The $4^{\text {th }}$ Romanian Master of Mathematics Competition - Solutions Day 1: Friday, February 25, 2011, Bucharest

Problem 1. Prove that there exist two functions

$$
f, g: \mathbb{R} \rightarrow \mathbb{R}
$$

such that $f \circ g$ is strictly decreasing, while $g \circ f$ is strictly increasing.
(Poland) Andrzej Komisarski \& Marcin Kuczma

Solution. Let

- $A=\bigcup_{k \in \mathbb{Z}}\left(\left[-2^{2 k+1},-2^{2 k}\right) \bigcup\left(2^{2 k}, 2^{2 k+1}\right]\right) ;$
- $B=\bigcup_{k \in \mathbb{Z}}\left(\left[-2^{2 k},-2^{2 k-1}\right) \bigcup\left(2^{2 k-1}, 2^{2 k}\right]\right)$.

Thus $A=2 B, B=2 A, A=-A, B=-B, A \cap B=\varnothing$, and finally $A \cup B \cup\{0\}=\mathbb{R}$. Let us take

$$
f(x)=\left\{\begin{array}{lll}
x & \text { for } & x \in A \\
-x & \text { for } & x \in B \\
0 & \text { for } & x=0
\end{array}\right.
$$

Take $g(x)=2 f(x)$. Thus $f(g(x))=f(2 f(x))=-2 x$ and $g(f(x))=2 f(f(x))=2 x$.

Problem 2. Determine all positive integers n for which there exists a polynomial $f(x)$ with real coefficients, with the following properties:
(1) for each integer k, the number $f(k)$ is an integer if and only if k is not divisible by n;
(2) the degree of f is less than n.
(Hungary) GÉza Kós
Solution. We will show that such polynomial exists if and only if $n=1$ or n is a power of a prime.

We will use two known facts stated in Lemmata 1 and 2.
Lemma 1 . If p^{a} is a power of a prime and k is an integer, then $\frac{(k-1)(k-2) \ldots\left(k-p^{a}+1\right)}{\left(p^{a}-1\right)!}$ is divisible by p if and only if k is not divisible by p^{a}.

Proof. First suppose that $p^{a} \mid k$ and consider

$$
\frac{(k-1)(k-2) \cdots\left(k-p^{a}+1\right)}{\left(p^{a}-1\right)!}=\frac{k-1}{p^{a}-1} \cdot \frac{k-2}{p^{a}-2} \cdots \frac{k-p^{a}+1}{1} .
$$

In every fraction on the right-hand side, p has the same maximal exponent in the numerator as in the denominator.

Therefore, the product (which is an integer) is not divisible by p.

Now suppose that $p^{a} \nmid k$. We have

$$
\frac{(k-1)(k-2) \cdots\left(k-p^{a}+1\right)}{\left(p^{a}-1\right)!}=\frac{p^{a}}{k} \cdot \frac{k(k-1) \cdots\left(k-p^{a}+1\right)}{\left(p^{a}\right)!} .
$$

The last fraction is an integer. In the fraction $\frac{p^{a}}{k}$, the denominator k is not divisible by p^{a}.
Lemma 2. If $g(x)$ is a polynomial with degree less than n then

$$
\sum_{\ell=0}^{n}(-1)^{\ell}\binom{n}{\ell} g(x+n-\ell)=0
$$

Proof. Apply induction on n. For $n=1$ then $g(x)$ is a constant and

$$
\binom{1}{0} g(x+1)-\binom{1}{1} g(x)=g(x+1)-g(x)=0
$$

Now assume that $n>1$ and the Lemma holds for $n-1$. Let $h(x)=g(x+1)-g(x)$; the degree of h is less than the degree of g, so the induction hypothesis applies for g and $n-1$:

$$
\begin{gathered}
\sum_{\ell=0}^{n-1}(-1)^{\ell}\binom{n-1}{\ell} h(x+n-1-\ell)=0 \\
\sum_{\ell=0}^{n-1}(-1)^{\ell}\binom{n-1}{\ell}(g(x+n-\ell)-g(x+n-1-\ell))=0 \\
\binom{n-1}{0} g(x+n)+\sum_{\ell=1}^{n-1}(-1)^{\ell}\left(\binom{n-1}{\ell-1}+\right. \\
\left.\binom{n-1}{\ell}\right) g(x+n-\ell)-(-1)^{n-1}\binom{n-1}{n-1} g(x)=0 \\
\sum_{\ell=0}^{n}(-1)^{\ell}\binom{n}{\ell} g(x+n-\ell)=0
\end{gathered}
$$

Lemma 3. If n has at least two distinct prime divisors then the greatest common divisor of $\binom{n}{1},\binom{n}{2}, \ldots,\binom{n}{n-1}$ is 1 .

