A SYNTHETIC PROOF OF A. MYAKISHEV'S

 GENERALIZATION OF VAN LAMOEN CIRCLE THEOREM AND AN APPLICATIONOAI THANH DAO

Abstract

In this article we give a synthetic proof of A.Myakishev's generalization of van Lamoen's circle theorem and introduce a family six circumcenters lie on circle of a triangle associated with Kiepert's configuration.

1. Introduction

The famous van Lamoen circle theorem states that: If a triangle is divided by its three medians into 6 smaller triangles, then the circumcenters of these smaller triangles lie on a circle.
The Van Lamoen circle be introduced in Floor van Lamoen Problem 10830, American Mathematical Monthly 107 (2000) 863 (see [5]); solution by the editors, 109 (2002) 396-397. The proof of van Lamoen circle theorem can be found in many texts, see [3], [4], [6] or [8]. In 2002, A.Myakishev's generalization of van Lamoen circle theorem as follows:
Theorem 1.1 (A. Myakishev-[7]). Let two triangles $A B C$ and $A_{1} B_{1} C_{1}$ perpective and its have same the centroid, if the perpector of two triangles is D, then circumcenter of six triangles $A D B_{1}, B_{1} D C, C D A_{1}, A_{1} D B, B D C_{1}$, $C_{1} D A$ lie on a circle.
The first proof of A. Myakishev's theorem by Darij Grinberg, see [2]. In the paper we give another synthetic proof A. Myakishev's theorem and in the application we show that exist a family six circumcenters lie on a circle of a triangle associated with Kiepert's configuration.

Keywords and phrases: van Lamoen circle, Triangle, six circumcenter lie on a circle
(2010)Mathematics Subject Classification: 51P99, 60A99

Received: 25.06.2014. In revised form: 08.09.2014. Accepted: 30.09.2014.

2. A PROOF OF A.MYAKISHEV THEOREM

We omit the proof of a easy lemma following:
Lemma 2.1. Let four circles $\left(O_{1}\right),\left(O_{2}\right),\left(O_{3}\right),\left(O_{4}\right)$ concurrent at D. The circle $\left(O_{i}\right)$ meets $\left(O_{i+1}\right)$ again at $D_{i(i+1)}$ with $i=1,2,3,4$ and $\left(O_{5}\right) \equiv$ $\left(O_{1}\right)$. Then $O_{1}, O_{2}, O_{3}, O_{4}$ lie on a circle if only if $\angle D_{23} D D_{12}=\angle D_{34} D D_{41}$ (mod π).

Figure 1
Lemma 2.2. Let $A C A_{1} C_{1}$ be a quadrilateral, $A A_{1}$ meets $C C_{1}$ at D. Let N, N_{1} be the midpoint of $A C, A_{1} C_{1}$ respectively. $N N_{1}$ meets $A D$ at F. The circle $\left(A D C_{1}\right)$ meets the circle $\left(C D A_{1}\right)$ again at Q. Then $\angle A F N=\angle Q D C$ $(\bmod \pi)$

Figure 2
Proof. Since $\angle C_{1} A Q=\angle C_{1} D Q=\angle C A_{1} Q(\bmod \pi)$ and $\angle A C_{1} Q=$ $\angle A_{1} D Q=\angle A_{1} C Q(\bmod \pi)$, hence two triangles $A Q C_{1}, A_{1} Q C$ are similar $\Rightarrow \frac{C_{1} Q}{A C_{1}}=\frac{C Q}{A_{1} C}$.

