
Baltic Way 1995

Väster̊as (Sweden), November 12, 1995

Problems and solutions

1. Find all triples (x, y, z) of positive integers satisfying the system of equations
{

x2 = 2(y + z)

x6 = y6 + z6 + 31(y2 + z2).

Solution. From the first equation it follows that x is even. The second equation implies x > y and x > z.
Hence 4x > 2(y + z) = x2, and therefore x = 2 and y + z = 2, so y = z = 1. It is easy to check that the
triple (2, 1, 1) satisfies the given system of equations.

2. Let a and k be positive integers such that a2 + k divides (a − 1)a(a + 1). Prove that k ≥ a.

Solution. We have (a− 1)a(a+1) = a(a2 + k)− (k +1)a. Hence a2 + k divides (k +1)a, and thus k +1 ≥ a,
or equivalently, k ≥ a.

3. The positive integers a, b, c are pairwise relatively prime, a and c are odd and the numbers satisfy the
equation a2 + b2 = c2. Prove that b + c is a square of an integer.

Solution. Since a and c are odd, b must be even. We have a2 = c2−b2 = (c+b)(c−b). Let d = gcd(c+b, c−b).
Then d divides (c + b) + (c − b) = 2c and (c + b) − (c − b) = 2b. Since c + b and c − b are odd, d is odd,
and hence d divides both b and c. But b and c are relatively prime, so d = 1, i.e., c + b and c − b are also
relatively prime. Since (c + b)(c − b) = a2 is a square, it follows that c + b and c − b are also squares. In
particular, b + c is a square as required.

4. John is older than Mary. He notices that if he switches the two digits of his age (an integer), he gets Mary’s
age. Moreover, the difference between the squares of their ages is the square of an integer. How old are
Mary and John?

Solution. Let John’s age be 10a + b where 0 ≤ a, b ≤ 9. Then Mary’s age is 10b + a, and hence a > b. Now

(10a + b)2 − (10b + a)2 = 9 · 11(a + b)(a − b).

Since this is the square of an integer, a + b or a − b must be divisible by 11. The only possibility is clearly
a + b = 11. Hence a− b must be a square. A case study yields the only possibility a = 6, b = 5. Thus John
is 65 and Mary 56 years old.

5. Let a < b < c be three positive integers. Prove that among any 2c consecutive positive integers there exist
three different numbers x, y, z such that abc divides xyz.

Solution. First we show that among any b consecutive numbers there are two different numbers x and y
such that ab divides xy. Among the b consecutive numbers there is clearly a number x′ divisible by b, and
a number y′ divisible by a. If x′ 6= y′, we can take x = x′ and y = y′, and we are done. Now assume that
x′ = y′. Then x′ is divisible by e, the least common multiple of a and b. Let d = gcd(a, b). As a < b, we
have d ≤ 1

2
b. Hence there is a number z′ 6= x′ among the b consecutive numbers such that z′ is divisible

by d. Hence x′z′ is divisible by de. But de = ab, so we can take x = x′ and y = z′.

Now divide the 2c consecutive numbers into two groups of c consecutive numbers. In the first group, by the
above reasoning, there exist distinct numbers x and y such that ab divides xy. The second group contains
a number z divisible by c. Then abc divides xyz.

6. Prove that for positive a, b, c, d

a + c

a + b
+

b + d

b + c
+

c + a

c + d
+

d + b

d + a
≥ 4.

Solution. The inequality between the arithmetic and harmonic mean gives

a + c

a + b
+

c + a

c + d
≥

4
a+b

a+c
+ c+d

c+a

= 4 ·
a + c

a + b + c + d
,

b + d

b + c
+

d + b

d + a
≥

4
b+c

b+d
+ d+a

d+b

= 4 ·
b + d

a + b + c + d
,

and adding these inequalities yields the required inequality.
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7. Prove that sin3 18◦ + sin2 18◦ = 1/8.

Solution. We have

sin3 18◦ + sin2 18◦ = sin2 18◦(sin 18◦ + sin 90◦) = sin2 18◦ · 2 sin 54◦ cos 36◦ = 2 sin2 18◦ cos2 36◦

=
2 sin2 18◦ cos2 18◦ cos2 36◦

cos2 18◦
=

sin2 36◦ cos2 36◦

2 cos2 18◦
=

sin2 72◦

8 cos2 18◦
=

1

8
.

