Conic Construction of a Triangle from the Feet of Its Angle Bisectors

Paul Yiu

Abstract

We study an extension of the problem of construction of a triangle from the feet of its internal angle bisectors. Given a triangle $A B C$, we give a conic construction of points which are the incenter or excenters of their own anticevian triangles with respect to $A B C$. If the given triangle contains a right angle, a very simple ruler-and-compass construction is possible. We also examine the case when the feet of the three external angle bisectors are three given points on a line.

1. The angle bisectors problem

In this note we address the problem of construction of a triangle from the endpoints of its angle bisectors. This is Problem 138 in Wernick's list [3]. The corresponding problem of determining a triangle from the lengths of its angle bisectors have been settled by Mironescu and Panaitopol [2].

Figure 1. The angle bisectors problem
Given a triangle $A B C$, we seek, more generally, a triangle $A^{\prime} B^{\prime} C^{\prime}$ such that the lines $A^{\prime} A, B^{\prime} B, C^{\prime} C$ bisect the angles $B^{\prime} A^{\prime} C^{\prime}, C^{\prime} A^{\prime} B^{\prime}, A^{\prime} C^{\prime} B^{\prime}$, internally or externally. In this note, we refer to this as the angle bisectors problem. With reference to triangle $A B C, A^{\prime} B^{\prime} C^{\prime}$ is the anticevian triangle of a point P, which is the incenter or an excenter of triangle $A^{\prime} B^{\prime} C^{\prime}$. It is an excenter if two of the lines $A^{\prime} P$, $B^{\prime} P, C^{\prime} P$ are external angle bisectors and the remaining one an internal angle bisector. For a nondegenerate triangle $A B C$, we show in $\S 3$ that the angle bisectors problem always have real solutions, as intersections of three cubics. We proceed to provide a conic solution in $\S \S 4,5,6$. The particular case of right triangles has an

[^0]elegant ruler-and-compass solution which we provide in §7. Finally, the construction of a triangle from the feet of its external angle bisectors will be considered in §8. In this case, the three feet are collinear. We make free use of standard notations of triangle geometry (see [4]) and work in homogeneous barycentric coordinates with respect to $A B C$.

2. The cubic \mathscr{K}_{a}

We begin with the solution of a locus problem: to find the locus of points at which two of the sides of a given triangle subtend equal angles.

Proposition 1. Given a triangle $A B C$ with $b \neq c$, the locus of a point Q for which $Q A$ is a bisector of the angles between $Q B$ and $Q C$ is the isogonal conjugate of the A-Apollonian circle.

Proof. The point A lies on a bisector of angle $B Q C$ if and only if $\cos A Q B=$ $\pm \cos A Q C$, i.e., $\cos ^{2} A Q B=\cos ^{2} A Q C$. In terms of the distances, this is equivalent to

$$
\begin{align*}
& \quad\left(Q A^{4}-Q B^{2} \cdot Q C^{2}\right)\left(Q B^{2}-Q C^{2}\right)-2 Q A^{2}\left(b^{2} \cdot Q B^{2}-c^{2} \cdot Q C^{2}\right) \\
& -2\left(b^{2}-c^{2}\right) Q B^{2} \cdot Q C^{2}+b^{4} \cdot Q B^{2}-c^{4} \cdot Q C^{2}=0 . \tag{1}
\end{align*}
$$

Let Q have homogeneous barycentric coordinates $(x: y: z)$ with respect to triangle $A B C$. We make use of the distance formula in barycentric coordinates in [4, §7.1, Exercise 1]:

$$
Q A^{2}=\frac{c^{2} y^{2}+\left(b^{2}+c^{2}-a^{2}\right) y z+b^{2} z^{2}}{(x+y+z)^{2}}
$$

and analogous expressions for $Q B^{2}$ and $Q C^{2}$. Substitution into (1) leads to the cubic
$\mathscr{K}_{a}: \quad x\left(c^{2} y^{2}-b^{2} z^{2}\right)+y z\left(\left(c^{2}+a^{2}-b^{2}\right) y-\left(a^{2}+b^{2}-c^{2}\right) z\right)=0$
after canceling a factor $\frac{-(a+b+c)(b+c-a)(c+a-b)(a+b-c)}{(x+y+z)^{4}} \cdot x$. Note that the factor x can be suppressed because points on $B C$ do not lie on the locus.

