
Baltic Way 1990

Riga, November 24, 1990

Problems and solutions

1. Integers 1, 2, . . . , n are written (in some order) on the circumference of a circle. What is the smallest
possible sum of moduli of the differences of neighbouring numbers?

Solution. Let a1 = 1, a2, . . . , ak = n, ak+1, . . . , an be the order in which the numbers 1, 2, . . . , n are
written around the circle. Then the sum of moduli of the differences of neighbouring numbers is

|1 − a2| + |a2 − a3| + · · · + |ak − n| + |n − ak+1| + · · · + |an − 1|

≥ |1 − a2 + a2 − a3 + · · · + ak − n| + |n − ak+1 + · · · + an − 1|

= |1 − n| + |n − 1| = 2n − 2.

This minimum is achieved if the numbers are written around the circle in increasing order.

2. The squares of a squared paper are enumerated as follows:

n

...

4 10 14

3 6 9 13

2 3 5 8 12

1 1 2 4 7 11

1 2 3 4 5 ... m

Devise a polynomial p(m, n) of two variables m, n such that for any positive integers m and n the number
written in the square with coordinates (m, n) will be equal to p(m, n).

Solution. Since the square with the coordinates (m, n) is nth on the (n + m − 1)-th diagonal, it contains
the number

P (m, n) =

n+m−2∑

i=1

i + n =
(n + m − 1)(n + m − 2)

2
+ n.

3. Let a0 > 0, c > 0 and

an+1 =
an + c

1 − anc
, n = 0, 1, . . . .

Is it possible that the first 1990 terms a0, a1, . . . , a1989 are all positive but a1990 < 0?

Solution. Obviously we can find angles 0 < α, β < 90◦ such that tanα > 0, tan (α + β) > 0, . . . ,
tan (α + 1989β) > 0 but tan (α + 1990β) < 0. Now it suffices to note that if we take a0 = tanα and
c = tanβ then an = tan (α + nβ).

4. Prove that, for any real a1, a2, . . . , an,

n∑

i,j=1

aiaj

i + j − 1
≥ 0.

Solution. Consider the polynomial P (x) = a1 + a2x + · · · + anxn−1. Then P 2(x) =
∑n

k,l=1
akalx

k+l−2 and
∫ 1

0
P 2(x) dx =

∑n

k,l=1

akal

k+l−1
.

5. Let ∗ denote an operation, assigning a real number a ∗ b to each pair of real numbers (a, b) (e.g., a ∗ b =
a + b2 − 17). Devise an equation which is true (for all possible values of variables) provided the operation ∗
is commutative or associative and which can be false otherwise.

Solution. A suitable equation is x ∗ (x ∗ x) = (x ∗ x) ∗ x which is obviously true if ∗ is any commutative or
associative operation but does not hold in general, e.g., 1 − (1 − 1) 6= (1 − 1) − 1.
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6. Let ABCD be a quadrangle, |AD| = |BC|, ∠A+∠B = 120◦ and let P be a point exterior to the quadrangle
such that P and A lie at opposite sides of the line DC and the triangle DPC is equilateral. Prove that the
triangle APB is also equilateral.

Solution. Note that ∠ADC + ∠CDP + ∠BCD + ∠DCP = 360◦ (see Figure 1). Thus ∠ADP = 360◦ −
∠BCD − ∠DCP = ∠BCP . As we have |DP | = |CP | and |AD| = |BC|, the triangles ADP and BCP are
congruent and |AP | = |BP |. Moreover, ∠APB = 60◦ since ∠DPC = 60◦ and ∠DPA = ∠CPB.

7. The midpoint of each side of a convex pentagon is connected by a segment with the intersection point of
the medians of the triangle formed by the remaining three vertices of the pentagon. Prove that all five such
segments intersect at one point.

Solution. Let A, B, C, D and E be the vertices of the pentagon (in order), and take any point O as origin.
Let M be the intersection point of the medians of the triangle CDE, and let N be the midpoint of the
segment AB. We have

OM = 1

3
(OC + OD + OE)

and

ON = 1

2
(OA + OB).

