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Problems and solutions

1. For a sequence a1, a2, a3, . . . of real numbers it is known that

an = an−1 + an+2 for n = 2, 3, 4, . . . .

What is the largest number of its consecutive elements that can all be positive?
Answer: 5.
Solution: The initial segment of the sequence could be 1; 2; 3; 1; 1; −2; 0. Clearly it is
enough to consider only initial segments. For each sequence the first 6 elements are a1; a2;
a3; a2− a1; a3− a2; a2− a1− a3. As we see, a1 + a5 + a6 = a1 + (a3− a2) + (a2− a1− a3) =
0. So all the elements a1, a5, a6 can not be positive simultaneously.
2. Suppose that the real numbers ai ∈ [−2, 17], i = 1, 2, . . . , 59, satisfy a1 + a2 + · · ·+ a59 = 0.
Prove that

a2
1 + a2

2 + · · ·+ a2
59 ≤ 2006.

Solution: For convenience denote m = −2 and M = 17. Then(
ai −

m + M
2

)2
≤
(M−m

2

)2
,

because m ≤ ai ≤ M. So we have

59

∑
i=1

(
ai −

m + M
2

)2
= ∑

i
a2

i + 59 ·
(m + M

2

)2
− (m + M) ∑

i
ai

≤ 59 ·
(M−m

2

)2
,

and thus

∑
i

a2
i ≤ 59 ·

((M−m
2

)2
−
(m + M

2

)2
)

= −59 ·m ·M = 2006.

3. Prove that for every polynomial P(x) with real coefficients there exist a positive integer m and
polynomials P1(x), P2(x), . . . , Pm(x) with real coefficients such that

P(x) =
(

P1(x)
)3 +

(
P2(x)

)3 + · · ·+
(

Pm(x)
)3.

Solution: We will prove by induction on the degree of P(x) that all polynomials can be
represented as a sum of cubes. This is clear for constant polynomials. Now we proceed
to the inductive step. It is sufficient to show that if P(x) is a polynomial of degree n,
then there exist polynomials Q1(x), Q2(x), . . ., Qr(x) such that the polynomial

P(x)− (Q1(x))3 − (Q2(x))3 − · · · − (Qr(x))3

has degree at most n− 1. Assume that the coefficient of xn in P(x) is equal to c. We
consider three cases: If n = 3k, we put r = 1, Q1(x) = 3

√
cxk; if n = 3k + 1 we put r = 3,

Q1(x) = 3

√
c
6

xk(x− 1), Q2(x) = 3

√
c
6

xk(x + 1), Q3(x) = − 3

√
c
3

xk+1;
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and if n = 3k + 2 we put r = 2 and

Q1(x) = 3

√
c
3

xk(x + 1), Q2(x) = − 3

√
c
3

xk+1.

This completes the induction.

4. Let a, b, c, d, e, f be non-negative real numbers satisfying a + b + c + d + e + f = 6. Find
the maximal possible value of

abc + bcd + cde + de f + e f a + f ab

and determine all 6-tuples (a, b, c, d, e, f ) for which this maximal value is achieved.
Answer: 8.
Solution: If we set a = b = c = 2, d = e = f = 0, then the given expression is equal to 8.
We will show that this is the maximal value. Applying the inequality between arithmetic
and geometric mean we obtain

8 =
( (a + d) + (b + e) + (c + f )

3

)3
≥ (a + d)(b + e)(c + f )

= (abc + bcd + cde + de f + e f a + f ab) + (ace + bd f ),

so we see that abc + bcd + cde + de f + e f a + f ab ≤ 8 and the maximal value 8 is achieved
when a + d = b + e = c + f (and then the common value is 2 because a + b + c + d +
e + f = 6) and ace = bd f = 0, which can be written as (a, b, c, d, e, f ) = (a, b, c, 2− a, 2−
b, 2− c) with ac(2− b) = b(2− a)(2− c) = 0. From this it follows that (a, b, c) must
have one of the forms (0, 0, t), (0, t, 2), (t, 2, 2), (2, 2, t), (2, t, 0) or (t, 0, 0). Therefore the
maximum is achieved for the 6-tuples (a, b, c, d, e, f ) = (0, 0, t, 2, 2, 2− t), where 0 ≤ t ≤ 2,
and its cyclic permutations.