8. The real numbers a, b and c satisfy the inequalities |a| ≥ |b + c|, |b| ≥ |c + a| and |c| ≥ |a + b|. Prove that
a + b + c = 0.

Solution. Squaring both sides of the given inequalities we get











a2 ≥ (b + c)2

b2 ≥ (c + a)2

c2 ≥ (a + b)2.

Adding these three inequalities and rearranging, we get (a + b + c)2 ≤ 0. Clearly equality must hold, and
we have a + b + c = 0.

9. Prove that

1995

2
−

1994

3
+

1993

4
− · · · −

2

1995
+

1

1996
=

1

999
+

3

1000
+ · · · +

1995

1996
.

Solution. Denote the left-hand side of the equation by L, and the right-hand side by R. Then

L =

1996
∑

k=1

(−1)k+1

( 1997

k + 1
− 1

)

= 1997 ·

1996
∑

k=1

(−1)k+1 ·
1

k + 1
= 1997 ·

1996
∑

k=1

(−1)k ·
1

k
+ 1996,

R =
998
∑

k=1

(2k + 1996

998 + k
−

1997

998 + k

)

= 1996− 1997 ·
998
∑

k=1

1

k + 998
.

We must verify that
∑1996

k=1
(−1)k−1 · 1

k
=

∑998

k=1

1

k+998
. But this follows from the calculation

1996
∑

k=1

(−1)k−1 ·
1

k
=

1996
∑

k=1

1

k
− 2 ·

998
∑

k=1

1

2k
=

998
∑

k=1

1

k + 998
.

10. Find all real-valued functions f defined on the set of all non-zero real numbers such that:

(i) f(1) = 1,

(ii) f
( 1

x + y

)

= f
(1

x

)

+ f
(1

y

)

for all non-zero x, y, x + y,

(iii) (x + y)f(x + y) = xyf(x)f(y) for all non-zero x, y, x + y.

Solution. Substituting x = y = 1

2
z in (ii) we get

f(1

z
) = 2f(2

z
) (1)

for all z 6= 0. Substituting x = y = 1

z
in (iii) yields

2

z
f(2

z
) = 1

z2

(

f(1

z
)
)2

for all z 6= 0, and hence

2f(2

z
) = 1

z

(

f(1

z
)
)2

. (2)

From (1) and (2) we get

f(1

z
) = 1

z

(

f(1

z
)
)2

,
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or, equivalently,

f(x) = x
(

f(x)
)2

(3)

for all x 6= 0. If f(x) = 0 for some x, then by (iii) we would have

f(1) =
(

x + (1 − x)
)

f
(

x + (1 − x)
)

= (1 − x)f(x)f(1 − x) = 0,

which contradicts the condition (i). Hence f(x) 6= 0 for all x, and (3) implies xf(x) = 1 for all x, and thus
f(x) = 1

x
. It is easily verified that this function satisfies the given conditions.

11. In how many ways can the set of integers {1, 2, . . . , 1995} be partitioned into three nonempty sets so that
none of these sets contains two consecutive integers?

Solution. We construct the three subsets by adding the numbers successively, and disregard at first the
condition that the sets must be non-empty. The numbers 1 and 2 must belong to two different subsets, say
A and B. We then have two choices for each of the numbers 3, 4, . . . , 1995, and different choices lead to
different partitions. Hence there are 21993 such partitions, one of which has an empty part. The number of
partitions satisfying the requirements of the problem is therefore 21993 − 1.

12. Assume we have 95 boxes and 19 balls distributed in these boxes in an arbitrary manner. We take six new
balls at a time and place them in six of the boxes, one ball in each of the six. Can we, by repeating this
process a suitable number of times, achieve a situation in which each of the 95 boxes contains an equal
number of balls?

Solution. Since 6 · 16 = 96, we can put 16 times 6 balls in the boxes so that the number of balls in one of
the boxes increases by two, while in all other boxes it increases by one. Repeating this procedure, we can
either diminish the difference between the number of balls in the box which has most balls and the number
of balls in the box with the least number of balls, or diminish the number of boxes having the least number
of balls, until all boxes have the same number of balls.

13. Consider the following two person game. A number of pebbles are situated on the table. Two players make
their moves alternately. A move consists of taking off the table x pebbles where x is the square of any
positive integer. The player who is unable to make a move loses. Prove that there are infinitely many initial
situations in which the second player can win no matter how his opponent plays.

