
Baltic Way 1997

Copenhagen, November 9, 1997

Problems

1. Determine all functions f from the real numbers to the real numbers, dif-
ferent from the zero function, such that f(x)f(y) = f(x − y) for all real
numbers x and y .

2. Given a sequence a1, a2, a3, . . . of positive integers in which every posi-
tive integer occurs exactly once. Prove that there exist integers ` and m ,
1 < ` < m , such that a1 + am = 2a` .

3. Let x1 = 1 and xn+1 = xn +
⌊xn

n

⌋

+ 2 for n = 1, 2, 3, . . . , where bxc

denotes the largest integer not greater than x . Determine x1997 .

4. Prove that the arithmetic mean a of x1, . . . , xn satisfies

(x1 − a)2 + · · ·+ (xn − a)2 6
1

2
(|x1 − a|+ · · ·+ |xn − a|)2 .

5. In a sequence u0, u1, . . . of positive integers, u0 is arbitrary, and for any
non-negative integer n ,

un+1 =







1

2
un for even un ,

a+ un for odd un ,

where a is a fixed odd positive integer. Prove that the sequence is periodic
from a certain step.

6. Find all triples (a, b, c) of non-negative integers satisfying a > b > c and

1·a3 + 9·b2 + 9·c+ 7 = 1997.

7. Let P and Q be polynomials with integer coefficients. Suppose that the
integers a and a + 1997 are roots of P , and that Q(1998) = 2000. Prove
that the equation Q(P (x)) = 1 has no integer solutions.
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8. If we add 1996 and 1997, we first add the unit digits 6 and 7. Obtaining
13, we write down 3 and “carry” 1 to the next column. Thus we make a
carry. Continuing, we see that we are to make three carries in total:

1 1 1

1 9 9 6
+ 1 9 9 7
3 9 9 3

Does there exist a positive integer k such that adding 1996 · k to 1997 · k
no carry arises during the whole calculation?

9. The worlds in the Worlds’ Sphere are numbered 1, 2, 3, . . . and connected
so that for any integer n > 1, Gandalf the Wizard can move in both di-
rections between any worlds with numbers n , 2n and 3n+ 1. Starting his
travel from an arbitrary world, can Gandalf reach every other world?

10. Prove that in every sequence of 79 consecutive positive integers written
in the decimal system, there is a positive integer whose sum of digits is
divisible by 13.

11. On two parallel lines, the distinct points A1 , A2 , A3 , . . . respectively B1 ,
B2 , B3 , . . . are marked in such a way that |AiAi+1| = 1 and |BiBi+1| = 2
for i = 1, 2, . . . (see Figure). Provided that 6 A1A2B1 = α , find the infinite
sum 6 A1B1A2 + 6 A2B2A3 + 6 A3B3A4 + . . . .

r

A1

r r r r r r r r r

A2A3A4A5A6

r

B1
r r r r

B2 B3 B4 B5

12. Two circles C1 and C2 intersect in P and Q . A line through P intersects C1

and C2 again in A and B , respectively, and X is the midpoint of AB . The
line through Q and X intersects C1 and C2 again in Y and Z , respectively.
Prove that X is the midpoint of Y Z .

13. Five distinct points A , B , C , D and E lie on a line with

|AB| = |BC| = |CD| = |DE| .
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The point F lies outside the line. Let G be the circumcentre of trian-
gle ADF and H be the circumcentre of triangle BEF . Show that lines GH
and FC are perpendicular.

A B C D E

F

14. In the triangle ABC , |AC|2 is the arithmetic mean of |BC|2 and |AB|2 .

Show that cot2 B > cotA cotC .

15. In the acute triangle ABC , the bisectors of 6 A , 6 B and 6 C intersect the
circumcircle again in A1 , B1 and C1 , respectively. Let M be the point
of intersection of AB and B1C1 , and let N be the point of intersection of
BC and A1B1 . Prove that MN passes through the incentre of triangle
ABC .

16. On a 5 × 5 chessboard, two players play the following game. The first
player places a knight on some square. Then the players alternately move
the knight according to the rules of chess, starting with the second player.
It is not allowed to move the knight to a square that has been visited
previously. The player who cannot move loses. Which of the two players
has a winning strategy?