The segment NM may be written as

ON + t(OM − ON ), 0 ≤ t ≤ 1.

Taking t = 3

5
we get the point

P = 1

5
(OA + OB + OC + OD + OE),

the centre of gravity of the pentagon. Choosing a different side of the pentagon, we clearly get the same
point P , which thus lies on all such line segments.

Remark. The problem expresses the idea of subdividing a system of five equal masses placed at the vertices
of the pentagon into two subsystems, one of which consists of the two masses at the endpoints of the side
under consideration, and one consisting of the three remaining masses. The segment mentioned in the
problem connects the centres of gravity of these two subsystems, and hence it contains the centre of gravity
of the whole system.

8. Let P be a point on the circumcircle of a triangle ABC. It is known that the base points of the perpendiculars
drawn from P onto the lines AB, BC and CA lie on one straight line (called a Simson line). Prove that
the Simson lines of two diametrically opposite points P1 and P2 are perpendicular.

Solution. Let O be the circumcentre of the triangle ABC and ∠B be its maximal angle (so that ∠A and ∠C

are necessarily acute). Further, let B1 and C1 be the base points of the perpendiculars drawn from the
point P to the sides AC and AB respectively and let α be the angle between the Simson line l of point P

and the height h of the triangle drawn to the side AC. It is sufficient to prove that α = 1

2
∠POB. To

show this, first note that the points P , C1, B1, A all belong to a certain circle. Now we have to consider
several sub-cases depending on the order of these points on that circle and the location of point P on the
circumcircle of triangle ABC. Figure 2 shows one of these cases — here we have α = ∠PB1C1 = ∠PB1C1 =
∠PAB = 1

2
∠POB. The other cases can be treated in a similar manner.
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9. Two equal triangles are inscribed into an ellipse. Are they necessarily symmetrical with respect either to
the axes or to the centre of the ellipse?

Solution. No, not necessarily (see Figure 3 where the two ellipses are equal).
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10. A segment AB of unit length is marked on the straight line t. The segment is then moved on the plane so
that it remains parallel to t at all times, the traces of the points A and B do not intersect and finally the
segment returns onto t. How far can the point A now be from its initial position?

Solution. The point A can move any distance from its initial position — see Figure 4 and note that we can
make the height h arbitrarily small.

t t

A B

h

Figure 4

11. Prove that the modulus of an integer root of a polynomial with integer coefficients cannot exceed the
maximum of the moduli of the coefficients.

Solution. For a non-zero polynomial P (x) = anxn + · · · + a1x + a0 with integer coefficients, let k be the
smallest index such that ak 6= 0. Let c be an integer root of P (x). If c = 0, the statement is obvious. If
c 6= 0, then using P (c) = 0 we get ak = −x(ak+1 + ak+2x + · · · + anxn−k−1). Hence c divides ak, and since
ak 6= 0 we must have |c| ≤ |ak|.

12. Let m and n be positive integers. Prove that 25m + 3n is divisible by 83 if and only if 3m + 7n is divisible
by 83.

Solution. Use the equality 2 · (25x + 3y) + 11 · (3x + 7y) = 83x + 83y.

13. Prove that the equation x2 − 7y2 = 1 has infinitely many solutions in natural numbers.

Solution. For any solution (m, n) of the equation we have m2 − 7n2 = 1 and

1 = (m2 − 7n2)2 = (m2 + 7n2)2 − 7 · (2mn)2.

Thus (m2 + 7n2, 2mn) is also a solution. Therefore it is sufficient to note that the equation x2 − 7y2 = 1
has at least one solution, for example x = 8, y = 3.

14. Do there exist 1990 relatively prime numbers such that all possible sums of two or more of these numbers
are composite numbers?

Solution. Such numbers do exist. Let M = 1990! and consider the sequence of numbers 1 + M , 1 + 2M ,
1 + 3M , . . . . For any natural number 2 ≤ k ≤ 1990, any sum of exactly k of these numbers (not necessarily
different) is divisible by k, and hence is composite. number. It remains to show that we can choose
1990 numbers a1, . . . , a1990 from this sequence which are relatively prime. Indeed, let a1 = 1 + M ,
a2 = 1 + 2M and for a1, . . . , an already chosen take an+1 = 1 + a1 · · · · · an · M .

