
Problems and Solutions

Problem 1 –SPB–

The numbers from 1 to 360 are partitioned into 9 subsets of consecutive integers and
the sums of the numbers in each subset are arranged in the cells of a 3 × 3 square.
Is it possible that the square turns out to be a magic square?

Remark: A magic square is a square in which the sums of the numbers in each
row, in each column and in both diagonals are all equal.

Answer: Yes.
Solution 1. If the numbers a1, a2, . . . , a9 form a 3 × 3 magic square, then the

numbers a1 + d, a2 + d, . . . , a9 + d form a 3 × 3 magic square, too. Hence it is
sufficient to divide all the numbers into parts with equal numbers of elements: i.e.
from 40k + 1 to 40(k + 1), k = 0, 1, . . . , 8. Then we need to arrange the least
numbers of these parts (i.e. the numbers 1, 41, 81, . . . , 321) in the form of a magic
square (we omit here an example, it is similar to the magic square with numbers 1,
2, . . . , 9). After that all other numbers 1 + s, 41 + s, . . . , 321 + s will also form a
magic square (s = 1, . . . , 39), and so do the whole sums.

Solution 2. Distribute the numbers into nine parts 40k+1, 40k+2, . . . , 40k+40,
k = 0, 2, . . . , 8. Note that the sums of these parts form an arithmetic progression:
the sums are (40k + 1 + 40k + 40) · 20 = 1600k + 820, k = 0, 1, . . . , 8. It remains
to construct a magic square of the numbers of the progression 820, 2420, . . . , 13620
as follows. Start from an initial magic square with 0, 1, . . . , 8 (or similar), multiply
all members by 1600 (this is again a magic square) and add 820 to every member
(again a magic square).

Problem 2 –FIN–

Let a, b, c be real numbers. Prove that

ab+ bc + ca+max{|a− b|, |b− c|, |c− a|} ≤ 1 +
1

3
(a+ b+ c)2.

Solution 1. We may assume a ≤ b ≤ c, whence max{|a−b|, |b−c|, |c−a|} = c−a.
The initial inequality is equivalent to

c− a ≤ 1 +
1

3
(a2 + b2 + c2 − ab− bc− ac)

which in turn is equivalent to

c− a ≤ 1 +
1

6

(

(a− c)2 + (b− c)2 + (a− b)2
)

.

Since
√

(c−b)2+(b−a)2
2

≥ c−a
2

, we have

(a− c)2 + (b− c)2 + (a− b)2 ≥ 3

2
(c− a)2
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and hence

1 +
1

6

(

(a− c)2 + (b− c)2 + (a− b)2
)

≥ 1 +
1

4
(c− a)2 ≥ c− a

as desired.
Solution 2. Assume a ≤ b ≤ c. By the well-known inequality xy + yz + zx ≤

x2 + y2 + z2 (it can be shown by 2xy ≤ x2 + y2, etc., and adding all three such
inequalities) we have

ab+bc+ca−a+c−1 = (a+1)b+b(c−1)+(a+1)(c−1) ≤ (a+1)2+b2+(c−1)2

= a2 + b2 + c2 + 2(a− c+ 1) = (a + b+ c)2 − 2(ab+ bc + ca+ c− a− 1) (2)

or

ab+ bc+ ca + c− a ≤ 1 +
1

3
(a+ b+ c)2.

Solution 3. Assume a ≤ b ≤ c and take c = a + x, b = a + y, where x ≥ y ≥ 0.
The inequality 3(ab+ bc + ca+ c− a− 1) ≤ (a + b+ c)2 then reduces to

x2 − xy + y2 + 3 ≥ 3x.

The latter inequality is equivalent to the inequality

(x

2
− y

)2

+
3

4
x2 − 3x+ 3 ≥ 0

which in turn is equivalent to the inequality

4

3

(x

2
− y

)2

+ (x− 2)2 ≥ 0.

Remark 1. The inequality x2 − 3x − xy + y2 + 3 ≥ 0 can also be proven by
noticing that the discriminant of the LHS, (y + 3)2 − 4(y2 + 3) = −3(y − 1)2, is
non-positive. Since the quadratic polynomial in x has positive leading coefficient,
its all values are non-negative.

Remark 2. Another way to prove the inequality x2− 3x− xy + y2 + 3 ≥ 0 is, by
AM-GM, the following:

3x+ xy =

√

(√
2x

)2
(

3√
2
+

y√
2

)2

≤
(√

2x
)2

+
(

3√
2
+ y√

2

)2

2

= x2 +
9

4
+

3

2
y +

y2

4
= 3 + x2 + y2 − 3

4
(y − 1)2 ≤ 3 + x2 + y2.

Solution 4. Assume a ≤ b ≤ c and take a = b− k, c = b+ l, where k, l ≥ 0. The
inequality 3(ab+ bc+ ca + c− a− 1) ≤ (a+ b+ c)2 then reduces to

k2 + l2 + kl − 3l − 3k + 3 ≥ 0.

