers in an $n \times n$ array, spiralling counter-clockwise. For example, for $n=3$ and $n=4$, the arrays are:

5	$\mathbf{3}$	2
$\mathbf{8}$	1	$\mathbf{1}$
13	$\mathbf{2 1}$	34

987	$\mathbf{6 1 0}$	377	233
$\mathbf{5}$	3	2	144
8	1	1	$\mathbf{8 9}$
13	21	$\mathbf{3 4}$	55

Note that $21+1=2(8+3)$ and $610+5=5(89+34)$. Generalize these results and prove.
22. What happens if we replace Fibonacci numbers by Lucas numbers in the previous problem?
23. Let a and b be positive integers which are relatively prime to each other, and let $p>3$ be a prime dividing $a^{2}+a b+b^{2}$. Prove that for all integers $n \geq 0$,

$$
a^{(p-1) n+4}+b^{(p-1) n+4}+(a+b)^{(p-1) n+4}
$$

is divisible by p^{2}.
24. Let p be a prime of the form $6 k+5$. Prove that

$$
\sum_{i=1}^{3 k+2} i^{2 \cdot 3^{n}}
$$

is divisible by p for all $n \geq 0$.
25. Let F_{n} denote the $n^{\text {th }}$ Fibonacci number. Prove that

$$
F_{n}^{2}+F_{n+1}^{2}+F_{n+2}^{2}+F_{n+3}^{2}=3 F_{2 n+3}
$$

for all $n \geq 0$.
26. Let F_{n} denote the $n^{\text {th }}$ Fibonacci number. Prove that

$$
F_{5 n+3}+F_{5 n+4}^{2}
$$

is divisible by 11 for all $n \geq 0$.
27. Let k be a fixed positive integer and let p be an odd prime, such that $p \geq k$. Let $F(n)$ be a function taking the integers to the integers satisfying

$$
\sum_{i=0}^{k}\binom{k}{i}(-1)^{k-i} F(n+i) \equiv 0 \quad\left(\bmod p^{k}\right)
$$

for all integers n. Prove that if $F\left(a_{0}\right), F\left(a_{1}\right), \ldots, F\left(a_{k-1}\right)$ are all divisible by p^{k}, where the a_{i} are all distinct modulo p, then $F(n)$ is divisible by p^{k} for all n.
28. Let F_{n} denote the $n^{\text {th }}$ Fibonacci number, and for all $n \geq 0$, let $G_{n}(x)$ be the polynomial $89 x^{n}-F_{n} x^{11}-F_{n-11}$. Prove that for all $n \geq 0$, $G_{n}(x)$ is divisible by $x^{2}-x-1$.

29 . Let p be a prime of the form $4 k+1$. Prove that for all $n \geq 0$,

$$
\sum_{i=1}^{2 k} i^{4 n+2}
$$

is divisible by p.
30. Let p be an odd prime. For all integers $n \geq 0$, let

$$
F(n)=\sum_{k=1}^{p-1} k^{(p-1) n+1}-\frac{p(p-1)}{2} \cdot[(p-1) n+1],
$$

and let $G(n)=500500 F(n)-n(n-1) F(1001) / 2$. Prove that $G(n)$ is divisible by p^{3} for all $n \geq 0$.
31. Let p be an odd prime, and let 2^{k} be the greatest power of 2 dividing $p-1$. Let $1 \leq j \leq k$, and let $m=(p-1) / 2^{j}$.
(a) Show that there exist m values of a, from 1 to $(p-1) / 2$ inclusive, such that $a^{2 m} \equiv 1(\bmod p)$.
(b) Let $a_{1}, a_{2}, \ldots, a_{m}$ be the m values in part (a). Show that

$$
\sum_{i=1}^{m} a_{i}^{2 n}
$$

is divisible by p for all $n \geq 0$, except when n is divisible by m.
32. Prove or disprove the following: Under the assumptions of problem 23, let

$$
f(n)=a^{(p-1) n+4}+b^{(p-1) n+4}+(a+b)^{(p-1) n+4} .
$$

Then

$$
12 f(n) \equiv(n-3)(n-4) f(0) \quad\left(\bmod p^{3}\right)
$$

Hints and Solutions

1. We claim that $F(n+3)-3 F(n+2)+3 F(n+1)-F(n) \equiv 0\left(\bmod p^{3}\right)$ for all $n \geq 0$, and that $F(2) \equiv F(1) \equiv F(0) \equiv 0\left(\bmod p^{3}\right)$. Then the result follows from induction.

Let

$$
\begin{aligned}
& G(n)=\sum_{k=1}^{p-1} k^{(p-1) n+1}, \text { and } \\
& H(n)=-\frac{n(n-1)}{2} \sum_{k=1}^{p-1}\left(k^{2 p-1}-3 k^{2}\right)-\frac{p(p-1)}{2}[(p-1) n+1],
\end{aligned}
$$

so $F(n)=G(n)+H(n)$.
The function $H(n)$ is quadratic in n, so $H(n+3)-3 H(n+2)+3 H(n+$ 1) $-H(n)=0$ for all $n \geq 0$.