We obtain the isogonal conjugate of the cubic \mathscr{K}_{a} by replacing, in its equation, x, y, z respectively by $a^{2} y z, b^{2} z x, c^{2} x y$. After clearing a factor $b^{2} c^{2} x^{2} y z$, we obtain

$$
\left(b^{2}-c^{2}\right)\left(a^{2} y z+b^{2} z x+c^{2} x y\right)+a^{2}(x+y+z)\left(c^{2} y-b^{2} z\right)=0 .
$$

This is the circle through $A=(1: 0: 0)$ and $(0: b: \pm c)$, the feet of the bisectors of angle A on the sideline $B C$. It is the A-Apollonian circle of triangle $A B C$, and is the circle orthogonal to the circumcircle at A and with center on the line $B C$. See Figure 2.

Remark. If $b=c$, this locus is the circumcircle.

Figure 2. The cubic \mathscr{K}_{a} and the A-Apollonian circle

3. Existence of solutions to the angle bisectors problem

Let $P=(x: y: z)$ be a point whose anticevian triangle $A^{\prime} B^{\prime} C^{\prime}$ is such that the line $A^{\prime} A$ is a bisector, internal or external, of angle $B^{\prime} A^{\prime} C^{\prime}$, which is the same as angle $C A^{\prime} B$. By Proposition 1 with $Q=A^{\prime}=(-x: y: z)$, we have the equation $F_{a}=0$ below. Similarly, if $B^{\prime} B$ and $C^{\prime} C$ are angle bisectors of $C^{\prime} B^{\prime} A^{\prime}$ and $A^{\prime} C^{\prime} B^{\prime}$, then by cyclic permutations of a, b, c and x, y, z, we obtain $F_{b}=0$ and $F_{c}=0$. Here,

$$
\begin{aligned}
& F_{a}:=-x\left(c^{2} y^{2}-b^{2} z^{2}\right)+y z\left(\left(c^{2}+a^{2}-b^{2}\right) y-\left(a^{2}+b^{2}-c^{2}\right) z\right), \\
& F_{b}:=-y\left(a^{2} z^{2}-c^{2} x^{2}\right)+z x\left(\left(a^{2}+b^{2}-c^{2}\right) z-\left(b^{2}+c^{2}-a^{2}\right) x\right), \\
& F_{c}:=-z\left(b^{2} x^{2}-a^{2} y^{2}\right)+x y\left(\left(b^{2}+c^{2}-a^{2}\right) x-\left(c^{2}+a^{2}-b^{2}\right) y\right) .
\end{aligned}
$$

Theorem 2. The angle bisectors problem for a nondegenerate triangle ABC always has real solutions, i.e., the system of equations $F_{a}=F_{b}=F_{c}=0$ has at least one nonzero real solution.

Proof. This is clear for equilateral triangles. We shall assume triangle $A B C$ nonequilateral, and $B>\frac{\pi}{3}>C$. From $F_{a}=0$, we write x in terms of y and z. Substitutions into the other two equations lead to the same homogeneous equation in y and z of the form

$$
\begin{equation*}
c^{2}\left(\left(c^{2}+a^{2}-b^{2}\right)^{2}-c^{2} a^{2}\right) y^{4}+\cdots+b^{2}\left(\left(a^{2}+b^{2}-c^{2}\right)^{2}-a^{2} b^{2}\right) z^{4}=0 . \tag{2}
\end{equation*}
$$

Note that

$$
\begin{aligned}
& c^{2}\left(\left(c^{2}+a^{2}-b^{2}\right)^{2}-c^{2} a^{2}\right)=c^{4} a^{2}(2 \cos 2 B+1)<0, \\
& b^{2}\left(\left(a^{2}+b^{2}-c^{2}\right)^{2}-a^{2} b^{2}\right)=a^{2} b^{4}(2 \cos 2 C+1)>0 .
\end{aligned}
$$

It follows that a nonzero real solution (y, z) of (2) exists, leading to a nonzero real solution (x, y, z) of the system $F_{a}=F_{b}=F_{c}=0$.