17. A rectangle can be divided into n equal squares. The same rectangle can
also be divided into n+ 76 equal squares. Find all possible values of n .

18. a) Prove the existence of two infinite sets A and B , not necessarily disjoint,
of non-negative integers such that each non-negative integer n is uniquely
representable in the form n = a+ b with a ∈ A , b ∈ B .

b) Prove that for each such pair (A,B) , either A or B contains only mul-
tiples of some integer k > 1.

19. In a forest each of n animals (n > 3) lives in its own cave, and there is
exactly one separate path between any two of these caves. Before the elec-
tion for King of the Forest some of the animals make an election campaign.
Each campaign-making animal visits each of the other caves exactly once,
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uses only the paths for moving from cave to cave, never turns from one path
to another between the caves and returns to its own cave in the end of its
campaign. It is also known that no path between two caves is used by more
than one campaign-making animal.

a) Prove that for any prime n , the maximum possible number of

campaign-making animals is
n− 1

2
;

b) Find the maximum number of campaign-making animals for n = 9.

20. Twelve cards lie in a row. The cards are of three kinds: with both sides
white, both sides black, or with a white and a black side. Initially, nine
of the twelve cards have a black side up. The cards 1–6 are turned, and
subsequently four of the twelve cards have a black side up. Now cards 4–9
are turned, and six cards have a black side up. Finally, the cards 1–3 and
10–12 are turned, after which five cards have a black side up. How many
cards of each kind are there?

Solutions

1. Answer : f(x) ≡ 1 is the only such function.

Since f is not the zero function, there is an x0 such that f(x0) 6= 0.
From f(x0)f(0) = f(x0 − 0) = f(x0) we then get f(0) = 1. Then by

f(x)2 = f(x)f(x) = f(x − x) = f(0) we have f(x) 6= 0 for any real x .

Finally from f(x)f
(x

2

)

= f
(

x −
x

2

)

= f
(x

2

)

we get f(x) = 1 for any

real x . It is readily verified that this function satisfies the equation.

2. Let ` be the least index such that a` > a1 . Since 2a` − a1 is a positive
integer larger than a1 , it occurs in the given sequence beyond a` . In other
words, there exists an index m > ` such that am = 2a`−a1 . This completes
the proof.

Remarks. The problem was proposed in the slightly more general form
where the first term of the arithmetic progression has an arbitary index.
The remarks below refer to this version. The problem committee felt that
no essential new aspects would arise from the generalization.

1. A generalization of this problem is to ask about an existence of an
s -term arithmetic subsequence of the sequence (an) (such a subsequence
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always exists for s = 3, as shown above). It turns out that for s = 5 such
a subsequence may not exist. The proof can be found in [1]. The same
problem for s = 4 is still open!

2. The present problem (s = 3) and the above solution is also taken from [1].

Reference. [1] J. A. Davis, R. C. Entringer, R. L. Graham and G. J. Sim-
mons, On permutations containing no long arithmetic progressions, Acta
Arithmetica 1(1977), pp. 81–90.

3. Answer : x1997 = 23913.

Note that if xn = an+ b with 0 6 b < n , then

xn+1 = xn + a+ 2 = a(n+1) + b+ 2 .

Hence if xN = AN for some positive integers A and N , then for
i = 0, 1, . . . , N we have xN+i = A(N + i) + 2i , and x2N = (A + 1) · 2N .
Since for N = 1 the condition xN = AN holds with A = 1, then for
N = 2k (where k is any non-negative integer) it also holds with A = k+1.

Now for N = 210 = 1024 we have A = 11 and xN+i = A(N + i) + 2i ,
which for i = 973 makes x1997 = 11 · 1997 + 2 · 973 = 23913.

4. Denote yi = xi − a . Then y1 + y2 + · · · + yn = 0. We can assume
y1 6 y2 6 · · · 6 yk 6 0 6 yk+1 6 · · · 6 yn . Let y1 + y2 + · · · + yk = −z ,
then yk+1 + · · ·+ yn = z and

y2
1 + y2

2 + · · ·+ y2
n = y2

1 + y2
2 + · · ·+ y2

k + y2
k+1 + · · ·+ y2

n 6

6 (y1 + y2 + · · ·+ yk)
2 + (yk+1 + · · ·+ yn)

2 = 2z2 =

=
1

2
(2z)2 =

1

2
(|y1|+ |y2|+ · · ·+ |yn|)

2 .