Let E be the midpoint of $A A_{1}$. We obtain $\overrightarrow{A C_{1}}=2 \overrightarrow{E N_{1}}, \overrightarrow{A_{1} C}=2 \overrightarrow{E N} \Rightarrow$

$$
\begin{equation*}
\frac{C_{1} Q}{E N_{1}}=\frac{C Q}{E N} \tag{1}
\end{equation*}
$$

On the other hand: $\angle C_{1} Q C=\angle C_{1} Q D+\angle D Q C(\bmod \pi)$. But $\angle C_{1} Q D=$ $\angle C_{1} D A(\bmod \pi)=\angle\left(\overrightarrow{A C_{1}}, \overrightarrow{D A}\right)$, and $\angle D Q C=\angle D A_{1} C(\bmod \pi)=\angle\left(\overrightarrow{A_{1} D}, \overrightarrow{A_{1} C}\right)$. Thus:

$$
\begin{align*}
\angle C_{1} Q C & =\angle\left(\overrightarrow{A C_{1}}, \overrightarrow{D A}\right)+\angle\left(\overrightarrow{A_{1} D}, \overrightarrow{A_{1} C}\right)= \\
\angle\left(\overrightarrow{A C_{1}}, \overrightarrow{A_{1} C}\right) & =\angle\left(\overrightarrow{E N_{1}}, \overrightarrow{E N}\right)=\angle N_{1} E N(\bmod \pi) \tag{2}
\end{align*}
$$

Since (1) and (2) we get that two triangles $C_{1} Q C, N_{1} E N$ are similar, since

$$
\begin{equation*}
\angle E N N_{1}=\angle Q C C_{1} \tag{3}
\end{equation*}
$$

We obtain: $\angle A F N=\angle F E N+\angle E N F(\bmod \pi)$. On the other hand: $\angle F E N=\angle D A_{1} C(\bmod \pi)$. And since (3) we obtain $\angle E N F=\angle Q C D=$ $\angle Q A_{1} D(\bmod \pi)$. Therefore, $\angle A F N=\angle Q A_{1} D+\angle D A_{1} C=\angle Q A_{1} C=$ $\angle Q D C(\bmod \pi)$. The completes the proof of Lemma 2.2.

Proof of A. Myakishev theorem:

Figure 3
Let $A_{c}, B_{c}, B_{a}, C_{a}, C_{b}, A_{b}$ are circumcenter of six circles $\left(A D C_{1}\right),\left(C_{1} D B\right)$, $\left(B D A_{1}\right),\left(A_{1} D C\right),\left(C D B_{1}\right),\left(B_{1} D A\right)$ respectively. Let N, N_{1} be the midpoint of $A C, A_{1} C_{1}$ respectively, and $N N_{1}$ meets $A A_{1}$ at F. The circle $\left(A D C_{1}\right)$ meets $\left(C D A_{1}\right)$ again at Q. Easily we deduce that $B B_{1}, N N_{1}$ are parallel, therefor $\angle A D B_{1}=\angle A F N(\bmod \pi)$. By Lemma 2.2 we obtain $\angle A F N=\angle Q D C$. Thus $\angle A D B_{1}=\angle Q D C$. By Lemma 2.1 we get that four circumcenters $A_{c}, A_{b}, C_{b}, C_{a}$ lie on a circle. Similarly, four circumcenters $A_{b}, C_{b}, C_{a}, B_{a}$ lie on a circle, and $C_{b}, C_{a}, B_{a}, A_{b}$ lie on a circles. Hence six circumcenters $A_{c}, B_{c}, B_{a}, C_{a}, C_{b}, A_{b}$ lie on a circle. This completes the proof of Myakishev's theorem.

3. AN APPLICATION OF A.MYAKISHEV THEOREM

Theorem 3.1 (Dao-[1]). Let $A B C$ be a triangle, G is the centroid. Constructed three similar isosceles triangles $A C_{0} B, B A_{0} C, C B_{0} A$ (either all outward, or all inward). Let A_{1}, B_{1}, C_{1} lie on $A A_{0}, B B_{0}, C C_{0}$ respectively, such that:

$$
\begin{equation*}
\frac{\overline{A A_{1}}}{\overline{A A_{0}}}=\frac{\overline{B B_{1}}}{\overline{B B_{0}}}=\frac{\overline{C C_{1}}}{\overline{C C_{0}}}=k_{1} \tag{4}
\end{equation*}
$$

