
Baltic Way 1999

Reykjav́ık, November 6, 1999

Problems

1. Determine all real numbers a, b, c, d that satisfy the following system of
equations.















abc+ ab+ bc+ ca+ a+ b+ c = 1
bcd+ bc+ cd+ db+ b+ c+ d = 9

cda+ cd+ da+ ac+ c+ d+ a = 9
dab+ da+ ab+ bd+ d+ a+ b = 9

2. Determine all positive integers n with the property that the third root of
n is obtained by removing the last three decimal digits of n .

3. Determine all positive integers n > 3 such that the inequality

a1a2 + a2a3 + · · ·+ an−1an + ana1 6 0

holds for all real numbers a1, a2, . . . , an which satisfy a1 + · · ·+ an = 0.

4. For all positive real numbers x and y let

f(x, y) = min
(

x,
y

x2 + y2

)

.

Show that there exist x0 and y0 such that f(x, y) 6 f(x0, y0) for all positive
x and y , and find f(x0, y0) .

5. The point (a, b) lies on the circle x2 + y2 = 1. The tangent to the circle

at this point meets the parabola y = x2 + 1 at exactly one point. Find all
such points (a, b) .

6. What is the least number of moves it takes a knight to get from one corner
of an n× n chessboard, where n > 4, to the diagonally opposite corner?

7. Two squares on an 8 × 8 chessboard are called adjacent if they have a
common edge or common corner. Is it possible for a king to begin in some
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square and visit all squares exactly once in such a way that all moves except
the first are made into squares adjacent to an even number of squares already
visited?

8. We are given 1999 coins. No two coins have the same weight. A machine
is provided which allows us with one operation to determine, for any three
coins, which one has the middle weight. Prove that the coin that is the
1000-th by weight can be determined using no more than 1 000 000 op-
erations and that this is the only coin whose position by weight can be
determined using this machine.

9. A cube with edge length 3 is divided into 27 unit cubes. The numbers
1, 2, . . . , 27 are distributed arbitrarily over the unit cubes, with one number
in each cube. We form the 27 possible row sums (there are nine such sums
of three integers for each of the three directions parallel to the edges of the
cube). At most how many of the 27 row sums can be odd?

10. Can the points of a disc of radius 1 (including its circumference) be parti-
tioned into three subsets in such a way that no subset contains two points
separated by distance 1?

11. Prove that for any four points in the plane, no three of which are collinear,
there exists a circle such that three of the four points are on the circum-
ference and the fourth point is either on the circumference or inside the
circle.

12. In a triangle ABC it is given that 2|AB| = |AC| + |BC| . Prove that the
incentre of ABC , the circumcentre of ABC , and the midpoints of AC and
BC are concyclic.

13. The bisectors of the angles A and B of the triangle ABC meet the
sides BC and CA at the points D and E , respectively. Assuming that
|AE|+ |BD| = |AB| , determine the size of angle C .

14. Let ABC be an isosceles triangle with |AB| = |AC| . Points D and E lie
on the sides AB and AC , respectively. The line passing through B and
parallel to AC meets the line DE at F . The line passing through C and
parallel to AB meets the line DE at G . Prove that

[DBCG]

[FBCE]
=
|AD|
|AE| ,
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where [PQRS] denotes the area of the quadrilateral PQRS .

15. Let ABC be a triangle with 6 C = 60◦ and |AC| < |BC| . The point D
lies on the side BC and satisfies |BD| = |AC| . The side AC is extended
to the point E where |AC| = |CE| . Prove that |AB| = |DE| .

16. Find the smallest positive integer k which is representable in the form
k = 19n − 5m for some positive integers m and n .

17. Does there exist a finite sequence of integers c1, . . . , cn such that all the
numbers a+ c1 , . . . , a+ cn are primes for more than one but not infinitely
many different integers a?

18. Let m be a positive integer such that m ≡ 2 (mod 4). Show that there
exists at most one factorization m = ab where a and b are positive integers

satisfying 0 < a− b <

√

5 + 4
√
4m+ 1.

19. Prove that there exist infinitely many even positive integers k such that for
every prime p the number p2 + k is composite.

20. Let a , b , c and d be prime numbers such that a > 3b > 6c > 12d and
a2− b2+ c2− d2 = 1749. Determine all possible values of a2+ b2+ c2+ d2 .

