
Baltic Way 1991

Tartu, December 14, 1991

Problems and solutions

1. Find the smallest positive integer n having the property: for any set of n distinct integers a1, a2, . . . , an

the product of all differences ai − aj , i < j is divisible by 1991.

Solution. Let S =
∏

1≤i<j≤n

(ai − aj). Note that 1991 = 11 · 181. Therefore S is divisible by 1991 if and only

if it is divisible by both 11 and 181. If n ≤ 181 then we can take the numbers a1, . . . , an from distinct
congruence classes modulo 181 so that S will not be divisible by 181. On the other hand, if n ≥ 182 then
according to the pigeonhole principle there always exist ai and aj such that ai − aj is divisible by 181 (and
of course there exist ak and al such that ak − al is divisible by 11).

2. Prove that there are no positive integers n and m > 1 such that 1021991 + 1031991 = nm.

Solution. Factorizing, we get

1021991 + 1031991 = (102 + 103)(1021990 − 1021989 · 103 + 1021988 · 1032 − · · · + 1031990),

where 102 + 103 = 205 = 5 · 41. It suffices to show that the other factor is not divisible by 5. Let
ak = 102k · 1031990−k, then ak ≡ 4 (mod 5) if k is even and ak ≡ −4 (mod 5) if k is odd. Thus the whole
second factor is congruent to 4 · 1991 ≡ 4 (mod 5).

3. There are 20 cats priced from $12 to $15 and 20 sacks priced from 10 cents to $1 for sale (all prices are
different). Prove that each of two boys, John and Peter, can buy a cat in a sack paying the same amount
of money.

Solution. The number of different possibilities for buying a cat and a sack is 20 · 20 = 400 while the number
of different possible prices is 1600 − 1210 + 1 = 391. Thus by the pigeonhole principle there exist two
combinations of a cat and a sack costing the same amount of money. Note that the two cats (and also the
two sacks) involved must be different as otherwise the two sacks (respectively, cats) would have equal prices.

4. Let p be a polynomial with integer coefficients such that p(−n) < p(n) < n for some integer n. Prove that
p(−n) < −n.

Solution. As an − bn = (a − b)(an−1 + an−2b + · · · + bn−1), then for any distinct integers a, b and for any
polynomial p(x) with integer coefficients p(a)−p(b) is divisible by a− b. Thus, p(n)−p(−n) 6= 0 is divisible
by 2n and consequently p(−n) ≤ p(n) − 2n < n − 2n = −n.

5. For any positive numbers a, b, c prove the inequalities

1

a
+

1

b
+

1

c
≥ 2

a + b
+

2

b + c
+

2

c + a
≥ 9

a + b + c
.

Solution. To prove the first inequality, note that 2

a+b
≤ 1

2

(

1

a
+ 1

b

)

and similarly 2

b+c
≤ 1

2

(

1

b
+ 1

c

)

, 2

c+a
≤

1

2

(

1

c
+ 1

a

)

. For the second part, use the inequality 3

x+y+z
≤ 1

3

(

1

x
+ 1

y
+ 1

z

)

for x = a + b, y = b + c and

z = c + a.

6. Let [x] be the integer part of a number x, and {x} = x − [x]. Solve the equation

[x] · {x} = 1991x.

Solution. Let f(x) = [x] · {x}. Then we have to solve the equation f(x) = 1991x. Obviously, x = 0 is a
solution. For any x > 0 we have 0 ≤ [x] ≤ x and 0 ≤ {x} < 1 which imply f(x) < x < 1991x. For x ≤ −1
we have 0 > [x] > x − 1 and 0 ≤ {x} < 1 which imply f(x) > x − 1 > 1991x. Finally, if −1 < x < 0, then
[x] = −1, {x} = x − [x] = x + 1 and f(x) = −x − 1. The only solution of the equation −x − 1 = 1991x is
x = − 1

1992
.

7. Let A, B, C be the angles of an acute-angled triangle. Prove the inequality

sinA + sin B > cosA + cosB + cosC.
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Solution. In an acute-angled triangle we have A + B > π
2
. Hence we have sin A > sin

(

π
2
− B

)

= cosB and
sin B > cosA. Using these inequalities we get (1 − sinA)(1 − sin B) < (1 − cosA)(1 − cosB) and

sin A + sin B > cosA + cosB − cosA cosB + sinA sin B

= cosA + cosB − cos(A + B) = cosA + cosB + cosC.

8. Let a, b, c, d, e be distinct real numbers. Prove that the equation

(x − a)(x − b)(x − c)(x − d)

+ (x − a)(x − b)(x − c)(x − e)

+ (x − a)(x − b)(x − d)(x − e)

+ (x − a)(x − c)(x − d)(x − e)

+ (x − b)(x − c)(x − d)(x − e) = 0

has 4 distinct real solutions.