Alternative solution. The case n = 1 is trivial (then x1 − a = 0 and we
get the inequality 0 6 0). Suppose now that n > 2. Consider a square
of side length |x1−a| + |x2−a| + . . . + |xn−a| and construct squares of
side lengths |x1−a|, |x2−a|, . . . , |xn−a| side by side inside it as shown on
Figure 1. Since none of the side lengths of the small squares exceeds half of
the side length of the large square, then all the small squares are contained
within the upper half of the large square, i.e. the sum of their areas does
not exceed half of the area of the large square, q.e.d.

5. Suppose un > a . Then, if un is even we have un+1 =
1

2
un < un , and if
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un is odd we have un+1 = a+ un < 2un and un+2 =
1

2
un+1 < un . Hence

the iteration results in un 6 a in a finite number of steps. Thus for any
non-negative integer m , some non-negative integer n > m satisfies un 6 a ,
and there must be an infinite set of such integers n .

Since the set of natural numbers not exceeding a is finite and such values
arise in the sequence (un) an infinite number of times, there exist non-
negative integers m and n with n > m such that un = um . Starting from
um the sequence is then periodic with a period dividing n−m .

|x1−a| |x2−a| |xn−a|. . .

|x1−a|+ |x2−a|+ . . .+ |xn−a|

Figure 1

6. Answer: (10, 10, 10) is the only such triple.

The equality immediately implies a3+9b2+9c = 1990 ≡ 1 (mod 9). Hence

a3 ≡ 1 (mod 9) and a ≡ 1 (mod 3). Since 133 = 2197 > 1990 then the
possible values for a are 1, 4, 7, 10.

On the other hand, if a 6 7 then by a > b > c we have

a3 + 9b2 + 9c2 6 73 + 9 · 72 + 9 · 7 = 847 < 1990 ,

a contradiction. Hence a = 10 and 9b2 + 9c = 990, whence by c 6 b 6 10
we have c = b = 10.

7. Suppose b is an integer such that Q(P (b)) = 1. Since a and a + 1997
are roots of P we have P (x) = (x − a)(x − a − 1997)R(x) where R is a
polynomial with integer coefficients. For any integer b the integers b−a and
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b−a−1997 are of different parity and hence P (b) = (b−a)(b−a−1997)R(b)
is even. Since Q(1998) = 2000 then the constant term in the expansion of
Q(x) is even (otherwise Q(x) would be odd for any even integer x), and
Q(c) is even for any even integer c . Hence Q(P (b)) is also even and cannot
be equal to 1.

8. Answer : yes.

The key to the proof is noting that if we add two positive integers and the
result is an integer consisting only of digits 9 then the process of addition
must have gone without any carries. Therefore it is enough to prove that
there exists an integer k such that 3993k is of the form 999...9.

Consider the first 3994 positive integers consisting only of digits 9:

9, 99, 999, . . . , 999 . . . 9
︸ ︷︷ ︸

3994

.

By the pigeonhole principle some two of these give the same remainder upon
division by 3993, so their difference

99 . . . 9
︸ ︷︷ ︸

n

00 . . . 0
︸ ︷︷ ︸

r

= 99 . . . 9
︸ ︷︷ ︸

n

· 10r

is divisible by 3993. Since 10 and 3993 are coprime we get an integer
consisting only of digits 9 and divisible by 3993.

Remarks.

1. The existence of an integer 10`− 1 consisting only of digits 9 and divis-
ible by 3993 may also be demonstrated quite elegantly by means of Euler’s

Theorem. The numbers 10 and 3993 are coprime, so 10ϕ(3993)− 1 is divis-
ible by 3993. Thus we may take ` = ϕ(3993).