Figure 3 illustrates a case of two real intersections. For one with four real intersections, see 6.

Figure 3. The cubics $F_{a}=0, F_{b}=0$ and $F_{c}=0$

4. The hyperbola \mathscr{C}_{a}

The isogonal conjugate of the cubic curve $F_{a}=0$ is the conic
$\mathscr{C}_{a}: f_{a}(x, y, z):=a^{2}\left(c^{2} y^{2}-b^{2} z^{2}\right)+b^{2}\left(c^{2}+a^{2}-b^{2}\right) z x-c^{2}\left(a^{2}+b^{2}-c^{2}\right) x y=0$.
See Figure 4.
Proposition 3. The conic \mathscr{C}_{a} is the hyperbola through the following points: the vertex A, the endpoints of the two bisectors of angle A, the point X which divides the A-altitude in the ratio 2:1, and its traces on sidelines $C A$ and $A B$.

Proof. Rewriting the equation of \mathscr{C}_{a} in the form
$a^{2}\left(b^{2}-c^{2}\right) y z+b^{2}\left(2 a^{2}-b^{2}+c^{2}\right) z x-c^{2}\left(2 a^{2}+b^{2}-c^{2}\right) x y+a^{2}(x+y+z)\left(c^{2} y-b^{2} z\right)=0$, we see that it is homothetic to the circumconic which is the isogonal conjugate of the line

$$
\left(b^{2}-c^{2}\right) x+\left(2 a^{2}-b^{2}+c^{2}\right) y-\left(2 a^{2}+b^{2}-c^{2}\right) z=0 .
$$

This is the perpendicular through the centroid to $B C$. Hence, the circumconic and \mathscr{C}_{a} are hyperbolas. The hyperbola \mathscr{C}_{a} clearly contains the vertex A and the endpoints of the A-bisectors, namely, $(0: b: \pm c)$. It intersects the sidelines $C A$ and $A B$ at

$$
Y=\left(a^{2}: 0: c^{2}+a^{2}-b^{2}\right) \quad \text { and } \quad Z=\left(a^{2}: a^{2}+b^{2}-c^{2}: 0\right)
$$

respectively. These are the traces of $X=\left(a^{2}: a^{2}+b^{2}-c^{2}: c^{2}+a^{2}-b^{2}\right)$, which divides the A-altitude $A H_{a}$ in the ratio $A X: X H_{a}=2: 1$. See Figure 5 .

Figure 4. The cubic $F_{a}=0$ and its isogonal conjugate conic \mathscr{C}_{a}

Figure 5. The hyperbola \mathscr{C}_{a}

Remark. The tangents of the hyperbola \mathscr{C}_{a}
(i) at $(0: b: \pm c)$ pass through the midpoint of the A-altitude,
(ii) at A and X intersect at the trace of the circumcenter O on the sideline $B C$.

5. Conic solution of the angle bisectors problem

Suppose now P is a point which is the incenter (or an excenter) of its own anticevian triangle with respect to $A B C$. From the analysis of the preceding section, its isogonal conjugate lies on the hyperbola \mathscr{C}_{a} as well as the two analogous hyperbolas
$\mathscr{C}_{b}: f_{b}(x, y, z):=b^{2}\left(a^{2} z^{2}-c^{2} x^{2}\right)+c^{2}\left(a^{2}+b^{2}-c^{2}\right) x y-a^{2}\left(b^{2}+c^{2}-a^{2}\right) y z=0$,
and
$\mathscr{C}_{c}: f_{c}(x, y, z):=c^{2}\left(b^{2} x^{2}-a^{2} y^{2}\right)+a^{2}\left(b^{2}+c^{2}-a^{2}\right) y z-b^{2}\left(c^{2}+a^{2}-b^{2}\right) z x=0$.
Since $f_{a}+f_{b}+f_{c}=0$, the three hyperbolas generate a pencil. The isogonal conjugates of the common points of the pencil are the points that solve the angle bisectors problem. Theorem 2 guarantees the existence of common points. To distinguish between the incenter and the excenter cases, we note that a nondegenerate triangle $A B C$ divides the planes into seven regions (see Figure 6), which we label in accordance with the signs of the homogeneous barycentric coordinates of points in the regions:

$$
+++,-++,-+-,++-,+--,+-+,--+
$$

In each case, the sum of the homogeneous barycentric coordinates of a point is adjusted to be positive.

