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Problem 1. Prove that there exist two functions

f , g : R→R,

such that f ◦ g is strictly decreasing, while g ◦ f is strictly
increasing.

(POLAND) ANDRZEJ KOMISARSKI & MARCIN KUCZMA

Solution. Let

• A =
⋃

k∈Z

([

−22k+1,−22k
)

⋃

(

22k ,22k+1
])

;

• B =
⋃

k∈Z

([

−22k ,−22k−1
)

⋃

(

22k−1,22k
])

.

Thus A = 2B , B = 2A, A =−A, B =−B , A∩B =;, and finally
A∪B ∪ {0} =R. Let us take

f (x) =











x for x ∈ A;

−x for x ∈ B ;

0 for x = 0.

Take g (x) = 2 f (x). Thus f (g (x)) = f (2 f (x)) = −2x and
g ( f (x)) = 2 f ( f (x)) = 2x. ¥

Problem 2. Determine all positive integers n for which
there exists a polynomial f (x) with real coefficients, with the
following properties:

(1) for each integer k, the number f (k) is an integer if and
only if k is not divisible by n;

(2) the degree of f is less than n.

(HUNGARY ) GÉZA KÓS

Solution. We will show that such polynomial exists if and
only if n = 1 or n is a power of a prime.

We will use two known facts stated in Lemmata 1 and 2.

LEMMA 1. If pa is a power of a prime and k is an integer,

then
(k −1)(k −2). . . (k −pa +1)

(pa −1)!
is divisible by p if and only

if k is not divisible by pa .

Proof. First suppose that pa | k and consider

(k −1)(k −2) · · · (k −pa +1)

(pa −1)!
= k −1

pa −1
· k −2

pa −2
· · · k −pa +1

1
.

In every fraction on the right-hand side, p has the same
maximal exponent in the numerator as in the denominator.

Therefore, the product (which is an integer) is not divisible
by p.

Now suppose that pa ∤ k. We have

(k −1)(k −2) · · · (k −pa +1)

(pa −1)!
= pa

k
· k(k −1) · · · (k −pa +1)

(pa)!
.

The last fraction is an integer. In the fraction pa

k
, the denom-

inator k is not divisible by pa . ¤

LEMMA 2. If g (x) is a polynomial with degree less than n

then

n
∑

ℓ=0
(−1)ℓ

(

n

ℓ

)

g (x +n −ℓ) = 0.

Proof. Apply induction on n. For n = 1 then g (x) is a con-
stant and

(

1

0

)

g (x +1)−
(

1

1

)

g (x) = g (x +1)− g (x) = 0.

Now assume that n > 1 and the Lemma holds for n−1. Let
h(x) = g (x +1)−g (x); the degree of h is less than the degree
of g , so the induction hypothesis applies for g and n −1:

n−1
∑

ℓ=0
(−1)ℓ

(

n −1

ℓ

)

h(x +n −1−ℓ) = 0

n−1
∑

ℓ=0
(−1)ℓ

(

n −1

ℓ

)

(

g (x +n −ℓ)− g (x +n −1−ℓ)
)

= 0

(

n −1

0

)

g (x +n)+
n−1
∑

ℓ=1
(−1)ℓ

((

n −1

ℓ−1

)

+
(

n −1

ℓ

))

g (x +n −ℓ)− (−1)n−1

(

n −1

n −1

)

g (x) = 0

n
∑

ℓ=0
(−1)ℓ

(

n

ℓ

)

g (x +n −ℓ) = 0.

¤

LEMMA 3. If n has at least two distinct prime divisors then
the greatest common divisor of

(n
1

)

,
(n

2

)

, . . . ,
( n

n−1

)

is 1.

Proof. Suppose to the contrary that p is a common prime
divisor of

(n
1

)

, . . . ,
( n

n−1

)

. In particular, p |
(n

1

)

= n. Let a be the
exponent of p in the prime factorization of n. Since n has at
least two prime divisors, we have 1 < pa < n. Hence,

( n
pa−1

)

and
( n

pa

)

are listed among
(n

1

)

, . . . ,
( n

n−1

)

and thus p |
( n

pa

)

and

p |
( n

pa−1

)

. But then p divides
( n

pa

)

−
( n

pa−1

)

=
( n−1

pa−1

)

, which
contradicts Lemma 1. ¤
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Next we construct the polynomial f (x) when n = 1 or n is
a power of a prime.

For n = 1, f (x) = 1
2 is such a polynomial.

If n = pa where p is a prime and a is a positive integer
then let

f (x) = 1

p

(

x −1

pa −1

)

= 1

p
· (x −1)(x −2) · · · (x −pa +1)

(pa −1)!
.

The degree of this polynomial is pa −1 = n −1.

The number (k−1)(k−2)···(k−pa+1)
(pa−1)! is an integer for any inte-

ger k, and, by Lemma 1, it is divisible by p if and only if k is
not divisible by pa = n.

Finally we prove that if n has at least two prime divisors
then no polynomial f (x) satisfies (1,2). Suppose that some
polynomial f (x) satisfies (1,2), and apply Lemma 2 for g = f

and x =−k where 1 ≤ k ≤ n −1. We get that

(

n

k

)

f (0) =
∑

0≤ℓ≤n,ℓ6=k

(−1)k−ℓ
(

n

ℓ

)

f (−k +ℓ).