Solutions

1. Answer: a = b = c =
3
√
2− 1, d = 5

3
√
2− 1.

Substituting A = a+ 1, B = b+ 1, C = c+ 1, D = d+ 1, we obtain

ABC = 2 (1)

BCD = 10 (2)

CDA = 10 (3)

DAB = 10 (4)

Multiplying (1), (2), (3) gives C3(ABD)2 = 200, which together with (4)

implies C3 = 2. Similarly we find A3 = B3 = 2 and D3 = 250. Therefore

the only solution is a = b = c =
3
√
2− 1, d = 5

3
√
2− 1.

2. Answer: 32768 is the only such integer.
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If n = m3 is a solution, then m satisfies 1000m 6 m3 < 1000(m + 1).

From the first inequality, we get m2 > 1000, or m > 32. By the second
inequality, we then have

m2 < 1000 · m+ 1

m
6 1000 · 33

32
= 1000 +

1000

32
6 1032 ,

or m 6 32. Hence, m = 32 and n = m3 = 32768 is the only solution.

3. Answer: n = 3 and n = 4.

For n = 3 we have

a1a2 + a2a3 + a3a1 =
(a1 + a2 + a3)

2 − (a2
1 + a3

2 + a2
3)

2
6

6
(a1 + a2 + a3)

2

2
= 0 .

For n = 4, applying the AM-GM inequality we have

a1a2 + a2a3 + a3a4 + a4a1 = (a1 + a3)(a2 + a4) 6

6
(a1 + a2 + a3 + a4)

2

4
= 0 .

For n > 5 take a1 = −1, a2 = −2, a3 = a4 = · · · = an−2 = 0, an−1 = 2,
an = 1. This gives

a1a2 + a2a3 + . . .+ an−1an + ana1 = 2 + 2− 1 = 3 > 0 .

4. Answer: the maximum value is f
( 1√
2
,
1√
2

)

=
1√
2
.

We shall make use of the inequality x2 + y2 > 2xy . If x 6
y

x2 + y2
, then

x 6
y

x2 + y2
6

y

2xy
=
1

2x
,

implying x 6
1√
2
, and the equality holds if and only if x = y =

1√
2
.
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If x >
1√
2
, then

y

x2 + y2
6

y

2xy
=
1

2x
<
1√
2

.

Hence always at least one of x and
y

x2 + y2
does not exceed

1√
2
. Conse-

quently f(x, y) 6
1√
2
, with an equality if and only if x = y =

1√
2
.

5. Answer: (−1, 0), (1, 0), (0, 1),
(

−2
√
6

5
, −1
5

)

,
(2
√
6

5
, −1
5

)

.

Since any non-vertical line intersecting the parabola y = x2+1 has exactly
two intersection points with it, the line mentioned in the problem must be
either vertical or a common tangent to the circle and the parabola. The only
vertical lines with the required property are the lines x = 1 and x = −1,
which meet the circle in the points (1, 0) and (−1, 0), respectively.
Now, consider a line y = kx + l . It touches the circle if and only if the
system of equations

{

x2 + y2 = 1
y = kx+ l

(5)

has a unique solution, or equivalently the equation x2 + (kx+ l)2 = 1 has
unique solution, i.e. if and only if

D1 = 4k
2l2 − 4(1 + k2)(l2 − 1) = 4(k2 − l2 + 1) = 0 ,

or l2−k2 = 1. The line is tangent to the parabola if and only if the system

{

y = x2 + 1
y = kx+ l

has a unique solution, or equivalently the equation x2 = kx + l − 1 has
unique solution, i.e. if and only if

D2 = k2 − 4(1− l) = k2 + 4l − 4 = 0 .
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From the system of equations
{

l2 − k2 = 1
k2 + 4l − 4 = 0

we have l2 + 4l− 5 = 0, which has two solutions l = 1 and l = −5. Hence
the last system of equations has the solutions k = 0, l = 1 and k = ±2

√
6,

l = −5. From (5) we now have (0, 1) and
(

±2
√
6

5
, −1
5

)

as the possible

points of tangency on the circle.

6. Answer: 2 ·
⌊n+ 1

3

⌋

.