Figure 6. Partition of the plane by the sidelines of a triangle
In the remainder of this section, we shall denote by $\varepsilon_{a}, \varepsilon_{b}, \varepsilon_{c}$ a triple of plus and minus signs, not all minuses.

Lemma 4. A point is in the $\varepsilon_{a} \varepsilon_{b} \varepsilon_{c}$ region of its own anticevian triangle (with respect to $A B C$) if and only if it is in the $\varepsilon_{a} \varepsilon_{b} \varepsilon_{c}$ region of the medial triangle of $A B C$.

The isogonal conjugates (with respect to $A B C$) of the sidelines of the medial triangle divide the plane into seven regions, which we also label $\varepsilon_{a} \varepsilon_{b} \varepsilon_{c}$, so that the isogonal conjugates of points in the $\varepsilon_{a} \varepsilon_{b} \varepsilon_{c}$ region are in the corresponding region partitioned by the lines of the medial triangle. See Figure 7.

Proposition 5. Let Q be a common point of the conics $\mathscr{C}_{a}, \mathscr{C}_{b}, \mathscr{C}_{c}$ in the $\varepsilon_{a} \varepsilon_{b} \varepsilon_{c}$ region of the partitioned by the hyperbolas. The isogonal conjugate of Q is a point whose anticevian triangle $A^{\prime} B^{\prime} C^{\prime}$ has P as incenter or excenter according as all or not of $\varepsilon_{a}, \varepsilon_{b}, \varepsilon_{c}$ are plus signs.

Figure 7. Partition of the plane by three branches of hyperbolas

6. Examples

Figure 8 shows an example in which the hyperbolas $\mathscr{C}_{a}, \mathscr{C}_{b}, \mathscr{C}_{c}$ have four common points $Q_{0}, Q_{a}, Q_{b}, Q_{c}$, one in each of the regions,,+++-+++-+ , ++- . The isogonal conjugate P_{0} of Q_{0} is the incenter of its own anticevian triangle with respect to $A B C$. See Figure 9.

Figure 8. Pencil of hyperbolas with four real intersections

Figure 9. P_{0} as incenter of its own anticevian triangle
Figure 10 shows the hyperbolas $\mathscr{C}_{a}, \mathscr{C}_{b}, \mathscr{C}_{c}$ corresponding to the cubics in Figure 3. They have only two real intersections Q_{1} and Q_{2}, none of which is in the region +++ . This means that there is no triangle $A^{\prime} B^{\prime} C^{\prime}$ for which A, B, C are the feet of the internal angle bisectors. The isogonal conjugate P_{1} of Q_{1} has anticevian triangle $A_{1} B_{1} C_{1}$ and is its A_{1}-excenter. Likewise, P_{2} is the isogonal conjugate of Q_{2}, with anticevian triangle $A_{2} B_{2} C_{2}$, and is its B_{2}-excenter.

Figure 10. Pencil of hyperbolas with two real intersections

7. The angle bisectors problem for a right triangle

If the given triangle $A B C$ contains a right angle, say, at vertex C, then the point P can be constructed by ruler and compass. Here is an easy construction. In fact, if $c^{2}=a^{2}+b^{2}$, the cubics $F_{a}=0, F_{b}=0, F_{c}=0$ are the curves

$$
\begin{aligned}
& x\left(\left(a^{2}+b^{2}\right) y^{2}-b^{2} z^{2}\right)-2 a^{2} y^{2} z=0, \\
& y\left(\left(a^{2}+b^{2}\right) x^{2}-a^{2} z^{2}\right)-2 b^{2} x^{2} z=0, \\
& z\left(b^{2} x^{2}-a^{2} y^{2}\right)-2 x y\left(b^{2} x-a^{2} y\right)=0 .
\end{aligned}
$$

