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Problems and solutions

1. Let Q+ be the set of positive rational numbers. Find all functions f : Q+ → Q+ which for all
x ∈ Q+ fulfil

(1) f ( 1
x ) = f (x)

(2) (1 + 1
x ) f (x) = f (x + 1)

Solution: Set g(x) = f (x)
f (1) . Function g fulfils (1), (2) and g(1) = 1. First we prove that if

g exists then it is unique. We prove that g is uniquely defined on x = p
q by induction

on max(p, q). If max(p, q) = 1 then x = 1 and g(1) = 1. If p = q then x = 1 and g(x)
is unique. If p 6= q then we can assume (according to (1)) that p > q. From (2) we get
g( p

q ) = (1 + q
p−q )g( p−q

q ). The induction assumption and max(p, q) > max(p− q, q) ≥ 1
now give that g( p

q ) is unique.
Define the function g by g( p

q ) = pq where p and q are chosen such that gcd(p, q) = 1.
It is easily seen that g fulfils (1), (2) and g(1) = 1. All functions fulfilling (1) and (2) are
therefore f ( p

q ) = apq, where gcd(p, q) = 1 and a ∈ Q+.

2. Prove that any real solution of

x3 + px + q = 0

satisfies the inequality 4qx ≤ p2.
Solution: Let x0 be a root of the qubic, then x3 + px + q = (x − x0)(x2 + ax + b) =
x3 + (a− x0)x2 + (b− ax0)x− bx0. So a = x0, p = b− ax0 = b− x2

0, −q = bx0. Hence
p2 = b2 − 2bx2

0 + x4
0. Also 4x0q = −4x2

0b. So p2 − 4x0q = b2 + 2bx2
0 + x4

0 = (b + x2
0)

2 ≥ 0.
Solution 2: As the equation x0x2 + px + q = 0 has a root (x = x0), we must have
D ≥ 0 ⇔ p2 − 4qx0 ≥ 0. (Also the equation x2 + px + qx0 = 0 having the root x = x2

0
can be considered.)
3. Let x, y and z be positive real numbers such that xyz = 1. Prove that

(1 + x)(1 + y)(1 + z) ≥ 2
(
1 + 3

√
y
x

+ 3

√
z
y

+ 3

√
x
z
)
.

Solution: Put a = bx, b = cy and c = az. The given inequality then takes the form

(
1 +

a
b

)(
1 +

b
c

)(
1 +

c
a

)
≥ 2

(
1 + 3

√
b2

ac
+ 3

√
c2

ab
+ 3

√
a2

bc

)
= 2

(
1 +

a + b + c
3 3
√

abc

)
.

By the AM-GM inequality we have(
1 +

a
b

)(
1 +

b
c

)(
1 +

c
a

)
=

a + b + c
a

+
a + b + c

b
+

a + b + c
c

− 1

≥ 3
( a + b + c

3
√

abc

)
− 1 ≥ 2

a + b + c
3
√

abc
+ 3− 1 = 2

(
1 +

a + b + c
3
√

abc

)
.
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Solution 2: Expanding the left side we obtain

x + y + z + 1
x + 1

y + 1
z ≥ 2

(
3
√

y
x + 3

√
z
y + 3

√
x
z

)
.

As 3
√

y
x ≤

1
3

(
y + 1

x + 1
)

etc., it suffices to prove that

x + y + z + 1
x + 1

y + 1
z ≥

2
3

(
x + y + z + 1

x + 1
y + 1

z

)
+ 2,

which follows from a + 1
a ≥ 2.

4. Let a, b, c be positive real numbers. Prove that

2a
a2 + bc

+
2b

b2 + ca
+

2c
c2 + ab

≤ a
bc

+
b
ca

+
c

ab
.

Solution: First we prove that

2a
a2 + bc

≤ 1
2

(1
b

+
1
c

)
,

which is equivalent to 0 ≤ b(a− c)2 + c(a− b)2, and therefore holds true. Now we turn
to the inequality

1
b

+
1
c
≤ 1

2

(2a
bc

+
b
ca

+
c

ab

)
,

which by multiplying by 2abc is seen to be equivalent to 0 ≤ (a− b)2 + (a− c)2. Hence
we have proved that

2a
a2 + bc

≤ 1
4

(2a
bc

+
b
ca

+
c

ab

)
.