Let k be an integer, $1 \leq k \leq p-1$. Then by Fermat's Little Theorem,
$k^{p-1}-1 \equiv 0(\bmod p)$. Cubing this, we get

$$
\begin{aligned}
& k^{3(p-1)}-3 k^{2(p-1)}+3 k^{p-1}-1 \equiv 0 \\
& \Rightarrow k^{(p-1)(n+3)+1}-3 k^{(p-1)(n+2)+1} \\
& +3 k^{(p-1)(n+1)+1}-k^{(p-1) n+1} \equiv 0 \\
& \Rightarrow \sum_{k=1}^{p-1} k^{(p-1)(n+3)+1}-3 \sum_{k-1}^{p-1} k^{(p-1)(n+2)+1} \\
& +3 \sum_{k=1}^{p-1} k^{(p-1)(n+1)+1}-\sum_{k=1}^{p-1} k^{(p-1) n+1} \equiv 0 \\
& \Rightarrow G(n+3)-3 G(n+2)+3 G(n+1)-3 G(n) \equiv 0 \quad\left(\bmod p^{3}\right) .
\end{aligned}
$$

Therefore, $F(n+3)-3 F(n+2)+3 F(n+1)-3 F(n) \equiv 0\left(\bmod p^{3}\right)$ for all $n \geq 0$.

Now,

$$
\begin{aligned}
& F(0)=\sum_{k=1}^{p-1} k-\frac{p(p-1)}{2}=0, \text { and } \\
& F(2)=\sum_{k=1}^{p-1} k^{2 p-1}-\sum_{k=1}^{p-1} k^{2 p-1}+\sum_{k=1}^{p-1} 3 k^{2}-\frac{p(p-1)(2 p-1)}{2}=0 .
\end{aligned}
$$

To calculate $F(1)$, as before, let k be an integer, $1 \leq k \leq p-1$. Then by the Binomial Theorem,

$$
\begin{aligned}
k^{p}+(p-k)^{p}= & k^{p}+p^{p}-\binom{p}{1} p^{p-1} k+\cdots+(-1)^{p-2}\binom{p}{p-2} p^{2} k^{p-1} \\
& +(-1)^{p-1}\binom{p}{p-1} p k^{p-1}+(-1)^{p}\binom{p}{p} k^{p} \\
\equiv & p^{2} k^{p-1} \quad\left(\bmod p^{3}\right) .
\end{aligned}
$$

By Fermat's Little Theorem, $k^{p-1}-1=p t$ for some integer t. Therefore, $p^{2} k^{p-1}=p^{2}(1+p t) \equiv p^{2}\left(\bmod p^{3}\right)$. Summing from $k=1$ to $(p-1) / 2$, we obtain

$$
\sum_{k=1}^{p-1} k^{p} \equiv \frac{p-1}{2} \cdot p^{2} \quad\left(\bmod p^{3}\right)
$$

Therefore,

$$
F(1)=\sum_{k=1}^{p-1} k^{p}-\frac{p^{2}(p-1)}{2} \equiv 0 \quad\left(\bmod p^{3}\right) .
$$

2. Hint: Prove that the expression has period 6 modulo 7 .
3. Hint: Prove that the expression has period 12 modulo 13.
4. Since a_{i} is relatively prime to both p and q, by Fermat's Little Theorem, $a_{i}^{(p-1)(q-1)}-1$ is divisible by $p q$. Squaring this, we get

$$
\begin{aligned}
a_{i}^{2(p-1)(q-1)}-2 a_{i}^{(p-1)(q-1)}+1 & \equiv 0 \\
\Rightarrow a_{i}^{(p-1)(q-1)(n+2)+1}-2 a_{i}^{(p-1)(q-1)(n+1)+1}+a_{i}^{(p-1)(q-1) n+1} & \equiv 0 \\
\Rightarrow \sum_{i=1}^{m} a_{i}^{(p-1)(q-1)(n+2)+1}-2 \sum_{i=1}^{m} a_{i}^{(p-1)(q-1)(n+1)+1} & \\
+\sum_{i=1}^{m} a_{i}^{(p-1)(q-1) n+1} & \equiv 0 \\
\Rightarrow F(n+2)-2 F(n+1)+F(n) \equiv 0 \quad\left(\bmod p^{2} q^{2}\right) &
\end{aligned}
$$

Also,

$$
F(0)=\sum_{i=1}^{m} a_{i} \equiv 0 \quad\left(\bmod p^{2} q^{2}\right)
$$

It is now easy to prove by induction that $F(n) \equiv n F(1)\left(\bmod p^{2} q^{2}\right)$ for all $n \geq 0$.

Now, p does not divide $p-1$, and p does not divide $q-1$ by definition. Also, q does not divide neither $p-1$ nor $q-1$. Therefore, $(p-1)(q-1)$ is relatively prime to $p^{2} q^{2}$.

By a result in number theory, there exists an n such that $n(p-1)(q-1)+$ $1 \equiv 0\left(\bmod p^{2} q^{2}\right)$. For this n, n is clearly relatively prime to $p^{2} q^{2}$. Also, $p-1$ is even, so $n(p-1)(q-1)+1$ is an odd multiple of $p q$. Therefore, $F(n) \equiv 0\left(\bmod p^{2} q^{2}\right)$. However, $F(n) \equiv n F(1)\left(\bmod p^{2} q^{2}\right)$, and n is relatively prime to $p^{2} q^{2}$. We conclude that $F(1) \equiv 0\left(\bmod p^{2} q^{2}\right)$, and hence, that $F(n) \equiv n F(1) \equiv 0\left(\bmod p^{2} q^{2}\right)$ for all $n \geq 0$.
5. Let $s_{n}=a^{2 n}+b^{2 n}+c^{2 n}$ for all n. First, $a^{2}+b^{2}+c^{2}=2\left(a^{2}+a b+b^{2}\right)$, and since d is odd, d divides $a^{2}+a b+b^{2}$. Also,