5. An occasionally unreliable professor has devoted his last book to a certain binary operation ∗.
When this operation is applied to any two integers, the result is again an integer. The operation is
known to satisfy the following axioms:

(a) x ∗ (x ∗ y) = y for all x, y ∈ Z;

(b) (x ∗ y) ∗ y = x for all x, y ∈ Z.

The professor claims in his book that

(C1) the operation ∗ is commutative: x ∗ y = y ∗ x for all x, y ∈ Z.

(C2) the operation ∗ is associative: (x ∗ y) ∗ z = x ∗ (y ∗ z) for all x, y, z ∈ Z.

Which of these claims follow from the stated axioms?
Answer: (C1) is true; (C2) is false.
Solution: Write (x, y, z) for x ∗ y = z. So the axioms can be formulated as

(x, y, z) =⇒ (x, z, y) (1)
(x, y, z) =⇒ (z, y, x). (2)

(C1) is proved by the sequence (x, y, z)
(2)

=⇒ (z, y, x)
(1)

=⇒ (z, x, y)
(2)

=⇒ (y, x, z).
A counterexample for (C2) is the operation x ∗ y = −(x + y).
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6. Determine the maximal size of a set of positive integers with the following properties:

(1) The integers consist of digits from the set {1, 2, 3, 4, 5, 6}.
(2) No digit occurs more than once in the same integer.

(3) The digits in each integer are in increasing order.

(4) Any two integers have at least one digit in common (possibly at different positions).

(5) There is no digit which appears in all the integers.

Answer: 32.
Solution: Associate with any ai the set Mi of its digits. By (??), (??) and (??) the numbers
are uniquely determined by their associated subsets of {1, 2, . . . , 6}. By (??) the sets are
intersecting. Partition the 64 subsets of {1, 2, . . . , 6} into 32 pairs of complementary sets
(X, {1, 2, . . . , 6} − X). Obviously, at most one of the two sets in such a pair can be a Mi,
since the two sets are non-intersecting. Hence, n ≤ 32. Consider the 22 subsets with at
least four elements and the 10 subsets with three elements containing 1. Hence, n = 32.
7. A photographer took some pictures at a party with 10 people. Each of the 45 possible pairs of
people appears together on exactly one photo, and each photo depicts two or three people. What is
the smallest possible number of photos taken?
Answer: 19.
Solution: Let x be the number of triplet photos (depicting three people, that is, three
pairs) and let y be the number of pair photos (depicting two people, that is, one pair).
Then 3x + y = 45.

Each person appears with nine other people, and since 9 is odd, each person appears
on at least one pair photo. Thus y ≥ 5, so that x ≤ 13. The total number of photos is
x + y = 45− 2x ≥ 45− 2 · 13 = 19.

On the other hand, 19 photos will suffice. We number the persons 0, 1, . . . , 9, and will
proceed to specify 13 triplet photos. We start with making triplets without common pairs
of the persons 1–8:

123, 345, 567, 781

Think of the persons 1–8 as arranged in order around a circle. Then the persons in each
triplet above are separated by at most one person. Next we make triplets containing 0,
avoiding previously mentioned pairs by combining 0 with two people among the persons
1–8 separated by two persons:

014, 085, 027, 036

Then we make triplets containing 9, again avoiding previously mentioned pairs by
combining 9 with the other four possibilities of two people among 1–8 being separated
by two persons:

916, 925, 938, 947

Finally, we make our last triplet, again by combining people from 1–8: 246. Here 2 and
4, and 4 and 6, are separated by one person, but those pairs were not accounted for in
the first list, whereas 2 and 6 are separated by three persons, and have not been paired
before. We now have 13 photos of 39 pairs. The remaining 6 pairs appear on 6 pair
photos.
Remark: This problem is equivalent to asking how many complete 3-graphs can be
packed (without common edges) into a complete 10-graph.

