
Baltic Way 1996

Valkeakoski (Finland), November 3, 1996

Problems and solutions

1. Let α be the angle between two lines containing the diagonals of a regular 1996-gon, and let β 6= 0 be
another such angle. Prove that α/β is a rational number.

Solution. Let O be the circumcentre of the 1996-gon. Consider two diagonals AB and CD. There is a
rotation around O that takes the point C to A and D to a point D′. Clearly the angle of this rotation is a
multiple of 2ϕ = 2π/1996.

The angle BAD′ is the inscribed angle on the arc BD′, and hence is an integral multiple of ϕ, the inscribed
angle on the arc between any two adjacent vertices of the 1996-gon. Hence the angle between AB and CD
is also an integral multiple of ϕ.

Since both α and β are integral multiples of ϕ, α/β is a rational number.

2. In the figure below, you see three half-circles. The circle C is tangent to two of the half-circles and to the
line PQ perpendicular to the diameter AB. The area of the shaded region is 39π, and the area of the
circle C is 9π. Find the length of the diameter AB.
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Figure 1

Solution. Let r and s be the radii of the half-circles with diameters AP and BP . Then we have

39π =
π

2

(

(r + s)2 − r2 − s2
)

− 9π,

hence rs = 48. Let M be the midpoint of the diameter AB, N be the midpoint of PB, O be the centre
of the circle C, and let F be the orthogonal projection of O on AB. Since the radius of C is 3, we have
|MO| = r + s − 3, |MF | = r − s + 3, |ON | = s + 3, and |FN | = s − 3.

Applying the Pythagorean theorem to the triangles MFO and NFO yields

(r + s − 3)2 − (r − s + 3)2 = |OF |2 = (s + 3)2 − (s − 3)2,

which implies r(s − 3) = 3s, so that 3(r + s) = rs = 48. Hence |AB| = 2(r + s) = 32.

3. Let ABCD be a unit square and let P and Q be points in the plane such that Q is the circumcentre
of triangle BPC and D is the circumcentre of triangle PQA. Find all possible values of the length of
segment PQ.

Solution. As Q is the circumcentre of triangle BPC, we have |PQ| = |QC| and Q lies on the perpendicular
bisector s of BC. On the other hand, as D is the circumcentre of triangle PQA, Q lies on the circle centred
at D and passing through A. Thus Q must be one of the two intersection points Q1 and Q2 of this circle
and the line s. We may choose Q1 to lie inside, and Q2 outside of the square ABCD.

Let E and F be the midpoints of AD and BC, respectively. We have |AQ1| = |DQ1| = |DA| = 1. Hence

|EQ1| =
√

3
2 and |FQ1| = 1 −

√
3

2 . The Pythagorean theorem applied to the triangle CFQ1 now yields

|CQ1|2 = |CF |2 + |FQ1|2 =
(

1
2

)2
+

(

1 −
√

3
2

)2

= 2 −
√

3,

and hence |CQ1| =
√

2 −
√

3. Similarly, |Q2E| =
√

3
2 , and the Pythagorean theorem applied to the trian-

gle CFQ2 now yields

|CQ2|2 = |CF |2 + |FQ2|2 =
(

1
2

)2
+

(

1 +
√

3
2

)2

= 2 +
√

3,
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and hence |CQ2| =
√

2 +
√

3. Hence the possible values of the length of the segment PQ are
√

2 −
√

3 and
√

2 +
√

3.

Remark. The actual location of the point P is unimportant for us. Note however that the point P exists
because P and C are the two intersection points of the circle centred at D passing through A and the circle
centred at Q passing through C.

4. ABCD is a trapezium (AD ‖ BC). P is the point on the line AB such that ∠CPD is maximal. Q is
the point on the line CD such that ∠BQA is maximal. Given that P lies on the segment AB, prove that
∠CPD = ∠BQA.