$$
\begin{aligned}
a^{2} b^{2}+a^{2} c^{2}+b^{2} c^{2} & =a^{2} b^{2}+\left(a^{2}+b^{2}\right)(a+b)^{2} \\
& =a^{4}+2 a^{3} b+3 a^{2} b^{2}+2 a b^{3}+b^{4} \\
& =\left(a^{2}+a b+b^{2}\right)^{2},
\end{aligned}
$$

so $a^{2} b^{2}+a^{2} c^{2}+b^{2} c^{2}$ is divisible by d^{2}. Finally, by results on recursions,

$$
s_{n}=\left(a^{2}+b^{2}+c^{2}\right) s_{n-1}-\left(a^{2} b^{2}+a^{2} c^{2}+b^{2} c^{2}\right) s_{n-2}+a^{2} b^{2} c^{2} s_{n-3}
$$

for all $n \geq 3$.
(a) Note that $a^{6 n-4}+b^{6 n-4}+c^{6 n-4}=s_{3 n-2}$, and

$$
s_{3 n-2}=\left(a^{2}+b^{2}+c^{2}\right) s_{3 n-3}-\left(a^{2} b^{2}+a^{2} c^{2}+b^{2} c^{2}\right) s_{3 n-4}+a^{2} b^{2} c^{2} s_{3 n-5}
$$

for all $n \geq 2$. For $n=2, s_{3 n-5}=s_{1}=a^{2}+b^{2}+c^{2}$, which is divisible by d. Also, $a^{2} b^{2}+a^{2} c^{2}+b^{2} c^{2}$ is divisible by d. Hence, by induction, $s_{3 n-2}$ is divisible by d for all $n \geq 1$.
(b) Note that $a^{6 n-2}+b^{6 n-2}+c^{6 n-2}=s_{3 n-1}$, and

$$
s_{3 n-1}=\left(a^{2}+b^{2}+c^{2}\right) s_{3 n-2}-\left(a^{2} b^{2}+a^{2} c^{2}+b^{2} c^{2}\right) s_{3 n-3}+a^{2} b^{2} c^{2} s_{3 n-4}
$$

for all $n \geq 2$. For $n=2, s_{3 n-4}=s_{2}=a^{4}+b^{4}+c^{4}=2 a^{4}+4 a^{3} b+6 a^{2} b^{2}+$ $4 a b^{3}+2 b^{4}=2\left(a^{2}+a b+b^{2}\right)^{2}$, which is divisible by d^{2}. By part (a), $s_{3 n-2}$ is divisible by d. Also, $a^{2}+b^{2}+c^{2}$ is divisible by d and $a^{2} b^{2}+a^{2} c^{2}+b^{2} c^{2}$ is divisible by d^{2}. Hence, by induction, $s_{3 n-1}$ is divisible by d^{2} for all $n \geq 1$.
(c) For all $n \geq 1,2^{n}$ is even, so 2^{n} is congruent to 0,2 , or 4 modulo 6 . However, congruence to 0 implies divisibility by 3 , so 2^{n} is congruent to 2 or 4 . The result then follows from parts (a) and (b).
(d) It is easy to show that $4^{n} \equiv 4(\bmod 6)$ for all $n \geq 1$. The result then follows from part (b).
6. (a) Hint: Show that for all $k \geq 1, F(k)^{2}=F(k+1) F(k)-F(k) F(k-1)$. Sum this from $k=1$ to n.
(b) Let $A(n)=F(n)^{2}+F(n+1)^{2}$ and $B(n)=F(2 n+4)-F(2 n-3)$ for all $n \geq 2$. Then $A(2)=B(2)=85$ and $A(3)=B(3)=218$. We claim that $A(n)-3 A(n-1)+A(n-2)=B(n)-3 B(n-1)+B(n-2)=0$ for all $n \geq 4$. Then it follows that $A(n)=B(n)$ for all $n \geq 2$.

Now,

$$
\begin{aligned}
& A(n)-3 A(n-1)+A(n-2) \\
& =F(n+1)^{2}+F(n)^{2}-3 F(n)^{2}-3 F(n-1)^{2}+F(n-1)^{2}+F(n-2)^{2} \\
& =[F(n)+F(n-1)]^{2}-2 F(n)^{2}-2 F(n-1)^{2}+[F(n)-F(n-1)]^{2} \\
& =F(n)^{2}+2 F(n) F(n-1)+F(n-1)^{2}-2 F(n)^{2}-2 F(n-1)^{2} \\
& \quad+F(n)^{2}-2 F(n) F(n-1)+F(n-1)^{2} \\
& =0 .
\end{aligned}
$$

Also,

$$
\begin{aligned}
& B(n)-3 B(n-1)+B(n-2) \\
& =F(2 n+4)-F(2 n-3)-3 F(2 n+2)+3 F(2 n-5)+F(2 n)-F(2 n-7) \\
& =F(2 n+4)-3 F(2 n+2)+F(2 n)-F(2 n-3)+3 F(2 n-5)-F(2 n-7) \\
& =F(2 n+3)+F(2 n+2)-3 F(2 n+2)+F(2 n+2)-F(2 n+1) \\
& \quad-F(2 n-4)-F(2 n-5)+3 F(2 n-5)-F(2 n-5)+F(2 n-6) \\
& =F(2 n+3)-F(2 n+2)-F(2 n+1)-F(2 n-4)+F(2 n-5)+F(2 n-6) \\
& =0 .
\end{aligned}
$$

