
Baltic Way 1994

Tartu, November 11, 1994

Problems and solutions

1. Let a ◦ b = a + b− ab. Find all triples (x, y, z) of integers such that (x ◦ y) ◦ z + (y ◦ z) ◦ x + (z ◦ x) ◦ y = 0.

Solution. Note that

(x ◦ y) ◦ z = x + y + z − xy − yz − xz + xyz = (x − 1)(y − 1)(z − 1) + 1.

Hence

(x ◦ y) ◦ z + (y ◦ z) ◦ x + (z ◦ x) ◦ y = 3
(

(x − 1)(y − 1)(z − 1) + 1
)

.

Now, if the required equality holds we have (x − 1)(y − 1)(z − 1) = −1. There are only four possible
decompositions of −1 into a product of three integers. Thus we have four such triples, namely (0, 0, 0),
(0, 2, 2), (2, 0, 2) and (2, 2, 0).

2. Let a1, a2, . . . , a9 be any non-negative numbers such that a1 = a9 = 0 and at least one of the numbers
is non-zero. Prove that for some i, 2 ≤ i ≤ 8, the inequality ai−1 + ai+1 < 2ai holds. Will the statement
remain true if we change the number 2 in the last inequality to 1.9?

Solution. Suppose we have the opposite inequality ai−1 + ai+1 ≥ 2ai for all i = 2, . . . , 8. Let ak = max
1≤i≤9

ai.

Then we have ak−1 = ak+1 = ak, ak−2 = ak−1 = ak, etc. Finally we get a1 = ak, a contradiction.

Suppose now ai−1 + ai+1 ≥ 1.9ai, i.e., ai+1 ≥ 1.9ai − ai−1 for all i = 2, . . . , 8, and let ak = max
1≤i≤9

ai. We

can multiply all numbers a1, . . . , a9 by the same positive constant without changing the situation in any
way, so we assume ak = 1. Then we have ak−1 + ak+1 ≥ 1.9 and hence 0.9 ≤ ak−1, ak+1 ≤ 1. Moreover,
at least one of the numbers ak−1, ak+1 must be greater than or equal to 0.95 — let us assume ak+1 ≥ 0.95.
Now, we consider two sub-cases:

(a) k ≥ 5. Then we have

1 ≥ ak+1 ≥ 0.95 > 0,

1 ≥ ak+2 ≥ 1.9ak+1 − ak ≥ 1.9 · 0.95 − 1 = 0.805 > 0,

ak+3 ≥ 1.9ak+2 − ak+1 ≥ 1.9 · 0.805− 1 = 0.5295 > 0,

ak+4 ≥ 1.9ak+3 − ak+2 ≥ 1.9 · 0.5295− 1 = 0.00605 > 0.

So in any case we have a9 > 0, a contradiction.

(b) k ≤ 4. In this case we obtain

1 ≥ ak−1 ≥ 0.9 > 0,

ak−2 ≥ 1.9ak−1 − ak ≥ 1.9 · 0.9 − 1 = 0.71 > 0,

ak−3 ≥ 1.9ak−2 − ak−1 ≥ 1.9 · 0.71 − 1 = 0.349 > 0,

and hence a1 > 0, contrary to the condition of the problem.

3. Find the largest value of the expression

xy + x
√

1 − y2 + y
√

1 − x2 −
√

(1 − x2)(1 − y2).

Solution. The expression is well-defined only for |x|, |y| ≤ 1 and we can assume that x, y ≥ 0. Let x = cosα

and y = cosβ for some 0 ≤ α, β ≤ π
2 . This reduces the expression to

cosα cosβ + cosα sin β + cosβ sinα − sin α sin β = cos(α + β) + sin(α + β) =
√

2 · sin (α + β + π
4 )

which does not exceed
√

2. The equality holds when α + β + π
4 = π

2 , for example when α = π
4 and β = 0,

i.e., x =
√

2
2 and y = 1.
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4. Is there an integer n such that
√

n − 1 +
√

n + 1 is a rational number?

Solution. Inverting the relation gives

q

p
=

1√
n + 1 +

√
n − 1

=

√
n + 1 −

√
n − 1

(
√

n + 1 +
√

n − 1)(
√

n + 1 −
√

n − 1)
=

√
n + 1 −

√
n − 1

2
.

Hence we get the system of equations















√
n + 1 +

√
n − 1 =

p

q

√
n + 1 −

√
n − 1 =

2q

p
.

Adding these equations and dividing by 2 gives
√

n + 1 = 2q2+p2

2pq . This implies 4np2q2 = 4q4 + p4.