Label the squares by pairs of integers (x, y), x, y = 1, . . . , n , and consider a
sequence of moves that takes the knight from square (1, 1) to square (n, n) .

The total increment of x+y is 2(n−1), and the maximal increment in each
move is 3. Furthermore, the parity of x+ y shifts in each move, and 1 + 1
and n + n are both even. Hence, the number of moves is even and larger

than or equal to
2 · (n− 1)

3
. If N = 2m is the least integer that satisfies

these conditions, then m is the least integer that satisfies m >
n− 1
3
, i.e.

m =
⌊n+ 1

3

⌋

.

PSfrag replacements

n = 4 n = 5 n = 6

Figure 1

For n = 4, n = 5 and n = 6 the sequences of moves are easily found that
take the knight from square (1, 1) to square (n, n) in 2, 4 and 4 moves,
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respectively (see Figure 1). In particular, the knight may get from square
(k, k) to square (k + 3, k + 3) in 2 moves. Hence, by simple induction, for
any n the knight can get from square (1, 1) to square (n, n) in a number

of moves equal to twice the integer part of
n+ 1

3
, which is the minimal

possible number of moves.

7. Answer: No, it is not possible.

Consider the set S of all (non-ordered) pairs of adjacent squares. Call an
element of S treated if the king has visited both its squares. After the first
move there is one treated pair. Each subsequent move creates a further even
number of treated pairs. So after each move the total number of treated
pairs is odd. If the king could complete his tour then the total number
of pairs of adjacent squares (i.e. the number of elements of S ) would have
to be odd. But the number of elements of S is even as can be seen by
the following argument. Rotation by 180 degrees around the centre of the
board induces a bijection of S onto itself. This bijection leaves precisely
two pairs fixed, namely the pairs of squares sharing only a common corner
at the middle of the board. It follows that the number of elements of S is
even.

8. It is possible to find the 1000-th coin (i.e. the medium one among the 1999
coins). First we exclude the lightest and heaviest coin — for this we use
1997 weighings, putting the medium-weighted coin aside each time. Next
we exclude the 2-nd and 1998-th coins using 1995 weighings, etc. In total
we need

1997 + 1995 + 1993 + . . .+ 3 + 1 = 999 · 999 < 1000000

weighings to determine the 1000-th coin in such a way.

It is not possible to determine the position by weight of any other coin,
since we cannot distinguish between the k -th and (2000−k)-th coin. To
prove this, label the coins in some order as a1, a2, . . . , a1999 . If a procedure
for finding the k -th coin exists then it should work as follows. First we
choose some three coins ai1 , aj1 , ak1

, find the medium-weighted one among
them, then choose again some three coins ai2 , aj2 , ak2

(possibly using the
information obtained from the previous weighing) etc. The results of these
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weighings can be written in a table like this:

Coin 1 Coin 2 Coin 3 Medium
ai1 aj1 ak1

am1

ai2 aj2 ak2
am2

. . . . . . . . . . . .
ain

ajn
akn

amn

Suppose we make a decision “ak is the k -th coin” based on this table. Now
let us exchange labels of the lightest and the heaviest coins, of the 2-nd and
1998-th (by weight) coins etc. It is easy to see that, after this relabeling,
each step in the procedure above gives the same result as before — but if
ak was previously the k -th coin by weight, then now it is the (2000−k)-th
coin, so the procedure yields a wrong coin which gives us the contradiction.

9. Answer: 24.

Since each unit cube contributes to exactly three of the row sums, then the
total of all the 27 row sums is 3 · (1 + 2 + . . . + 27) = 3 · 14 · 27, which is
even. Hence there must be an even number of odd row sums.

(a) (b) I II III

Figure 2 Figure 3

+ + + + − − + + −
−
+

+

−
+

+

+ −+ −− −
− −
+ −
+ −
− +

+ −
+ −

We shall prove that if one of the three levels of the cube (in any given
direction) contains an even row sum, then there is another even row sum
within that same level — hence there cannot be 26 odd row sums. Indeed,
if this even row sum is formed by three even numbers (case (a) on Figure 2,
where + denotes an even number and − denotes an odd number), then
in order not to have even column sums (i.e. row sums in the perpendicular
direction), we must have another even number in each of the three columns.
But then the two remaining rows contain three even and three odd numbers,
and hence their row sums cannot both be odd. Consider now the other case
when the even row sum is formed by one even number and two odd numbers
(case (b) on Figure 2). In order not to have even column sums, the column
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containing the even number must contain another even number and an odd
number, and each of the other two columns must have two numbers of the
same parity. Hence the two other row sums have different parity, and one
of them must be even.