Analogously we have
2b

b2 + ca
≤ 1

4

(2b
ca

+
c

ab
+

a
bc

)
,

2c
c2 + ab

≤ 1
4

(2c
ab

+
a
bc

+
b
ca

)
and it suffices to sum the above three inequalities.

Solution 2: As a2 + bc ≥ 2a
√

bc etc., it is sufficient to prove that

1√
bc

+
1√
ac

+
1√
ab
≤ a

bc
+

b
ca

+
c

ab
,

which can be obtained by “inserting” 1
a + 1

b + 1
c between the left side and the right side.

5. A sequence (an) is defined as follows: a1 =
√

2, a2 = 2, and an+1 = ana2
n−1 for n ≥ 2. Prove

that for every n ≥ 1 we have

(1 + a1)(1 + a2) · · · (1 + an) < (2 +
√

2)a1a2 · · · an.

Solution: First we prove inductively that for n ≥ 1, an = 22n−2
. We have a1 = 22−1

,
a2 = 220

and

an+1 = 22n−2 · (22n−3
)2 = 22n−2 · 22n−2

= 22n−1
.
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Since 1 + a1 = 1 +
√

2, we must prove, that

(1 + a2)(1 + a3) · · · (1 + an) < 2a2a3 · · · an.

The right-hand side is equal to

21+20+21+···+2n−2
= 22n−1

and the left-hand side

(1 + 220
)(1 + 221

) · · · (1 + 22n−2
)

= 1 + 220
+ 221

+ 220+21
+ 222

+ · · ·+ 220+21+···+2n−2

= 1 + 2 + 22 + 23 + · · ·+ 22n−1−1

= 22n−1 − 1.

The proof is complete.

6. Let n ≥ 2 and d ≥ 1 be integers with d | n, and let x1, x2, . . . , xn be real numbers
such that x1 + x2 + · · · + xn = 0. Prove that there are at least (n−1

d−1) choices of d indices
1 ≤ i1 < i2 < · · · < id ≤ n such that xi1 + xi2 + · · ·+ xid ≥ 0.
Solution: Put m = n/d and [n] = {1, 2, . . . , n}, and consider all partitions [n] = A1 ∪
A2 ∪ · · · ∪ Am of [n] into d-element subsets Ai, i = 1, 2, . . . , m. The number of such
partitions is denoted by t. Clearly, there are exactly (n

d) d-element subsets of [n] each
of which occurs in the same number of partitions. Hence, every A ⊆ [n] with |A| = d
occurs in exactly s := tm/(n

d) partitions. On the other hand, every partition contains at
least one d-element set A such that ∑i∈A xi ≥ 0. Consequently, the total number of sets
with this property is at least t/s = (n

d)/m = d
n (n

d) = (n−1
d−1).

7. Let X be a subset of {1, 2, 3, . . . , 10000} with the following property: If a, b ∈ X, a 6= b, then
a · b /∈ X. What is the maximal number of elements in X?
Answer: 9901.
Solution: If X = {100, 101, 102, . . . , 9999, 10000}, then for any two selected a and b, a 6= b,
a · b ≥ 100 · 101 > 10000, so a · b 6∈ X. So X may have 9901 elements.

Suppose that x1 < x2 < · · · < xk are all elements of X that are less than 100. If there
are none of them, no more than 9901 numbers can be in the set X. Otherwise, if x1 = 1
no other number can be in the set X, so suppose x1 > 1 and consider the pairs