2. By a computer search it can be found that the smallest integer k satis-
fying the condition of the problem is k = 162. Then 1996 · 162 = 323352;
1997 · 162 = 323514 and

3 2 3 3 5 2
+ 3 2 3 5 1 4
6 4 6 8 6 6

9. Answer : yes.

For any two given worlds, Gandalf can move between them either in both

7



directions or none. Hence, it suffices to show that Gandalf can move to the
world 1 from any given world n . For that, it is sufficient for him to be able
to move from any world n > 1 to some world m such that m < n . We
consider three possible cases:

a) If n = 3k + 1, then Gandalf can move directly from the world n to the
world k < n .
b) If n = 3k + 2, then Gandalf can move from the world n to the
world 2n = 6k + 4 = 3 · (2k + 1) + 1 and further to the world 2k + 1 < n .
c) If n = 3k then Gandalf can move from the world n to the world
3n + 1 = 9k + 1, further from there to the worlds 2 · (9k + 1) = 18k + 2,
2 · (18k + 2) = 36k + 4 = 3 · (12k + 1) + 1, 12k + 1, 4k and finally to the
world 2k < n .

10. Among the first 40 numbers in the sequence, four are divisible by 10 and
at least one of these has its second digit from the right less than or equal
to 6. Let this number be x and let y be its sum of digits. Then the
numbers x, x+ 1, x+ 2, . . . , x+ 39 all belong to the sequence, and each
of y, y + 1, . . . , y + 12 appears at least once among their sums of decimal
digits. One of these is divisible by 13.

Remark : there exist 78 consecutive natural numbers, none of which has its
sum of digits divisible by 13 — e.g. 859999999961 through 860000000038.

s

A1

s s s s s s s s s

A2 A3 A4 A5 A6

s

C2
s s s s

C4 C6 C8 C10

Figure 2

B1 B2 B3 B4 B5

C1 C3 C5 C7 C9
s s s s s

11. Answer : π − α .

Let C1, C2, C3, . . . be points on the upper line such that |CiCi+1| = 1 and
Bi = C2i for each i = 1, 2, . . . (see Figure 2). Then for any i = 1, 2, . . . we
have

6 AiBiAi+1 = 6 AiC2iAi+1 = 6 A1Ci+1A2 = 6 Ci+1A2Ci+2 .
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Hence

6 A1B1A2 + 6 A2B2A3 + 6 A3B3A4 + . . . =

= 6 C2A2C3 + 6 C3A2C4 + 6 C4A2C5 + . . . = π − α .

12. Depending on the radii of the circles, the distance between their centres
and the choice of the line through P we have several possible arrangements
of the points A, B, P and Y, Z, Q . We shall show that in each case the
triangles AXY and BXZ are congruent, whence |Y X| = |XZ| .

(a) Point P lies within segment AB and point Q lies within segment Y Z
(see Figure 3). Then

6 AYX = 6 AY Q = π − 6 APQ = 6 BPQ = 6 BZQ = 6 BZX .

Since also 6 AXY = 6 BXZ and |AX| = |XB| , triangles AXY

and BXZ are congruent.
(b) Point P lies outside of segment AB and point Q lies within seg-

ment Y Z (see Figure 4). Then

6 AYX = 6 AY Q = 6 APQ = 6 BPQ = 6 BZQ = 6 BZX .PSfrag replacements

A

A

B

B

X

X

YY

Z

P
P

QQ

C1C1
C2C2

Figure 3 Figure 4

(c) Point P lies outside of segment AB and point Q lies outside of seg-
ment Y Z (see Figure 5). Then

6 AYX = π − 6 AY Q = 6 APQ = 6 BPQ = 6 BZQ = 6 BZX .

(d) Point P lies within segment AB and point Q lies outside of seg-
ment Y Z . This case is similar to (b): exchange the roles of points
P and Q , A and Y , B and Z .
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PSfrag replacements

A

B

X

Y

Z

P

Q

C1

C2

Figure 5

13. Let O , H ′ and G′ be the circumcentres of the triangles BDF , BCF
and CDF , respectively (see Figure 6). Then O , G and G′ lie on the
perpendicular bisector of the segment DF , while O , H and H ′ lie on the
perpendicular bisector of the segment BF . Moreover, G and H ′ lie on the
perpendicular bisector of BC , O lies on the perpendicular bisector of BD ,
H and G′ lie on the perpendicular bisector of CD and C is the midpoint
of BD . Hence H ′ and G′ are symmetric to H and G , respectively, relative
to point O . Hence triangles OGH ′ and OG′H are congruent, and GHG′H ′

is a parallelogram.