3



8. The director has found out that six conspiracies have been set up in his department, each of
them involving exactly three persons. Prove that the director can split the department in two
laboratories so that none of the conspirative groups is entirely in the same laboratory.
Solution: Let the department consist of n persons. Clearly n > 4 (because (4

3) < 6). If
n = 5, take three persons who do not make a conspiracy and put them in one laboratory,
the other two in another. If n = 6, note that (6

3) = 20, so we can find a three-person set
such that neither it nor its complement is a conspiracy; this set will form one laboratory.
If n ≥ 7, use induction. We have (n

2) ≥ (7
2) = 21 > 6 · 3, so there are two persons A and B

who are not together in any conspiracy. Replace A and B by a new person AB and use
the inductive hypothesis; then replace AB by initial persons A and B.

9. To every vertex of a regular pentagon a real number is assigned. We may perform the following
operation repeatedly: we choose two adjacent vertices of the pentagon and replace each of the two
numbers assigned to these vertices by their arithmetic mean. Is it always possible to obtain the
position in which all five numbers are zeroes, given that in the initial position the sum of all five
numbers is equal to zero?
Answer: No.
Solution: We will show that starting from the numbers − 1

5 , − 1
5 , − 1

5 , − 1
5 , 4

5 we cannot
get five zeroes. By adding 1

5 to all vertices we see that our task is equivalent to showing
that beginning from numbers 0, 0, 0, 0, 1 and performing the same operations we can
never get five numbers 1

5 . This we prove by noticing that in the initial position all the
numbers are “binary rational” – that is, of the form k

2m , where k is an integer and m is
a non-negative integer – and an arithmetic mean of two binary rationals is also such a
number, while the number 1

5 is not of such form.

10. 162 pluses and 144 minuses are placed in a 30× 30 table in such a way that each row and
each column contains at most 17 signs. (No cell contains more than one sign.) For every plus we
count the number of minuses in its row and for every minus we count the number of pluses in its
column. Find the maximum of the sum of these numbers.
Answer: 1296 = 72 · 18.
Solution: In the statement of the problem there are two kinds of numbers: “horizontal”
(that has been counted for pluses) and “vertical” (for minuses). We will show that the
sum of numbers of each type reaches its maximum on the same configuration.

We restrict our attention to the horizontal numbers only. Consider an arbitrary row.
Let it contains p pluses and m minuses, m + p ≤ 17. Then the sum that has been counted
for pluses in this row is equal to mp. Let us redistribute this sum between all signs in the
row. More precisely, let us write the number mp/(m + p) in every nonempty cell in the
row. Now the whole “horizontal” sum equals to the sum of all 306 written numbers.

Now let us find the maximal possible contribution of each sign in this sum. That is, we
ask about maximum of the expression f (m, p) = mp/(m + p) where m + p ≤ 17. Remark
that f (m, p) is an increasing function of m. Therefore if m + p < 17 then increasing of m
will also increase the value of f (m, p). Now if m + p = 17 then f (m, p) = m(17−m)/17
and, obviously, it has maximum 72/17 when m = 8 or m = 9.

So all the 306 summands in the horizontal sum will be maximal if we find a config-
uration in which every non-empty row contains 9 pluses and 8 minuses. The similar
statement holds for the vertical sum. In order to obtain the desired configuration take
a square 18× 18 and draw pluses on 9 generalized diagonals and minuses on 8 other
generalized diagonals (the 18th generalized diagonal remains empty).