7. We first prove a lemma:

Lemma. For any prime p and positive integer n not divisible by $p-1$,

$$
\sum_{i=1}^{p-1} i^{n} \equiv 0 \quad(\bmod p)
$$

Proof. Let s denote the given sum, and let g be a primitive root modulo p. Since n is not divisible by $p-1, g^{n} \not \equiv 1(\bmod p)$. Therefore,

$$
g^{n} s=\sum_{i=1}^{p-1}(g i)^{n} \equiv \sum_{i=1}^{p-1} i^{n} \equiv s \quad(\bmod p),
$$

so $\left(g^{n}-1\right) s \equiv 0 \Rightarrow s \equiv 0(\bmod p)$.
Now, let t denote the sum in the problem, and let u denote

$$
\begin{aligned}
\sum_{i=1}^{p-1} i^{2^{n}} & =\sum_{i=1}^{2 k+1} i^{2^{n}}+\sum_{i=2 k+2}^{4 k+2} i^{2^{n}} \\
& =\sum_{i=1}^{2 k+1} i^{2^{n}}+\sum_{i=1}^{2 k+1}(p-i)^{2^{n}} \\
& \equiv 2 t \quad(\bmod p) .
\end{aligned}
$$

Since 2^{n} is not divisible by $p-1=4 k+2=2(2 k+1)$, by the Lemma, $u \equiv 0(\bmod p)$, so $t \equiv 0(\bmod p)$.
8. (a) Let a be a quadratic residue modulo $p, 1 \leq a \leq p-1$. We claim that $p-a$ is also a quadratic residue modulo p.

Since a is a quadratic residue, $a \equiv x^{2}(\bmod p)$ for some x. A result in number theory states that there exists a u such that $u^{2} \equiv-1(\bmod p)$. Then $(x u)^{2} \equiv-a \equiv p-a(\bmod p)$, so $p-a$ is also a quadratic residue modulo p. Also, if $a \leq 2 k$, then $p-a \geq 2 k+1$, and vice-versa.

Now, there are exactly $p-1=4 k$ quadratic residues modulo p. Therefore, exactly half must be between 1 and $2 k$, and half between $2 k+1$ and $4 k$.
(b) For $k+1 \leq i \leq 2 k$, let $a_{i}=p-a_{2 k+1-i}$. Then by the solution to part (a), the numbers $a_{1}, a_{2}, \ldots, a_{2 k}$ represent the quadratic residues modulo p.

Let s denote the given sum, and let t denote

$$
\begin{aligned}
\sum_{i=1}^{2 k} a_{i}^{2^{n}} & =\sum_{i=1}^{k} a_{i}^{2^{n}}+\sum_{i=k+1}^{2 k} a_{i}^{2^{n}} \\
& =\sum_{i=1}^{k} a_{i}^{2^{n}}+\sum_{i=1}^{k}\left(p-a_{i}\right)^{2^{n}} \\
& \equiv 2 s \quad(\bmod p)
\end{aligned}
$$

As i varies from 1 to $p-1, i^{2}$ takes on every quadratic residue exactly twice. Therefore,

$$
\sum_{i=1}^{p-1} i^{2^{n+1}}=\sum_{i=1}^{p-1}\left(i^{2}\right)^{2^{n}} \equiv 2 \sum_{i=1}^{2 k} a_{i}^{2^{n}} \equiv 2 t \equiv 4 s \quad(\bmod p)
$$

Now $p-1=4 k$, where k is odd, so it cannot divide 2^{n+1}. Therefore, $4 s \equiv 0(\bmod p)$, which implies that $s \equiv 0(\bmod p)$.
9. The expression is congruent to $2 \cdot\left(2^{n-1}\right)^{2}$ modulo 13 . Since 2 is not a square modulo 13 , neither is the expression.
10. The expression factors as

$$
\left(8^{2^{n-1}}+5^{2^{n-1}}\right)\left(8^{2^{n-2}}+5^{2^{n-2}}\right) \cdots\left(8^{2}+5^{2}\right)(8+5)(8-5) .
$$

The last factor is 3 , and all the other factors are congruent to 2 modulo 3. Therefore, the expression has exactly one factor of 3 , and cannot be a perfect square.
11. Hint: See the solution to Problem 1. For an alternative approach, see the solution to Problem 14.
12. If k is divisible by p, then it follows that $f(n)$ is also divisible by p for all n, and the result follows trivially, so assume that k is not divisible by p.
By induction, it is easy to prove that $f(n+m c) \equiv k^{m} f(n)$ for all $m \geq 0$, for all n. Take $m=p-1$; then by Fermat's Little Theorem, $k^{p-1} \equiv 1$ $\bmod p$, so $f(n+(p-1) c) \equiv f(n)$ for all n. Thus, we can take $b=p-1$.
13. For all $n \geq 0$,

$$
\begin{aligned}
& 1+2^{4 n+2}+3^{4 n+2}+4^{4 n+2}+5^{4 n+2}+6^{4 n+2} \\
& \equiv 1+4 \cdot 3^{n}+9 \cdot 3^{n}+3 \cdot 9^{n}+12 \cdot 1^{n}+10 \cdot 9^{n} \\
& \equiv 0 \quad(\bmod 13)
\end{aligned}
$$

14. By the Binomial Theorem,

$$
\begin{aligned}
3^{4 n+3} & \equiv 27 \cdot 81^{n} \\
& \equiv 27 \cdot(1+80)^{n} \\
& \equiv 27 \cdot[1+80 n+6400(n)(n-1) / 2] \\
& \equiv 27+10 n+25 n^{2} \quad(\bmod 125) .
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
4^{4 n+3} & \equiv 64 \cdot 256^{n} \\
& \equiv 64 \cdot(1+5)^{n} \\
& \equiv 64 \cdot[1+5 n+25 n(n-1) / 2] \\
& \equiv 64+20 n+50 n^{2} \quad(\bmod 125) .
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
& 2\left(3^{4 n+3}+4^{4 n+3}\right)-25 n^{2}+65 n+68 \\
& \equiv 2\left(27+10 n+25 n^{2}+64+20 n+50 n^{2}\right)-25 n^{2}+65 n+68 \\
& \equiv 0 \quad(\bmod 125)
\end{aligned}
$$