Suppose now that n, p and q are all positive integers with p and q relatively prime. The relation 4np2q2 =
4q4 + p4 shows that p4, and hence p, is divisible by 2. Letting p = 2P we obtain 4nP 2q2 = q4 + 4P 4 which
shows that q must also be divisible by 2. This contradicts the assumption that p and q are relatively prime.

5. Let p(x) be a polynomial with integer coefficients such that both equations p(x) = 1 and p(x) = 3 have
integer solutions. Can the equation p(x) = 2 have two different integer solutions?

Solution. Observe first that if a and b are two different integers then p(a)−p(b) is divisible by a−b. Suppose
now that p(a) = 1 and p(b) = 3 for some integers a and b. If we have p(c) = 2 for some integer c, then
c − b = ±1 and c − a = ±1, hence there can be at most one such integer c.

6. Prove that any irreducible fraction p
q , where p and q are positive integers and q is odd, is equal to a fraction

n
2k−1

for some positive integers n and k.

Solution. Since the number of congruence classes modulo q is finite, there exist two non-negative integers
i and j with i > j which satisfy 2i ≡ 2j (mod q). Hence, q divides the number 2i − 2j = 2j(2i−j − 1). Since
q is odd, q has to divide 2i−j −1. Now it suffices to multiply the numerator and denominator of the fraction
p
q by 2i−j−1

q .

7. Let p > 2 be a prime number and 1 + 1
23 + 1

33 + · · ·+ 1
(p−1)3 = m

n where m and n are relatively prime. Show

that m is a multiple of p.

Solution. The sum has an even number of terms; they can be joined in pairs in such a way that the sum is
the sum of the terms

1

k3
+

1

(p − k)3
=

p3 − 3p2k + 3pk2

k3(p − k)3
.

The sum of all terms of this type has a denominator in which every prime factor is less than p while the
numerator has p as a factor.

8. Show that for any integer a ≥ 5 there exist integers b and c, c ≥ b ≥ a, such that a, b, c are the lengths of
the sides of a right-angled triangle.

Solution. We first show this for odd numbers a = 2i + 1 ≥ 3. Put c = 2k + 1 and b = 2k. Then
c2 − b2 = (2k + 1)2 − (2k)2 = 4k + 1 = a2. Now a = 2i + 1 and thus a2 = 4i2 + 4i + 1 and k = i2 + i.
Furthermore, c > b = 2i2 + 2i > 2i + 1 = a.

Since any multiple of a Pythagorean triple (i.e., a triple of integers (x, y, z) such that x2 + y2 = z2) is also
a Pythagorean triple we see that the statement is also true for all even numbers which have an odd factor.
Hence only the powers of 2 remain. But for 8 we have the triple (8, 15, 17) and hence all higher powers of 2
are also minimum values of such a triple.

9. Find all pairs of positive integers (a, b) such that 2a + 3b is the square of an integer.

Solution. Considering the equality 2a + 3b = n2 modulo 3 it is easy to see that a must be even. Obviously
n is odd so we may take a = 2x, n = 2y + 1 and write the equality as 4x + 3b = (2y + 1)2 = 4y2 + 4y + 1.
Hence 3b ≡ 1 (mod 4) which implies b = 2z for some positive integer z. So we get 4x + 9z = (2y + 1)2 and
4x = (2y + 1 − 3z)(2y + 1 + 3z). Both factors on the right-hand side are even numbers but at most one of
them is divisible by 4 (since their sum is not divisible by 4). Hence 2y +1− 3z = 2 and 2y +1+3z = 22x−1.
These two equalities yield 2 · 3z = 22x−1 − 2 and 3z = 4x−1 − 1. Clearly x > 1 and a simple argument
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modulo 10 gives z = 4d + 1, x − 1 = 2e + 1 for some non-negative integers d and e. Substituting, we get
34d+1 = 42e+1−1 and 3 · (80+1)d = 42e+1−1. If d ≥ 1 then e ≥ 1, a contradiction (expanding the left-hand
expression and moving everything to the left we find that all summands but one are divisible by 42). Hence
e = d = 0, z = 1, b = 2, x = 2 and a = 4, and we obtain the classical 24 + 32 = 42 + 32 = 52.

10. How many positive integers satisfy the following three conditions:

(i) All digits of the number are from the set {1, 2, 3, 4, 5};
(ii) The absolute value of the difference between any two consecutive digits is 1;

(iii) The integer has 1994 digits?