A simple calculation shows that there are two real intersections

$$
\begin{aligned}
& P_{1}=(a(\sqrt{3} a-b): b(\sqrt{3} b-a):(\sqrt{3} a-b)(\sqrt{3} b-a)), \\
& P_{2}=(a(\sqrt{3} a+b): b(\sqrt{3} b+a):-(\sqrt{3} a+b)(\sqrt{3} b+a)) .
\end{aligned}
$$

These two points can be easily constructed as follows. Let $A B C_{1}$ and $A B C_{2}$ be equilateral triangles on the hypotenuse $A B$ of the given triangle (with C_{1} and C on opposite sides of $A B$). Then P_{1} and P_{2} are the reflections of C_{1} and C_{2} in C. See Figure 11. Each of these points is an excenter of its own anticevian triangle with respect to $A B C$, except that in the case of P_{1}, it is the incenter when the acute angles A and B are in the range $\arctan \frac{\sqrt{3}}{2}<A, B<\arctan \frac{2}{\sqrt{3}}$.

Figure 11. The angle bisectors problems for a right triangle

Remark. The cevian triangle of the incenter contains a right angle if and only if the triangle contains an interior angle of 120° angle (see [1]).

8. Triangles from the feet of external angle bisectors

In this section we make a change of notations. Figure 12 shows the collinearity of the feet X, Y, Z of the external bisectors of triangle $A B C$. The line ℓ containing them is the trilinear polar of the incenter, namely, $\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=0$. If the internal bisectors of the angles intersect ℓ at $X^{\prime}, Y^{\prime}, Z^{\prime}$ respectively, then X, X^{\prime} divide Y, Z harmonically, so do Y, Y^{\prime} divide Z, X, and Z, Z^{\prime} divide X, Y. Since the angles $X A X^{\prime}, Y B Y^{\prime}$ and $Z C Z^{\prime}$ are right angles, the vertices A, B, C lie on the circles with diameters $X X^{\prime}, Y Y^{\prime}, Z Z^{\prime}$ respectively. This leads to the simple solution of the external angle bisectors problem.

Figure 12. The external angle bisectors problem
We shall make use of the angle bisector theorem in the following form. Let $\varepsilon= \pm 1$. The ε-bisector of an angle is the internal or external bisector according as $\varepsilon=+1$ or -1 .

Lemma 6 (Angle bisector theorem). Given triangle $A B C$ with a point X on the line $B C$. The line $A X$ is an ε-bisector of angle $B A C$ if and only if

$$
\frac{B X}{X C}=\varepsilon \cdot \frac{A B}{A C}
$$

Here the left hand side is a signed ratio of directed segments, and the ratio $\frac{A B}{A C}$ on the right hand side is unsigned.

Given three distinct points X, Y, Z on a line ℓ (assuming, without loss of generality, Y in between, nearer to X than to Z, as shown in Figure 12), let $X^{\prime}, Y^{\prime}, Z^{\prime}$ be the harmonic conjugates of X, Y, Z in $Y Z, Z X, X Y$ respectively. Here is a
very simple construction of these harmonic conjugates and the circles with diameters $X X^{\prime}, Y Y^{\prime}, Z Z^{\prime}$. These three circles are coaxial, with two common points F and F^{\prime} which can be constructed as follows: if $X Y M$ and $Y Z N$ are equilateral triangles erected on the same side of the line $X Y Z$, then F and F^{\prime} are the Fermat point of triangle $Y M N$ and its reflection in the line. See Figure 13.

Figure 13. Coaxial circles with diameters $X X^{\prime}, Y Y^{\prime}, Z Z^{\prime}$
Note that the circle $\left(X X^{\prime}\right)$ is the locus of points A for which the bisectors of angle $Y A Z$ pass through X and X^{\prime}. Since X^{\prime} is between Y and Z, the internal bisector of angle $Y A Z$ passes through X^{\prime} and the external bisector through X. Let the half-line $Y A$ intersect the circle $\left(Z Z^{\prime}\right)$ at C. Then $C Z$ is the external bisector of angle $X C Y$. Let B be the intersection of the lines $A Z$ and $C X$.

