IMC 2014, Blagoevgrad, Bulgaria

Day 1, July 31, 2014

Problem 1. Determine all pairs (a,b) of real numbers for which there exists a unique
symmetric 2 X 2 matrix M with real entries satisfying trace(M) = a and det(M) = b.
(Proposed by Stephan Wagner, Stellenbosch University)

M = {x Z] .
)
The two conditions give us  +y = a and zy — 22 = b. Since this is symmetric in 2 and
y, the matrix can only be unique if x = y. Hence 2z = a and 2? — 22 = b. Moreover,
if (x,y, z) solves the system of equations, so does (z,y, —z). So M can only be unique if

z = 0. This means that 2z = a and 22 = b, so a® = 4b.
If this is the case, then M is indeed unique: if x +y = a and 2y — 2% = b, then

Solution 1. Let the matrix be

(r—y)? +42% = (v +y)* +42° —day =a® — 4b =0,

so we must have z = y and z = 0, meaning that

M= [aéQ a?Q]

is the only solution.

Solution 2. Note that trace(M) = a and det(M) = b if and only if the two eigenvalues
A1 and Xy of M are solutions of 22 — ax +b = 0. If A\; # Ay, then

A\ o} Ao 0}

Ml:{o Ay 0 A

and M2 = |:

are two distinct solutions, contradicting uniqueness. Thus A\; = Ay = A = a/2, which
implies a? = 4b once again. In this case, we use the fact that M has to be diagonalisable
as it is assumed to be symmetric. Thus there exists a matrix 7" such that

o [x 0]
M=T [OAT,

however this reduces to M = \(T~! - I -T) = M, which shows again that M is unique.



Problem 2. Consider the following sequence

(an), =1(1,1,2,1,2,3,1,2,3,4,1,2,3,4,5,1, ...).

n
> ag

Find all pairs («, ) of positive real numbers such that lim =l B.
n—oo N«

(Proposed by Tomas Barta, Charles University, Prague)

Solution. Let N,, = ("}') (then ay, is the first appearance of number n in the sequence)

and consider limit of the subsequence

_Xaman Stttk X () () g+ 2/m)(+1/n)

an . oy o o o = e o = .
N G G GO e T (e,
We can see that lim by, is positive and finite if and only if & = 3/2. In this case the
n—oo
limit is equal to 8 = ? So, this pair («, ) = (%, ?) is the only candidate for solution.

We will show convergence of the original sequence for these values of a and .
Let N be a positive integer in [N,,+1, N, 41], i.e., N = N,,+m for some 1 <m < n+1.

Then we have _ _—
o ()50

() +m)”

which can be estimated by
(), )
() +m)™ =T ()

Since both bounds converge to ?, the sequence by has the same limit and we are done.

Problem 3. Let n be a positive integer. Show that there are positive real numbers
ag, a1, . . .,a, such that for each choice of signs the polynomial

+a,2" + ap 12" -+ az £ ag

has n distinct real roots.
(Proposed by Stephan Neupert, TUM, Miinchen)

Solution. We proceed by induction on n. The statement is trivial for n = 1. Thus
assume that we have some a,,...,ao which satisfy the conditions for some n. Consider
now the polynomials

P(z) = +a,2" £ ap_ 12"+ ... £ a2 + apx

By induction hypothesis and ag # 0, each of these polynomials has n + 1 distinct zeros,
including the n nonzero roots of £a,2" + a,_ 12" ! £ ...+ a;2 = ay and 0. In particular
none of the polynomials has a root which is a local extremum. Hence we can choose some
e > 0 such that for each such polynomial P(z) and each of its local extrema s we have
|P(s)| > e. We claim that then each of the polynomials

P(z) = ta,2"™ £ a, 12"+ ... £ar* £agxr +¢



has exactly n + 1 distinct zeros as well. As P(z) has n + 1 distinct zeros, it admits a
local extremum at n points. Call these local extrema —o0 = 59 < 1 < S9 < ... < 8§, <
Snp1 = 00. Then for each i € {0,1,...,n} the values P(s;) and P(s;.1) have opposite
signs (with the obvious convention at infinity). By choice of € the same holds true for
P(s;) and P(s;y1). Hence there is at least one real zero of P(z) in each interval (s;, $;11),
i.e. P(x) has at least (and therefore exactly) n+1 zeros. This shows that we have found a
set of positive reals a), .| = a,,a;, = an_1,...,a] = ag, ay = € with the desired properties.