Solution. Consider all positive integers with 2n digits satisfying conditions (i) and (ii) of the problem. Let
the number of such integers beginning with 1, 2, 3, 4 and 5 be an, bn, cn, dn and en, respectively. Then, for
n = 1 we have a1 = 1 (integer 12), b1 = 2 (integers 21 and 23), c1 = 2 (integers 32 and 34), d1 = 2 (integers
43 and 45) and e1 = 1 (integer 54). Observe that c1 = a1 + e1.

Suppose now that n > 1, i.e., the integers have at least four digits. If an integer begins with the digit 1 then
the second digit is 2 while the third can be 1 or 3. This gives the relation

an = an−1 + cn−1. (1)

Similarly, if the first digit is 5, then the second is 4 while the third can be 3 or 5. This implies

en = cn−1 + en−1. (2)

If the integer begins with 23 then the third digit is 2 or 4. If the integer begins with 21 then the third digit
is 2. From this we can conclude that

bn = 2bn−1 + dn−1. (3)

In the same manner we can show that

dn = bn−1 + 2dn−1. (4)

If the integer begins with 32 then the third digit must be 1 or 3, and if it begins with 34 the third digit is
3 or 5. Hence

cn = an−1 + 2cn−1 + en−1. (5)

From (1), (2) and (5) it follows that cn = an + en, which is true for all n ≥ 1. On the other hand, adding
the relations (1)–(5) results in

an + bn + cn + dn + en = 2an−1 + 3bn−1 + 4cn−1 + 3dn−1 + 2en−1

and, since cn−1 = an−1 + en−1,

an + bn + cn + dn + en = 3(an−1 + bn−1 + cn−1 + dn−1 + en−1).

Thus the number of integers satisfying conditions (i) and (ii) increases three times when we increase the
number of digits by 2. Since the number of such integers with two digits is 8, and 1994 = 2 + 2 · 996, the
number of integers satisfying all three conditions is 8 · 3996.

11. Let NS and EW be two perpendicular diameters of a circle C. A line l touches C at point S. Let A and B

be two points on C, symmetric with respect to the diameter EW . Denote the intersection points of l with
the lines NA and NB by A′ and B′, respectively. Show that |SA′| · |SB′| = |SN |2.
Solution. We have ∠NAS = ∠NBS = 90◦ (see Figure 1). Thus, the triangles NA′S and NSA are similar.
Also, the triangles B′NS and SNB are similar and the triangles NSA and SNB are congruent. Hence,
the triangles NA′S and B′NS are similar which implies SA′

SN = SN
SB′

and SA′ · SB′ = SN2.
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Figure 1

12. The inscribed circle of the triangle A1A2A3 touches the sides A2A3, A3A1 and A1A2 at points S1, S2, S3,
respectively. Let O1, O2, O3 be the centres of the inscribed circles of triangles A1S2S3, A2S3S1 and A3S1S2,
respectively. Prove that the straight lines O1S1, O2S2 and O3S3 intersect at one point.

Solution. We shall prove that the lines S1O1, S2O2, S3O3 are the bisectors of the angles of the triangle
S1S2S3. Let O and r be the centre and radius of the inscribed circle C of the triangle A1A2A3. Further,
let P1 and H1 be the points where the inscribed circle of the triangle A1S2S3 (with the centre O1 and
radius r1) touches its sides A1S2 and S2S3, respectively (see Figure 2). To show that S1O1 is the bisector of
the angle ∠S3S1S2 it is sufficient to prove that O1 lies on the circumference of circle C, for in this case the
arcs O1S2 and O1S3 will obviously be equal. To prove this, first note that as A1S2S3 is an isosceles triangle
the point H1, as well as O1, lies on the straight line A1O. Now, it suffices to show that |OH1| = r − r1.
Indeed, we have

r − r1

r
= 1 − r1

r
= 1 − |O1P1|

|OS2|
= 1 − |P1A1|

|S2A1|
=

|S2A1| − |P1A1|
|S2A1|

=
|S2P1|
|S2A1|

=
|S2H1|
|S2A1|

=
|OH1|
|OS2|

=
|OH1|

r
.

r

r

rH1

O

O1

A2

A3A1 P1 S2

S3

S1

Figure 2

13. Find the smallest number a such that a square of side a can contain five disks of radius 1 so that no two of
the disks have a common interior point.