Solution. The property that ∠CPD is maximal is equivalent to the property that the circle CPD touches
the line AB (at P ). Let O be the intersection point of the lines AB and CD, and let ℓ be the bisector
of ∠AOD. Let A′, B′ and Q′ be the points symmetrical to A, B and Q, respectively, relative to the line ℓ.
Then the circle AQB is symmetrical to the circle A′Q′B′ that touches the line AB at Q′. We have

|OD|
|OA′| =

|OD|
|OA| =

|OC|
|OB| =

|OC|
|OB′| .

Hence the homothety with centre O and coefficient |OD|/|OA| takes A′ to D, B′ to C, and Q′ to a
point Q′′ such that the circle CQ′′D touches the line AB, and thus Q′′ coincides with P . Therefore
∠AQB = ∠A′Q′B′ = ∠CQ′′D = ∠CPD as required.

5. Let ABCD be a cyclic convex quadrilateral and let ra, rb, rc, rd be the radii of the circles inscribed in the
triangles BCD, ACD, ABD, ABC respectively. Prove that ra + rc = rb + rd.

Solution. For a triangle MNK with in-radius r and circumradius R, the equality

cos∠M + cos∠N + cos∠K = 1 +
r

R

hold; this follows from the cosine theorem and formulas for r and R.

We have ∠ACB = ∠ADB, ∠BDC = ∠BAC, ∠CAD = ∠CBD and ∠DBA = ∠DCA. Denoting these
angles by α, β, γ and δ, respectively, we get ra = (cos β +cos γ +cos (α + δ)− 1)R and rc = (cosα+cos δ +
cos (β + γ) − 1)R. Since cos (α + δ) = − cos (β + γ), we get

ra + rc = (cosα + cosβ + cos γ + cos δ − 2)R.

Similarly,

rb + rd = (cosα + cosβ + cos γ + cos δ − 2)R,

where R is the circumradius of the quadrangle ABCD.

6. Let a, b, c, d be positive integers such that ab = cd. Prove that a + b + c + d is not prime.

Solution 1. As ab = cd, we get a(a + b + c + d) = (a + c)(a + d). If a + b + c + d were a prime, then it would
be a factor in either a + c or a + d, which are both smaller than a + b + c + d.

Solution 2. Let r = gcd(a, c) and s = gcd(b, d). Let a = a′r, b = b′s, c = c′r and d = d′s. Then a′b′ = c′d′.
But gcd(a′, c′) = 1 and gcd(b′, d′) = 1, so we must have a′ = d′ and b′ = c′. This gives

a + b + c + d = a′r + b′s + c′r + d′s = a′r + b′s + b′r + a′s = (a′ + b′)(r + s).

Since a′, b′, r and s are positive integers, a + b + c + d is not a prime.

7. A sequence of integers a1, a2, . . . , is such that a1 = 1, a2 = 2 and for n ≥ 1

an+2 =

{

5an+1 − 3an if an · an+1 is even,

an+1 − an if an · an+1 is odd.

Prove that an 6= 0 for all n.

Solution. Considering the sequence modulo 6 we obtain 1, 2, 1, 5, 4, 5, 1, 2, . . . . The conclusion follows.

2



8. Consider the sequence

x1 = 19,

x2 = 95,

xn+2 = lcm(xn+1, xn) + xn,

for n > 1, where lcm(a, b) means the least common multiple of a and b. Find the greatest common divisor
of x1995 and x1996.

Solution. Let d = gcd(xk, xk+1). Then lcm(xk, xk+1) = xkxk+1/d, and

gcd(xk+1, xk+2) = gcd
(

xk+1,
xkxk+1

d
+ xk

)

= gcd
(

xk+1,
xk

d
(xk+1 + d)

)

.

Since xk+1 and xk/d are relatively prime, this equals gcd(xk+1, xk+1 + d) = d. It follows by induction that
gcd(xn, xn+1) = gcd(x1, x2) = 19 for all n ≥ 1. Hence gcd(x1995, x1996) = 19.