It remains to notice that we can achieve 24 odd row sums (see Figure 3,
where the three levels of the cube are shown).

10. Answer: no.

Let O denote the centre of the disc, and P1, . . . , P6 the vertices of an
inscribed regular hexagon in the natural order (see Figure 4).

If the required partitioning exists, then {O} , {P1, P3, P5} and {P2, P4, P6}
are contained in different subsets. Now consider the circles of radius 1 cen-
tered in P1 , P3 and P5 . The circle of radius 1/

√
3 centered in O intersects

these three circles in the vertices A1, A2, A3 of an equilateral triangle of
side length 1. The vertices of this triangle belong to different subsets, but
none of them can belong to the same subset as P1 — a contradiction. Hence
the required partitioning does not exist.
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O

Figure 4

11. Consider a circle containing all these four points in its interior. First, de-
crease its radius until at least one of these points (say, A) will be on the
circle. If the other three points are still in the interior of the circle, then
rotate the circle around A (with its radius unchanged) until at least one of
the other three points (say, B ) will also be on the circle. The centre of the
circle now lies on the perpendicular bisector of the segment AB — moving

9



the centre along that perpendicular bisector (and changing its radius at the
same time, so that points A and B remain on the circle) we arrive at a
situation where at least one of the remaining two points will also be on the
circle (see Figure 5).
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Figure 5

Alternative solution. The quadrangle with its vertices in the four points can
be convex or non-convex.

If the quadrangle is non-convex, then one of the points lies in the interior
of the triangle defined by the remaining three points (see Figure 6) – the
circumcircle of that triangle has the required property.
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D
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D′
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Figure 6 Figure 7

Assume now that the quadrangle ABCD (where A, B, C, D are the four
points) is convex. Then it has a pair of opposite angles, the sum of which
is at least 180◦ — assume these are at vertices B and D (see Figure 7).
We shall prove that point D lies either in the interior of the circumcircle
of triangle ABC or on that circle. Indeed, let the ray drawn from the
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circumcentre O of triangle ABC through point D intersect the circumcircle
in D′ : since 6 B + 6 D′ = 180◦ and 6 B + 6 D > 180◦ , then D cannot lie
in the exterior of the circumcircle.

12. Let N be the midpoint of BC and M the midpoint of AC . Let O
be the circumcentre of ABC and I its incentre (see Figure 8). Since
6 CMO = 6 CNO = 90◦ , the points C , N , O and M are concyclic (re-
gardless of whether O lies inside the triangle ABC ). We now have to
show that the points C , N , I and M are also concyclic, i.e I lies on
the same circle as C , N , O and M . It will be sufficient to show that
6 NCM + 6 NIM = 180◦ in the quadrilateral CNIM . Since

|AB| = |AC|+ |BC|
2

= |AM |+ |BN | ,

we can choose a point D on the side AB such that |AD| = |AM | and
|BD| = |BN | . Then triangle AIM is congruent to triangle AID , and
similarly triangle BIN is congruent to triangle BID . Therefore

6 NCM + 6 NIM = 6 NCM + (360◦ − 2 6 AID − 2 6 BID) =

= 6 BCA+ 360◦ − 2 6 AIB =

= 6 BCA+ 360◦ − 2 ·
(

180◦ −
6 BAC

2
−

6 ABC

2

)

=

= 6 BCA+ 6 ABC + 6 CAB = 180◦ .
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Figure 8 Figure 9

Alternative solution. Let O be the circumcentre of ABC and I its in-
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centre, and let G , H and K be the points where the incircle touches
the sides BC , AC and AB of the triangle, respectively. Also, let N be
the midpoint of BC and M the midpoint of AC (see Figure 9). Since
6 CMO = 6 CNO = 90◦ , points M and N lie on the circle with diam-
eter OC . We will show that point I also lies on that circle. Indeed, we
have

|AH|+ |BG| = |AK|+ |BK| = |AB| = |AC|+ |BC|
2

= |AM |+ |BN | ,

implying |MH| = |NG| . Since MH and NG are the perpendicular pro-
jections of OI to the lines AC and BC , respectively, then IO must be
either parallel or perpendicular to the bisector CI of angle ACB . (To
formally prove this, consider unit vectors ~e1 and ~e2 defined by the rays
CA and CB , and show that the condition |MH| = |NG| is equivalent to
(~e1 ± ~e2) · −→IO = 0.)