Proof. Suppose to the contrary that p is a common prime divisor of $\binom{n}{1}, \ldots,\binom{n}{n-1}$. In particular, $p \left\lvert\,\binom{ n}{1}=n\right.$. Let a be the exponent of p in the prime factorization of n. Since n has at least two prime divisors, we have $1<p^{a}<n$. Hence, $\binom{n}{p^{a}-1}$ and $\binom{n}{p^{a}}$ are listed among $\binom{n}{1}, \ldots,\binom{n}{n-1}$ and thus $p \left\lvert\,\binom{ n}{p^{a}}\right.$ and $p \left\lvert\,\binom{ n}{p^{a}-1}\right.$. But then p divides $\binom{n}{p^{a}}-\binom{n}{p^{a}-1}=\binom{n-1}{p^{a}-1}$, which contradicts Lemma 1.

Next we construct the polynomial $f(x)$ when $n=1$ or n is a power of a prime.
For $n=1, f(x)=\frac{1}{2}$ is such a polynomial.
If $n=p^{a}$ where p is a prime and a is a positive integer then let

$$
f(x)=\frac{1}{p}\binom{x-1}{p^{a}-1}=\frac{1}{p} \cdot \frac{(x-1)(x-2) \cdots\left(x-p^{a}+1\right)}{\left(p^{a}-1\right)!} .
$$

The degree of this polynomial is $p^{a}-1=n-1$.
The number $\frac{(k-1)(k-2) \cdots\left(k-p^{a}+1\right)}{\left(p^{a}-1\right)!}$ is an integer for any integer k, and, by Lemma 1 , it is divisible by p if and only if k is not divisible by $p^{a}=n$.

Finally we prove that if n has at least two prime divisors then no polynomial $f(x)$ satisfies $(1,2)$. Suppose that some polynomial $f(x)$ satisfies (1,2), and apply Lemma 2 for $g=f$ and $x=-k$ where $1 \leq k \leq n-1$. We get that

$$
\binom{n}{k} f(0)=\sum_{0 \leq \ell \leq n, \ell \neq k}(-1)^{k-\ell}\binom{n}{\ell} f(-k+\ell) .
$$

Since $f(-k), \ldots, f(-1)$ and $f(1), \ldots, f(n-k)$ are all integers, we conclude that $\binom{n}{k} f(0)$ is an integer for every $1 \leq k \leq n-1$.

By dint of Lemma 3, the greatest common divisor of $\binom{n}{1},\binom{n}{2}, \ldots,\binom{n}{n-1}$ is 1 . Hence, there will exist some integers $u_{1}, u_{2}, \ldots, u_{n-1}$ for which $u_{1}\binom{n}{1}+\cdots+u_{n-1}\binom{n}{n-1}=1$. Then

$$
f(0)=\left(\sum_{k=1}^{n-1} u_{k}\binom{n}{k}\right) f(0)=\sum_{k=1}^{n-1} u_{k}\binom{n}{k} f(0)
$$

is a sum of integers. This contradicts the fact that $f(0)$ is not an integer. So such polynomial $f(x)$ does not exist.

Alternative Solution. (I. Bogdanov) We claim the answer is $n=p^{\alpha}$ for some prime p and nonnegative α.

Lemma. For every integers a_{1}, \ldots, a_{n} there exists an integervalued polynomial $P(x)$ of degree $<n$ such that $P(k)=a_{k}$ for all $1 \leq k \leq n$.

Proof. Induction on n. For the base case $n=1$ one may set $P(x)=a_{1}$. For the induction step, suppose that the polynomial $P_{1}(x)$ satisfies the desired property for all $1 \leq k \leq n-1$. Then set $P(x)=P_{1}(x)+\left(a_{n}-P_{1}(n)\right)\binom{x-1}{n-1}$; since $\binom{k-1}{n-1}=0$ for $1 \leq k \leq n-1$ and $\binom{n-1}{n-1}=1$, the polynomial $P(x)$ is a sought one.

Now, if for some n there exists some polynomial $f(x)$ satisfying the problem conditions, one may choose some integer-valued polynomial $P(x)$ (of degree $<n-1$) coinciding with $f(x)$ at points $1, \ldots, n-1$. The difference $f_{1}(x)=$ $f(x)-P(x)$ also satisfies the problem conditions, therefore we may restrict ourselves to the polynomials vanishing at points $1, \ldots, n-1-$ that are, the polynomials of the form $f(x)=c \prod_{i=1}^{n-1}(x-i)$ for some (surely rational) constant c.

Let $c=p / q$ be its irreducible form, and $q=\prod_{j=1}^{d} p_{j}^{\alpha_{j}}$ be the prime decomposition of the denominator.