Solution. Let PQRS be a square which has the property described in the problem. Clearly, a > 2.
Let P ′Q′R′S′ be the square inside PQRS whose sides are at distance 1 from the sides of PQRS, and,
consequently, are of length a−2. Since all the five disks are inside PQRS, their centres are inside P ′Q′R′S′.
Divide P ′Q′R′S′ into four congruent squares of side length a

2 − 1. By the pigeonhole principle, at least two

of the five centres are in the same small square. Their distance, then, is at most
√

2
(

a
2 − 1

)

. Since the

distance has to be at least 2, we have a ≥ 2+2
√

2. On the other hand, if a = 2+2
√

2, we can place the five
disks in such a way that one is centred at the centre of PQRS and the other four have centres at P ′, Q′,
R′ and S′.

14. Let α, β, γ be the angles of a triangle opposite to its sides with lengths a, b and c, respectively. Prove the
inequality

a ·
(

1

β
+

1

γ

)

+ b ·
(

1

γ
+

1

α

)

+ c ·
(

1

α
+

1

β

)

≥ 2 ·
(

a

α
+

b

β
+

c

γ

)

.
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Solution. Clearly, the inequality a > b implies α > β and similarly a < b implies α < β, hence (a−b)(α−β) ≥
0 and aα + bβ ≥ aβ + bα. Dividing the last equality by αβ we get

a

β
+

b

α
≥ a

α
+

b

β
. (6)

Similarly we get

a

γ
+

c

α
≥ a

α
+

c

γ
(7)

and

b

γ
+

c

β
≥ b

β
+

c

γ
. (8)

To finish the proof it suffices to add the inequalities (6)–(8).

15. Does there exist a triangle such that the lengths of all its sides and altitudes are integers and its perimeter
is equal to 1995?

Solution. Consider a triangle ABC with all its sides and heights having integer lengths. From the cosine
theorem we conclude that cos∠A, cos∠B and cos∠C are rational numbers. Let AH be one of the heights
of the triangle ABC, with the point H lying on the straight line determined by the side BC. Then |BH |
and |CH | must be rational and hence integer (consider the Pythagorean theorem for the triangles ABH

and ACH). Now, if |BH | and |CH | have different parity then |AB| and |AC| also have different parity and
|BC| is odd. If |BH | and |CH | have the same parity then |AB| and |AC| also have the same parity and
|BC| is even. In both cases the perimeter of triangle ABC is an even number and hence cannot be equal
to 1995.

Remark. In the solution we only used the fact that all three sides and one height of the triangle ABC are
integers.

Figure 3

120◦120◦

120◦

1

1 1

A Hedgehog

16. The Wonder Island is inhabited by Hedgehogs. Each Hedgehog consists of three segments of unit length
having a common endpoint, with all three angles between them equal to 120◦ (see Figure 3). Given that
all Hedgehogs are lying flat on the island and no two of them touch each other, prove that there is a finite
number of Hedgehogs on Wonder Island.

Solution. It suffices to prove that if the distance between the centres of two Hedgehogs is less than 0.2, then
these Hedgehogs intersect. To show this, consider two Hedgehogs with their centres at points O and M ,
respectively, such that |OM | < 0.2. Let A, B and C be the endpoints of the needles of the first Hedgehog
(see Figure 4) and draw a straight line l parallel to AC through the point M . As |AC| =

√
3 implies |KL| ≤

0.2
0.5 |AC| < 1 and the second Hedgehog has at least one of its needles pointing inside the triangle OKL, this
needle intersects the first Hedgehog.

Remark. If the Hedgehogs can move their needles so that the angles between them can take any positive
value then there can be an infinite number of Hedgehogs on the Wonder Island.
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Figure 4
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17. In a certain kingdom, the king has decided to build 25 new towns on 13 uninhabited islands so that on each
island there will be at least one town. Direct ferry connections will be established between any pair of new
towns which are on different islands. Determine the least possible number of these connections.

Solution. Let a1, . . . , a13 be the numbers of towns on each island. Suppose there exist numbers i and j such
that ai ≥ aj > 1 and consider an arbitrary town A on the j-th island. The number of ferry connections
from town A is equal to 25− aj . On the other hand, if we “move” town A to the i-th island then there will
be 25 − (ai + 1) connections from town A while no other connections will be affected by this move. Hence,
the smallest number of connections will be achieved if there are 13 towns on one island and one town on
each of the other 12 islands. In this case there will be 13 · 12 + 12·11

2 = 222 connections.

18. There are n lines (n > 2) given in the plane. No two of the lines are parallel and no three of them intersect
at one point. Every point of intersection of these lines is labelled with a natural number between 1 and n−1.
Prove that, if and only if n is even, it is possible to assign the labels in such a way that every line has all
the numbers from 1 to n − 1 at its points of intersection with the other n − 1 lines.