9. Let n and k be integers, 1 < k ≤ n. Find an integer b and a set A of n integers satisfying the following
conditions:

(i) No product of k − 1 distinct elements of A is divisible by b.

(ii) Every product of k distinct elements of A is divisible by b.

(iii) For all distinct a, a′ in A, a does not divide a′.

Solution. Let p1, . . . , pn be the first n odd primes. Then we can take A = {2p1, 2p2, . . . , 2pn} and b = 2k.
It is easily seen that the conditions are satisfied.

10. Denote by d(n) the number of distinct positive divisors of a positive integer n (including 1 and n). Let
a > 1 and n > 0 be integers such that an + 1 is a prime. Prove that

d(an − 1) ≥ n.

Solution. First we show that n = 2s for some integer s ≥ 0. Indeed, if n = mp where p is an odd prime,
then an + 1 = amp + 1 = (am + 1)(am(p−1) − am(p−2) + · · · − a + 1), a contradiction.

Now we use induction on s to prove that d(a2s − 1) ≥ 2s. The case s = 0 is obvious. As a2s − 1 =

(a2s−1 − 1)(a2s−1
+ 1), then for any divisor q of a2s−1 − 1, both q and q(a2s−1

+ 1) are divisors of a2s − 1.

Since the divisors of the form q(a2s−1
+1) are all larger than a2s−1−1 we have d(a2s−1) ≥ 2·d(a2s−1−1) = 2s.

11. The real numbers x1, x2, . . . , x1996 have the following property: for any polynomial W of degree 2 at least
three of the numbers W (x1), W (x2), . . . , W (x1996) are equal. Prove that at least three of the numbers
x1, x2, . . . , x1996 are equal.

Solution. Let m = min {x1, . . . , x1996}. Then the polynomial W (x) = (x − m)2 is strictly increasing for
x ≥ m. Hence if W (xi) = W (xj) we must have xi = xj , and the conclusion follows.

12. Let S be a set of integers containing the numbers 0 and 1996. Suppose further that any integer root of any
non-zero polynomial with coefficients in S also belongs to S. Prove that −2 belongs to S.

Solution. Consider the polynomial W (x) = 1996x + 1996. As W (−1) = 0 we conclude that −1 ∈ S. Now
consider the polynomial U(x) = −x1996 − x1995 − · · · − x2 − x + 1996. As U(1) = 0 we have 1 ∈ S. Finally,
let T (x) = −x10 + x9 − x8 + x7 − x6 + x3 − x2 + 1996. Then −2 ∈ S since T (−2) = 0.

13. Consider the functions f defined on the set of integers such that

f(x) = f(x2 + x + 1),

for all integers x. Find

(a) all even functions,

(b) all odd functions of this kind.

Solution.

(a) For f even, we have f(x−1) = f
(

(x−1)2+(x−1)+1
)

= f(x2−x+1) = f
(

(−x)2−x+1
)

= f(−x) = f(x)
for any x ∈ Z. Hence f has a constant value; any constant will do.
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(b) For f odd, a similar computation yields f(x − 1) = −f(x). Since f(0) = 0, we see that f(x) = 0 for
all x ∈ Z.

14. The graph of the function f(x) = xn + an−1x
n−1 + · · · + a1x + a0 (where n > 1), intersects the line y = b

at the points B1, B2, . . . , Bn (from left to right), and the line y = c (c 6= b) at the points C1, C2, . . . , Cn

(from left to right). Let P be a point on the line y = c, to the right to the point Cn. Find the sum
cot∠B1C1P + · · · + cot∠BnCnP .

Solution. Let the points Bi and Ci have the coordinates (bi, b) and (ci, c), respectively, for i = 1, 2, . . . , n.
Then we have

cot∠B1C1P + · · · + cot∠BnCnP =
1

b − c

n
∑

i=1

(bi − ci).