1. Assume that a desired polynomial $f(x)$ exists. Since $f(0)$ is not an integer, we have $q \nmid(-1)^{n-1}(n-1)$! and hence $p_{j}^{\alpha_{j}} \nmid(-1)^{n-1}(n-1)$! for some j. Hence

$$
\prod_{i=1}^{n-1}\left(p_{j}^{\alpha_{j}}-i\right) \equiv(-1)^{n-1}(n-1)!\not \equiv 0 \quad\left(\bmod p_{j}^{\alpha_{j}}\right),
$$

therefore $f\left(p_{i}^{\alpha_{i}}\right)$ is not integer, too. By the condition (i), this means that $n \mid p_{i}^{\alpha_{i}}$, and hence n should be a power of a prime.
2. Now let us construct a desired polynomial $f(x)$ for any power of a prime $n=p^{\alpha}$. We claim that the polynomial

$$
f(x)=\frac{1}{p}\binom{x-1}{n-1}=\frac{n}{p x}\binom{x}{n}
$$

fits. Actually, consider some integer x. From the first representation, the denominator of the irreducible form of $f(x)$ may be 1 or p only. If $p^{\alpha} \nmid x$, then the prime decomposition of the fraction $n /(p x)$ contains p with a nonnegative exponent; hence $f(x)$ is integer. On the other hand, if $n=p^{\alpha} \mid x$, then the numbers $x-1, x-2, \ldots, x-(n-1)$ contain the same exponents of primes as the numbers $n-1, n-2, \ldots, 1$ respectively; hence the number

$$
\binom{x-1}{n-1}=\frac{\prod_{i=1}^{n-1}(x-i)}{\prod_{i=1}^{n-1}(n-i)}
$$

is not divisible by p. Thus $f(x)$ is not an integer.
Problem 3. A triangle $A B C$ is inscribed in a circle ω. A variable line ℓ chosen parallel to $B C$ meets segments $A B$, $A C$ at points D, E respectively, and meets ω at points K, L (where D lies between K and E). Circle γ_{1} is tangent to the segments $K D$ and $B D$ and also tangent to ω, while circle γ_{2} is tangent to the segments $L E$ and $C E$ and also tangent to ω. Determine the locus, as ℓ varies, of the meeting point of the common inner tangents to γ_{1} and γ_{2}.
(Russia) Vasily Mokin \& Fedor Ivlev
Solution. Let P be the meeting point of the common inner tangents to γ_{1} and γ_{2}. Also, let b be the angle bisector of $\angle B A C$. Since $K L \| B C, b$ is also the angle bisector of $\angle K A L$.

Let \mathfrak{H} be the composition of the symmetry \mathfrak{S} with respect to b and the inversion \mathfrak{I} of centre A and ratio $\sqrt{A K \cdot A L}$ (it is readily seen that \mathfrak{S} and \mathfrak{I} commute, so since $\mathfrak{S}^{2}=\mathfrak{I}^{2}=$ id, then also $\mathfrak{H}^{2}=$ id, the identical transformation). The elements of the configuration interchanged by \mathfrak{H} are summarized in Table I.

Let O_{1} and O_{2} be the centres of circles γ_{1} and γ_{2}. Since the circles γ_{1} and γ_{2} are determined by their construction (in a unique way), they are interchanged by \mathfrak{H}, therefore the rays $A O_{1}$ and $A O_{2}$ are symmetrical with respect
to b. Denote by ρ_{1} and ρ_{2} the radii of γ_{1} and γ_{2}. Since $\angle O_{1} A B=\angle O_{2} A C$, we have $\rho_{1} / \rho_{2}=A O_{1} / A O_{2}$. On the other hand, from the definition of P we have $O_{1} P / O_{2} P=$ $\rho_{1} / \rho_{2}=A O_{1} / A O_{2}$; this means that $A P$ is the angle bisector of $\angle O_{1} A O_{2}$ and therefore of $\angle B A C$.

The limiting, degenerated, cases are when the parallel line passes through A - when P coincides with A; respectively when the parallel line is $B C$ - when P coincides with the foot $A^{\prime} \in B C$ of the angle bisector of $\angle B A C$ (or any other point on $B C$). By continuity, any point P on the open segment $A A^{\prime}$ is obtained for some position of the parallel, therefore the locus is the open segment $A A^{\prime}$ of the angle bisector b of $\angle B A C$.

point K	\longleftrightarrow	point L
line $K L$	\longleftrightarrow	circle ω
ray $A B$	\longleftrightarrow	ray $A C$
point B	\longleftrightarrow	point E
point C	\longleftrightarrow	point D
segment $B D$	\longleftrightarrow	segment $E C$
$\operatorname{arc} B K$	\longleftrightarrow	segment $E L$
$\operatorname{arc} C L$	\longleftrightarrow	segment $D K$