This is equivalent to

(k − 1)2 + (l − 1)2 + (k − 1)(l − 1) ≥ 0,
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which holds, since x2 + y2 + xy ≥ 0 for all real numbers x, y.
Remark. The inequality k2 + l2 + kl − 3l − 3k + 3 ≥ 0 can also be proven by

separating perfect squares as

1

4
(k − l)2 +

3

4
(k + l)2 − 3 · (k + l) + 3 ≥ 0

which is in turn similar to

(k − l)2 + 3(k + l − 2)2 ≥ 0.

Solution 5. Assume a ≤ b ≤ c. Expand the inequality 3(ab+bc+ca+c−a−1) ≤
(a + b + c)2 fully to obtain a2 + b2 + c2 − ab − ac − bc + 3a − 3c + 3 ≥ 0. Now fix
α ∈ R and consider the set

γ = {(a, b, c) : a2 + b2 + c2 − ab− ac− bc + 3a− 3c+ 3 + α = 0}.

Note that γ is a quadric. Its invariants are

δ =

∣

∣

∣

∣

∣

∣

1 −1
2
−1

2

−1
2

1 −1
2

−1
2
−1

2
1

∣

∣

∣

∣

∣

∣

= 0, ∆ =

∣

∣

∣

∣

∣

∣

∣

∣

1 −1
2
−1

2
3
2

−1
2

1 −1
2

0
−1

2
−1

2
1 −3

2
3
2

0 −3
2

3 + α

∣

∣

∣

∣

∣

∣

∣

∣

= 0, S = 3 ·
∣

∣

∣

∣

1 −1
2

−1
2

1

∣

∣

∣

∣

=
9

4
,

and

K =

∣

∣

∣

∣

∣

∣

1 −1
2

3
2

−1
2

1 0
3
2

0 3 + α

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

1 −1
2

3
2

−1
2

1 −3
2

3
2

−3
2

3 + α

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

1 −1
2

0
−1

2
1 −3

2

0 −3
2

3 + α

∣

∣

∣

∣

∣

∣

=
9α

4
.

In the case α > 0, it is known from the theory of quadrics that the surface γ is an
imaginary elliptic cylinder (δ = ∆ = 0, S > 0, and K > 0) and therefore contains
no real points. Hence the condition a2 + b2 + c2− ab− ac− bc+3a− 3c+3+α = 0
implies that α ≤ 0, therefore

a2 + b2 + c2 − ab− ac− bc + 3a− 3c+ 3 = −α ≥ 0,

as desired.
Solution 6. We start as in Solution 5: construct the quadric

γ = {(a, b, c) : a2 + b2 + c2 − ab− ac− bc + 3a− 3c+ 3 + α = 0}.

Now note that the substitution






a = 2x − y + 2z,
b = 2y + 2z,
c = −2x − y + 2z

gives (in the new coordinate system)

γ = {(x, y, z) : 12x2 + 9y2 + 12x+ 3 + α = 0}.
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(The columns of the coefficient matrix C =





2 −1 2
0 2 2
−2 −1 2



 of the substitution are

in fact the orthogonalized eigenvectors of





1 −1
2
−1

2

−1
2

1 −1
2

−1
2
−1

2
1



.) Since

12x2 + 9y2 + 12x+ 3 + α = 3(2x+ 1)2 + 9y2 + α,

it is clear that in the case α > 0, the set γ is void.
Remark 1. Solutions 5 and 6 are presented here for instructive purposes only.
Remark 2. Solutions 3, 4, and 6 suggest also general substitutions in the initial

equation that directly leave the inequality in the form of sum of squares. Let these
substitutions be mentioned here.

• Solution 3 suggests T = a−2b+c
2

, U = c − a − 2, and reduces the original
inequality to 4

3
T 2 + U2 ≥ 0;

• solution 4 together with its remark suggests T = 2b − a − c, U = c − a − 2,
and reduces the original inequality to T 2 + 3U2 ≥ 0;

• solution 6 suggests U = a−c
2

+ 1, T = −a+2b−c
6

, and reduces the original in-
equality to 3U2 + 9T 2 ≥ 0.

Hence, up to scaling, all these three solutions are essentially the same.

Problem 3 –DEN–

a) Show that the equation
⌊x⌋(x2 + 1) = x3, (3)

where ⌊x⌋ denotes the largest integer not larger than x, has exactly one real solution
in each interval between consecutive positive integers.
b) Show that none of the positive real solutions of this equation is rational.

Solution. a) Let k = ⌊x⌋ and y = x− k. Then the equation becomes

k((k + y)2 + 1) = (k + y)3 ,

which reduces to
y(k + y)2 = k .

The function f(y) = y(k + y)2 is strictly increasing in [0, 1] and continuous in the
same interval. As f(0) = 0 < k and f(1) = (k + 1)2 > k, there exists exactly one
y0 ∈ (0, 1) such that f(y0) = k.

b) The equation (1) has no positive integral solutions. Assume that x = k+ y is
rational and let x = n/d, where n and d are relatively prime positive integers. The
given equation then becomes

k(n2 + d2)

d2
=

n3

d3
,
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or
dk(n2 + d2) = n3 .

Since x is not an integer, d has at least one prime divisor. It follows from the last
equation that this prime divisor also divides n, a contradiction.

Remark. In a), one can also consider the function g(y) = y(k+ y)2− k, perhaps
expand it, and, using its derivative in (0, 1), prove that g is strictly increasing in
[0, 1].