The numbers bi and ci are the solutions of f(x)− b = 0 and f(x) − c = 0, respectively. As n ≥ 2, it follows
from the relationships between the roots and coefficients of a polynomial (Viète’s relations) that

∑n

i=1 bi =
∑n

i=1 ci = −an−1 regardless of the values of b and c, and hence cot∠B1C1P + · · · + cot∠BnCnP = 0.

15. For which positive real numbers a, b does the inequality

x1 · x2 + x2 · x3 + · · · + xn−1 · xn + xn · x1 ≥ xa
1 · xb

2 · xa
3 + xa

2 · xb
3 · xa

4 + · · · + xa
n · xb

1 · xa
2

hold for all integers n > 2 and positive real numbers x1, x2, . . . , xn?

Solution. Substituting xi = x easily yields that 2a + b = 2. Now take n = 4, x1 = x3 = x and x2 = x4 = 1.
This gives 2x ≥ x2a + xb. But the inequality between the arithmetic and geometric mean yields x2a + xb ≥
2
√

x2axb = 2x. Here equality must hold, and this implies that x2a = xb, which gives 2a = b = 1.

On the other hand, if b = 1 and a = 1
2 , we let yi =

√
xixi+1 for 1 ≤ i ≤ n, with xn+1 = x1. The inequality

then takes the form

y2
1 + · · · + y2

n ≥ y1y2 + y2y3 + · · · + yny1. (1)

But the inequality between the arithmetic and geometric mean yields

1
2 (y2

i + y2
i+1) ≥ yiyi+1, 1 ≤ i ≤ n,

where yn+1 = yn. Adding these n inequalities yields the inequality (1).

The inequality (1) can also be obtained from the Cauchy-Schwarz inequality, which implies that
∑n

i=1 y2
i

∑n

i=1 y2
i+1 ≥

(
∑n

i=1 yiyi+1

)2
, which is exactly the stated inequality.

16. On an infinite checkerboard, two players alternately mark one unmarked cell. One of them uses ×, the
other ◦. The first who fills a 2 × 2 square with his symbols wins. Can the player who starts always win?

Solution. Divide the plane into dominoes in the way indicated by the thick lines in Figure 2. The second
player can respond by marking the other cell of the same domino where the first player placed his mark.
Since every 2 × 2 square contains one whole domino, the first player cannot win.

Figure 2

17. Using each of the eight digits 1, 3, 4, 5, 6, 7, 8 and 9 exactly once, a three-digit number A, two two-
digit numbers B and C, B < C, and a one-digit number D are formed. The numbers are such that
A + D = B + C = 143. In how many ways can this be done?

Solution. From A = 143 − D and 1 ≤ D ≤ 9, it follows that 134 ≤ A ≤ 142. The hundreds digit of A is
therefore 1, and the tens digit is either 3 or 4. If the tens digit of A is 4, then the sum of the units digits of
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A and D must be 3, which is impossible, as the digits 0 and 2 are not among the eight digits given. Hence
the first two digits of A are uniquely determined as 1 and 3. The sum of the units digits of A and D must
be 13. This can be achieved in six different ways as 13 = 4 + 9 = 5 + 8 = 6 + 7 = 7 + 6 = 8 + 5 = 9 + 4.

The sum of the units digits of B and C must again be 13, and as B + C = 143, this must also be true for
the tens digits. For each choice of the numbers A and D, the remaining four digits form two pairs, both
with the sum 13. The units digits of B and C may then be chosen in four ways. The tens digits are then
uniquely determined by the remaining pair and the relation B < C. The total number of possibilities is
therefore 6 · 4 = 24.

18. The jury of an olympiad has 30 members in the beginning. Each member of the jury thinks that some of his
colleagues are competent, while all the others are not, and these opinions do not change. At the beginning
of every session a voting takes place, and those members who are not competent in the opinion of more
than one half of the voters are excluded from the jury for the rest of the olympiad. Prove that after at most
15 sessions there will be no more exclusions. (Note that nobody votes about his own competence.)

