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Problems and solutions

1. Given a sequence a1, a2, a3, . . . of non-negative real numbers satisfying the conditions

(1) an + a2n ≥ 3n

(2) an+1 + n ≤ 2
√

an · (n + 1)

for all indices n = 1, 2 . . ..

(a) Prove that the inequality an ≥ n holds for every n ∈N.

(b) Give an example of such a sequence.

Solution: (a) Note that the inequality

an+1 + n
2

≥ √an+1 · n

holds, which together with the second condition of the problem gives

√
an+1 · n ≤

√
an · (n + 1).

This inequality simplifies to

an+1

an
≤ n + 1

n
.

Now, using the last inequality for the index n replaced by n, n + 1, . . . , 2n − 1 and
multiplying the results, we obtain

a2n

an
≤ 2n

n
= 2

or 2an ≥ a2n. Taking into account the first condition of the problem, we have

3an = an + 2an ≥ an + a2n ≥ 3n

which implies an ≥ n. (b) The sequence defined by an = n + 1 satisfies all the conditions
of the problem.
2. Let P(x) be a polynomial with non-negative coefficients. Prove that if P( 1

x )P(x) ≥ 1 for
x = 1, then the same inequality holds for each positive x.
Solution: For x > 0 we have P(x) > 0 (because at least one coefficient is non-zero). From
the given condition we have (P(1))2 ≥ 1. Further, let’s denote P(x) = anxn + an−1xn−1 +
· · ·+ a0. Then

P(x)P( 1
x ) = (anxn + · · ·+ a0)(anx−n + · · ·+ a0)

=
n

∑
i=0

a2
i +

n

∑
i=1

i−1

∑
j=0

(ai−jaj)(xi + x−i)

≥
n

∑
i=0

a2
i + 2 ∑

i>j
aiaj

= (P(1))2 ≥ 1.
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3. Let p, q, r be positive real numbers and n ∈N. Show that if pqr = 1, then

1
pn + qn + 1

+
1

qn + rn + 1
+

1
rn + pn + 1

≤ 1.

Solution: The key idea is to deal with the case n = 3. Put a = pn/3, b = qn/3, and
c = rn/3, so abc = (pqr)n/3 = 1 and

1
pn+qn+1 + 1

qn+rn+1 + 1
rn+pn+1 = 1

a3+b3+1 + 1
b3+c3+1 + 1

c3+a3+1 .

Now

1
a3+b3+1 = 1

(a+b)(a2−ab+b2)+1 = 1
(a+b)((a−b)2+ab)+1 ≤

1
(a+b)ab+1 .

Since ab = c−1,

1
a3+b3+1 ≤

1
(a+b)ab+1 = c

a+b+c .

Similarly we obtain

1
b3+c3+1 ≤

a
a+b+c and 1

c3+a3+1 ≤
b

a+b+c .

Hence

1
a3+b3+1 + 1

b3+c3+1 + 1
c3+a3+1 ≤

c
a+b+c + a

a+b+c + b
a+b+c = 1,

which was to be shown.

4. Let x1, x2, . . . , xn be real numbers with arithmetic mean X. Prove that there is a positive
integer K such that the arithmetic mean of each of the lists {x1, x2, . . . , xK}, {x2, x3, . . . , xK},
. . . , {xK−1, xK}, {xK} is not greater than X.
Solution: Suppose the conclusion is false. This means that for every K ∈ {1, 2, . . . , n},
there exists a k ≤ K such that the arithmetic mean of xk, xk+1, . . . , xK exceeds X. We
now define a decreasing sequence b1 ≥ a1 > a1 − 1 = b2 ≥ a2 > · · · as follows: Put
b1 = n, and for each i, let ai be the largest largest k ≤ bi such that the arithmetic mean
of xai , . . . , xbi exceeds X; then put bi+1 = ai − 1 and repeat. Clearly for some m, am = 1.
Now, by construction, each of the sets {xam , . . . , xbm}, {xam−1 , . . . , xbm−1}, . . . , {xa1 , . . . , xb1}
has arithmetic mean strictly greater than X, but then the union {x1, x2, . . . , xn} of these
sets has arithmetic mean strictly greater than X; a contradiction.