Problem 4 –POL–

Prove that for infinitely many pairs (a, b) of integers the equation

x2012 = ax+ b

has among its solutions two distinct real numbers whose product is 1.

Solution 1. Observe first that for any integer m > 2 the quadratic polynomial
x2 −mx+ 1 has two distinct positive roots whose product equals 1.

Moreover, for any integer m > 2 there exists a pair of integers (am, bm) such
that the polynomial x2012 − amx − bm is divisible by the polynomial x2 −mx + 1.
Indeed, dividing the monomial x2012 by the monic polynomial x2−mx+1 we get a
remainder Rm(x) which is a polynomial with integer coefficients and degree at most
1. Thus Rm(x) = amx + bm for some integers am and bm, which clearly meet our
demand.

Now, for a fixed m > 2, any root of the polynomial x2 −mx + 1 is also a root
of the polynomial x2012 − amx − bm. Therefore the set of solutions of the equation
x2012 = amx + bm contains the two distinct roots of the polynomial x2 − mx + 1,
whose product is equal to 1. This means that the pair (a, b) = (am, bm) has the
required property.

It remains to show that when m ranges over all integers greater than 2, we get
infinitely many distinct pairs (am, bm). To this end, note that for m1 6= m2 the
roots of the polynomial x2 −m1x+ 1 are distinct from the roots of the polynomial
x2 − m2x + 1, since a common root of them would be a root of their difference
(m2−m1)x, and so it would be equal to zero, which is not a root of any x2−mx+1.
As the polynomial x2012 − ax − b has at most 2012 distinct roots, it is divisible by
x2 − mx + 1 for at most 1006 values of m. Hence the same pair (am, bm) can be
obtained for at most 1006 values of m, which concludes the proof.

Solution 2. Observe first that for any integer c > 2 the equations x = x− 0 and
x2 = cx − 1 have two common distinct positive solutions whose product equals 1.
Let those solutions be x1 and x2.

Define a sequence (fn) by f0 = 0, f1 = 1, and fn+2 = cfn+1−fn, n ≥ 0. Suppose
that x1 and x2 are also common solutions of the equations xn = fnx − fn−1 and
xn+1 = fn+1x− fn, then the following equalities hold for x = x1 and x = x2:

xn+2 − fn+2x+ fn+1 = xn+2 − (cfn+1 − fn)x+ (cfn − fn−1)

= xn+2− c(fn+1x− fn)+ (fnx− fn−1) = xn+2− cxn+1+xn = xn(x2− cx+1) = 0,

10
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which shows that x1 and x2 are solutions of xn+2 = fn+2x− fn+1 as well.
Now note that for different integers c, all corresponding members of the sequences

(fn) are different. At first note that these sequences (fn) are strictly increasing: by
inductive argument we have

fn+2 − fn+1 = (c− 1)fn+1 − fn > fn+1 − fn > 0.

This also shows that all members are positive.
Now, let us have integers c and c′ with c′ ≥ c+ 1 > 3 and let the corresponding

sequences be (fn) and (f ′n). Then again by induction

f ′n+2 ≥ (c+1)f ′n+1− f ′n = cf ′n+1+ (f ′n+1− f ′n) > cf ′n+1 > cfn+1 > cfn+1− fn = fn+2.

We have shown that for all integers c > 2, the respective pairs (f2012,−f2011) are
different, as desired.

Solution 3. Consider any even integer 2c > 2. The roots of x2 − 2cx + 1 are
c±

√
c2 − 1 and their product is 1. Now consider the expansion

(c+
√
c2 − 1)2012 = α + β

√
c2 − 1 = β

(

c+
√
c2 − 1

)

+ (α− βc)

where α and β are some integers. Denote a = β and b = α − βc, then c +
√
c2 − 1

is a solution of x2012 = ax+ b.
Simple calculation shows that

(c−
√
c2 − 1)2012 = α− β

√
c2 − 1 = β

(

c−
√
c2 − 1

)

+ (α− βc),

yielding that also c−
√
c2 − 1 is a solution of x2012 = ax+ b.

To complete the proof, it remains to point out that a = β ≥ 2012 · c2011 which
means that the number a can be chosen arbitrarily large.

Solution 4. Note that the function f : (1,∞) → R, f(x) = x + x−1, is strictly
increasing (it can be easily shown by derivative) and achieves all values of (2,∞).
Hence let us have an arbitrary integer c > 2 where c = λ+ λ−1 for some real λ > 1.

Define

a =
λ2012 − λ−2012

λ− λ−1
, b =

−λ2011 + λ−2011

λ− λ−1
.

Then it is easy to verify that λ and λ−1 are solutions of x2012 = ax+ b.
Note that a and b are integers. Indeed: for any positive integer k, we have

λk − (λ−1)k =
(

λ− λ−1
)

·
(

λk−1 + λk−2 · λ−1 + . . .+ λ ·
(

λ−1
)k−2

+
(

λ−1
)k−1

)

,

where the rightmost factor is a symmetric polynomial with integral coefficients in two
variables and therefore can be expressed as a polynomial with integral coefficients
in symmetric fundamental polynomials λ+ λ−1 and λ · λ−1 = 1, hence is an integer.