Since CF is the common side of triangles BCF and CDF , the line G′H ′

connecting their circumcentres is perpendicular to CF . Therefore GH is
also perpendicular to CF .

A B C D E

F

Figure 6

r

r

r

r
r

H ′

G

O
G′

H

Alternative solution. Note that the diagonals of a quadrangle XY ZW are
perpendicular to each other if and only if |XY |2−|ZY |2 = |XW |2−|ZW |2 .
Applying this to the quadrangle GFHC it is sufficient to prove that
|GF |2−|HF |2 = |GC|2−|HC|2 . Denote |AB| = |BC| = |CD| = |DE| = a ,
6 GAC = α and 6 HEC = β , and let R1 , R2 be the circumradii of tri-
angles ADF and BEF , respectively (see Figure 7). Applying the cosine

law to triangles CGA and CHE , we have |GC|2 = R2
1 + 4a

2 − 4aR1 cosα
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and |HC|2 = R2
2 + 4a

2 − 4aR2 cosβ . Together with cosα =
3a

2R1
and

cosβ =
3a

2R2
this yields |GC|2 − |HC|2 = R2

1 − R2
2 . Since |GF | = R1 and

|HF | = R2 , we also have |GF |
2 − |HF |2 = R2

1 −R2
2 .

����
������
������������������������

������
	�	
 ����������
����������

��������������������������������

������������������������������������������������������������������������

������������������������������������������������������

������������������������������������������������������

PSfrag replacements

A

B

X

Y

Z

P
Q

C1
C2

A AB BC CD DE E

F F

G G

H H

α β

Figure 7 Figure 8

Another solution. We shall use the following fact that can easily be de-
rived from the properties of the power of a point: Let a line s intersect
two circles at points K, L and M, N , respectively, and let these circles in-
tersect each other at P and Q . A point X on the line s lies also on the
line PQ (i.e. is the intersection point of the lines s and PQ) if and only
if |KX| · |LX| = |MX| · |NX| .

The line AE intersects the circumcircles of triangles ADF and BEF

at A, D and B, E , respectively. Since point C lies on line AE and
|AC| · |DC| = |BC| · |EC| , then line CF passes through the second inter-
section point of these circles (see Figure 8) and hence is perpendicular to
the segment GH connecting the centres of these circles.

14. Denote |BC| = a , |CA| = b and |AB| = c , then we have 2b2 = a2 + c2 .
Applying the cosine and sine laws to triangle ABC we have:

cotB =
cosB

sinB
=
(a2 + c2 − b2) · 2R

2ac · b
=
(a2 + c2 − b2) ·R

abc
,

cotA =
cosA

sinA
=
(b2 + c2 − a2) ·R

abc
,
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cotC =
cosC

sinC
=
(a2 + b2 − c2) ·R

abc
,

where R is the circumradius of triangle ABC . To finish the proof it hence
suffices to show that (a2 + c2 − b2)2 > (b2 + c2 − a2)(a2 + b2 − c2) . Indeed,
from the AM-GM inequality we get

(b2 + c2 − a2)(a2 + b2 − c2) 6
(b2 + c2 − a2 + a2 + b2 − c2)2

4
= b4 =

= (2b2 − b2)2 = (a2 + c2 − b2)2 .

PSfrag replacements

A

B

X

Y

Z

P
Q

C1
C2

A

B

C

A1

B1

C1

M N

I

P
Q

Figure 9

15. Let I be the incenter of triangle ABC (the intersection point of the angle
bisectors AA1 , BB1 and CC1 ), and let B1C1 intersect the side AC and
the angle bisector AA1 at P and Q , respectively (see Figure 9). Then

6 AQC1 =
1

2
(
_
AC1 +

_
A1B1) =

1

2
·
(1

2

_
AB +

1

2

_
BC +

1

2

_
CA

)

= 90◦ .

Since 6 AC1B1 = 6 B1C1C (as their supporting arcs are of equal size), then
C1B1 is the bisector of angle AC1I . Moreover, since AI and C1B1 are
perpendicular, then C1B1 is also the bisector of angle AMI . Similarly we
can show that B1C1 bisects the angles AB1I ja API . Hence the diago-
nals of the quadrangle AMIP are perpendicular and bisect its angles, i.e.
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AMIP is a rhombus and MI is parrallel to AC . Similarly we can prove
that NI is parallel to AC , i.e. points M , I and N are collinear, q.e.d.