200− x1, (200− x1) · x1

200− x2, (200− x2) · x2

...
200− xk, (200− xk) · xk

Clearly x1 < x2 < · · · < xk < 100 < 200 − xk < 200 − xk−1 < · · · < 200 − x2 <
200− x1 < 200 < (200− x1) · x1 < (200− x2) · x2 < · · · < (200− xk) · xk. So all numbers
in these pairs are different and greater than 100. So at most one from each pair is in the
set X. Therefore, there are at least k numbers greater than 100 and 99− k numbers less
than 100 that are not in the set X, together at least 99 numbers out of 10000 not being in
the set X.
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8. There are 2003 pieces of candy on a table. Two players alternately make moves. A move consists
of eating one candy or half of the candies on the table (the “lesser half” if there is an odd number
of candies); at least one candy must be eaten at each move. The loser is the one who eats the last
candy. Which player – the first or the second – has a winning strategy?
Answer: The second.
Solution: Let us prove inductively that for 2n pieces of candy the first player has a
winning strategy. For n = 1 it is obvious. Suppose it is true for 2n pieces, and let’s
consider 2n + 2 pieces. If for 2n + 1 pieces the second is the winner, then the first eats
1 piece and becomes the second in the game starting with 2n + 1 pieces. So suppose
that for 2n + 1 pieces the first is the winner. His winning move for 2n + 1 is not eating 1
piece (according to the inductive assumption). So his winning move is to eat n pieces,
leaving the second with n + 1 pieces, when the second must lose. But the first can leave
the second with n + 1 pieces from the starting position with 2n + 2 pieces, eating n + 1
pieces; so 2n + 2 is a winning position for the first.

Now if there are 2003 pieces of candy on the table, the first must eat either 1 or 1001
candies, leaving an even number of candies on the table. So the second player will be the
first player in a game with even number of candies and therefore has a winning strategy.

In general, if there is an odd number N of candies, write N = 2mr + 1, where r is
odd. Then the first player wins if m is even, and the second player wins if m is odd: At
each move, the player must avoid leaving the other with an even number of candies, so
he must eat half of the candies. But this means that the number of candies descend as
2mr + 1, 2m−1r + 1, . . . , 2r + 1, r + 1, and eventually there is an even number of candies.

9. It is known that n is a positive integer, n ≤ 144. Ten questions of type “Is n smaller than
a?” are allowed. Answers are given with a delay: The answer to the i’th question is given only
after the (i + 1)’st question is asked, i = 1, 2, . . . , 9. The answer to the tenth question is given
immediately after it is asked. Find a strategy for identifying n.
Solution: Let the Fibonacci numbers be denoted F0 = 1, F1 = 2, F2 = 3 etc. Then
F10 = 144. We will prove by induction on k that using k questions subject to the
conditions of the problem, it is possible to determine any positive integer n ≤ Fk. First,
for k = 0 it is trivial, since without asking we know that n = 1. For k = 1, we simply ask
if n is smaller than 2. For k = 2, we ask if n is smaller than 3 and if n is smaller than 2;
from the two answers we can determine n.

Now, in general, our first two questions will always be “Is n smaller than Fk−1 + 1?”
and “Is n smaller than Fk−2 + 1”. We then receive the answer to the first question. As long
as we receive affirmative answers to the i− 1’st question, the i + 1’st question will be “Is
n smaller than Fk−(i+1) + 1?”. If at any point, say after asking the j’th question, we receive
a negative answer to the j− 1’st question, we then know that Fk−(j−1) + 1 ≤ n ≤ Fk−(j−2),
so n is one of Fk−(j−2) − Fk−(j−1) = Fk−j consecutive integers, and by induction we may
determine n using the remaining k − j questions. Otherwise, we receive affirmative
answers to all the questions, the last being “Is n smaller than Fk−k + 1 = 2?”; so n = 1 in
that case.

