DAO'S THEOREM ON CONCURRENCE OF THREE EULER LINES

TELV COHL

Abstract

In this article we give a synthetic proof of Dao's theorem on concurrence of three Euler lines.

1. Introduction

Concurrence of three Euler lines is always a nice result in euclidean geometry, see [2][3][4] and [5]. In 2014, Oai Thanh Dao proposed a new remarkable theorem for concurrence of the Euler lines of three triangles.

Consider $A B C$ be a triangle and a line D parallel to the Euler line of $A B C$. Let A_{1}, B_{1}, C_{1} be the intersection of D and the sidelines $\mathrm{BC}, \mathrm{CA}, \mathrm{AB}$ respectively. Let $A^{\prime}, B^{\prime}, C^{\prime}$ be the midpoint of $B_{1} C_{1}, C_{1} A_{1}, A_{1} B_{1}$ respectively. Let A_{2}, B_{2}, C_{2} be the reflection of A, B, C in $A^{\prime}, B^{\prime}, C^{\prime}$ respectively. The Dao theorem refers to the point X_{110} in the Encyclopedia of Triangle Centers [6], as follows:

Theorem 1.1 (Dao-[1]). The Euler lines of triangles $A_{2} B_{1} C_{1}, B_{2} A_{1} B_{1}$, $C_{2} A_{1} B_{1}$ concur in a point on the line joining X_{110} and the following point: The orthocenter of the paralogic triangle of $A B C$ whose perspectrix is the Euler line of $A B C$.

Figure 1

Keywords and phrases: Euler line, three Euler concurrent, Four Euler line concurrent
(2010)Mathematics Subject Classification: 51P99, 60A99

Received: 25.05.2014. In revised form: 11.08.2014. Accepted: 28.09.2014.

In this article we give a synthetic proof of this theorem.

2. SYNTHETIC PROOF OF THEOREM 1.1

Lemma 2.1. Let H, O, G are the orthocenter, the circumcenter and the centroid of the triangle $A B C$. Let X be a point lie on $B C$ such that $A X \|$ $O G$. Let Z be the reflection of B in midpoint of $A X$. Then the Euler line of triangle $Z X A$ is parallel to $A C$.

Proof. Let N be the midpoint of $B C$, let H^{\prime} be the point on $A H$ such that $H^{\prime} Y \| A C$, let G^{\prime} lie on $Y H^{\prime}$ such that $G G^{\prime} \| B C$, denote $Y=O G \cap B C$ and $M=A G^{\prime} \cap B C$. Since triangles $A B X$ and $X Z A$ are symmetric with respect to the midpoint of $A X$. So we need only prove that the Euler line of $A B X$ is parallel to $A C$.

Figure 2
Since $H^{\prime} Y \| A C$ and $B H \perp A C$, we have $B H \perp H^{\prime} Y$ and $Y B \perp H H^{\prime}$, so that B is the orthocenter of triangle $Y H H^{\prime}$. Consequently, we have $B H^{\prime} \perp H Y$, so that $B H^{\prime} \perp A X$.

Alos, since $A H^{\prime} \perp B X, H^{\prime}$ is the orthocenter of $\triangle A B X$. Also $G G^{\prime} \|$ $C X, G Y\left\|X A, Y G^{\prime}\right\| A C$ so that triangles $Y G G^{\prime}$ and $A X C$ are homothetic. Moreover, $M N=(3 / 2) G G^{\prime}=(3 / 2)(G Y / A X) \cdot X C=(1 / 2) X C$. Since $B N=\frac{1}{2} B C$, we have M is the midpoint of $X B$, and $A G^{\prime} / G^{\prime} M=$ $A G / G N=2 / 1$, so that G^{\prime} is the centroid of $A B X$. Consequently, $H^{\prime} G^{\prime}$ is the Euler line of triangle $A B X$ and is parallel to $A C$. This completes the proof of Lemma 2.1.

We return now to the proof of Theorem 1.1
Proof. Let L_{A}, L_{B}, L_{C} be the lines through A_{1}, B_{1}, C_{1} and perpendicular to $B C, C A, A B$ respectively. Let $H_{A}=L_{B} \cap L_{C}, H_{B}=L_{C} \cap L_{A}$, and $H_{C}=L_{A} \cap L_{B}$. Let $L_{A}^{\prime}, L_{B}^{\prime}, L_{C}^{\prime}$ be the line through H_{A}, H_{B}, H_{C} parallel to $B C, C A, A B$, respectively.