5. Determine the range of the function f defined for integers k by

f (k) = (k)3 + (2k)5 + (3k)7 − 6k,

where (k)2n+1 denotes the multiple of 2n + 1 closest to k.
Solution: For odd n we have

(k)n = k +
n− 1

2
−
[
k +

n− 1
2
]

n,

where [m]n denotes the principal remainder of m modulo n. Hence we get

f (k) = 6− [k + 1]3 − [2k + 2]5 − [3k + 3]7.
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The condition that the principal remainders take the values a, b and c, respectively, may
be written

k + 1 ≡ a (mod 3),
2k + 2 ≡ b (mod 5),
3k + 3 ≡ c (mod 7)

or
k ≡ a− 1 (mod 3),
k ≡ −2b− 1 (mod 5),
k ≡ −2c− 1 (mod 7).

By the Chinese Remainder Theorem, these congruences have a solution for any set of
a, b, c. Hence f takes all the integer values between 6− 2− 4− 6 = −6 and 6− 0− 0− 0 =
6. (In fact, this proof also shows that f is periodic with period 3 · 5 · 7 = 105.)
6. A positive integer is written on each of the six faces of a cube. For each vertex of the cube we
compute the product of the numbers on the three adjacent faces. The sum of these products is
1001. What is the sum of the six numbers on the faces?
Solution: Let the numbers on the faces be a1, a2, b1, b2, c1, c2, placed so that a1 and a2
are on opposite faces etc. Then the sum of the eight products is equal to

(a1 + a2)(b1 + b2)(c1 + c2) = 1001 = 7 · 11 · 13.

Hence the sum of the numbers on the faces is a1 + a2 + b1 + b2 + c1 + c2 = 7 + 11 + 13 =
31.
7. Find all sets X consisting of at least two positive integers such that for every pair m, n ∈ X,
where n > m, there exists k ∈ X such that n = mk2.
Answer: The sets {m, m3}, where m > 1.
Solution: Let X be a set satisfying the condition of the problem and let n > m be the
two smallest elements in the set X. There has to exist a k ∈ X so that n = mk2, but as
m ≤ k ≤ n, either k = n or k = m. The first case gives m = n = 1, a contradiction; the
second case implies n = m3 with m > 1.

Suppose there exists a third smallest element q ∈ X. Then there also exists k0 ∈ X,
such that q = mk2

0. We have q > k0 ≥ m, but k0 = m would imply q = n, thus
k0 = n = m3 and q = m7. Now for q and n there has to exist k1 ∈ X such that q = nk2

1,
which gives k1 = m2. Since m2 6∈ X, we have a contradiction.

Thus we see that the only possible sets are those of the form {m, m3} with m > 1,
and these are easily seen to satisfy the conditions of the problem.
8. Let f be a non-constant polynomial with integer coefficients. Prove that there is an integer n
such that f (n) has at least 2004 distinct prime factors.
Solution: Suppose the contrary. Choose an integer n0 so that f (n0) has the highest
number of prime factors. By translating the polynomial we may assume n0 = 0. Setting
k = f (0), we have f (wk2) ≡ k (mod k2), or f (wk2) = ak2 + k = (ak + 1)k. Since
gcd(ak + 1, k) = 1 and k alone achieves the highest number of prime factors of f , we
must have ak + 1 = ±1. This cannot happen for every w since f is non-constant, so we
have a contradiction.
9. A set S of n− 1 natural numbers is given (n ≥ 3). There exists at least two elements in this
set whose difference is not divisible by n. Prove that it is possible to choose a non-empty subset of
S so that the sum of its elements is divisible by n.
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Solution: Suppose to the contrary that there exists a set X = {a1, a2, . . . , an−1} violating
the statement of the problem, and let an−2 6≡ an−1 (mod n). Denote Si = a1 + a2 +
· · ·+ ai, i = 1, . . . , n− 1. The conditions of the problem imply that all the numbers Si
must give different remainders when divided by n. Indeed, if for some j < k we had
Sj ≡ Sk (mod n), then aj+1 + aj+2 + · · ·+ ak = Sk − Sj ≡ 0 (mod n). Consider now the
sum S′ = Sn−3 + an−1. We see that S′ can not be congruent to any of the sums Si (for
i 6= n− 2 the above argument works and for i = n− 2 we use the assumption an−2 6≡ an−1
(mod n)). Thus we have n sums that give pairwise different remainders when divided
by n, consequently one of them has to give the remainder 0, a contradiction.
10. Is there an infinite sequence of prime numbers p1, p2, . . . such that |pn+1 − 2pn| = 1 for each
n ∈N?
Answer: No, there is no such sequence.
Solution: Suppose the contrary. Clearly p3 > 3. There are two possibilities: If p3 ≡ 1
(mod 3) then necessarily p4 = 2p3 − 1 (otherwise p4 ≡ 0 (mod 3)), so p4 ≡ 1 (mod 3).
Analogously p5 = 2p4 − 1, p6 = 2p5 − 1 etc. By an easy induction we have

pn+1 − 1 = 2n−2(p3 − 1), n = 3, 4, 5, . . . .