If IO is perpendicular to CI , then 6 CIO = 90◦ and we are done. If
IO is parallel to CI , the the circumcentre O of triangle ABC lies on
the bisector CI of angle ACB , whence |AC| = |BC| and the condition
2|AB| = |AC| + |BC| implies that ABC is an equilateral triangle. Hence
in this case points O and I coincide and the claim of the problem holds
trivially.

13. Answer: 60◦ .

Let F be the point of the side AB such that |AF | = |AE| and |BF | = |BD|
(see Figure 10). The line AD is the angle bisector of 6 A in the isosce-
les triangle AEF . This implies that AD is the perpendicular bisector
of EF , whence |DE| = |DF | . Similarly we show that |DE| = |EF | .
This proves that the triangle DEF is equilateral, i.e. 6 EFD = 60◦ .
Hence 6 AFE + 6 BFD = 120◦ , and also 6 AEF + 6 BDF = 120◦ . Thus
6 CAB + 6 CBA = 120◦ and finally 6 C = 60◦ .

Alternative solution. Let I be the incenter of triangle ABC , and let G ,
H , K be the points where its incircle touches the sides BC , AC , AB
respectively (see Figure 11). Then

|AE|+ |BD| = |AB| = |AK|+ |BK| = |AH|+ |BG| ,

implying |DG| = |EH| . Hence the triangles DIG ja EIH are congruent,
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and

6 DIE = 6 GIH = 180◦ − 6 C .
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On the other hand,

6 DIE = 6 AIB = 180◦ −
6 A+ 6 B

2
.

Hence

6 C =
6 A+ 6 B

2
= 90◦ −

6 C

2
,

which gives 6 C = 60◦ .

14. The quadrilaterals DBCG and FBCE are trapeziums. The area of a
trapezium is equal to half the sum of the lengths of the parallel sides multi-
plied by the distance between them. But the distance between the parallel
sides is the same for both of these trapeziums, since the distance from B
to AC is equal to the distance from C to AB . It therefore suffices to show
that

|BD|+ |CG|
|CE|+ |BF | =

|AD|
|AE|

(see Figure 12). Now, since the triangles BDF , ADE and CGE are
similar, we have

|BD|
|BF | =

|CG|
|CE| =

|AD|
|AE| ,
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which implies the required equality.
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Alternative solution. As in the first solution, we need to show that

|BD|+ |CG|
|BF |+ |CE| =

|AD|
|AE| .

Let M be the midpoint of BC , and let F ′ and G′ be the points symmetric
to F and G , respectively, relative to M (see Figure 13). Since CG is
parallel to AB , then point G′ lies on the line AB , and |BG′| = |CG| .
Similarly point F ′ lies on the line AC , and |CF ′| = |BF | . It remains to
show that

|DG′|
|EF ′| =

|AD|
|AE| ,

which follows from DE and F ′G′ being parallel.

Another solution. Express the areas of the quadrilaterals as

[DBCG] = [ABC]− [ADE] + [ECG]

and

[FBCE] = [ABC]− [ADE] + [DBF ] .

The required equality can now be proved by direct computation.

15. Consider a point F on BC such that |CF | = |BD| (see Figure 14). Since
6 ACF = 60◦ , triangle ACF is equilateral. Therefore |AF | = |AC| = |CE|
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and 6 AFB = 6 ECD = 120◦ . Moreover, |BF | = |CD| . This implies that
triangles AFB and ECD are congruent, and |AB| = |DE| .
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Alternative solution. The cosine law in triangle ABC implies

|AB|2 = |AC|2 + |BC|2 − 2 · |AC| · |BC| · cos 6 ACB =

= |AC|2 + |BC|2 − |AC| · |BC| =
= |AC|2 + (|BD|+ |DC|)2 − |AC| · (|BD|+ |DC|) =
= |AC|2 + (|AC|+ |DC|)2 − |AC| · (|AC|+ |DC|) =
= |AC|2 + |DC|2 + |AC| · |DC|

On the other hand, the cosine law in triangle CDE gives

|DE|2 = |DC|2 + |CE|2 − 2 · |DC| · |CE| · cos 6 DCE =

= |DC|2 + |CE|2 + |DC| · |EC| =
= |DC|2 + |AC|2 + |DC| · |AC| .