Solution. On the left-hand side of the equation we have the derivative of the function

f(x) = (x − a)(x − b)(x − c)(x − d)(x − e)

which is continuous and has five distinct real roots.

9. Find the number of solutions of the equation aex = x3.

Solution. Studying the graphs of the functions aex and x3 it is easy to see that the equation always has
one solution if a ≤ 0 and can have 0, 1 or 2 solutions if a > 0. Moreover, in the case a > 0 the number of
solutions can only decrease as a increases and we have exactly one positive value of a for which the equation
has one solution — this is the case when the graphs of aex and x3 are tangent to each other, i.e., there exists
x0 such that aex0 = x3

0 and aex0 = 3x2
0. From these two equations we get x0 = 3 and a = 27

e3 . Summarizing:
the equation aex = x3 has one solution for a ≤ 0 and a = 27

e3 , two solutions for 0 < a < 27

e3 and no solutions
for a > 27

e3 .

10. Express the value of sin 3◦ in radicals.

Solution. We use the equality

sin 3◦ = sin (18◦ − 15◦) = sin 18◦ cos 15◦ + cos 18◦ sin 15◦

where

sin 15◦ = sin
30◦

2
=

√

1 − cos 30◦

2
=

√
6 −

√
2

4

and

cos 15◦ =
√

1 − sin2 15◦ =

√
6 +

√
2

4
.

To calculate cos 18◦ and sin 18◦ note that cos (3 · 18◦) = sin (2 · 18◦). As cos 3x = cos3 x − 3 cosx sin2 x =
cosx(1− 4 sin2 x) and sin 2x = 2 sinx cosx we get 1− 4 sin2 18◦ = 2 sin 18◦. Solving this quadratic equation

yields sin 18◦ =
√

5−1

4
(we discard −

√
5−1

4
which is negative) and cos 18◦ =

√
10+2

√
5

4
.

11. All positive integers from 1 to 1 000 000 are divided into two groups consisting of numbers with odd or even
sums of digits respectively. Which group contains more numbers?

Solution. Among any ten integers a1 . . . an0, a1 . . . an1, . . . , a1 . . . an9 there are exactly five numbers with
odd digit sum and five numbers with even digit sum. Thus, among the integers 0, 1, . . . , 999 999 we have
equally many numbers of both kinds. After substituting 1 000 000 instead of 0 we shall have more numbers
with odd digit sum.

12. The vertices of a convex 1991-gon are enumerated with integers from 1 to 1991. Each side and diagonal of
the 1991-gon is coloured either red or blue. Prove that, for an arbitrary renumeration of vertices, one can
find integers k and l such that the line connecting vertices with numbers k and l before the renumeration
has the same colour as the line between the vertices having these numbers after the renumeration.
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Solution. Assume there exists a renumeration such that for any numbers 1 ≤ k < l ≤ n the segment
connecting vertices numbered k and l before the renumeration has a different colour than the segment
connecting vertices with the same numbers after the renumeration. Then there has to be an equal number
of red and blue segments, and thus the total number of segments must be even. However, the number of
segments is

(

1991

2

)

= 995 · 1991, an odd number.

13. An equilateral triangle is divided into 25 congruent triangles enumerated with numbers from 1 to 25. Prove
that one can find two triangles having a common side and with the difference of the numbers assigned to
them greater than 3.

Solution. Define the distance between two small triangles to be the minimal number of steps one needs
to move from one of the triangles to the other (a step here means transition from one triangle to another
having a common side with it). The maximum distance between two small triangles is 8 and this maximum
is achieved if and only if one of these lies at a corner of the big triangle and the other lies anywhere at the
opposite side of it. Assume now that we have assigned the numbers 1, . . . , 25 to the small triangles so that
the difference of the numbers assigned to any two adjacent triangles does not exceed 3. Then the distance
between the triangles numbered 1 and 25; 1 and 24; 2 and 25; 2 and 24 must be equal to 8. However, this is
not possible since it implies that either the numbers 1 and 2 or 24 and 25 are assigned to the same “corner”
triangle.

14. A castle has a number of halls and n doors. Every door leads into another hall or outside. Every hall has at
least two doors. A knight enters the castle. In any hall, he can choose any door for exit except the one he
just used to enter that hall. Find a strategy allowing the knight to get outside after visiting no more than
2n halls (a hall is counted each time it is entered).

Solution. The knight can use the following strategy: exit from any hall through the door immediately to
the right of the one he used to enter that hall. Then, knowing which door was passed last and in which
direction we can uniquely restore the whole path of the knight up to that point. Therefore, he will not be
able to pass any door twice in the same direction unless he has been outside the castle in between.