Solution. First we note that if nobody is excluded in some session, then the situation becomes stable and
nobody can be excluded in any later session.

We use induction to prove the slightly more general claim that if the jury has 2n members, n ≥ 2, then
after at most n sessions nobody will be excluded anymore. For n = 2 the claim is obvious, since if some
members are excluded in the first two sessions, there are at most two members left, and hence nobody is
excluded in the third session.

Now assuming that the claim is true for n ≤ k− 1, suppose the jury has 2k members, and consider the first
session. If nobody is excluded, we are done. If a positive and even number of members are excluded, there
will be 2r members left with r < k, and by the induction hypotheses the jury will stabilize after at most
r more sessions, giving a total of at most r + 1 ≤ k sessions, as required.

Finally suppose that an odd number of members are excluded in the first session. There are three alterna-
tives:

(i) An even number of members are excluded in each of the next m sessions, after which nobody is
excluded. Then the number of members left is at most 2k − 1− 2m. Hence 2k− 1− 2m ≥ 1, so that
k ≥ m + 1. Hence the number of sessions is at most k.

(ii) An even number of members are excluded in each of the next m sessions, after which an odd number
of members greater than 1 are excluded. Then there are at most 2k − 1− 2m− 3 members left, and
by the induction hypotheses, the jury will stabilize in no more than k − m − 2 sessions. The total
number of sessions is therefore 1 + m + 1 + (k − m − 2) = k.

(iii) An even number of members are excluded in each of the next m sessions, followed by a session where
precisely one member M is excluded. In this session, there were 2r + 1 members present for some r,
and r + 1 of these voted for the exclusion of M . But then any member other than M was thought
to be incompetent by at most r others. In the next session the jury will have 2r members, and since
the members do not change their sympathies, nobody can be excluded. Hence the situation is stable
after m +2 sessions, and at least 1+ 2m+1 = 2m +2 members have been excluded. But there must
be at least 3 members left, for one member cannot be excluded from a jury of 2 members. Hence
2m + 2 ≤ 2k − 3, whence m + 2 ≤ k.

Thus the claim holds for n = k also. We conclude that the claim holds for all n ≥ 2.

19. Four heaps contain 38, 45, 61, and 70 matches respectively. Two players take turns choosing any two of
the heaps and take some non-zero number of matches from one heap and some non-zero number of matches
from the other heap. The player who cannot make a move, loses. Which one of the players has a winning
strategy?

Solution. The first player wins by making moves so that the opponent must face positions of the form
(a, a, a, b), where a ≤ b.

20. Is it possible to partition all positive integers into disjoint sets A and B such that

(i) no three numbers of A form arithmetic progression,

(ii) no infinite non-constant arithmetic progression can be formed by numbers of B?
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Solution. Let N denote the set of positive integers. There is a bijective function f : N → N×N. Let a0 = 1,
and for k ≥ 1, let ak be the least integer of the form m + tn for some integer t ≥ 0 where f(k) = (m, n),
such that ak ≥ 2ak−1. Let A = {a0, a1, . . . } and let B = N\A. We now show that A and B satisfy the
given conditions.

(i) For any non-negative integers i < j < k, we have ak ≥ aj+1 ≥ 2aj, and hence ak − aj ≥ aj > aj − ai.
Thus ai, aj and ak do not form an arithmetic progression, since this would mean that ak−aj = aj−ai.
Hence no three numbers in A form an arithmetic progression.

(ii) Consider an infinite arithmetic progression m, m+n, m+2n, . . . , with m, n ∈ N. Then m+nt = ak

for some integer t ≥ 0, where k = f−1(m, n). Thus ak belongs to the arithmetic progression, but
ak 6∈ B. Hence B does not contain any infinite non-constant arithmetic progression.
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