If there were only a finite number of integer pairs (a, b) for which x2012 − ax− b
has two distinct roots whose product is 1, the number of all such roots would also
be finite. This would be a contradiction since by the construction above, there are
infinitely many such numbers λ for which λ + λ−1 ∈ {3, 4, . . .} and that λ, λ−1 are
roots of some x2012 − ax− b where a, b are integers.
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Problem 5 –EST–

Find all functions f : R→ R for which

f(x+ y) = f(x− y) + f(f(1− xy))

holds for all real numbers x and y.

Answer: f(x) ≡ 0.
Solution. Substituting y = 0 gives f(x) = f(x) + f(f(1)), hence f(f(1)) = 0.

Using this after substituting x = 0 into the original equation gives f(y) = f(−y)
for all y, i.e., f is even.

Substituting x = 1 into the original equation gives f(1 + y) = f(1 − y) +
f(f(1 − y)). By f being even, also f(−1 − y) = f(1 − y) + f(f(1 − y)). Hence
f(f(1 − y)) = f(1 − y − 2) − f(1 − y). As 1 − y covers all real values, one can
conclude that

f(f(z)) = f(z − 2)− f(z) (4)

for all real numbers z.
Substituting −z for z into (4) and simplifying the terms by using that f is even,

one obtains f(f(z)) = f(z + 2)− f(z). Together with (4), this implies

f(z + 2) = f(z − 2) (5)

for all real numbers z.
Now taking y = 2 in the original equation followed by applying (5) leads to

f(f(1 − 2x)) = 0 for all real x. As 1 − 2x covers all real values, one can conclude
that

f(f(z)) = 0 (6)

for all real numbers z. Thus the original equation reduces to

f(x+ y) = f(x− y).

Taking x = y here gives f(2x) = f(0), i.e., f is constant, as 2x covers all real
numbers. As 0 must be among the values of f by (6), f(x) ≡ 0 is the only possibility.

Problem 6 –SPB–

There are 2012 lamps arranged on a table. Two persons play the following game.
In each move the player flips the switch of one lamp, but he must never get back
an arrangement of the lit lamps that has already been on the table. A player who
cannot move loses. Which player has a winning strategy?

Answer: the first player has a winning strategy.
Solution 1. The first player can pick one lamp and keep switching it on and off

during the whole game. The second player cannot switch this particular lamp, he
always has to switch some other lamp so that the arrangement of the other lamps
becomes different from any that has already been on the table. So the first player
always has a move, and the second player eventually runs out of the possible moves.

12
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Solution 2. Note that the parity of the lit lamps changes with each move. So all
the possible states can be divided into two disjoint sets, one with odd number of of
the lamps lit and the other with even number of the lamps lit. We get a bipartite
graph where the vertices are the states and two states are connected with an edge
if it is possible to get from one state to another by switching one lamp off or on.

We want to use Hall’s marriage theorem to get a perfect matching of the states.
The assumption of the theorem is the following: for every subset A of the states in
one set there is at least as many neighboring states in the second set. Let the number
of states in A be n, and let B be the set of neighboring states of A, containing m
states. Since each state in A has exactly 2012 neighbors and all these neighbors
belong to the set B, there are exactly 2012n edges between A and B. Since each
state in B has exactly 2012 neighbors (some of them may not belong to A), there is
at most 2012m edges between A and B. Hence 2012n ≤ 2012m, or n ≤ m, i.e. the
assumption of the theorem is satisfied.

Now the Hall’s theorem states that there is a perfect matching. On every move
the first player has to switch the lamp which changes the state into it’s partner
in the perfect matching. Any lamp the second player can switch results in a state
whose partner has not been used yet, so the first player always has a move, and the
secod player eventually loses.

Problem 7 –SPB–

On a 2012 × 2012 board, some cells on the top-right to bottom-left diagonal are
marked. None of the marked cells is in a corner. Integers are written in each cell of
this board in the following way. All the numbers in the cells along the upper and
the left sides of the board are 1’s. All the numbers in the marked cells are 0’s. Each
of the other cells contains a number that is equal to the sum of its upper neighbour
and its left neighbour. Prove that the number in the bottom right corner is not
divisible by 2011.

Solution 1. Let a peg go on the board, stepping from a cell to the neighbor cell
right or below. Then the number in the bottom right corner of the board is equal to
the number of paths of the peg from the top left corner to the bottom right corner,
which do not visit the marked cells.

The total number of paths (including those that pass through the marked cells)
equals

(

4022
2011

)

; this number is not divisible by 2011, because 2011 is a prime number.

The number of paths that pass through the k-th cell of the diagonal equals
(

2011
k

)2
,

because in order to visit this cell starting from the corner the peg should make 2011
steps, k of which are horizontal, and others are vertical; and after the visit it also
should make 2011 steps, k of which is vertical. Since k 6= 0, 2011 (because the
marked cells are not in the corner) this number is divisible by 2011.

So the number in the low right corner equals the difference of the number that
is not divisible by 2011 and several numbers that are divisible by 2011.