Problem 4. Let n > 6 be a perfect number, and let n = pi'---pi* be its prime
factorisation with 1 < p; < ... < pg. Prove that e; is an even number.
A number n is perfect if s(n) = 2n, where s(n) is the sum of the divisors of n.
(Proposed by Javier Rodrigo, Universidad Pontificia Comillas)

Solution. Suppose that e; is odd, contrary to the statement.

We know that s(n) = i (1 +p; + 2 + -+ pf*) = 2n = 2p$ - pf*. Since e, is
an odd number, p; + 1 divides the first factor 1 + p; + p? + -+ - + p{*, so p; + 1 divides
2n. Due to p1 + 1 > 2, at least one of the primes pq, ..., px divides p; + 1. The primes
Ps3, ..., pr are greater than p; + 1 and p; cannot divide p; + 1, so ps must divide p; + 1.
Since p; + 1 < 2ps, this possible only if po = p; + 1, therefore p; = 2 and p, = 3. Hence,
6|n.

Now n, 3, %, & and 1 are distinct divisors of n, so

s(n)2n+g+%+%+1:2n+l>2n,

contradiction.

Remark. Tt is well-known that all even perfect numbers have the form n = 2P~! (27 — 1) such
that p and 2P — 1 are primes. So if e; is odd then £ =2, p1 =2, po =2P — 1, ¢; = p—1 and
eo = 1. If n > 6 then p > 2 so p is odd and e; = p — 1 should be even.

Problem 5. Let A;Ay... A3, be a closed broken line consisting of 3n line segments
in the Euclidean plane. Suppose that no three of its vertices are collinear, and for
each index i = 1,2,...,3n, the triangle A;A;,1A;,-> has counterclockwise orientation and
ZAiAi-l—lAH—Z = 600, llSiIlg the notation A3n+1 = Al and A3n+2 = AQ. Prove that the

3
number of self-intersections of the broken line is at most §n2 —2n+ 1.

(Proposed by Martin Langer)

Solution. Place the broken line inside an equilateral triangle T such that their sides are
parallel to the segments of the broken line. For every i = 1,2,...,3n, denote by z; the



distance between the segment A;A;,; and that side of T" which is parallel to A;A; ;1. We
will use indices modulo 3n everywhere.

It is easy to see that if i = j (mod 3) then the polylines A;A;11 A4, and A;A;11 A9
intersect at most once, and this is possible only if either z; < x;4; and z; > x;4; or
x; < T;41 and x; > xj1;. Moreover, such cases cover all self-intersections. So, the number
of self-intersections cannot exceed number of pairs (7, j) with the property

(¥) i=j (mod3), and (z; <4y and z; > x541) or (x; > x4 and x; < xj41).

i

il’i+3

Grouping the indices 1, 2,...,3n, by remainders modulo 3, we have n indices in each
residue class. Altogether there are 3(%) index pairs (4, j) with i = j (mod 3). We will
show that for every integer k£ with 1 < k < £, there is some index 4 such that the pair
(1,1 + 6k) does not satisfy («). This is already [25!] pair; this will prove that there are

at most . 5
n n—
— >-n —2n+1
3(2) {2 }_Qn "+

Without loss of generality we may assume that z3, = x( is the smallest among
x1,...,T3,. Suppose that all of the pairs

self-intersections.

(—6k,0), (—6k+1,1), (—6k+2,2), ..., (=L6k—1), (0,6k)  (sx)

satisfy (x). Since x( is minimal, we have z_g, > 7. The pair (—6k,0) satisfies (x), so
T_ g1 < x1. Then we can see that z_g1 o > 2o, and so on; finally we get zy > xg.
But this contradicts the minimality of zy. Therefore, there is a pair in (**) that does not
satisfy (x).

Remark. The bound 3(3) — ["T_l] = [%nQ — 2n + 1] is sharp.