If we set n = p3 + 1 we have pp3+2 − 1 = 2p3−1(p3 − 1), from which

pp3+2 ≡ 1 + 1 · (p3 − 1) = p3 ≡ 0 (mod p3),

a contradiction. The case p3 ≡ 2 (mod 3) is treated analogously.
11. An m× n table is given, in each cell of which a number +1 or −1 is written. It is known
that initially exactly one −1 is in the table, all the other numbers being +1. During a move, it is
allowed to choose any cell containing −1, replace this −1 by 0, and simultaneously multiply all
the numbers in the neighboring cells by −1 (we say that two cells are neighboring if they have a
common side). Find all (m, n) for which using such moves one can obtain the table containing
zeroes only, regardless of the cell in which the initial −1 stands.
Answer: Those (m, n) for which at least one of m, n is odd.
Solution: Let us erase a unit segment which is the common side of any two cells in
which two zeroes appear. If the final table consists of zeroes only, all the unit segments
(except those which belong to the boundary of the table) are erased. We must erase a
total of

m(n− 1) + n(m− 1) = 2mn−m− n

such unit segments.
On the other hand, in order to obtain 0 in a cell with initial +1 one must first

obtain −1 in this cell, that is, the sign of the number in this cell must change an odd
number of times (namely, 1 or 3). Hence, any cell with −1 (except the initial one) has
an odd number of neighboring zeroes. So, any time we replace −1 by 0 we erase an
odd number of unit segments. That is, the total number of unit segments is congruent
modulo 2 to the initial number of +1’s in the table. Therefore 2mn−m− n ≡ mn− 1
(mod 2), implying that (m− 1)(n− 1) ≡ 0 (mod 2), so at least one of m, n is odd.

It remains to show that if, for example, n is odd, we can obtain a zero table. First,
if −1 is in the i’th row, we may easily make the i’th row contain only zeroes, while its
one or two neighboring rows contain only −1’s. Next, in any row containing only −1’s,
we first change the −1 in the odd-numbered columns (that is, the columns 1, 3, . . . , n)
to zeroes, resulting in a row consisting of alternating 0 and −1 (since the −1’s in the
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even-numbered columns have been changed two times), and we then easily obtain an
entire row of zeroes. The effect of this on the next neighboring row is to create a new
row of −1’s, while the original row is clearly unchanged. In this way we finally obtain a
zero table.
12. There are 2n different numbers in a row. By one move we can interchange any two numbers
or interchange any three numbers cyclically (choose a, b, c and place a instead of b, b instead of c
and c instead of a). What is the minimal number of moves that is always sufficient to arrange the
numbers in increasing order?
Solution: If a number y occupies the place where x should be at the end, we draw an
arrow x → y. Clearly at the beginning all numbers are arranged in several cycles: Loops

• 	 , binary cycles •� • and “long” cycles (at least three numbers). Our aim is

to obtain 2n loops.
Clearly each binary cycle can be rearranged into two loops by one move. If there is a

long cycle with a fragment · · · → a→ b→ c→ · · · , interchange a, b, c cyclically so that
at least two loops, a 	 , b 	 , appear. By each of these moves, the number of loops increase
by 2, so at most n moves are needed.

On the other hand, by checking all possible ways the two or three numbers can
be distributed among disjoint cycles, it is easy to see that each of the allowed moves
increases the number of disjoint cycles by at most two. Hence if the initial situation is
one single loop, at least n moves are needed.
13. The 25 member states of the European Union set up a committee with the following rules:
(1) the committee should meet daily; (2) at each meeting, at least one member state should
be represented; (3) at any two different meetings, a different set of member states should be
represented; and (4) at the n’th meeting, for every k < n, the set of states represented should
include at least one state that was represented at the k’th meeting. For how many days can the
committee have its meetings?
Answer: At most 224 = 16777216 days.
Solution: If one member is always represented, rules 2 and 4 will be fulfilled. There are
224 different subsets of the remaining 24 members, so there can be at least 224 meetings.
Rule 3 forbids complementary sets at two different meetings, so the maximal number
of meetings cannot exceed 1