Solution 2. Turning the board 45◦ so that the upper left corner is on the top
we notice that the numbers written on the board constitute the Pascal’s triangle.
If there were no marked cells on the board, then the number on the bottom cell

13
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would be
(

4022
2011

)

, which is not divisible by 2011. All the cells on the diagonal that is

now horizontal, would be of the form
(

2011
k

)

; all of them, except the numbers in the
corners, would be divisible by 2011. If we substitute the numbers on the diagonal
with their remainders modulo 2011, then all the numbers on the diagonal are 0’s,
independent of whether they were marked or not, except in the corners there are
1’s. After this change all numbers below the diagonal get substituted with their
remainders modulo 2011. All the numbers below the diagonal are now 0’s, except
along the sides are 1’s and in the bottom corner there is 2. Hence the remainder of
the number written in the bottom corner modulo 2012 is 2.

Problem 8 –SPB–

A directed graph does not contain directed cycles. The number of edges in any
directed path does not exceed 99. Prove that it is possible to colour the edges of
the graph in 2 colours so that the number of edges in any single-coloured directed
path in the graph will not exceed 9.

Solution. Label each vertex by the number from 0 to 99, that is equal to the
length of the longest directed path that ends in this vertex. Then every edge goes
from a vertex with a smaller label to a vertex with a larger label. Now colour this
edge in red if the digit of tens in the larger label is greater than the digit of tens
in the smaller label. Otherwise colour this edge in blue. Since the number of tens
is the same in all vertices on a blue path, the length of the path cannot exceed 9.
Since the number of tens is different in all vertices on a red path, the length of the
path also cannot exceed 9.

Problem 9 –DEN–

Zeroes are written in all cells of a 5 × 5 board. We can take an arbitrary cell and
increase by 1 the number in this cell and all cells having a common side with it. Is
it possible to obtain the number 2012 in all cells simultaneously?

Answer: No.
Solution 1. Let a(i,j) be the number written in the cell in the row i and column

j. To prove that it is not possible to get 2012 written in each cell, we choose a factor
c(i,j) for each cell, such that

S =
∑

1≤i, j≤5

c(i,j) · a(i,j)

increases by the same number each time a cell is chosen. If we choose the factors
c(i,j) as shown in Figure 1, then S increases by 22 each time a cell is chosen. Hence
S is divisible by 22 at all times. The sum of all the c(i,j) is 138, hence if 2012 is
written in each cell, then

S = 138 · 2012 = 23 · 3 · 23 · 503,

which cannot be reached, since it is not divisible by 22.
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Solution 2. Divide all cells into six disjoint sets as follows: the set A consists
of all corner cells, the set B consists of all cells, having a common side with the
corner cells, the set C consists of all diagonal neighbors of the corner cells, the set
D consists of all middle cells of the sides of the board, the set E consists of all
cells having a common side with the center cell, and the set F has only the center
cell in it. Suppose we choose a times a cell from the set A, b times from the set
B etc. Suppose that after a number of steps we get the number s written in each
cell. Since only the cells from the sets A and B contribute to the numbers written
in the cells of the set A and each choice from these sets contributes exactly 1 to the
sum of the numbers written in the cells of the set A, we have a+ b = 4s. Similarly,
considering the sum of the numbers written in the cells of the set B, we see that
choosing a cell from the set A contributes 2 to the sum, choosing a cell from the
set B contributes 1, a cell from C contributes 2 and a cell from D contributes 2,
hence 2a + b + 2c + 2d = 8s. Continuing, we get b + c + 2e = 4s, b + d + e = 4s,
2c + d + e + 4f = 4s, and e + f = s. Eliminating a, b, d, e, and f from these
equations we get 11c = 4s. This is only possible if s is divisible by 11. Since 2012
is not divisible by 11, it is not possible to get 2012 written in each cell.

Remark. For every positive s divisible by 11 it is possible to get s written in
each cell. For s = 11 Figure 2 shows how many times one has to choose each cell. If
s is larger than 11, we can simply repeat these steps as many times as needed. The
same figure can also be used for choosing factors as in Solution 1.

Problem 10 –DEN–

Two players A and B play the following game. Before the game starts, A chooses
1000 not necessarily different odd primes, and then B chooses half of them and writes
them on a blackboard. In each turn a player chooses a positive integer n, erases
some primes p1, p2, . . ., pn from the blackboard and writes all the prime factors of
p1p2 . . . pn − 2 instead (if a prime occurs several times in the prime factorization of
p1p2 . . . pn − 2, it is written as many times as it occurs). Player A starts, and the
player whose move leaves the blackboard empty loses the game. Prove that one of
the two players has a winning strategy and determine who.

Remark: Since 1 has no prime factors, erasing a single 3 is a legal move.

Solution. Player A has a winning strategy.
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Let player A choose 1000 primes all congruent to 1 modulo 4. Then there are 500
primes congruent to 1 modulo 4 when the game begins. Let P denote the parity of
the number of primes congruent to 3 modulo 4 on the blackboard. When the game
starts, P is even. Remember that the number of primes congruent to 3 modulo 4 in
the prime factorization of a number is even if the number is congruent to 1 modulo
4, and odd if the number is congruent to 3 modulo 4. In each turn the parity of P
changes, because the number of primes congruent to 3 modulo 4 among p1, p2, . . . ,
pn and in the prime factorization of p1p2 . . . pn − 2 is of different parity. Hence P is
odd after each of A’s turns and even after each of B’s turns, so A cannot lose. Since
the product of all the primes on the blackboard decreases with each turn, the game
eventually ends, hence A wins.