16. Answer : the first player has a winning strategy.

Divide all the squares of the board except one in pairs so that the squares
of each pair are accessible from each other by one move of the knight (see
Figure 10 where the squares of each pair are marked with the same number,
and the remaining square is marked by X ). The winning strategy for the
first player will be to place the knight on the square X in the beginning
and further make each move from a square to the other square paired with
it.

Figure 10 Figure 11 Figure 12

X 12 8 3 11

5

12

2

9

3

8

5

6

11

6

9

2

1

10

7

4

7

4

1

10

7 1

5

6

8

4

2

9

3

7 12 23 18 1

22

11

16

5

17

6

21

10

8

25

4

15

13

2

9

20

24

19

14

3

Alternative solution. If the first player places the knight on the square
marked by 1 on Figure 11, then the second player will have two possible
moves which are symmetric to each other relative to a diagonal of the board.
Suppose w.l.o.g. that he makes a move to the square marked by 2, then the
first player can make his move to the square marked by 3. At this point,
the second player can only make a move to the square marked by 4, and
the first player can make his next move to the square marked by 5; then
the second player can only make a move to the square marked by 6, etc.,
until the first player will make a move to the square marked by 9. Now
the second player will again have two possible moves, but since these two
squares are symmetric relative to a diagonal of the board (and the set of
squares already used is symmetric to that diagonal as well) we can assume
w.l.o.g. that he makes a move to the square marked by 10. Now the first
player can make his moves until the end of the game so that the second
player will have no choice for his subsequent moves (these moves will be to
the squares marked by 11 through 25, in this order). We see that the first
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player will be the one to make the last move, and hence the winner.

17. Answer : n = 324.

Let ab = n and cd = n+76, where a, b and c, d are the numbers of squares
in each direction for the partitioning of the rectangle into n and n + 76

squares, respectively. Then
a

c
=

b

d
, or ad = bc . Denote u = gcd(a, c)

ja v = gcd(b, d) , then there exist positive integers x and y such that
gcd(x, y) = 1, a = ux , c = uy and b = vx , d = vy . Hence we have

cd− ab = uv(y2 − x2) = uv(y − x)(y + x) = 76 = 22 · 19 .

Since y − x and y + x are positive integers of the same parity and
gcd(x, y) = 1, we have y − x = 1 and y + x = 19 as the only possibility,

yielding y = 10, x = 9 and uv = 4. Finally we have n = ab = x2uv = 324.

18. a) Let A be the set of non-negative integers whose only non-zero decimal
digits are in even positions counted from the right, and B the set of non-
negative integers whose only non-zero decimal digits are in odd positions
counted from the right. It is obvious that A and B have the required
property.

b) Since the only possible representation of 0 is 0 + 0, we have 0 ∈ A∩B .
The only possible representations of 1 are 1 + 0 and 0 + 1. Hence 1 must
belong to at least one of the sets A and B . Let 1 ∈ A , and let k be the
smallest positive integer such that k 6∈ A . Then k > 1. If any number b
with 0 < b < k belonged to B , it would have the two representations b+0
and 0 + b . Hence no such number belongs to B . Also, in k = a + b with
a ∈ A and b ∈ B the number b cannot be 0 since then a = k , contradicting
the assumption that k 6∈ A . Hence b = k , and k ∈ B .

Consider the decomposition of A into the union A1∪A2∪· · · of its maximal
subsets A1, A2, . . . of consecutive numbers, where each element of A1 is
less than each element of A2 etc. In particular, A1 = {0, 1, . . . , k − 1} .
By our assumption the set of all non-negative integers is the union of non-
intersecting sets An + b = {a+ b | a ∈ An} with n ∈ N and b ∈ B , each of
these consisting of some number of consecutive integers. We will show that
each subset An has exactly k elements. Indeed, suppose m is the smallest
index for which the number l of elements in Am is different from k , then
l < k since Am+0 and Am+k do not overlap. Denoting by c the smallest
element of Am , we have c + k − 1 6∈ A , so c + k − 1 = a + b with a ∈ A

14



and 0 6= b ∈ B . Hence, b > k and a < c . Suppose a ∈ An , then n < m

and the subset An has k elements. But then An + b overlaps with either
Am + 0 or Am + k , a contradiction.