15. Let $F(n)=2^{2^{n}}+3^{2^{n}}+5^{2^{n}}$. Then $F(1)=38=2 \cdot 19$ and $F(2)=38 \cdot 19$. Also, for $n \geq 1$,

$$
\begin{aligned}
F(n+2) & =2^{2^{n+2}}+3^{2^{n+2}}+5^{2^{n+2}} \\
& =2^{4 \cdot 2^{n}}+3^{4 \cdot 2^{n}}+5^{4 \cdot 2^{n}} \\
& =16^{2^{n}}+81^{2^{n}}+625^{2^{n}} \\
& \equiv 3^{2^{n}}+5^{2^{n}}+2^{2^{n}} \\
& \equiv F(n) \quad(\bmod 19) .
\end{aligned}
$$

Therefore, by induction, $F(n)$ is divisible by 19 for all $n \geq 1$.
Note that this problem is also a special case of Problem 5(c).
16. For all $n \geq 1, f(n+1)+f(n)=a f(n)+a f(n-1)=a[f(n)+f(n-1)]$. Therefore, $f(n+1)+f(n)=a^{n-1}[f(2)+f(1)]$, and

$$
\begin{aligned}
g(n) & =f(n+2)+a f(n+1)+(a-1) f(n) \\
& =(2 a-1) f(n+1)+(2 a-1) f(n) \\
& =(2 a-1)[f(n+1)+f(n)] \\
& =(2 a-1) a^{n-1}[f(2)+f(1)] .
\end{aligned}
$$

17. Hint: Show that $f(n)$ has period 12 modulo 32 .
18. Hint: See the solution to Problem 1.
19. Hint: Show that $f(n) \equiv a n^{2}+b n+c\left(\bmod p^{3}\right)$ for some constants a, b, and c. By substituting $n=0,1$, and 2 , find a, b, and c in terms of $f(0), f(1)$, and $f(2)$.
20. This is a straight-forward induction problem.
21. The problem boils down to showing that $F_{n^{2}-2 n+2}+F_{n^{2}+2 n}=F_{2 n-1}\left(F_{n^{2}}+\right.$ $F_{n^{2}+2}$) for all $n \geq 1$.

Let $\alpha=(1+\sqrt{5}) / 2$ and $\beta=(1-\sqrt{5}) / 2$. Then α and β are the roots of the equation $x^{2}-x-1=0$, and so $\alpha \beta=-1$, and $1 / \alpha=\alpha-1$ and $1 / \beta=\beta-1$.

Binet's Formula states that

$$
F_{n}=\frac{\alpha^{n}-\beta^{n}}{\sqrt{5}}
$$

for all n. Hence,

$$
\begin{aligned}
& F_{2 n-1}\left(F_{n^{2}}+F_{n^{2}+2}\right) \\
&=\left(\frac{\alpha^{2 n-1}-\beta^{2 n-1}}{\sqrt{5}}\right)\left(\frac{\alpha^{n^{2}}-\beta^{n^{2}}+\alpha^{n^{2}+2}-\beta^{n^{2}+2}}{\sqrt{5}}\right) \\
&= \frac{1}{5}\left(\alpha^{n^{2}+2 n-1}-\alpha^{2 n-1} \beta^{n^{2}}+\alpha^{n^{2}+2 n+1}-\alpha^{2 n-1} \beta^{n^{2}+2}\right. \\
&\left.-\alpha^{n^{2}} \beta^{2 n-1}+\beta^{n^{2}+2 n-1}-\alpha^{n^{2}+2} \beta^{2 n-1}+\beta^{n^{2}+2 n+1}\right) \\
&= \frac{1}{5}\left(\alpha^{n^{2}+2 n-1}+\beta^{n^{2}-2 n+1}+\alpha^{n^{2}+2 n+1}+\beta^{n^{2}-2 n+3}\right. \\
&\left.+\alpha^{n^{2}-2 n+1}+\beta^{n^{2}+2 n-1}+\alpha^{n^{2}-2 n+3}+\beta^{n^{2}+2 n+1}\right) \\
&= \frac{1}{5}\left[\left(\frac{1}{\alpha}+\alpha\right)\left(\alpha^{n^{2}-2 n+2}+\alpha^{n^{2}+2 n}\right)+\left(\frac{1}{\beta}+\beta\right)\left(\beta^{n^{2}-2 n+2}+\beta^{n^{2}+2 n}\right)\right] \\
&= \frac{1}{5}\left[(2 \alpha-1)\left(\alpha^{n^{2}-2 n+2}+\alpha^{n^{2}+2 n}\right)+(2 \beta-1)\left(\beta^{n^{2}-2 n+2}+\beta^{n^{2}+2 n}\right)\right] \\
&= \frac{\alpha^{n^{2}-2 n+2}-\beta^{n^{2}-2 n+2}}{\sqrt{5}}+\frac{\alpha^{n^{2}+2 n}-\beta^{n^{2}+2 n}}{\sqrt{5}} \\
&= F_{n^{2}-2 n+2}+F_{n^{2}+2 n .}
\end{aligned}
$$