10. A lattice point in the plane is a point whose coordinates are both integral. The centroid of
four points (xi, yi), i = 1, 2, 3, 4, is the point ( x1+x2+x3+x4

4 , y1+y2+y3+y4
4 ). Let n be the largest

natural number with the following property: There are n distinct lattice points in the plane such
that the centroid of any four of them is not a lattice point. Prove that n = 12.
Solution: To prove n ≥ 12, we have to show that there are 12 lattice points (xi, yi),
i = 1, 2, . . . , 12, such that no four determine a lattice point centroid. This is guaranteed if
we just choose the points such that xi ≡ 0 (mod 4) for i = 1, . . . , 6, xi ≡ 1 (mod 4) for
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i = 7, . . . , 12, yi ≡ 0 (mod 4) for i = 1, 2, 3, 10, 11, 12, yi ≡ 1 (mod 4) for i = 4, . . . , 9.
Now let Pi, i = 1, 2, . . . , 13, be lattice points. We have to show that some four of

them determine a lattice point centroid. First observe that, by the Pigeonhole Principle,
among any five of the points we find two such that their x-coordinates as well as their
y-coordinates have the same parity. Consequently, among any five of the points there are
two whose midpoint is a lattice point. Iterated application of this observation implies
that among the 13 points in question we find five disjoint pairs of points whose midpoint
is a lattice point. Among these five midpoints we again find two, say M and M′, such
that their midpoint C is a lattice point. Finally, if M and M′ are the midpoints of PiPj
and PkP`, respectively, {i, j, k, `} ⊆ {1, 2, . . . , 13}, then C is the centroid of Pi, Pj, Pk, P`.

11. Is it possible to select 1000 points in a plane so that at least 6000 distances between two of
them are equal?
Answer: Yes.
Solution: Let’s start with configuration of 4 points and 5 distances equal to d, like in this
figure:

(α)
d

Now take (α) and two copies of it obtainable by parallel shifts along vectors ~a and
~b, |~a| = |~b| = d and ∠(~a,~b) = 60◦. Vectors ~a and ~b should be chosen so that no two
vertices of (α) and of the two copies coincide. We get 3 · 4 = 12 points and 3 · 5 + 12 = 27
distances. Proceeding in the same way, we get gradually

• 3 · 12 = 36 points and 3 · 27 + 36 = 117 distances;
• 3 · 36 = 108 points and 3 · 117 + 108 = 459 distances;
• 3 · 108 = 324 points and 3 · 459 + 324 = 1701 distances;
• 3 · 324 = 972 points and 3 · 1701 + 972 = 6075 distances.

12. Let ABCD be a square. Let M be an inner point on side BC and N be an inner point on side
CD with ∠MAN = 45◦. Prove that the circumcentre of AMN lies on AC.
Solution: Draw a circle ω through M, C, N; let it intersect AC at O. We claim that O is
the circumcentre of AMN.

Clearly ∠MON = 180◦ − ∠MCN = 90◦. If the radius of ω is R, then OM =
2R sin 45◦ = R

√
2; similarly ON = R

√
2. Hence we get that OM = ON. Then the circle

with centre O and radius R
√

2 will pass through A, since ∠MAN = 1
2∠MON.

A

B C

D

M

N
O

ω

13. Let ABCD be a rectangle and BC = 2 · AB. Let E be the midpoint of BC and P an arbitrary
inner point of AD. Let F and G be the feet of perpendiculars drawn correspondingly from A to
BP and from D to CP. Prove that the points E, F, P, G are concyclic.
Solution: From rectangular triangle BAP we have BP · BF = AB2 = BE2. Therefore the
circumference through F and P touching the line BC between B and C touches it at E.
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Analogously, the circumference through P and G touching the line BC between B and
C touches it at E. But there is only one circumference touching BC at E and passing
through P.

A

B C

D

E

P

F

G

14. Let ABC be an arbitrary triangle and AMB, BNC, CKA regular triangles outward of
ABC. Through the midpoint of MN a perpendicular to AC is constructed; similarly through the
midpoints of NK resp. KM perpendiculars to AB resp. BC are constructed. Prove that these three
perpendiculars intersect at the same point.
Solution: Let O be the midpoint of MN, and let E and F be the midpoints of AB and BC,
respectively. As triangle MBC transforms into triangle ABN when rotated 60◦ around B
we get MC = AN (it is also a well-known fact). Considering now the quadrangles AMBN
and CMBN we get OE = OF (from Eiler’s formula a2 + b2 + c2 + d2 = e2 + f 2 + 4 · PQ2

or otherwise). As EF ‖ AC we get from this that the perpendicular to AC through O
passes through the circumcentre of EFG, as it is the perpendicular bisector of EF. The
same holds for the other two perpendiculars.