Let A_{2}, B_{2}, C_{2} lie on $G A_{1}, G B_{1}, G C_{1}$ respectively, such that:

$$
\begin{equation*}
\frac{\overline{G A_{2}}}{\overline{G A_{1}}}=\frac{\overline{G B_{2}}}{\overline{G B_{1}}}=\frac{\overline{G C_{2}}}{\overline{G C_{1}}}=k_{2} \tag{5}
\end{equation*}
$$

Then $A A_{2}, B B_{2}, C C_{2}$ are concurrent at a point K lie on Kiepert hyperbola. And circumcenter of six triangles $A K B_{2}, B_{2} K C, C K A_{2}, A_{2} K B, B K C_{2}$, $C_{2} K A$ lie on a circle.

- When A_{0}, B_{0}, C_{0} at midpoint of $B C, C A, A B$ respectively and $k_{1}=k_{2}=$ 1, this circle is called as the van Lamoen circle.
- When A_{0}, B_{0}, C_{0} at midpoint of $B C, C A, A B$ respectively and $k_{2}=0$, and k_{1} is any real number, this circle is called as the Dao six point circle [4].

Figure 4
Proof. By (4) we get

$$
\begin{equation*}
\frac{\overline{A A_{0}}+\overline{A_{0} A_{1}}}{\overline{A A_{0}}}=\frac{\overline{B B_{0}}+\overline{B_{0} B_{1}}}{\overline{B B_{0}}}=\frac{\overline{C C_{0}}+\overline{C_{0} C_{1}}}{\overline{C C_{0}}} \tag{6}
\end{equation*}
$$

\Leftrightarrow

$$
\begin{equation*}
\frac{\overline{A_{0} A}}{\overline{A_{0} A_{1}}}=\frac{\overline{B_{0} B}}{\overline{B_{0} B_{1}}}=\frac{\overline{C_{0} C}}{\overline{C_{0} C_{1}}} \tag{7}
\end{equation*}
$$

\Leftrightarrow

$$
\begin{equation*}
\frac{\overline{A_{0} A_{1}}+\overline{A_{1} A}}{\overline{A_{0} A_{1}}}=\frac{\overline{B_{0} B_{1}}+\overline{B_{1} B}}{\overline{B_{0} B_{1}}}=\frac{\overline{C_{0} C_{1}}+\overline{C_{1} C}}{\overline{C_{0} C_{1}}} \tag{8}
\end{equation*}
$$

\Leftrightarrow
(9)

Figure 5
Denote A_{3}, B_{3}, C_{3} are midpoint of $B C, C A, A B$ repectively. Let $A A_{2}, B B_{2}, C C_{2}$ meet $A_{3} A_{0}, B_{3} B_{0}, C_{3} C_{0}$ at A_{4}, B_{4}, C_{4} respectively. Let $G A_{1}, G B_{1}, G C_{1}$ meet $A_{3} A_{0}, B_{3} B_{0}, C_{3} C_{0}$ at A_{5}, B_{5}, C_{5} respectively. By Menelaus' theorem for $\triangle A A_{3} A_{0}$ cut by $\overline{A_{1} A_{5} G}$, we obtain:

$$
\begin{equation*}
\frac{\overline{A_{5} A_{0}}}{\overline{A_{5} A_{3}}}=\frac{\overline{G A}}{\overline{G A_{3}}} \cdot \frac{\overline{A_{1} A_{0}}}{\overline{A_{1} A}}=2 \overline{\frac{\overline{A_{1} A_{0}}}{\overline{A_{1} A}}} \tag{10}
\end{equation*}
$$

Similarly we obtain:

$$
\begin{equation*}
\frac{\overline{B_{5} B_{0}}}{\overline{B_{5} B_{3}}}=2 \frac{\overline{B_{1} B_{0}}}{\overline{B_{1} B}} \tag{11}
\end{equation*}
$$

$$
\begin{equation*}
\frac{\overline{C_{5} C_{0}}}{\overline{C_{5} C_{3}}}=2 \overline{\frac{C_{1} C_{0}}{\overline{C_{1} C}}} \tag{12}
\end{equation*}
$$