22. Hint: See the solution to Problem 21.
23. If p divided b, then p would also divide a, contradicting that a and b are relatively prime. Therefore, b^{-1} modulo p exists, and

$$
\begin{aligned}
a^{2}+a b+b^{2} & \equiv 0 \\
\Rightarrow\left(a b^{-1}\right)^{2}+a b^{-1}+1 & \equiv 0 \\
\Rightarrow 4\left(a b^{-1}\right)^{2}+4 a b^{-1}+4 & \equiv 0 \\
\Rightarrow\left(2 a b^{-1}+1\right)^{2} & \equiv-3 \quad(\bmod p) .
\end{aligned}
$$

Hence, -3 is a quadratic residue modulo p. By results in number theory, this implies that $p \equiv 1(\bmod 6)$. Therefore, the result follows from Problem 5(b).
24. Let s denote the given sum, and let t denote

$$
\begin{aligned}
\sum_{i=1}^{p-1} i^{2 \cdot 3^{n}} & =\sum_{i=1}^{3 k+2} i^{2 \cdot 3^{n}}+\sum_{i=3 k+3}^{6 k+4} i^{2 \cdot 3^{n}} \\
& =\sum_{i=1}^{3 k+2} i^{2 \cdot 3^{n}}+\sum_{i=1}^{3 k+2}(p-i)^{2 \cdot 3^{n}} \\
& \equiv 2 s \quad(\bmod p) .
\end{aligned}
$$

Now, $p-1=6 k+4=2(3 k+2)$, which cannot divide $2 \cdot 3^{n}$. Therefore, $t \equiv 0(\bmod p)$, and so $s \equiv 0(\bmod p)$.
25. Hint: See the solution to Problem 6(b). Alternatively, show that $F_{n}^{2}+$ $F_{n+1}^{2}=F_{2 n+1}$ for all n.
26. Hint: Show that F_{n} has period 10 modulo 11.
27. The given relation implies that F can be modelled by a polynomial of degree at most $k-1$.

For $0 \leq i \leq k-1$, let

$$
F_{i}(n)=\left(n-a_{0}\right)\left(n-a_{1}\right) \cdots\left(n-a_{i-1}\right)\left(n-a_{i+1}\right) \cdots\left(n-a_{k-1}\right) .
$$

Then by the Lagrange Interpolation Formula,

$$
F(n) \equiv \frac{F_{0}(n)}{F_{0}\left(a_{0}\right)} F\left(a_{0}\right)+\frac{F_{1}(n)}{F_{1}\left(a_{1}\right)} F\left(a_{1}\right)+\cdots+\frac{F_{k-1}(n)}{F_{k-1}\left(a_{k-1}\right)} F\left(a_{k-1}\right) \quad\left(\bmod p^{k}\right) .
$$

Since $a_{s}-a_{t}$ is not divisible by p for all $s \neq t, F_{i}\left(a_{i}\right)^{-1}$ exists modulo p^{k}.
Finally, $F\left(a_{i}\right) \equiv 0\left(\bmod p^{k}\right)$ for all i, so $F(n) \equiv 0\left(\bmod p^{k}\right)$ for all n.
28. Let $\alpha=(1+\sqrt{5}) / 2$ and $\beta=(1-\sqrt{5}) / 2$, so that α and β are the roots of $x^{2}-x-1=0$. Then it suffices to show that $G_{n}(\alpha)=G_{n}(\beta)=0$. Note that $\alpha \beta=-1$, so $\alpha^{11} \beta^{11}=-1$.
By Binet's Formula,

$$
F_{n}=\frac{\alpha^{n}-\beta^{n}}{\sqrt{5}}
$$

for all $n \geq 0$. Hence,

$$
\begin{aligned}
G_{n}(\alpha) & =89 \alpha^{n}-\left(\frac{\alpha^{n}-\beta^{n}}{\sqrt{5}}\right) \alpha^{11}-\frac{\alpha^{n-11}-\beta^{n-11}}{\sqrt{5}} \\
& =89 \alpha^{n}-\frac{\alpha^{n+11}-\alpha^{11} \beta^{n}+\alpha^{n-11}-\beta^{n-11}}{\sqrt{5}} \\
& =89 \alpha^{n}-\frac{\alpha^{n+11}+\beta^{n-11}+\alpha^{n-11}-\beta^{n-11}}{\sqrt{5}} \\
& =\alpha^{n}\left(89-\frac{\alpha^{11}+\alpha^{-11}}{\sqrt{5}}\right) \\
& =\alpha^{n}\left(89-\frac{\alpha^{11}-\beta^{11}}{\sqrt{5}}\right) \\
& =\alpha^{n}\left(89-F_{11}\right) \\
& =0
\end{aligned}
$$

That $G_{n}(\beta)=0$ is similarly shown.
29. Let s denote the given sum, and let t denote

$$
\begin{aligned}
\sum_{i=1}^{p-1} i^{4 n+2} & =\sum_{i=1}^{2 k} i^{4 n+2}+\sum_{i=2 k+1}^{4 k} i^{4 n+2} \\
& =\sum_{i=1}^{2 k} i^{4 n+2}+\sum_{i=1}^{2 k}(p-i)^{4 n+2} \\
& \equiv 2 s \quad(\bmod p)
\end{aligned}
$$

Since $p-1=4 k$ cannot divide $4 n+2, t \equiv 0(\bmod p)$, so $s \equiv 0(\bmod p)$.
30. By Problem 1,

$$
F(n) \equiv \frac{n(n-1)}{2} \sum_{k=1}^{p-1}\left(k^{2 p-1}-3 k^{2}\right) \equiv \frac{n(n-1)}{2} C \quad\left(\bmod p^{3}\right),
$$

where C is a constant independent of n.
Therefore,

$$
\begin{aligned}
G(n) & =500500 F(n)-n(n-1) / 2 \cdot F(1001) \\
& \equiv 500500 \cdot n(n-1) / 2 \cdot C-n(n-1) / 2 \cdot 1001 \cdot 1000 / 2 \cdot C \\
& \equiv 0 \quad\left(\bmod p^{3}\right) .
\end{aligned}
$$