11. The altitudes of a triangle are 12, 15 and 20. What is the area of the triangle?
Answer: 150.
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Solution: Denote the sides of the triangle by a, b and c and its altitudes by ha, hb and
hc. Then we know that ha = 12, hb = 15 and hc = 20. By the well known relation
a : b = hb : ha it follows b = ha

hb
a = 12

15 a = 4
5 a. Analogously, c = ha

hc
a = 12

20 a = 3
5 a. Thus

half of the triangle’s circumference is s = 1
2 (a + b + c) = 1

2

(
a + 4

5 a + 3
5 a
)

= 6
5 a. For the

area ∆ of the triangle we have ∆ = 1
2 aha = 1

2 a 12 = 6a, and also by the well known Heron

formula ∆ =
√

s(s− a)(s− b)(s− c) =
√

6
5 a · 1

5 a · 2
5 a · 3

5 a =
√

62

54 a4 = 6
25 a2. Hence,

6a = 6
25 a2, and we get a = 25 (b = 20, c = 15) and consequently ∆ = 150.

12. Let ABC be a triangle, let B1 be the midpoint of the side AB and C1 the midpoint of the
side AC. Let P be the point of intersection, other than A, of the circumscribed circles around the
triangles ABC1 and AB1C. Let P1 be the point of intersection, other than A, of the line AP with
the circumscribed circle around the triangle AB1C1. Prove that 2AP = 3AP1.
Solution: Since ∠PBB1 = ∠PBA = 180◦ −∠PC1A = ∠PC1C and ∠PCC1 = ∠PCA =
180◦ − ∠PB1A = ∠PB1B it follows that 4PBB1 is similar to 4PC1C. Let B2 and C2
be the midpoints of BB1 and CC1 respectively. It follows that ∠BPB2 = ∠C1PC2 and
hence ∠B2PC2 = ∠BPC1 = 180◦ −∠BAC, which implies that AB2PC2 lie on a circle. By
similarity it is now clear that AP/AP1 = AB2/AB1 = AC2/AC1 = 3/2.

A B

C

B1

C1

P

P1

B2

C2

13. In a triangle ABC, points D, E lie on sides AB, AC respectively. The lines BE and CD
intersect at F. Prove that if

BC2 = BD · BA + CE · CA,

then the points A, D, F, E lie on a circle.
Solution: Let G be a point on the segment BC determined by the condition BG · BC =
BD · BA. (Such a point exists because BD · BA < BC2.) Then the points A, D, G, C lie on
a circle. Moreover, we have

CE · CA = BC2 − BD · BA = BC · (BG + CG)− BC · BG = CB · CG,

hence the points A, B, G, E lie on a circle as well. Therefore

∠DAG = ∠DCG, ∠EAG = ∠EBG,

which implies that

∠DAE + ∠DFE = ∠DAG + ∠EAG + ∠BFC
= ∠DCG + ∠EBG + ∠BFC.

But the sum on the right side is the sum of angles in4BFC. Thus ∠DAE +∠DFE = 180◦,
and the desired result follows.
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14. There are 2006 points marked on the surface of a sphere. Prove that the surface can be cut into
2006 congruent pieces so that each piece contains exactly one of these points inside it.
Solution: Choose a North Pole and a South Pole so that no two points are on the same
parallel and no point coincides with either pole. Draw parallels through each point.
Divide each of these parallels into 2006 equal arcs so that no point is the endpoint of
any arc. In the sequel, “to connect two points” means to draw the smallest arc of the
great circle passing through these points. Denote the points of division by Ai,j, where
i is the number of the parallel counting from North to South (i = 1, 2, . . . , 2006), and
Ai,1, Ai,2, . . . , Ai,2006 are the points of division on the i’th parallel, where the numbering
is chosen such that the marked point on the i’th parallel lies between Ai,i and Ai,i+1.

Consider the lines connecting gradually

N − A1,1 − A2,1 − A3,1 − · · · − A2006,1 − S
N − A1,2 − A2,2 − A3,2 − · · · − A2006,2 − S

...
N − A1,2006 − A2,2006 − A3,2006 − · · · − A2006,2006 − S

These lines divide the surface of the sphere into 2006 parts which are congruent by
rotation; each part contains one of the given points.

15. Let the medians of the triangle ABC intersect at the point M. A line t through M intersects
the circumcircle of ABC at X and Y so that A and C lie on the same side of t. Prove that
BX · BY = AX · AY + CX · CY.
Solution: Let us start with a lemma: If the diagonals of an inscribed quadrilateral ABCD
intersect at O, then AB·BC

AD·DC = BO
OD . Indeed,

AB · BC
AD · DC

=
1
2 AB · BC · sin B

1
2 AD · DC · sin D

=
area(ABC)
area(ADC)

=
h1

h2
=

BO
OD

.