Since (10), (11), (12) and (9), we obtain:

$$
\begin{equation*}
\frac{\overline{A_{5} A_{0}}}{\overline{A_{5} A_{3}}}=\frac{\overline{B_{5} B_{0}}}{\overline{B_{5} B_{3}}}=\frac{\overline{C_{5} C_{0}}}{\overline{C_{5} C_{3}}} \tag{13}
\end{equation*}
$$

By Menelaus' theorem for $\triangle A G A_{1}$ cut by $\overline{A_{0} A_{5} A_{3}}$, we obtain:

$$
\begin{equation*}
\frac{\overline{A_{5} G}}{\overline{A_{5} A_{1}}}=\frac{\overline{A_{3} G}}{\overline{A_{3} A}} \cdot \frac{\overline{A_{0} A}}{\overline{A_{0} A_{1}}}=\frac{1}{3} \cdot \frac{\overline{A_{0} A}}{\overline{A_{0} A_{1}}} \tag{14}
\end{equation*}
$$

Similarly we obtain:

$$
\begin{align*}
& \frac{\overline{B_{5} G}}{\overline{B_{5} B_{1}}}=\frac{1}{3} \cdot \frac{\overline{B_{0} B}}{\overline{B_{0} B_{1}}} \tag{15}\\
& \frac{\overline{C_{5} G}}{\overline{C_{5} C_{1}}}=\frac{1}{3} \cdot \frac{\overline{C_{0} C}}{\overline{C_{0} C_{1}}}
\end{align*}
$$

Since (14),(15),(16) and (7) we get:

$$
\begin{equation*}
\frac{\overline{A_{1} A_{5}}}{\overline{G A_{5}}}=\frac{\overline{B_{1} B_{5}}}{\overline{G B_{5}}}=\frac{\overline{C_{1} C_{5}}}{\overline{G C_{5}}} \tag{17}
\end{equation*}
$$

\Leftrightarrow

$$
\begin{equation*}
\frac{\overline{A_{1} G}+\overline{G A_{5}}}{\overline{G A_{5}}}=\frac{\overline{B_{1} G}+\overline{G B_{5}}}{\overline{G B_{5}}}=\frac{\overline{C_{1} G}+\overline{G C_{5}}}{\overline{G C_{5}}} \tag{18}
\end{equation*}
$$

\Leftrightarrow

$$
\begin{equation*}
\frac{\overline{G A_{1}}}{\overline{G A_{5}}}=\frac{\overline{G B_{1}}}{\overline{G B_{5}}}=\frac{\overline{G C_{1}}}{\overline{G C_{5}}} \tag{19}
\end{equation*}
$$

Since (19) we have: $A_{1} B_{1}\left\|A_{5} B_{5}, B_{1} C_{1}\right\| B_{5} C_{5}, C_{1} A_{1} \| C_{5} A_{5}$. And since (5) we have: $A_{1} B_{1}\left\|A_{2} B_{2}, B_{1} C_{1}\right\| B_{2} C_{2}, C_{1} A_{1} \| C_{2} A_{2}$. on the other hand G, A_{1}, A_{2}, A_{5} are collinear, G, B_{1}, B_{2}, B_{5} are collinear; G, C_{1}, C_{2}, C_{5} are collinear. Now by Thales'theorem we obtain:

$$
\begin{equation*}
\frac{\overline{A_{2} A_{5}}}{\overline{A_{2} A_{1}}}=\frac{\overline{B_{2} B_{5}}}{\overline{B_{2} B_{1}}}=\frac{\overline{C_{2} C_{5}}}{\overline{C_{2} C_{1}}} \tag{20}
\end{equation*}
$$