31. (a) A result in number theory states that the congruence $a^{n} \equiv 1$ $(\bmod p)$ has $\operatorname{gcd}(n, p-1)$ solutions modulo p. Since $2 m$ divides $p-1$, $\operatorname{gcd}(2 m, p-1)=2 m$.
Now, if a satisfies $a^{2 m} \equiv 1(\bmod p)$, then $(p-a)^{2 m} \equiv 1(\bmod p)$. Therefore, half of the solutions, when reduced, are between 1 and ($p-$ 1)/ 2 inclusive.
(b) For $m+1 \leq i \leq 2 m$, let $a_{i}=p-a_{2 m+1-i}$, so by part (a), a_{1}, a_{2}, $\ldots, a_{2 m}$ are the $2 m$ solutions to $a^{2 m} \equiv 1(\bmod p)$.
Let g be a primitive root of modulo p. Then another result in number theory states that $a_{1}, a_{2}, \ldots, a_{2 m}$ are, in some order, congruent to 1 , $g^{2^{j-1}}, g^{2 \cdot 2^{j-1}}, g^{3 \cdot 2^{j-1}}, \ldots, g^{(2 m-1) \cdot 2^{j-1}}$.
Let s denote the given sum, and let t denote the sum

$$
\begin{aligned}
\sum_{i=1}^{2 m} a_{i}^{2 n} & =\sum_{i=1}^{m} a_{i}^{2 n}+\sum_{i=m+1}^{2 m} a_{i}^{2 n} \\
& =\sum_{i=1}^{m} a_{i}^{2 n}+\sum_{i=1}^{m}\left(p-a_{i}\right)^{2 n} \\
& \equiv 2 s \quad(\bmod p)
\end{aligned}
$$

Also,

$$
t \equiv \sum_{i=0}^{2 m-1} g^{i \cdot 2^{j-1} \cdot 2 n} \equiv \sum_{i=0}^{2 m-1} g^{i \cdot 2^{j} n} \quad(\bmod p)
$$

If n is divisible by m, then $n=m d$ for some d, and

$$
t \equiv \sum_{i=0}^{2 m-1} g^{i \cdot 2^{j} m d} \equiv \sum_{i=0}^{2 m-1} g^{i d(p-1)} \equiv \sum_{i=0}^{2 m-1} 1 \equiv 2 m \quad(\bmod p)
$$

so t is not divisible by p, and neither is s.
On the other hand, if n is not divisible by m, then

$$
\begin{aligned}
\left(1-g^{2^{j} n}\right) t & \equiv 1-g^{2 m \cdot 2^{j} n} \\
& \equiv 1-g^{2 n(p-1)} \\
& \equiv 0 \quad(\bmod p)
\end{aligned}
$$

Since n is not divisible by $m, 2^{j} n=n(p-1) / m$ is not divisible by $p-1$, so $1-g^{2^{j} n}$ is not congruent to 0 , so finally t is divisible by p, which implies that s is divisible by p.
32. We have that a and b are relatively prime to p, so by Fermat's little theorem, $a^{p-1}-1 \equiv 0(\bmod p)$. Cubing, we get

$$
a^{3(p-1)}-3 a^{2(p-1)}+3 a^{p-1}-1 \equiv 0 \quad\left(\bmod p^{3}\right) .
$$

Multiplying by $a^{(p-1) n+4}$, we get

$$
\begin{aligned}
& a^{(p-1)(n+3)+4}-3 a^{(p-1)(n+2)+4} \\
& \quad+3 a^{(p-1)(n+1)+4}-a^{(p-1) n+4} \equiv 0 \quad\left(\bmod p^{3}\right)
\end{aligned}
$$

for all integers $n \geq 0$.
Similarly,

$$
\begin{aligned}
& b^{(p-1)(n+3)+4}-3 b^{(p-1)(n+2)+4} \\
& \quad+3 b^{(p-1)(n+1)+4}-b^{(p-1) n+4} \equiv 0 \quad\left(\bmod p^{3}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
& (a+b)^{(p-1)(n+3)+4}-3(a+b)^{(p-1)(n+2)+4} \\
& \quad+3(a+b)^{(p-1)(n+1)+4}-(a+b)^{(p-1) n+4} \equiv 0 \quad\left(\bmod p^{3}\right)
\end{aligned}
$$

for all $n \geq 0$.

Adding, we get $f(n+3)-3 f(n+2)+3 f(n+1)-f(n) \equiv 0\left(\bmod p^{3}\right)$ for all $n \geq 0$. Then by problem 19 , there exist constants A, B, C, such that $f(n) \equiv A n^{2}+B n+C\left(\bmod p^{3}\right)$ for all $n \geq 0$.
Now, we claim we can assume that $b=1$. This is because if p divides $a^{2}+a b+b^{2}$, then p also divides $1+a b^{-1}+a^{2} b^{-2}$.

Let

$$
g_{n}(x)=1+x^{6 n+4}+(1+x)^{6 n+4} .
$$

We claim that $g_{n}(x)=Q_{n}(x)\left(1+x+x^{2}\right)^{3}+R_{n}\left(1+x+x^{2}\right)^{2}$ for some polynomial $Q_{n}(x)$ with integer coefficients and integer R_{n}, for all $n \geq 0$. We prove this by induction.