A

B

C

D

O
h1

h2

A C

B

MR S

X

Y

Now we have (from the lemma) AX·AY
BX·BY = AR

RB and CX·CY
BX·BY = CS

SB , so we have to prove
AR
RB + CS

SB = 1.
Suppose at first that the line RS is not parallel to AC. Let RS intersect AC at K

and the line parallel to AC through B at L. So AR
RB = AK

BL and CS
SB = CK

BL ; we must prove
that AK + CK = BL. But AK + CK = 2KB1, and BL = BM

MB1
· KB1 = 2KB1, completing the

proof.
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A C

B

B1
K

L

M
R

S

If RS ‖ AC, the conclusion is trivial.
16. Are there four distinct positive integers such that adding the product of any two of them to
2006 yields a perfect square?
Answer: No, there are no such integers.
Solution: Suppose there are such integers. Let us consider the situation modulo 4. Then
each square is 0 or 1. But 2006 ≡ 2 (mod 4). So the product of each two supposed
numbers must be 2 (mod 4) or 3 (mod 4). From this it follows that there are at least
three odd numbers (because the product of two even numbers is 0 (mod 4)). Two of
these odd numbers are congruent modulo 4, so their product is 1 (mod 4), which is a
contradiction.
17. Determine all positive integers n such that 3n + 1 is divisible by n2.
Answer: Only n = 1 satisfies the given condition.
Solution: First observe that if n2 | 3n + 1, then n must be odd, because if n is even, then
3n is a square of an odd integer, hence 3n + 1 ≡ 1 + 1 = 2 (mod 4), so 3n + 1 cannot be
divisible by n2 which is a multiple of 4.

Assume that for some n > 1 we have n2 | 3n + 1. Let p be the smallest prime divisor
of n. We have shown that p > 2. It is also clear that p 6= 3, since 3n + 1 is never divisible
by 3. Therefore p ≥ 5. We have p | 3n + 1, so also p | 32n − 1. Let k be the smallest
positive integer such that p | 3k − 1. Then we have k | 2n, but also k | p− 1 by Fermat’s
theorem. The numbers 31 − 1, 32 − 1 do not have prime divisors other than 2, so p ≥ 5
implies k ≥ 3. This means that gcd(2n, p− 1) ≥ k ≥ 3, and therefore gcd(n, p− 1) > 1,
which contradicts the fact that p is the smallest prime divisor of n. This completes the
proof.
18. For a positive integer n let an denote the last digit of n(nn). Prove that the sequence (an) is
periodic and determine the length of the minimal period.
Solution: Let bn and cn denote the last digit of n and nn, respectively. Obviously, if
bn = 0, 1, 5, 6, then cn = 0, 1, 5, 6 and an = 0, 1, 5, 6, respectively.

If bn = 9, then nn ≡ 1 (mod 2) and consequently an = 9. If bn = 4, then nn ≡ 0
(mod 2) and consequently an = 6.

If bn = 2, 3, 7, or 8, then the last digits of nm run through the periods: 2− 4− 8− 6,
3− 9− 7− 1, 7− 9− 3− 1 or 8− 4− 2− 6, respectively. If bn = 2 or bn = 8, then nn ≡ 0
(mod 4) and an = 6.