15. Prove that none of the numbers

Fn = 22
n
+ 1, n = 0, 1, 2, . . . ,

is a cube of an integer.

Solution. Assume there exist such natural numbers k and n that 22
n

+ 1 = k3. Then k must be an odd
number and we have 22

n

= k3− 1 = (k− 1)(k2 + k +1). Hence k− 1 = 2s and k2 + k +1 = 2t where s and t

are some positive integers. Now 22s = (k − 1)2 = k2 − 2k + 1 and 2t − 22s = 3k. But 2t − 22s is even while
3k is odd, a contradiction.

16. A closed polygonal line is drawn on squared paper so that its links lie on the lines of the paper (the sides
of the squares are equal to 1). The lengths of all links are odd numbers. Prove that the number of links is
divisible by 4.

Solution. There must be an equal number of horizontal and vertical links, and hence it suffices to show that
the number of vertical links is even. Let’s pass the whole polygonal line in a chosen direction and mark each
vertical link as “up” or “down” according to the direction we pass it. As the sum of lengths of the “up” links
is equal to that of the “down” ones and each link is of odd length, we have an even or odd number of links
of both kinds depending on the parity of the sum of their lengths.
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17. In two piles there are 72 and 30 sweets respectively. Two students take, one after another, some sweets
from one of the piles. Each time the number of sweets taken from a pile must be an integer multiple of the
number of sweets in the other pile. Is it the beginner of the game or his adversary who can always assure
taking the last sweet from one of the piles?

Solution. Note that one of the players must have a winning strategy. Assume that it is the player making
the second move who has it. Then his strategy will assure taking the last sweet also in the case when the
beginner takes 2 · 30 sweets as his first move. But now, if the beginner takes 1 · 30 sweets then the second
player has no choice but to take another 30 sweets from the same pile, and hence the beginner can use the
same strategy to assure taking the last sweet himself. This contradiction shows that it must be the beginner
who has the winning strategy.

18. Positive integers 1, 2, . . . , 100, 101 are written in the cells of a 101 × 101 square grid so that each number
is repeated 101 times. Prove that there exists either a column or a row containing at least 11 different
numbers.

Solution. Let ak denote the total number of rows and columns containing the number k at least once.
As i · (20 − i) < 101 for any natural number i, we have ak ≥ 21 for all k = 1, 2, . . . , 101. Hence
a1 + · · · + a101 ≥ 21 · 101 = 2121. On the other hand, assuming any row and any column contains no more
than 10 different numbers we have a1 + · · · + a101 ≤ 202 · 10 = 2020, a contradiction.

19. What is the largest possible number of subsets of the set {1, 2, . . . , 2n+ 1} such that the intersection of any
two subsets consists of one or several consecutive integers?

Solution. Consider any subsets A1, . . . , As satisfying the condition of the problem and let Ai =
{ai1, . . . , ai,ki

} where ai1 < · · · < ai,ki
. Replacing each Ai by A′

i = {ai1, ai1 + 1, . . . , ai,ki
− 1, ai,ki

}
(i.e., adding to it all “missing” numbers) yields a collection of different subsets A′

1, . . . , A
′
s which also

satisfies the required condition. Now, let bi and ci be the smallest and largest elements of the sub-
set A′

i, respectively. Then min1≤i≤s ci ≥ max1≤i≤s bi, as otherwise some subsets A′
k and A′

l would
not intersect. Hence there exists an element a ∈

⋂
1≤i≤s A′

i. As the number of subsets of the set
{1, 2, . . . , 2n + 1} containing a and consisting of k consecutive integers does not exceed min (k, 2n + 2 − k)
we have s ≤ (n + 1) + 2 · (1 + 2 + · · · + n) = (n + 1)2. This maximum will be reached if we take a = n + 1.
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