For $n=0$,

$$
1+x^{4}+(1+x)^{4}=2\left(1+x+x^{2}\right)^{2},
$$

so we can take $R_{0}=2$.
For $n=1$,

$$
\begin{aligned}
& 1+x^{10}+(1+x)^{10} \\
& \quad=\left(-13+19 x+21 x^{2}+4 x^{3}+2 x^{4}\right)\left(1+x+x^{2}\right)^{3}+15\left(1+x+x^{2}\right)^{2}
\end{aligned}
$$

so we can take $R_{1}=15$.
For $n=2$,

$$
\begin{aligned}
1 & +x^{16}+(1+x)^{16} \\
& =\left(-38+50 x+78 x^{2}+212 x^{3}+554 x^{4}+702 x^{5}\right. \\
& \left.+514 x^{6}+252 x^{7}+78 x^{8}+10 x^{9}+2 x^{10}\right)\left(1+x+x^{2}\right)^{3} \\
& +40\left(1+x+x^{2}\right)^{2},
\end{aligned}
$$

so we can take $R_{2}=40$.
Now, assume the claim is true for some $n=k, k+1$, and $k+2$, so

$$
\begin{aligned}
g_{k}(x) & =Q_{k}(x)\left(1+x+x^{2}\right)^{3}+R_{k}\left(1+x+x^{2}\right)^{2}, \\
g_{k+1}(x) & =Q_{k+1}(x)\left(1+x+x^{2}\right)^{3}+R_{k+1}\left(1+x+x^{2}\right)^{2}, \\
g_{k+2}(x) & =Q_{k+2}(x)\left(1+x+x^{2}\right)^{3}+R_{k+2}\left(1+x+x^{2}\right)^{2} .
\end{aligned}
$$

We can calculate that

$$
\begin{aligned}
& g_{k+3}(x)-3 g_{k+2}(x)+3 g_{k+1}(x)-g_{k}(x) \\
& \quad=x^{6(k+3)+4}-3 x^{6(k+2)+4}+3 x^{6(k+1)+4}-x^{6 k+4} \\
& \quad+(1+x)^{6(k+3)+4}-3(1+x)^{6(k+2)+4}+3(1+x)^{6(k+1)+4}-(1+x)^{6 k+4} \\
& \quad=x^{6 k+4}\left(x^{6}-1\right)^{3}+(1+x)^{6 k+4}\left[(1+x)^{6}-1\right]^{3} .
\end{aligned}
$$

Both $x^{6}-1$ and $(1+x)^{6}-1$ are divisible by $1+x+x^{2}$, so the whole expression is divisible by $\left(1+x+x^{2}\right)^{3}$ - say it is equal to $P_{k}(x)(1+$ $\left.x+x^{2}\right)^{3}$. Then

$$
\begin{aligned}
g_{k+3}(x)= & 3 g_{k+2}(x)-3 g_{k+1}(x)+g_{k}(x)+P_{k}(x)\left(1+x+x^{2}\right)^{3} \\
= & {\left[3 Q_{k+2}(x)-3 Q_{k+1}(x)+Q_{k}(x)+P_{k}(x)\right]\left(1+x+x^{2}\right)^{3} } \\
& +\left(3 R_{k+2}-3 R_{k+1}+R_{k}\right)\left(1+x+x^{2}\right)^{2},
\end{aligned}
$$

which proves the claim for $n=k+3$. Furthermore, we have that $R_{n+3}-3 R_{n+2}+3 R_{n+1}-R_{n}=0$ for all $n \geq 0$, so R_{n} is quadratic in n. From $R_{0}=2, R_{1}=15$, and $R_{2}=40$, we have that $R_{n}=6 n^{2}+7 n+2=$ $(2 n+1)(3 n+2)$.

By the solution to problem $23, p \equiv 1(\bmod 6)$. Let $p=6 t+1$. Then

$$
\begin{aligned}
f(n) & =1+a^{(p-1) n+4}+(1+a)^{(p-1) n+4} \\
& =1+a^{6 t n+4}+(1+a)^{6 t n+4} \\
& =g_{t n}(a) \\
& \equiv R_{t n}\left(1+a+a^{2}\right)^{2} \\
& \equiv(2 t n+1)(3 t n+2)\left(1+a+a^{2}\right)^{2} \quad\left(\bmod p^{3}\right)
\end{aligned}
$$

for all $n \geq 0$.
Then

$$
\begin{aligned}
f(3) & \equiv(6 t+1)(9 t+2)\left(1+a+a^{2}\right)^{2} \\
& \equiv p(9 t+2)\left(1+a+a^{2}\right)^{2} \\
& \equiv 0 \quad\left(\bmod p^{3}\right),
\end{aligned}
$$

and

$$
\begin{aligned}
f(4) & \equiv(8 t+1)(12 t+2)\left(1+a+a^{2}\right)^{2} \\
& \equiv(8 t+1)(2 p)\left(1+a+a^{2}\right)^{2} \\
& \equiv 0 \quad\left(\bmod p^{3}\right) .
\end{aligned}
$$

As stated above, there exist constants A, B, C, such that $f(n) \equiv$ $A n^{2}+B n+C\left(\bmod p^{3}\right)$ for all $n \geq 0$, so $f(n) \equiv A(n-3)(n-4)$ $\left(\bmod p^{3}\right)$ for all $n \geq 0$. Taking $n=0$ gives $f(0) \equiv 12 A\left(\bmod p^{3}\right)$. We conclude that $12 f(n) \equiv 12 A(n-3)(n-4) \equiv(n-3)(n-4) f(0)$ $\left(\bmod p^{3}\right)$ for all $n \geq 0$.