By the Lemma 2.1, the Euler lines of three triangles $A_{2} B_{1} C_{1}, B_{2} C_{1} A_{1}$, $C_{2} A_{1} B_{1}$ are parallel to $B C, C A, A B$ respectively. Note that H_{A}, H_{B}, H_{C} are the respective orthocenters of the triangles $A_{2} B_{1} C_{1}, B_{2} C_{1} A_{1}, C_{2} A_{1} B_{1}$, so that $L_{A}^{\prime}, L_{B}^{\prime}, L_{C}^{\prime}$ are the Euler lines of these triangles. And they concur in the orthocenter of triangle $H_{A} H_{B} H_{C}$ (see Figure 3).

In special case, when D is the Euler line of the triangle $A B C$, by Sondat's theorem, the Euler line bisects the segment whose endpoints are the orthocenters of triangles $A B C$ and $H_{A} H_{B} H_{C}$. On the other hand, the orthocenter of triangle $A B C$ lies on the Euler line of $A B C$, so that the point of concurrence of five Euler lines is the orthocenter of the paralogic triangle of $A B C$ whose perspectrix is the Euler line of $A B C$.

Figure 3

Let A_{0}, B_{0}, C_{0} be the points of intersection of the Euler line of triangle $A B C$ and the sidelines $B C, C A, A B$ respectively. Denote $H_{A 0} H_{B 0} H_{C 0}$ be the triangle formed by three lines through A_{0}, B_{0}, C_{0} and perpendicular to $B C, C A, A B$ respectively.

It's well-known that X_{110} is the Euler reflection point of $A B C . X_{110}$ is point E in Figure 4. Let $A^{\prime \prime}, B^{\prime \prime}, C^{\prime \prime}$ are the projection of X_{110} on $B C, C A, A B$ respectively. By the Simson line theorem, $A^{\prime \prime}, B^{\prime \prime}, C^{\prime \prime}$ are collinear and the line $\overline{A^{\prime \prime} B^{\prime \prime} C^{\prime \prime}}$ is parallel to the Euler line of $A B C$. Since $B^{\prime \prime} B_{0} / B_{0} B_{1}=$ $C^{\prime \prime} C_{0} / C_{0} C_{1}$, the triangles $X_{110} C^{\prime \prime} B^{\prime \prime}, H_{A 0} C_{0} B_{0}, H_{A} C_{1} B_{1}$ are homothetic, with center A, so that $A, H_{A 0}, H_{A}, X_{110}$ are collinear (see Figure 4). Similarity we have $B, H_{B 0}, H_{B}, X_{110}$ are collinear and $C, H_{C 0}, H_{C}, X_{110}$ are collinear, so that X_{110} is the homothetic center of triangles $H_{A 0} H_{B 0} H_{C 0}$ and triangle $H_{A} H_{B} H_{C}$.

Figure 4
Thus, the orthocenter of $H_{A} H_{B} H_{C}$ lies on the line joining X_{110} and the orthocenter of the paralogic triangle of ABC whose perspectrix is the Euler line of $A B C$. This complete the proof of Theorem 1.1.

For completeness, we record the coordinates of D given by Peter Moses. If D is parallel to the Euler line through some point $P(p, q, r)$, the concurrence is [1]:
$\left(S^{2}-3 S_{B} S_{C}\right)\left(p\left(S^{2}-3 S_{A} S_{B}\right)\left(S^{2}-3 S_{C} S_{A}\right)-q S_{B}\left(S_{A}-S_{C}\right)\left(S^{2}-3 S_{A} S_{B}\right)-\right.$ $\left.r S_{C}\left(S_{A}-S_{B}\right)\left(S^{2}-3 S_{A} S_{C}\right)\right): \ldots: \ldots$

References

[1] Dao, O. T., Message Advanced Plane Geometry, 1350, June/27th/2014.
[2] Dergiades, N. and Yiu, P., Antiparallels and concurrent Euler lines, Forum Geometricorum, 4(2004) 1-20.
[3] Hatzipolakis, A. P., Lamoen, F., Wolk, B. and Yiu, P., Concurrency of Four Euler Lines, Forum Geometricorum, $\mathbf{1 (2 0 0 1) , 5 9 - 6 8 . ~}$
[4] Schiffler, K., Veldkamp, G. R. and Spek, W. A., Problem 1018 and Solution, Crux Mathematicorum, 12(1986), 176-179.
[5] Thebault, V., Rammler, O. J. and Goormaghtigh, R., Problem 4328, Amer. Math. Monthly, 56 (1949), 39.
[6] Kimberling., C., X(110) Focus of Kiepert parabola, Encyclopedia of Triangle Centers, available at http://faculty.evansville.edu/ck6/encyclopedia/ETCPart1.html

NATIONAL CHIAYI SENIOR HIGH SHOOL CHIAYI, TAIWAN
E-mail address: telvcohltinasprout@gmail.com