2 · 225 = 224. So the maximal number of meetings for the
committee is exactly 224 = 16777216.
14. We say that a pile is a set of four or more nuts. Two persons play the following game. They
start with one pile of n ≥ 4 nuts. During a move a player takes one of the piles that they have
and split it into two non-empty subsets (these sets are not necessarily piles, they can contain an
arbitrary number of nuts). If the player cannot move, he loses. For which values of n does the first
player have a winning strategy?
Answer: The first player has a winning strategy when n ≡ 0, 1, 2 (mod 4); otherwise the
second player has a winning strategy.
Solution: Let n = 4k + r, where 0 ≤ r ≤ 3. We will prove the above answer by induction
on k; clearly it holds for k = 1. We are also going to need the following useful fact:

If at some point there are exactly two piles with 4s + 1 and 4t + 1 nuts,
s + t ≤ k, then the second player to move from that point wins.

This holds vacuously when k = 1.
Now assume that we know the answer when the starting pile consists of at most

4k− 1 nuts, and that the useful fact holds for s + t ≤ k. We will prove the answer is
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correct for 4k, 4k + 1, 4k + 2 and 4k + 3, and that the useful fact holds for s + t ≤ k + 1.
For the sake of bookkeeping, we will refer to the first player as A and the second player
as B.

If the pile consists of 4k, 4k + 1 or 4k + 2 nuts, A simply makes one pile consisting
of 4k− 1 nuts, and another consisting of 1, 2 or 3 nuts, respectively. This makes A the
second player in a game starting with 4k− 1 ≡ 3 (mod 4) nuts, so A wins.

Now assume the pile contains 4k + 3 nuts. A can split the pile in two ways: Either
as (4p + 1, 4q + 2) or (4p, 4q + 3). In the former case, if either p or q is 0, B wins by the
above paragraph. Otherwise, B removes one nut from the 4q + 2 pile, making B the
second player in a game where we may apply the useful fact (since p + q = k), so B wins.
If A splits the original pile as (4p, 4q + 3), B removes one nut from the 4p pile, so the
situation is two piles with 4(p− 1) + 3 and 4q + 3 nuts. Then B can use the winning
strategy for the second player just described on each pile seperately, ultimately making B
the winner.

It remains to prove the useful fact when s + t = k + 1. Due to symmetry, there are
two possibilities for the first move: Assume the first player moves (4s + 1, 4t + 1) →
(4s + 1, 4p, 4q + 1). The second player then splits the middle pile into (4p− 1, 1), so the
situation is (4s + 1, 4q + 1, 4p− 1). Since the second player has a winning strategy both
when the initial situtation is (4s + 1, 4q + 1) and when it is 4p− 1, he wins (this also
holds when p = 1).

Now assume the first player makes the move (4s + 1, 4t + 1)→ (4s + 1, 4p + 2, 4q + 3).
If p = 0, the second player splits the third pile as 4q + 3 = (4q + 1) + 2 and wins by the
useful fact. If p > 0, the second player splits the second pile as 4p + 2 = (4p + 1) + 1,
and wins because he wins in each of the situations (4s + 1, 4p + 1) and 4q + 3.

15. A circle is divided into 13 segments, numbered consecutively from 1 to 13. Five fleas called
A, B, C, D and E are sitting in the segments 1, 2, 3, 4 and 5. A flea is allowed to jump to an
empty segment five positions away in either direction around the circle. Only one flea jumps at
the same time, and two fleas cannot be in the same segment. After some jumps, the fleas are back
in the segments 1, 2, 3, 4, 5, but possibly in some other order than they started. Which orders are
possible?
Solution: Write the numbers from 1 to 13 in the order 1, 6, 11, 3, 8, 13, 5, 10, 2, 7, 12, 4,
9. Then each time a flea jumps it moves between two adjacent numbers or between the
first and the last number in this row. Since a flea can never move past another flea, the
possible permutations are

1 3 5 2 4
A C E B D
D A C E B
B D A C E
E B D A C
C E B D A

or equivalently

1 2 3 4 5
A B C D E
D E A B C
B C D E A
E A B C D
C D E A B

that is, exactly the cyclic permutations of the original order.