In the remaining cases bn = 3 or bn = 7, if n ≡ ±1 (mod 4), then so is nn.
If bn = 3, then n ≡ 3 (mod 20) or n ≡ 13 (mod 20) and nn ≡ 7 (mod 20) or nn ≡ 13

(mod 20), so an = 7 or an = 3, respectively.
If bn = 7, then n ≡ 7 (mod 20) or n ≡ 17 (mod 20) and nn ≡ 3 (mod 20) or nn ≡ 17

(mod 20), so an = 3 or an = 7, respectively.
Finally, we conclude that the sequence (an) has the following period of length 20:

1− 6− 7− 6− 5− 6− 3− 6− 9− 0− 1− 6− 3− 6− 5− 6− 7− 6− 9− 0
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19. Does there exist a sequence a1, a2, a3, . . . of positive integers such that the sum of every n
consecutive elements is divisible by n2 for every positive integer n?
Answer: Yes. One such sequence begins 1, 3, 5, 55, 561, 851, 63253, 110055,. . ..
Solution: We will show that whenever we have positive integers a1, . . . , ak such that
n2 | ai+1 + · · ·+ ai+n for every n ≤ k and i ≤ k− n, then it is possible to choose ak+1 such
that n2 | ai+1 + · · ·+ ai+n for every n ≤ k + 1 and i ≤ k + 1− n. This directly implies the
positive answer to the problem because we can start constructing the sequence from any
single positive integer.

To obtain the necessary property, it is sufficient for ak+1 to satisfy

ak+1 ≡ −(ak−n+2 + · · ·+ ak) (mod n2)

for every n ≤ k + 1. This is a system of k + 1 congruences.
Note first that, for any prime p and positive integer l such that pl ≤ k + 1, if the

congruence with module p2l is satisfied then also the congruence with module p2(l−1)

is satisfied. To see this, group the last pl elements of a1, . . . , ak+1 into p groups of
pl−1 consecutive elements. By choice of a1, . . . , ak, the sums computed for the first
p − 1 groups are all divisible by p2(l−1). By assumption, the sum of the elements in
all p groups is divisible by p2l . Hence the sum of the remaining pl−1 elements, that is
ak−pl−1+2 + · · ·+ ak+1, is divisible by p2(l−1).

Secondly, note that, for any relatively prime positive integers c, d such that cd ≤ k + 1,
if the congruences both with module c2 and module d2 hold then also the congruence
with module (cd)2 holds. To see this, group the last cd elements of a1, . . . , ak+1 into d
groups of c consecutive elements, as well as into c groups of d consecutive elements.
Using the choice of a1, . . . , ak and the assumption together, we get that the sum of the
last cd elements of a1, . . . , ak+1 is divisible by both c2 and d2. Hence this sum is divisible
by (cd)2.

The two observations let us reject all congruences except for the ones with module
being the square of a prime power pl such that pl+1 > k + 1. The resulting system
has pairwise relatively prime modules and hence possesses a solution by the Chinese
Remainder Theorem.
20. A 12-digit positive integer consisting only of digits 1, 5 and 9 is divisible by 37. Prove that
the sum of its digits is not equal to 76.
Solution: Let N be the initial number. Assume that its digit sum is equal to 76.

The key observation is that 3 · 37 = 111, and therefore 27 · 37 = 999. Thus we have
a divisibility test similar to the one for divisibility by 9: for x = an103n + an−1103(n−1) +
· · ·+ a1103 + a0, we have x ≡ an + an−1 + · · ·+ a0 (mod 37). In other words, if we take
the digits of x in groups of three and sum these groups, we obtain a number congruent
to x modulo 37.

The observation also implies that A = 111 111 111 111 is divisible by 37. Therefore
the number N − A is divisible by 37, and since it consists of the digits 0, 4 and 8, it is
divisible by 4. The sum of the digits of N− A equals 76− 12 = 64. Therefore the number
1
4 (N − A) contains only the digits 0, 1, 2; it is divisible by 37; and its digits sum up to 16.
Applying our divisibility test to this number, we sum four three-digit groups consisting
of the digits 0, 1, 2 only. No digits will be carried, and each digit of the sum S is at
most 8. Also S is divisible by 37, and its digits sum up to 16. Since S ≡ 16 ≡ 1 (mod 3)
and 37 ≡ 1 (mod 3), we have S/37 ≡ 1 (mod 3). Therefore S = 37(3k + 1), that is, S
is one of 037, 148, 259, 370, 481, 592, 703, 814, 925; but each of these either contains the
digit 9 or does not have a digit sum of 16.

8