Problem 11 –SPB–

Let ABC be a triangle with ∠A = 60◦. The point T lies inside the triangle in such a
way that ∠ATB = ∠BTC = ∠CTA = 120◦. Let M be the midpoint of BC. Prove
that TA+ TB + TC = 2AM .

Solution 1. Rotate the triangle ABC by 60◦ around the point A (Figure 3).
Let T ′ and C ′ be the images of T and C, respectively. Then the triangle ATT ′

is equilateral and ∠AT ′C ′ = 120◦, meaning that B, T , T ′, C ′ are collinear and
TA + TB + TC = BC ′. Let A′ be a point such that ABA′C is a parallelogram.
Then 2AM = AA′. It remains to observe that the triangles BAC ′ and ABA′ are
equal, since BA is common, ∠BAC ′ = 120◦ = ∠A′BA, and AC ′ = BA′.

A B

C

M
T

A′

T ′

C ′

Figure 3

Remark. The rotation used here is the same as that used in finding a point P in
the triangle such that the total distance from the three vertices of the triangle to P
is the minimum possible (Fermat point); this is exactly the point T in the problem.

Solution 2. Let A′ be a point such that ABA′C is a parallelogram. Since
∠BA′C = 60◦ and ∠BTC = 120◦, the point T lies on the circumcircle of A′BC. Let
X be the second intersection point of AT with this circumcircle and let Y be the
midpoint of A′X. The triangle BCX is equilateral, since ∠BXC = ∠BA′C = 60◦

and ∠BCX = ∠BTX = 180◦ − ∠BTA = 60◦. Therefore TB + TC = TX. So it is
sufficient to show that AX = AA′.
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A B

C A′

M
T

K

X

Y

Figure 4

Let K be the intersection point of the medians of BCX. Since XM is a median
for both BCX and AA′X, it follows that K is also the intersection point of the
medians of AA′X. Thus K lies on the median AY . Since the triangle KA′X is
equilateral, we have KY ⊥ A′X, so AY is both the height and the median of AA′X.

Consequently, TA+ TB + TC = AX = AA′ = 2AM .

Solution 3. Let A′ be a point such that ABA′C is a parallelogram (Figure 5).
Use notations AB = c, AC = b, 2AM = AA′ = d, TA = x, TB = y, TC = z. From
∠ABT = 60◦ − ∠BAT = ∠CAT = 60◦ − ∠ACT one gets △ABT ∼ △CAT . So
y : x = c : b, and we have totally△ABT ∼ △CAT ∼ △A′AB, giving x = b· c

d
= c· b

d
,

y = c · c
d
, z = b · b

d
. By applying the law of cosines in triangle A′AB, we finally get

x+ y + z =
bc + c2 + b2

d
=

d2

d
= d.

A B

C A′

MT

c

b

x

y

z

d

Figure 5
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Problem 12 –DEN–

Let P0, P1, . . . , P8 = P0 be successive points on a circle and Q be a point inside the
polygon P0P1 . . . P7 such that ∠Pi−1QPi = 45◦ for i = 1, . . . , 8. Prove that the sum

8
∑

i=1

Pi−1Pi
2

is minimal if and only if Q is the centre of the circle.

Solution. By the cosine law we have (Figure 6)

Pi−1Pi
2 = QPi−1

2 +QPi
2 −

√
2 ·QPi−1 ·QPi.

Hence, using the AM-GM inequality,

8
∑

i=1

Pi−1Pi
2 =

8
∑

i=1

(2 ·QPi
2 −

√
2 ·QPi−1 ·QPi) ≥ (2−

√
2)

8
∑

i=1

QPi
2.

The equality holds if and only if all distances QPi are equally large, i.e. Q is the
centre of the circle. So it remains to show that the sum in the last expression is
independent of Q. Indeed, by the Pythagorean theorem,

8
∑

i=1

QPi
2 = (P0P2

2 + P4P6
2) + (P1P3

2 + P5P7
2) = 2d2,

where d is the diameter of the circle. The last equality follows form the fact that
P0P2P4P6 is a cyclic quadrilateral with perpendicular diagonals, so P0P2

2+P4P6
2 =

d2.
Remark. The sum

∑8
i=1QPi

2 =
∑4

i=1QP2i−1
2 +

∑4
i=1QP2i

2 can also be com-
puted easily using coordinates, e.g. expressing each term by the coordinates of Q.

P0

P1

P2P3

P4

P5

P6

P7

Q

Figure 6
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A

B C

HA

HB

HC

H

Figure 7

Problem 13 –NOR–

Let ABC be an acute triangle, and let H be its orthocentre. Denote by HA, HB

and HC the second intersection of the circumcircle with the altitudes from A, B
and C respectively. Prove that the area of △HAHBHC does not exceed the area of
△ABC.