Hence |AB| = |DE| .

16. Answer: 14.

Assume that there are integers n, m such that k = 19n − 5m is a positive
integer smaller than 191− 51 = 14. For obvious reasons, n and m must be
positive.

Case 1: Assume that n is even. Then the last digit of k is 6. Consequently,
we have 19n−5m = 6. Considering this equation modulo 3 implies that m
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must be even as well. With n = 2n′ and m = 2m′ the above equation can

be restated as (19n′

+5m′

)(19n′ −5m′

) = 6 which evidently has no solution
in positive integers.

Case 2: Assume that n is odd. Then the last digit of k is 4. Consequently,
we have 19n − 5m = 4. On the other hand, the remainder of 19n − 5m

modulo 3 is never 1, a contradiction.

17. Answer: yes.

Let n = 5 and consider the integers 0, 2, 8, 14, 26. Adding a = 3 or a = 5
to all of these integers we get primes. Since the numbers 0, 2, 8, 14 and
26 have pairwise different remainders modulo 5 then for any integer a the
numbers a+0, a+2, a+8, a+14 and a+26 have also pairwise different
remainders modulo 5; therefore one of them is divisible by 5. Hence if the
numbers a+ 0, a+ 2, a+ 8, a+ 14 and a+ 26 are all primes then one of
them must be equal to 5, which is only true for a = 3 and a = 5.

18. Squaring the second inequality gives (a − b)2 < 5 + 4
√
4m+ 1. Since

m = ab , we have

(a+ b)2 < 5 + 4
√
4m+ 1 + 4m = (

√
4m+ 1 + 2)2 ,

implying

a+ b <
√
4m+ 1 + 2 .

Since a > b , different factorizations m = ab will give different values for
the sum a+ b (ab = m, a+ b = k, a > b has at most one solution in (a, b)).
Since m ≡ 2 (mod 4), we see that a and b must have different parity, and
a+ b must be odd. Also note that

a+ b > 2
√

ab =
√
4m .

Since 4m cannot be a square we have

a+ b >
√
4m+ 1 .

Since a + b is odd and the interval [
√
4m+ 1,

√
4m+ 1 + 2 ) contains ex-

actly one odd integer, then there can be at most one pair (a, b) such that

a+ b <
√
4m+ 1 + 2, or equivalently a− b <

√

5 + 4
√
4m+ 1.

19. Note that the square of any prime p 6= 3 is congruent to 1 modulo 3. Hence
the numbers k = 6m+ 2 will have the required property for any p 6= 3, as
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p2 + k will be divisible by 3 and hence composite.

In order to have 32+k also composite, we look for such values of m for which
k = 6m + 2 is congruent to 1 modulo 5 — then 32 + k will be divisible
by 5 and hence composite. Taking m = 5t + 4, we have k = 30t + 26,
which is congruent to 2 modulo 3 and congruent to 1 modulo 5. Hence
p2 + (30t+ 26) is composite for any positive integer t and prime p .

20. Answer: the only possible value is 1999.

Since a2 − b2 + c2 − d2 is odd, one of the primes a , b , c and d must be 2,
and in view of a > 3b > 6c > 12d we must have d = 2. Now

1749 = a2 − b2 + c2 − d2 > 9b2 − b2 + 4d2 − d2 = 8b2 − 12 ,

implying b 6 13. From 4 < c <
b

2
we now have c = 5 and b must be either

11 or 13. It remains to check that 1749 + 22 − 52 + 132 = 1897 is not a
square of an integer, and 1749+22−52+112 = 1849 = 432 . Hence b = 11,
a = 43 and

a2 + b2 + c2 + d2 = 432 + 112 + 52 + 22 = 1999 .
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