16. Through a point P exterior to a given circle pass a secant and a tangent to the circle. The
secant intersects the circle at A and B, and the tangent touches the circle at C on the same side of
the diameter thorugh P as A and B. The projection of C on the diameter is Q. Prove that QC
bisects ∠AQB.
Solution: Denoting the centre of the circle by O, we have OQ · OP = OA2 = OB2.
Hence 4OAQ ∼ 4OPA and 4OBQ ∼ 4OPB. Since 4AOB is isosceles, we have
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∠OAP +∠OBP = 180◦, and therefore

∠AQP +∠BQP = ∠AOP +∠OAQ +∠BOP +∠OBQ
= ∠AOP +∠OPA +∠BOP +∠OPB
= 180◦ −∠OAP + 180◦ −∠OBP
= 180◦.

Thus QC, being perpendicular to QP, bisects ∠AQB.
17. Consider a rectangle with side lengths 3 and 4, and pick an arbitrary inner point on each side.
Let x, y, z and u denote the side lengths of the quadrilateral spanned by these points. Prove that
25 ≤ x2 + y2 + z2 + u2 ≤ 50.
Solution: Let a, b, c and d be the distances of the chosen points from the midpoints of
the sides of the rectangle (with a and c on the sides of length 3). Then

x2 + y2 + z2 + u2 = ( 3
2 + a)2 + ( 3

2 − a)2 + ( 3
2 + c)2 + ( 3

2 − c)2

+ (2 + b)2 + (2− b)2 + (2 + d)2 + (2− d)2

= 4 · ( 3
2 )2 + 4 · 22 + 2(a2 + b2 + c2 + d2)

= 25 + 2(a2 + b2 + c2 + d2).

Since 0 ≤ a2, c2 ≤ (3/2)2, 0 ≤ b2, d2 ≤ 22, the desired inequalities follow.
18. A ray emanating from the vertex A of the triangle ABC intersects the side BC at X and the
circumcircle of ABC at Y. Prove that 1

AX + 1
XY ≥

4
BC .

Solution: From the GM-HM inequality we have

1
AX

+
1

XY
≥ 2√

AX · XY
. (1)

As BC and AY are chords intersecting at X we have AX · XY = BX · XC. Therefore (1)
transforms into

1
AX

+
1

XY
≥ 2√

BX · XC
. (2)

We also have
√

BX · XC ≤ BX + XC
2

=
BC
2

,

so from (2) the result follows.
19. D is the midpoint of the side BC of the given triangle ABC. M is a point on the side BC
such that ∠BAM = ∠DAC. L is the second intersection point of the circumcircle of the triangle
CAM with the side AB. K is the second intersection point of the circumcircle of the triangle
BAM with the side AC. Prove that KL ‖ BC.
Solution: It is sufficient to prove that CK : LB = AC : AB.

The triangles ABC and MKC are similar beacuse they have common angle C and
∠CMK = 180◦ − ∠BMK = ∠KAB (the latter equality is due to the observation that
∠BMK and ∠KAB are the opposite angles in the insecribed quadrilateral AKMB).

By analogous reasoning the triangles ABC and MBL are similar. Therefore the
triangles MKC and MBL are also similar and we have

CK
LB

=
KM
BM

=
AM sin KAM

sin AKM
AM sin MAB

sin MBA

=
sin KAM
sin MAB

=
sin DAB
sin DAC

=
BD sin BDA

AB
CD sin CDA

AC

=
AC
AB

.
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The second equality is due to the sinus theorem for triangles AKM and ABM; the third
is due to the equality ∠AKM = 180◦ −∠MBA in the inscribed quadrilateral AKMB; the
fourth is due to the definition of the point M; and the fifth is due to the sinus theorem
for triangles ACD and ABD.
20. Three circular arcs w1, w2, w3 with common endpoints A and B are on the same side of
the line AB; w2 lies between w1 and w3. Two rays emanating from B intersect these arcs at
M1, M2, M3 and K1, K2, K3, respectively. Prove that M1 M2

M2 M3
= K1K2

K2K3
.

Solution: From inscribed angles we have ∠AK1B = ∠AM1B and ∠AK2B = ∠AM2B.
From this it follows that 4AK1K2 ∼ 4AM1M2, so

K1K2

M1M2
=

AK2

AM2
.

Similarly 4AK2K3 ∼ 4AM2M3, so

K2K3

M2M3
=

AK2

AM2
.

From these equations we get K1K2
M1 M2

= K2K3
M2 M3

, from which the desired property follows.

A B

w1

w2

w3

K1

K2

K3

M1

M2

M3
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