By Menelaus' theorem for $\triangle A_{5} A_{0} A_{1}$ cut by $\overline{A A_{2} A_{4}}$, we obtain:

$$
\begin{equation*}
\frac{\overline{A_{4} A_{5}}}{\overline{A_{4} A_{0}}}=\frac{\overline{A A_{1}}}{\overline{A A_{0}}} \cdot \frac{\overline{A_{2} A_{5}}}{\overline{A_{2} A_{1}}} \tag{21}
\end{equation*}
$$

Similarly we get:

$$
\begin{align*}
& \frac{\overline{B_{4} B_{5}}}{\overline{B_{4} B_{0}}}=\frac{\overline{B B_{1}}}{\overline{B B_{0}}} \cdot \frac{\overline{B_{2} B_{5}}}{\overline{B_{2} B_{1}}} \tag{22}\\
& \frac{\overline{C_{4} C_{5}}}{\overline{C_{4} C_{0}}}=\frac{\overline{C C_{1}}}{\overline{C C_{0}}} \cdot \frac{\overline{C_{2} C_{5}}}{\overline{C_{2} C_{1}}}
\end{align*}
$$

Since (4), (20), (21), (22) and (23) we have:

$$
\begin{equation*}
\frac{\overline{A_{4} A_{5}}}{\overline{A_{4} A_{0}}}=\frac{\overline{B_{4} B_{5}}}{\overline{B_{4} B_{0}}}=\frac{\overline{C_{4} C_{5}}}{\overline{C_{4} C_{0}}} \tag{24}
\end{equation*}
$$

Three triangles $B C_{0} A, A B_{0} C$ and $C A_{0} B$ are three similar isosceles triangle either all outward, or all inward on the sides $\triangle A B C$. Since (13) we get that three triangles $B A_{5} C, C B_{5} A, A C_{5} B$ are similar isosceles triangle. Since (25) we get that three triangles $B C_{4} A, A B_{4} C, C A_{4} B$ are similar isosceles triangle on the sides. By famous Kiepert theorem we have the lines $A A_{4}$, $B B_{4}, C C_{4}$ concurrent on Kiepert hyperbola, so $A A_{2}, B B_{2}, C C_{2}$ concurrent on Kiepert hyperbola. It is well-known that two triangles $A B C, A_{0} B_{0} C_{0}$ have same the centroid. Since (4) we can show that two triangles $A_{0} B_{0} C_{0}$ and $A_{1} B_{1} C_{1}$ have same the centroid. Since (5) we can show that two triangles $A_{1} B_{1} C_{1}$ and $A_{2} B_{2} C_{2}$ have same the centroid. Therefore, two triangles $A B C$ and $A_{2} B_{2} C_{2}$ have same the centroid. By Myakishev theorem we get that the circumcenter of six triangles $A K B_{2}, B_{2} K C, C K A_{2}, A_{2} K B, B K C_{2}$, $C_{2} K A$ lie on a circle. This completes the proof of Theorem 3.1.

References

[1] Dao, T., Dao Thanh Oai problem, Art of Problem Solving, Oct. 24, 2013. available at http://www.artofproblemsolving.com/Forum/viewtopic.php?f=47t=559546
[2] Grinberg, D., Hyacinthos message 7351, Jul 13, 2003.
[3] Ha, N. M., Another Proof of van Lamoen's Theorem and Its Converse, Forum Geom., 5(2005), 127-132.
[4] Kimberling, C., X(5569) Center of the Dao six point circle, Nov. 3, 2013. Encyclopedia of Triangle Centers, available at http://faculty.evansville.edu/ck6/encyclopedia/ETC.html.
[5] Lamoen, F. M., Problem 10830, Amer. Math. Monthly, 107(2000), 893.
[6] Li, K., Concyclic problem, Mathematical Excalibur, 6(1)(2001), 1-2.
[7] Myakishev, A. and Wolk, B., Hyacinthos message 5612, May 31, 2002.
[8] Myakishev, A. and Woo, P., On the Circumcenters of Cevasix Configuration, Forum Geom., 3(2003), 57-63.

SON LA HYDROPOWER COMPANY

VIETNAM
E-mail address: daothanhoai@hotmail.com