Since f (−k), . . . , f (−1) and f (1), . . . , f (n −k) are all integers,
we conclude that

(n
k

)

f (0) is an integer for every 1 ≤ k ≤ n−1.
By dint of Lemma 3, the greatest common divisor of

(n
1

)

,
(n

2

)

, . . . ,
( n

n−1

)

is 1. Hence, there will exist some integers
u1,u2, . . . ,un−1 for which u1

(n
1

)

+·· ·+un−1
( n

n−1

)

= 1. Then

f (0) =
(

n−1
∑

k=1
uk

(

n

k

))

f (0) =
n−1
∑

k=1
uk

(

n

k

)

f (0)

is a sum of integers. This contradicts the fact that f (0) is not
an integer. So such polynomial f (x) does not exist. ¥

Alternative Solution. (I. Bogdanov) We claim the answer
is n = pα for some prime p and nonnegative α.

LEMMA. For every integers a1, . . . , an there exists an integer-
valued polynomial P (x) of degree < n such that P (k) = ak

for all 1 ≤ k ≤ n.

Proof. Induction on n. For the base case n = 1 one may set
P (x) = a1. For the induction step, suppose that the polyno-
mial P1(x) satisfies the desired property for all 1 ≤ k ≤ n −1.
Then set P (x) = P1(x)+ (an −P1(n))

(x−1
n−1

)

; since
(k−1

n−1

)

= 0 for

1 ≤ k ≤ n −1 and
(n−1

n−1

)

= 1, the polynomial P (x) is a sought
one. ¤

Now, if for some n there exists some polynomial f (x)
satisfying the problem conditions, one may choose some
integer-valued polynomial P (x) (of degree < n −1) coincid-
ing with f (x) at points 1, . . . ,n − 1. The difference f1(x) =
f (x)−P (x) also satisfies the problem conditions, therefore
we may restrict ourselves to the polynomials vanishing at
points 1, . . . ,n − 1 — that are, the polynomials of the form
f (x) = c

∏n−1
i=1 (x − i ) for some (surely rational) constant c.

Let c = p/q be its irreducible form, and q =∏d
j=1 p

α j

j
be the

prime decomposition of the denominator.

1. Assume that a desired polynomial f (x) exists. Since
f (0) is not an integer, we have q ∤ (−1)n−1(n −1)! and hence

p
α j

j
∤ (−1)n−1(n −1)! for some j . Hence

n−1
∏

i=1
(p

α j

j
− i ) ≡ (−1)n−1(n −1)! 6≡ 0 (mod p

α j

j
),

therefore f (p
αi

i
) is not integer, too. By the condition (i), this

means that n | p
αi

i
, and hence n should be a power of a

prime.

2. Now let us construct a desired polynomial f (x) for any
power of a prime n = pα. We claim that the polynomial

f (x) = 1

p

(

x −1

n −1

)

= n

px

(

x

n

)

fits. Actually, consider some integer x. From the first repre-
sentation, the denominator of the irreducible form of f (x)
may be 1 or p only. If pα ∤ x, then the prime decomposition
of the fraction n/(px) contains p with a nonnegative expo-
nent; hence f (x) is integer. On the other hand, if n = pα | x,
then the numbers x−1, x−2, . . . , x−(n−1) contain the same
exponents of primes as the numbers n−1,n−2, . . . ,1 respec-
tively; hence the number

(

x −1

n −1

)

=
∏n−1

i=1 (x − i )
∏n−1

i=1 (n − i )

is not divisible by p. Thus f (x) is not an integer. ¥

Problem 3. A triangle ABC is inscribed in a circle ω. A
variable line ℓ chosen parallel to BC meets segments AB ,
AC at points D, E respectively, and meets ω at points K , L

(where D lies between K and E). Circle γ1 is tangent to the
segments K D and BD and also tangent to ω, while circle γ2

is tangent to the segments LE and C E and also tangent to ω.
Determine the locus, as ℓ varies, of the meeting point of the
common inner tangents to γ1 and γ2.

(RUSSIA) VASILY MOKIN & FEDOR IVLEV

Solution. Let P be the meeting point of the common in-
ner tangents to γ1 and γ2. Also, let b be the angle bisec-
tor of ∠B AC . Since K L ∥ BC , b is also the angle bisector
of ∠K AL.

Let H be the composition of the symmetry S with respect
to b and the inversion I of centre A and ratio

p
AK · AL (it is

readily seen that S and I commute, so since S2 = I2 = id,
then also H2 = id, the identical transformation). The ele-
ments of the configuration interchanged by H are summa-
rized in Table I.

Let O1 and O2 be the centres of circles γ1 and γ2. Since
the circles γ1 and γ2 are determined by their construc-
tion (in a unique way), they are interchanged by H, there-
fore the rays AO1 and AO2 are symmetrical with respect
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to b. Denote by ρ1 and ρ2 the radii of γ1 and γ2. Since
∠O1 AB = ∠O2 AC , we have ρ1/ρ2 = AO1/AO2. On the
other hand, from the definition of P we have O1P/O2P =
ρ1/ρ2 = AO1/AO2; this means that AP is the angle bisector
of ∠O1 AO2 and therefore of ∠B AC .

The limiting, degenerated, cases are when the parallel
line passes through A – when P coincides with A; respec-
tively when the parallel line is BC – when P coincides with
the foot A′ ∈ BC of the angle bisector of ∠B AC (or any
other point on BC ). By continuity, any point P on the open
segment A A′ is obtained for some position of the parallel,
therefore the locus is the open segment A A′ of the angle bi-
sector b of ∠B AC . ¥

point K ←→ point L

line K L ←→ circle ω

ray AB ←→ ray AC

point B ←→ point E

point C ←→ point D

segment BD ←→ segment EC

arc BK ←→ segment EL

arc C L ←→ segment DK

TABLE I: Elements interchanged by H.

A

B C

D E
K L

O1

O2P

b

ℓ

ω