A

B

C

E F

G

M

NO

A

B

C

M

N

K

A1

B1

C1

First solution Second solution
Solution 2: Let us denote the midpoints of the segments MN, NK, KM by B1, C1, A1,
respectively. It is easy to see that triangle A1B1C1 is homothetic to triangle NKM via
the homothety centered at the intersection of the medians of triangle NMK and dilation
− 1

2 . The perpendiculars through M, N, K to AB, BC, CA, respectively, are also the
perpendicular bisectors of these sides, so they intersect in the circumcentre of triangle
ABC. The desired result follows now from the homothety, and we find that that the
common point of intersection is the circumcentre of the image of triangle ABC under the
homothety; that is, the circumcentre of the triangle with vertices the midpoints of the
sides AB, BC, CA.

15. Let P be the intersection point of the diagonals AC and BD in a cyclic quadrilateral. A circle
through P touches the side CD in the midpoint M of this side and intersects the segments BD
and AC in the points Q and R, respectively. Let S be a point on the segment BD such that
BS = DQ. The parallel to AB through S intersects AC at T. Prove that AT = RC.
Solution: With reference to the figure below we have CR ·CP = DQ ·DP = CM2 = DM2,
which is equivalent to RC = DQ·DP

CP . We also have AT
BS = AP

BP = AT
DQ , so AT = AP·DQ

BP . Since
ABCD is cyclic the result now comes from the fact that DP · BP = AP · CP (due to a
well-known theorem).
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A

B C

D

P

Q

RS

T
M

16. Find all pairs of positive integers (a, b) such that a− b is a prime and ab is a perfect square.
Answer: Pairs (a, b) = (( p+1

2 )2, ( p−1
2 )2), where p is a prime greater than 2.

Solution: Let p be a prime such that a− b = p and let ab = k2. Insert a = b + p in the
equation ab = k2. Then

k2 = (b + p)b = (b +
p
2
)2 − p2

4

which is equivalent to

p2 = (2b + p)2 − 4k2 = (2b + p + 2k)(2b + p− 2k).

Since 2b + p + 2k > 2b + p − 2k and p is a prime, we conclude 2b + p + 2k = p2

and 2b + p − 2k = 1. By adding these equations we get 2b + p = p2+1
2 and then

b = ( p−1
2 )2, so a = b + p = ( p+1

2 )2. By checking we conclude that all the solutions are
(a, b) = (( p+1

2 )2, ( p−1
2 )2) with p a prime greater than 2.

Solution 2: Let p be a prime such that a− b = p and let ab = k2. We have (b + p)b = k2,
so gcd(b, b + p) = gcd(b, p) is equal either to 1 or p. If gcd(b, b + p) = p, let b = b1 p.
Then p2b1(b1 + 1) = k2, b1(b1 + 1) = m2, but this equation has no solutions.

Hence gcd(b, b + p) = 1, and

b = u2 b + p = v2

so that p = v2 − u2 = (v + u)(v− u). This in turn implies that v− u = 1 and v + u = p,
from which we finally obtain a =

( p+1
2

)2, b =
( p−1

2

)2, where p must be an odd prime.
17. All the positive divisors of a positive integer n are stored into an array in increasing order.
Mary has to write a program which decides for an arbitrarily chosen divisor d > 1 whether it is a
prime. Let n have k divisors not greater than d. Mary claims that it suffices to check divisibility
of d by the first dk/2e divisors of n: If a divisor of d greater than 1 is found among them, then d
is composite, otherwise d is prime. Is Mary right?
Answer: Yes, Mary is right.
Solution: Let d > 1 be a divisor of n. Suppose Mary’s program outputs “composite” for
d. That means it has found a divisor of d greater than 1. Since d > 1, the array contains
at least 2 divisors of d, namely 1 and d. Thus Mary’s program does not check divisibility
of d by d (the first half gets complete before reaching d) which means that the divisor
found lays strictly between 1 and d. Hence d is composite indeed.