Lemma 7. The point B lies on the circle with diameter $Y Y^{\prime}$.
Proof. Applying Menelaus' theorem to triangle $A B C$ and the transversal $X Y Z$ (with X on $B C, Y$ on $C A, Z$ on $A B$), we have

$$
\frac{A Y}{Y C} \cdot \frac{C X}{X B} \cdot \frac{B Z}{Z A}=-1 .
$$

Here, each component ratio is negative. See Figure 12. We rearrange the numerators and denominators, keeping the signs of the ratios, but treating the lengths of the various segments without signs:

$$
\left(-\frac{A Y}{A Z}\right)\left(-\frac{C X}{C Y}\right)\left(-\frac{B Z}{B X}\right)=-1 .
$$

Applying the angle bisector theorem to the first two ratios, we have

$$
\frac{Y X}{X Z} \cdot \frac{X Z}{Z Y} \cdot\left(-\frac{B Z}{B X}\right)=-1 .
$$

Hence, $\frac{Z Y}{Y X}=\frac{B Z}{B X}$, and $B Y$ is the internal bisector of angle $X B Z$. This shows that B lies on the circle with diameter $Y Y^{\prime}$.

The facts that X, Y, Z are on the lines $B C, C A, A B$, and that $A X^{\prime}, B Y, C Z^{\prime}$ are bisectors show that $A X, B Y, C Z$ are the external bisectors of triangle $A B C$. This leads to a solution of a generalization of the external angle bisector problem.

Figure 14. Solutions of the external angle bisectors problem
Let A be a point on the circle $\left(X X^{\prime}\right)$. Construct the line $Y A$ to intersect the circle $\left(Z Z^{\prime}\right)$ at C and C^{\prime} (so that A, C are on the same side of Y). The line $A Z$ intersects $C X$ and $C^{\prime} X$ at points B and B^{\prime} on the circle $\left(Y Y^{\prime}\right)$. The triangle $A B C$ has $A X, B Y, C Z$ as external angle bisectors. At the same time, $A B^{\prime} C^{\prime}$ has internal bisectors $A X, B^{\prime} Y$, and external bisector $C^{\prime} Z$. See Figure 14.

We conclude with a characterization of the solutions to the external angle bisectors problem.

Proposition 8. The triangles $A B C$ with external bisectors $A X, B Y, C Z$ are characterized by

$$
a-b: b-c: a-c=X Y: Y Z: X Z .
$$

Proof. Without loss of generality, we assume $a>b>c$. See Figure 12. The point Y is between X and Z. Since $A X$ and $C Z$ are the external bisector of angles $B A C$ and $A C B$ respectively, we have $\frac{B X}{X C}=\frac{-c}{b}$ and $\frac{A Z}{Z B}=\frac{-b}{a}$. From these, $\frac{C X}{B C}=\frac{b}{-(b-c)}$ and $\frac{A B}{Z A}=\frac{a-b}{b}$. Applying Menelaus' theorem to triangle $X Z B$ with transversal $Y A Z$, we have

$$
\frac{X Y}{Y Z} \cdot \frac{Z A}{A B} \cdot \frac{B C}{C X}=-1
$$

Hence, $\frac{X Y}{Y Z}=-\frac{C X}{B C} \cdot \frac{A B}{Z A}=\frac{a-b}{b-c}$. The other two ratios follow similarly.

References

[1] H. Demir and J. Oman, Problem 998, Math. Mag., 49 (1976) 252; solution, 51 (1978) 199-200.
[2] P. Mironescu and L. Panaitopol, The existence of a triangle with prescribed angle bisector lengths, Amer. Math. Monthly, 101 (1994) 58-60.
[3] W. Wernick, Triangle constructions with three located points, Math. Mag., 55 (1982) 227-230.
[4] P. Yiu, Introduction to the Geometry of the Triangle, Florida Atlantic University Lecture Notes, 2001.

Paul Yiu: Department of Mathematical Sciences, Florida Atlantic University, 777 Glades Road, Boca Raton, Florida 33431-0991, USA

E-mail address: yiu@fau.edu

[^0]: To appear in Journal for Geometry and Graphics, 12 (2008) 133-144.