Hence, the set of non-negative integers is the union of non-intersecting sets
An + b with n ∈ N and b ∈ B , each of which consists of k consecutive
integers. The smallest element of each of these subsets is a multiple of k .
Since each integer b ∈ B is the smallest element of A1 + b , it follows that
each b ∈ B is a multiple of k .

19. Answer : b) 4.

a) As each campaign-making animal uses exactly n paths and the total

number of paths is
n(n− 1)

2
, the number of campaign-making animals

cannot exceed
n− 1

2
. Labeling the caves by integers 0, 1, 2, . . . , n−1, we

can construct
n− 1

2
non-intersecting campaign routes as follows:

0→ 1→ 2→ 3→ . . .→ n→ 0

0→ 2→ 4→ 6→ . . .→ n−1→ 0

0→ 3→ 6→ 9→ . . .→ n−2→ 0

· · · · · · · · · · · · · · ·

0→
n− 1

2
→ n−1→ . . .→

n+ 1

2
→ 0

(As each of these cyclic routes passes through any cave, the
n− 1

2
campaign-making animals can be chosen arbitrarily).

b) As noted above, the number of campaign-making animals cannot exceed
9− 1

2
= 4. The 4 non-intersecting campaign routes can be constructed as

follows:

0→ 1→ 2→ 8→ 3→ 7→ 4→ 6→ 5→ 0

0→ 2→ 3→ 1→ 4→ 8→ 5→ 7→ 6→ 0

0→ 3→ 4→ 2→ 5→ 1→ 6→ 8→ 7→ 0

0→ 4→ 5→ 3→ 6→ 2→ 7→ 1→ 8→ 0
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Remark. In fact it can be proved that the maximal number of non-
intersecting Hamiltonian cycles in a complete graph on n vertices (that

is what the problem actually asks for) is equal to

⌊
n− 1

2

⌋

for any inte-

ger n . The proof uses a construction similar to the one shown in part b) of
the above solution.

20. Answer : there are 9 cards with one black and one white side and 3 cards
with both sides white.

Divide the cards into four types according to the table below.

Type Initially up Initially down

A black white
B white black
C white white
D black black

When the cards 1–6 were turned, the number of cards with a black side up
decreased by 5. Hence among the cards 1–6 there are five of type A and
one of type C or D . The result of all three moves is that cards 7–12 have
been turned over, hence among these cards there must be four of type A ,
and the combination of the other two must be one of the following:

(a) one of type A and one of type B ;
(b) one of type C and one of type D ;
(c) both of type C ;
(d) both of type D .

Hence the unknown card among the cards 1–6 cannot be of type D , since
this would make too many cards having a black side up initially. For the
same reason, the alternatives (a), (b) and (d) are impossible. Hence there
were nine cards of type A and three cards of type C .

Alternative solution. Denote by a1, a2, . . . , a12 the sides of each card that
are initially visible, and by b1, b2, . . . , b12 the initially invisible sides —
each of these is either white or black. The conditions of the problem imply
the following:

(a) there are 9 black and 3 white sides among a1 , a2 , a3 , a4 , a5 , a6 ,
a7 , a8 , a9 , a10 , a11 , a12 ;

(b) there are 4 black and 8 white sides among b1 , b2 , b3 , b4 , b5 , b6 , a7 ,
a8 , a9 , a10 , a11 , a12 ;
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(c) there are 6 black and 6 white sides among b1 , b2 , b3 , a4 , a5 , a6 , b7 ,
b8 , b9 , a10 , a11 , a12 ;

(d) there are 5 black and 7 white sides among a1 , a2 , a3 , a4 , a5 , a6 , b7 ,
b8 , b9 , b10 , b11 , b12 .

Cases (b) and (d) together enumerate each of the sides ai and bi exactly
once — hence there are 9 black and 15 white sides altogether. Therefore,
all existing black sides are enumerated in (a), implying that we have 9 cards
with one black and one white side, and the remaining 3 cards have both
sides white.
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