Solution 1. We know that the points HA, HB and HC are in fact the reflection of
H on the sides (Figure 7). Since ABC is acute (i.e. H lies in the interior of ABC), we
have SAHCBHACHB

= 2SABC . We thus have to show that 2SHAHBHC
≤ SAHCBHACHB

,
which is equivalent to

SHAHBHC
≤ SHACHB

+ SHBAHC
+ SHCBHA

.

Notice that the triangles on the RHS are isosceles (e.g. HAC = HC = HBC). If
now for example ∠HAHBHC ≥ 90◦, then obviously already SHAHBHC

≤ SHABHC
. It

may therefore be supposed that HAHBHC is acute-angled. Denote by M its ortho-
centre, which then lies inside the triangle. Denote by MA, MB and MC the reflections
of the orthocentre on the sides HBHC , HCHA and HAHB, respectively. These lie on
the circumcircle, and therefore we have SHBMAHC

≤ SHBAHC
, SHCMBHA

≤ SHCBHA

and SHAMCHB
≤ SHACHB

. Since

SHAHBHC
= SHBMAHC

+ SHCMBHA
+ SHAMCHB

,

we arrive to the required result.
Solution 2. Let the angles of ABC be denoted by α, β and γ, the radius of the

circumcircle by R. Then

SABC = 2R2 sinα sin β sin γ.

By peripheric angles we get

∠HAHBHC = ∠HAHBB + ∠BHBHC = ∠HAAB + ∠BCHC = 180◦ − 2β,
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F

G

H

Figure 8

and correspondingly ∠HBHCHA = 180◦ − 2γ and ∠HCHAHB = 180◦ − 2α. Thus

SHAHBHC
= 2R2 sin(180◦ − 2β) sin(180◦ − 2γ) sin(180◦ − 2α)

= 2R2 sin(2β) sin(2γ) sin(2α) = 8SABC cosα cos β cos γ

≤ 8SABC

(

cosα + cos β + cos γ

3

)3

≤ SABC ,

where the last inequality follows from Jensen’s inequality for the cosine function.
Remark. There are also other solutions that combine the ideas appearing in

Solutions 1 and 2 in different way.

Problem 14 –POL–

Given a triangle ABC, let its incircle touch the sides BC, CA, AB at D, E, F ,
respectively. Let G be the midpoint of the segment DE. Prove that ∠EFC =
∠GFD.

Solution 1. Let ω be the circumcircle of the triangle CEF and let H be the
second point of intersection of the circle ω with the line CG (Figure 8). Assume
also, without loss of generality, that AC < BC. (If AC = BC, the whole problem
becomes trivial due to symmetry.) Then the points G, H , B lie on the same side
of the line CF and the vertex A lies on the opposite side. The points E, F , H , C
lie on the circle ω while the points E and D are symmetric with respect to the line
CH . Hence

∠EFC = ∠EHC = ∠CHD. (∗)
The line AC is tangent to the incircle of ABC at E, so we have ∠GDF =

∠EDF = ∠AEF = 180◦ − ∠CEF . Now, using the circle ω, we see that ∠CEF =
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180◦ − ∠CHF = 180◦ − ∠GHF . Combining the above relations we conclude that
∠GDF = ∠GHF , so that the points G, F , H , D lie on a circle. Therefore ∠CHD =
∠GHD = ∠GFD, which together with (∗) proves the assertion of the problem.

Remark. This problem is trivial for those who rely on the following known result:
a symmedian through one of the vertices of a triangle passes through the point of in-

tersection of the tangents to the circumcircle at the other two vertices (http://www.
cut-the-knot.org/Curriculum/Geometry/Symmedian.shtml#explanation). Ap-
plying this result to triangle DEF and the symmedian through F gives that the
symmedian coincides with FC. Now use the definition of symmedian.

Solution 2. We show that the ray from a triangle vertex F though the intersection
C of the tangents to the circumcircle at the two other vertices D and E is the
symmedian of triangle DFE: Let the circle with centre C and radius CD = CE
meet the rays FD and FE again in P and Q (Figure 9). Then

∠DPC = ∠PDC = ∠FDB = ∠FED = 180◦ − ∠QED = ∠QPD,

whence P , C, Q are collinear. Thus PQ is a diameter of circle DEQP . Triangles
FDE and FQP are similar and have a common angle at F . Consequently, the
desired result follows since G is the midpoint of DE and C is the midpoint of QP .

Problem 15 –LAT–

The circumcentre O of a given cyclic quadrilateral ABCD lies inside the quadrilat-
eral but not on the diagonal AC. The diagonals of the quadrilateral intersect at I.
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The circumcircle of the triangle AOI meets the sides AD and AB at points P and
Q, respectively; the circumcircle of the triangle COI meets the sides CB and CD
at points R and S, respectively. Prove that PQRS is a parallelogram.

Solution. Assume w.l.o.g. that angle ABC is obtuse (otherwise switch B and D,
Figure 10). As A, I, O and P are concyclic, we get ∠QAI = ∠QOI; similarly
∠RCI = ∠ROI. Hence

∠QOR = ∠QOI + ∠ROI = ∠QAI + ∠RCI = ∠BAC + ∠BCA

= 180◦ − ∠ABC = 180◦ − ∠QBR.