Suppose now d being composite. Let p be its smallest prime divisor; then d
p ≥ p

or, equivalently, d ≥ p2. As p is a divisor of n, it occurs in the array. Let a1, . . . , ak all
divisors of n smaller than p. Then pa1, . . . , pak are less than p2 and hence less than d.
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As a1, . . . , ak are all relatively prime with p, all the numbers pa1, . . . , pak divide n. The
numbers a1, . . . , ak, pa1, . . . , pak are pairwise different by construction. Thus there are at
least 2k + 1 divisors of n not greater than d. So Mary’s program checks divisibility of d
by at least k + 1 smallest divisors of n, among which it finds p, and outputs “composite”.
18. Every integer is coloured with exactly one of the colours blue, green, red, yellow.
Can this be done in such a way that if a, b, c, d are not all 0 and have the same colour, then
3a− 2b 6= 2c− 3d?
Answer: Yes.
Solution: A colouring with the required property can be defined as follows. For a
non-zero integer k let k∗ be the integer uniquely defined by k = 5m · k∗, where m is a
nonnegative integer and 5 - k∗. We also define 0∗ = 0. Two non-zero integers k1, k2
receive the same colour if and only if k∗1 ≡ k∗2 (mod 5); we assign 0 any colour.

Assume a, b, c, d has the same colour and that 3a− 2b = 2c− 3d, which we rewrite as
3a− 2b− 2c + 3d = 0. Dividing both sides by the largest power of 5 which simultaneously
divides a, b, c, d (this makes sense since not all of a, b, c, d are 0), we obtain

3 · 5A · a∗ − 2 · 5B · b∗ − 2 · 5C · c∗ + 3 · 5D · d∗ = 0,

where A, B, C, D are nonnegative integers at least one of which is equal to 0. The above
equality implies

3(5A · a∗ + 5B · b∗ + 5C · c∗ + 5D · d∗) ≡ 0 (mod 5).

Assume a, b, c, d are all non-zero. Then a∗ ≡ b∗ ≡ c∗ ≡ d∗ 6≡ 0 (mod 5). This implies

5A + 5B + 5C + 5D ≡ 0 (mod 5) (1)

which is impossible since at least one of the numbers A, B, C, D is equal to 0. If one or
more of a, b, c, d are 0, we simply omit the corresponding terms from (1), and the same
conclusion holds.
19. Let a and b be positive integers. Prove that if a3 + b3 is the square of an integer, then a + b is
not a product of two different prime numbers.
Solution: Suppose a + b = pq, where p 6= q are two prime numbers. We may assume
that p 6= 3. Since

a3 + b3 = (a + b)(a2 − ab + b2)

is a square, the number a2 − ab + b2 = (a + b)2 − 3ab must be divisible by p and q,
whence 3ab must be divisible by p and q. But p 6= 3, so p | a or p | b; but p | a + b, so
p | a and p | b. Write a = pk, b = p` for some integers k, `. Notice that q = 3, since
otherwise, repeating the above argument, we would have q | a, q | b and a + b > pq). So
we have

3p = a + b = p(k + `)

and we conclude that a = p, b = 2p or a = 2p, b = p. Then a3 + b3 = 9p3 is obviously
not a square, a contradiction.
20. Let n be a positive integer such that the sum of all the positive divisors of n (except n) plus
the number of these divisors is equal to n. Prove that n = 2m2 for some integer m.
Solution: Let t1 < t2 < · · · < ts be all positive odd divisors of n, and let 2k be the
maximal power of 2 that divides n. Then the full list of divisors of n is the following:

t1, . . . , ts, 2t1, . . . , 2ts, . . . , 2kt1, . . . , 2kts.
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Hence,

2n = (2k+1 − 1)(t1 + t2 + · · ·+ ts) + (k + 1)s− 1.

The right-hand side can be even only if both k and s are odd. In this case the number
n/2k has an odd number of divisors and therefore it is equal to a perfect square r2.
Writing k = 2a + 1, we have n = 2kr2 = 2(2ar)2.
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