Solution. Suppose that there is an n such that the first player always wins if there are initially more than
n pebbles. Consider the initial situation with n2 + n + 1 pebbles. Since (n + 1)2 > n2 + n + 1, the first
player can take at most n2 pebbles, leaving at least n + 1 pebbles on the table. By the assumption, the
second player now wins. This contradiction proves that there are infinitely many situations in which the
second player wins no matter how the first player plays.

14. There are n fleas on an infinite sheet of triangulated paper. Initially the fleas are in different small triangles,
all of which are inside some equilateral triangle consisting of n2 small triangles (see Figure 1 for a possible
initial configuration with n = 5). Once a second each flea jumps from its triangle to one of the three small
triangles as indicated in the figure. For which positive integers n does there exist an initial configuration
such that after a finite number of jumps all the n fleas can meet in a single small triangle?

Figure 1
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Solution. The small triangles can be coloured in four colours as shown in Figure 2. Then each flea can
only reach triangles of a single colour. Moreover, number the horizontal rows are numbered as in Figure 2,
and note that with each move a flea jumps from a triangle in an even-numbered row to a triangle in an
odd-numbered row, or vice versa. Hence, if all the fleas are to meet in one small triangle, then they must
initially be located in triangles of the same colour and in rows of the same parity. On the other hand, if
these conditions are met, then the fleas can end up all in some designated triangle (of the right colour and
parity). When a flea reaches this triangle, it can jump back and forth between the designated triangle and
one of its neighbours until the other fleas arrive.

It remains to find the values of n for which the big triangle contains at least n small triangles of one colour,
in rows of the same parity. For any odd n there are at least 1 + 2 + · · · + n+1

2
= 1

8
(n2 + 4n + 3) ≥ n such

triangles. For even n ≥ 6 we also have at least 1 + 2 + · · · + n

2
= 1

8
(n2 + 2n) ≥ n triangles of the required

kind. Finally, it is easy to check that for n = 2 and n = 4 the necessary set of small triangles cannot be
found.

Hence it is possible for the fleas to meet in one small triangle for all n except 2 and 4.

2
3
4

7
6

5

1 a b c d a b c d a b
c

a
d

d c b a d c b a d c b
c d a b c d a b c d a b

c b a d c b a d c b a d
a

b
c d a

b c
d a b c

d c b a d c b a d
c

d
a

b
c

d
a

b
c

d

Figure 2

15. A polygon with 2n + 1 vertices is given. Show that it is possible to label the vertices and midpoints of the
sides of the polygon, using all the numbers 1, 2, . . . , 4n + 2, so that the sums of the three numbers assigned
to each side are all equal.

Solution. First, label the midpoints of the sides of the polygon with the numbers 1, 2, . . . , 2n + 1, in
clockwise order. Then, beginning with the vertex between the sides labelled by 1 and 2, label every second
vertex in clockwise order with the numbers 4n + 2, 4n + 1, . . . , 2n + 2.

16. In the triangle ABC, let l be the bisector of the external angle at C. The line through the midpoint O
of the segment AB parallel to l meets the line AC at E. Determine |CE|, if |AC| = 7 and |CB| = 4.

Solution. Let F be the intersection point of l and the line AB. Since |AC| > |BC|, the point E lies on the
segment AC, and F lies on the ray AB. Let the line through B parallel to AC meet CF at G. Then the
triangles AFC and BFG are similar. Moreover, we have ∠BGC = ∠BCG, and hence the triangle CBG

is isosceles with |BC| = |BG|. Hence |FA|
|FB| = |AC|

|BG| = |AC|
|BC| = 7

4
. Therefore |AO|

|AF | = 3

2
/7 = 3

14
. Since the

triangles ACF and AEO are similar, |AE|
|AC| = |AO|

|AF | = 3

14
, whence |AE| = 3

2
and |EC| = 11

2
.

17. Prove that there exists a number α such that for any triangle ABC the inequality

max(hA, hB, hC) ≤ α · min(mA, mB, mC)

holds, where hA, hB, hC denote the lengths of the altitudes and mA, mB, mC denote the lengths of the
medians. Find the smallest possible value of α.