15. In each of the squares of a chess board an arbitrary integer is written. A king starts to move on the board.
As the king moves, 1 is added to the number in each square it “visits”. Is it always possible to make the
numbers on the chess board:

(a) all even;

(b) all divisible by 3;

(c) all equal?

Solution. Figure 1 demonstrates a possible king’s path passing through each square exactly once and finally
returning to the initial square. Thus, it suffices to prove part (c) as we can always increase the numbers in
all the squares by 1 or 2 if necessary. Moreover, note that for any given square it is possible to modify the
path shown in Figure 1 in such a way that this particular square will be passed twice while any other square
will still be passed exactly once. Repeating this procedure a suitable number of times for each square we
can make all the numbers on the chess board equal.

16. Let two circles C1 and C2 (with radii r1 and r2) touch each other externally, and let l be their common
tangent. A third circle C3 (with radius r3 < min(r1, r2)) is externally tangent to the two given circles and
tangent to the line l. Prove that

1√
r3

=
1√
r1

+
1√
r2

.

Solution. Let O1, O2, O3 be the centres of the circles C1, C2, C3, respectively. Let P1, P2, P3 be the
perpendicular projections of O1, O2, O3 onto the line l and let Q be the perpendicular projection of O3 onto
the line P1O1 (see Figure 2). Then |P1P3|2 = |QO3|2 = |O1O3|2 − |QO1|2 = (r1 + r3)

2 − (r1 − r3)
2 = 4r1r3.

Similarly we get |P1P2|2 = 4r1r2 and |P2P3|2 = 4r2r3. Since |P1P2| = |P1P3| + |P2P3| we have
√

r1r2 =√
r1r3 +

√
r2r3, which implies the required equality.
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17. Let the coordinate planes have the reflection property. A beam falls onto one of them. How does the final
direction of the beam after reflecting from all three coordinate planes depend on its initial direction?

Solution. Let the velocity vector of the beam be ~v = (α, β, γ). Reflection from each of the coordinate planes
changes the sign of exactly one of the coordinates α, β and γ, and thus the final direction will be opposite
to the initial one.

18. Is it possible to put two tetrahedra of volume 1

2
without intersection into a sphere with radius 1?

Solution. No, it is not. Any tetrahedron that does not contain the centre of the sphere as an internal point
has a height drawn to one of its faces less than or equal to the radius of the sphere. As each of the faces of

the tetrahedron is contained in a circle with radius not greater than 1, its area cannot exceed 3
√

3

4
. Thus,

the volume of such a tetrahedron must be less or equal than 1

3
· 1 · 3

√
3

4
=

√
3

4
< 1

2
.

19. Let’s expand a little bit three circles, touching each other externally, so that three pairs of intersection points
appear. Denote by A1, B1, C1 the three so obtained “external” points and by A2, B2, C2 the corresponding
“internal” points. Prove the equality

|A1B2| · |B1C2| · |C1A2| = |A1C2| · |C1B2| · |B1A2|.

Solution. First, note that the three straight lines A1A2, B1B2 and C1C2 intersect in a single point O.
Indeed, each of the lines is the locus of points from which the tangents to two of the circles are of equal
length (it is easy to check that this locus has the form of a straight line and obviously it contains the two
intersection points of the circles). Now, we have |OA1| · |OA2| = |OB1| · |OB2| (as both of these products are
equal to |OT |2 where OT is a tangent line to the circle containing A1, A2, B1, B2, and T is the corresponding

point of tangency). Hence |OA1|
|OB2| = |OB1|

|OA2| which implies that the triangles OA1B2 and OB1A2 are similar

and |A1B2|
|A2B1| = |OA1|

|OB1| . Similarly we get |B1C2|
|B2C1| = |OB1|

|OC1| and |C1A2|
|C2A1| = |OC1|

|OA1| . Multiplying these three equalities

gives the desired result.

20. Consider two points A(x1, y1) and B(x2, y2) on the graph of the function y = 1

x
such that 0 < x1 < x2 and

|AB| = 2 · |OA| (O is the reference point, i.e., O(0, 0)). Let C be the midpoint of the segment AB. Prove
that the angle between the x-axis and the ray OA is equal to three times the angle between x-axis and the
ray OC.

Solution. We have A
(

x1,
1

x1

)

, B
(

x2,
1

x2

)

and C
(

x1+x2

2
, 1

2x1

+ 1

2x2

)

. Computing the coordinates of v̄ =

|OC| · AC + |AC| · OC we find that the vector v̄ — and hence also the bisector of the angle ∠OCA —
is parallel to the x-axis. Since |OA| = |AC| this yields ∠AOC = ∠ACO = 2 · ∠COx (see Figure 3) and
∠AOx = ∠AOC + ∠COx = 3 · ∠COx.
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