It follows that points Q, O, R and B are concyclic.
Furthermore, ∠PAI = 180◦ − ∠POI and ∠SCI = 180◦ − ∠SOI imply

∠POS = 360◦ − ∠POI − ∠SOI = ∠PAI + ∠SCI = ∠DAC + ∠DCA

= 180◦ − ∠ADC = 180◦ − ∠PDS.

Hence also points P , O, S and D are concyclic.
As O is the circumcentre of ABCD, we have AO = OB and ∠BAO = ∠OBA.

These are inscribed angles in circumcircles of APQ and BQR, respectively, and
both of them are based on the same chord OQ. Therefore the radii of these two
circumcircles are equal. Similarly, the radii of circumcircles of BQR, CRS and DSP
are also equal.

As ∠QAP = ∠BAD = 180◦ −∠BCD = 180◦ −∠RCS and radii of the circum-
circles of AQOP and ORCS are equal, the chords QP and RS have equal lengths;
similarly also QR and PS have equal lengths. Thus PQRS is a parallelogram.

Remark. In the case of O lying in the diagonal AC, the necessary triangles AOI
and COI are degenerate and have no circumcircle. The statement of the problem still
holds if the circumcentre of ABCD does not lie inside the quadrilateral (Figure 11)
and even if the circumcircles of AOI and COI meet prolongations of sides.
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D

I

P

Q
R

S

Figure 10
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Problem 16 –FIN–

Let n, m and k be positive integers satisfying (n − 1)n(n + 1) = mk. Prove that
k = 1.

Solution. Since gcd(n, (n− 1)(n+ 1)) = 1, if (n− 1)n(n+ 1) is a k-th power for
k ≥ 1, then n and (n−1)(n+1) = n2−1 must be k-th powers as well. Then n = mk

1

and n2 − 1 = mk
2 = (m2

1)
k − 1. But the difference of two positive k-th powers can

never be 1, if k > 1. So k = 1.

Problem 17 –DEN–

Let d(n) denote the number of positive divisors of n. Find all triples (n, k, p), where
n and k are positive integers and p is a prime number, such that

nd(n) − 1 = pk.

Solution. Note first that nd(n) is always a square: if d(n) is an even number this
is clear; but d(n) is odd exactly if n is a square, and then its power nd(n) is also a
square.

Let nd(n) = m2, m > 0. Then

(m+ 1)(m− 1) = m2 − 1 = nd(n) − 1 = pk.

There is no solution for m = 1. If m = 2, we get (n, k, p) = (2, 1, 3). If m > 2, we
have m−1, m+1 > 1 and because both factors divide pk, they are both powers of p.
The only possibility is m−1 = 2, m+1 = 4. Hence m = 3 and nd(n) = m2 = 9. This
leads to the solution (n, k, p) = (3, 3, 2). So the only solutions are (n, k, p) = (2, 1, 3)
and (n, k, p) = (3, 3, 2).

Problem 18 –NOR–

Find all triples (a, b, c) of integers satisfying a2 + b2 + c2 = 20122012.

Solution. First consider the equation modulo 4. Since a square can only be
congruent to 0 or 1 modulo 4, and 20122012 is divisible by 4, we can conclude that
all of a, b and c have to be even. Substituting a = 2a1, b = 2b1, c = 2c1 the equation
turns into a21 + b21 + c21 = 5030503.

If we now consider the remaining equation modulo 8, we can see that the right
side is congruent to 7, whilst the only quadratic residues modulo 8 are 0, 1 and 4,
and hence the left hand side can never be congruent to 7.

We therefore conclude that the original equation has no integer solutions.

Problem 19 –POL–

Show that nn + (n+ 1)n+1 is composite for infinitely many positive integers n.
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Solution. We will show that for any positive integer n ≡ 4 (mod 6) the number
nn + (n + 1)n+1 is divisible by 3 and hence composite. Indeed, for any such n we
have n ≡ 1 (mod 3) and hence nn + (n + 1)n+1 ≡ 1n + 2n+1 = 1 + 2n+1 (mod 3).
Moreover, the exponent n + 1 is odd, which implies that 2n+1 ≡ 2 (mod 3). It
follows that nn + (n+ 1)n+1 ≡ 1 + 2 ≡ 0 (mod 3), as claimed.

Problem 20 –LAT–

Find all integer solutions of the equation 2x6 + y7 = 11.

Solution. There are no solutions. The hardest part of the problem is to determine
a modulus m that would yield a contradiction. There should be few sixth and seventh
powers modulo m, hence, a natural choice is 6 · 7 + 1 = 43. Luckily, it is a prime.

Now, just write out sixth powers (0, 1, 4, 11, 16, 21, 35, 41) and seventh powers
(0, 1, 6, 7, 36, 37, 42) modulo 43, and see that they can’t be combined to give 11.
Indeed,

2x6 mod 43 ∈ {0, 2, 8, 22, 27, 32, 39, 42},
11− y7 mod 43 ∈ {4, 5, 10, 11, 12, 17, 18},

and these sets do not intersect.
Remark. To find the sixth and seventh powers modulo 43, we can note that 3

is a primitive root modulo 43. So the nonzero sixth powers are exactly the powers
of 36 ≡ 41 ≡ −2 and the nonzero seventh powers are the powers of 37 ≡ 37 ≡ −6
(mod 43).
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