Solution. Let h = max(hA, hB, hC) and m = min(mA, mB, mC). If the longest height and the shortest
median are drawn from the same vertex, then obviously h ≤ m. Now let the longest height and shortest
median be AD and BE, respectively, with |AD| = h and |BE| = m. Let F be the point on the line BC
such that EF is parallel to AD. Then m = |EB| ≥ |EF | = h

2
, whence h ≤ 2m. For an example with

h = 2m, consider a triangle where D lies on the ray CB with |CB| = |BD|. Hence the smallest such value
is α = 2.

18. Let M be the midpoint of the side AC of a triangle ABC and let H be the foot point of the altitude from
B. Let P and Q be the orthogonal projections of A and C on the bisector of angle B. Prove that the four
points M , H , P and Q lie on the same circle.
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Solution. If |AB| = |BC|, the points M , H , P and Q coincide and the circle degenerates to a point. We
will assume that |AB| < |BC|, so that P lies inside the triangle ABC, and Q lies outside of it.

Let the line AP intersect BC at P1, and let CQ intersect AB at Q1. Then |AP | = |PP1| (since △APB ∼=
△P1PB), and therefore MP ‖ BC. Similarly, MQ ‖ AB. Therefore ∠AMQ = ∠BAC. We have two cases:

(i) ∠BAC ≤ 90◦. Then A, H , P and B lie on a circle in this order. Hence ∠HPQ = 180◦ − ∠HPB =
∠BAC = ∠HMQ. Therefore H , P , M and Q lie on a circle.

(ii) ∠BAC > 90◦. Then A, H , B and P lie on a circle in this order. Hence ∠HPQ = 180◦ − ∠HPB =
180◦ − ∠HAB = ∠BAC = ∠HMQ, and therefore H , P , M and Q lie on a circle.

Figure 3

C1

C2

C3

19. The following construction is used for training astronauts: A circle C2 of radius 2R rolls along the inside of
another, fixed circle C1 of radius nR, where n is an integer greater than 2. The astronaut is fastened to a
third circle C3 of radius R which rolls along the inside of circle C2 in such a way that the touching point of
the circles C2 and C3 remains at maximum distance from the touching point of the circles C1 and C2 at all
times (see Figure 3).

How many revolutions (relative to the ground) does the astronaut perform together with the circle C3 while
the circle C2 completes one full lap around the inside of circle C1?

Solution. Consider a circle C4 with radius R that rolls inside C2 in such a way that the two circles always
touch in the point opposite to the touching point of C2 and C3. Then the circles C3 and C4 follow each
other and make the same number of revolutions, and so we will assume that the astronaut is inside the
circle C4 instead. But the touching point of C2 and C4 coincides with the touching point of C1 and C2.
Hence the circles C4 and C1 always touch each other, and we can disregard the circle C2 completely.

Suppose the circle C4 rolls inside C1 in counterclockwise direction. Then the astronaut revolves in clockwise
direction. If the circle C4 had rolled along a straight line of length 2πnR (instead of the inside of C1),
the circle C4 would have made n revolutions during its movement. As the path of the circle C4 makes a
360◦ counterclockwise turn itself, the total number of revolutions of the astronaut relative to the ground
is n − 1.

Remark: The radius of the intermediate circle C2 is irrelevant. Moreover, for any number of intermediate
circles the answer remains the same, depending only on the radii of the outermost and innermost circles.

20. Prove that if both coordinates of every vertex of a convex pentagon are integers, then the area of this
pentagon is not less than 5

2
.

Solution. There are two vertices A1 and A2 of the pentagon that have their first coordinates of the parity,
and their second coordinates of the same parity. Therefore the midpoint M of A1A2 has integer coordinates.
There are two possibilities:

(i) The considered vertices are not consecutive. Then M lies inside the pentagon (because it is convex)
and is the common vertex of five triangles having as their bases the sides of the pentagon. The area
of any one of these triangles is not less than 1

2
, so the area of the pentagon is at least 5

2
.
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(ii) The considered vertices are consecutive. Since the pentagon is convex, the side A1A2 is not simultane-
ously parallel to A3A4 and A4A5. Suppose that the segments A1A2 and A3A4 are not parallel. Then
the triangles A2A3A4, MA3A4 and A−1A3A4 have different areas, since their altitudes dropped onto
the side A3A4 form a monotone sequence. At least one of these triangles has area not less than 3

2
,

and the pentagon has area not less than 5

2
.
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