Solution. Suppose we have assigned the labels in the required manner. When a point has label 1 then there
can be no more occurrences of label 1 on the two lines that intersect at that point. Therefore the number
of intersection points labelled with 1 has to be exactly n

2 , and so n must be even. Now, let n be an even
number and denote the n lines by l1, l2, . . . , ln. First write the lines li in the following table:

l3 l4 . . . ln/2+1
l1 l2

ln ln−1 . . . ln/2+2

and then rotate the picture n − 1 times:

l2 l3 . . . ln/2
l1 ln

ln−1 ln−2 . . . ln/2+1

ln l2 . . . ln/2−1
l1 ln−1

ln−2 ln−3 . . . ln/2

etc.

According to these tables, we can join the lines in pairs in n − 1 different ways — l1 with the line next to
it and every other line with the line directly above or under it. Now we can assign the label i to all the
intersection points of the pairs of lines shown in the ith table.

19. The Wonder Island Intelligence Service has 16 spies in Tartu. Each of them watches on some of his colleagues.
It is known that if spy A watches on spy B then B does not watch on A. Moreover, any 10 spies can be
numbered in such a way that the first spy watches on the second, the second watches on the third, . . . , the
tenth watches on the first. Prove that any 11 spies can also be numbered in a similar manner.

Solution. We call two spies A and B neutral to each other if neither A watches on B nor B watches on A.

Denote the spies A1, A2, . . . , A16. Let ai, bi and ci denote the number of spies that watch on Ai, the
number of that are watched by Ai and the number of spies neutral to Ai, respectively. Clearly, we have

ai + bi + ci = 15,

ai + ci ≤ 8,

bi + ci ≤ 8
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for any i = 1, . . . , 16 (if any of the last two inequalities does not hold then there exist 10 spies who cannot
be numbered in the required manner). Combining the relations above we find ci ≤ 1. Hence, for any spy,
the number of his neutral colleagues is 0 or 1.

Now suppose there is a group of 11 spies that cannot be numbered as required. Let B be an arbitrary spy
in this group. Number the other 10 spies as C1, C2, . . . , C10 so that C1 watches on C2, . . . , C10 watches
on C1. Suppose there is no spy neutral to B among C1, . . . , C10. Then, if C1 watches on B then B cannot
watch on C2, as otherwise C1, B, C2, . . . , C10 would form an 11-cycle. So C2 watches on B, etc. As some
of the spies C1, C2, . . . , C10 must watch on B we get all of them watching on B, a contradiction. Therefore,
each of the 11 spies must have exactly one spy neutral to him among the other 10 — but this is impossible.

20. An equilateral triangle is divided into 9 000 000 congruent equilateral triangles by lines parallel to its sides.
Each vertex of the small triangles is coloured in one of three colours. Prove that there exist three points of
the same colour being the vertices of a triangle with its sides parallel to the sides of the original triangle.

Solution. Consider the side AB of the big triangle ABC as “horizontal” and suppose the statement of the
problem does not hold. The side AB contains 3001 vertices A = A0, A1, . . . , A3000 = B of 3 colours.
Hence, there are at least 1001 vertices of one colour, e.g., red. For any two red vertices Ak and An there
exists a unique vertex Bkn such that the triangle BknAkAn is equilateral. That vertex Bkn cannot be red.
For different pairs (k, n) the corresponding vertices Bkn are different, so we have at least

(

1001
2

)

> 500000
vertices of type Bkn that cannot be red. As all these vertices are situated on 3000 horizontal lines, there
exists a line L which contains more than 160 vertices of type Bkn, each of them coloured in one of the two
remaining colours. Hence there exist at least 81 vertices of the same colour, e.g., blue, on line L. For every
two blue vertices Bkn and Bml on line L there exists a unique vertex Cknml such that:

(i) Cknml lies above the line L;

(ii) The triangle CknmlBknBml is equilateral;

(iii) Cknml = Bpq where p = min(k, m) and q = max(n, l).

Different pairs of vertices Bkn belonging to line L define different vertices Cknml. So we have at least
(

81
2

)

> 3200 vertices of type Cknml that can be neither blue nor red. As the number of these vertices exceeds
the number of horizontal lines, there must be two vertices Cknml and Cpqrs on one horizontal line. Now,
these two vertices define a new vertex Dknmlpqrs that cannot have any of the three colours, a contradiction.

Remark. The minimal size of the big triangle that can be handled by this proof is 2557.
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