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Solutions for the Day 2

Problem 4. Prove that there are infinitely many positive integer numbers n such that 22" 1 41
be divisible by n, but 2" + 1 be not.

Solution 1. Throughout the solution n stands for a positive integer. By Euler’s theorem,
(23" +1)(2%" —1) = 223" —1 =0 (mod 3"*!). Since 23" — 1 =1 (mod 3), it follows that 23" + 1
is divisible by 3"+1.

The number (23" +1)/(23" + 1) = 223" — 23" 4 1 is greater than 3 and congruent to 3
modulo 9, so it has a prime factor p, > 3 that does not divide 23" +1 (otherwise, 23" =1 (mod
Pn), so 223" — 23" + 1 =3 (mod p,), contradicting the fact that p, is a factor greater than 3 of
223" 23" 1+ 1).

We now show that a,, = 3"p,, satisfies the conditions in the statement. Since 2% + 1 =
23" +1 £ 0 (mod p,), it follows that a, does not divide 2% + 1.

On the other hand, 3"*! divides 22" + 1 which in turn divides 2% + 1, so 23" 4 1 divides
22°*+1 4 1. Finally, both 3" and p,, divide 22" + 1, so a, divides 22""*+! 4 1.

As n runs through the positive integers, the a, are clearly pairwise distinct and the con-
clusion follows.

Solution 2. (Géza Kés) We show that the numbers a, = (23" + 1)/9, n > 2, satisfy the
conditions in the statement. To this end, recall the following well-known facts:

(1) If N is an odd positive integer, then v5(2" + 1) = v3(N) + 1, where v3(a) is the exponent
of 3 in the decomposition of the integer a into prime factors; and

(2) If M and N are odd positive integers, then (2™ + 1,2V +1) = 2M:N) 1 where (a,b) is
the greatest common divisor of the integers a and b.

By (1), a, = 3" !'m, where m is an odd positive integer not divisible by 3, and by (2),

2" +1

377,71
gn+l =m,

(m, 27" +1) | (2% +1,20m +1) =20"0) 41 =299 11 <

so m cannot divide 2% 4 1.

On the other hand, 3"~! | 22""*1 4 1 for v3(22"" ™ + 1) > v3(2% + 1) > v3(an) = n — 1,
and m ‘ 22°"+1 11 for 3n—1 ‘ ap, S0 3" | 297 + 1 whence m ‘ 23" 41 ‘ 22°"+1 1 1. Since 3"~ ! and
m are coprime, the conclusion follows.

Remarks. There are several variations of these solutions. For instance, let by = 3 and b, 1 =
2bn 41, n > 1, and notice that b, divides b, 1. It can be shown that there are infinitely many
indices n such that some prime factor p, of b,+1 does not divide b,. One checks that for these
n’s the a,, = p,b,_1 satisfy the required conditions.

Finally, the numbers 3™ - 571, n > 2, form yet another infinite set of positive integers
fulfilling the conditions in the statement — the details are omitted.

Solution 3. (Dusan Djuki¢) Assume that n satisfies the conditions of the problem. We
claim that the number N = 2" + 1 > n also satisfies these conditions.

Firstly, since n )( N, the fact (2) from Solution 2 allows to conclude that 2™ + 1 )( 2N 11,
or N )( 2V 1+ 1. Next, since n ‘ 22"+l 11 = 2¥ 4 1, we obtain from the same fact that
N=2"+1 ’ 22+l 4 1, thus confirming our claim.

Hence, it suffices to provide only one example, hence obtaining an infinite series by the
claim. For instance, one may easily check that the number n = 57 fits.



Problem 5. Given a positive integer number n > 3, colour each cell of an n x n square array
one of [(n + 2)?/3] colours, each colour being used at least once. Prove that the cells of some
1 x 3 or 3 x 1 rectangular subarray have pairwise distinct colours.

Solution. For more convenience, say that a subarray of the n x n square array bears a colour if
at least two of its cells share that colour.

We shall prove that the number of 1 x 3 and 3 x 1 rectangular subarrays, which is 2n(n—2),
exceeds the number of such subarrays, each of which bears some colour. The key ingredient is
the estimate in the lemma below.

Lemma. If a colour is used exactly p times, then the number of 1 x 3 and 3 x 1 rectangular
subarrays bearing that colour does not exceed 3(p — 1).

Assume the lemma for the moment, let N = [(n + 2)2/3] and let n; be the number of cells
coloured the ith colour, i = 1,..., N, to deduce that the number of 1 x 3 and 3 x 1 rectangular
subarrays, each of which bears some colour, is at most

N N
D 3(ni—1)=3) n;—3N =3n> = 3N < 3n° — (n® + 4n) = 2n(n — 2)
i=1 =1

and thereby conclude the proof.

Back to the lemma, the assertion is clear if p =1, so let p > 1.

We begin by showing that if a row contains exactly ¢ cells coloured C, then the number r
of 3 x 1 rectangular subarrays bearing C' does not exceed 3¢/2 — 1; of course, a similar estimate
holds for a column. To this end, notice first that the case ¢ = 1 is trivial, so we assume that
g > 1. Consider the incidence of a cell ¢ coloured C' and a 3 x 1 rectangular subarray R bearing C":

1 if ¢ C R,
(e ) = { 0 otherwise.
Notice that, given R, > (¢, R) > 2, and, given ¢, ) p(c, R) < 3; moreover, if c is the leftmost or
rightmost cell, then ) p(c, R) < 2. Consequently,

2r <Y Y (R =D > (R <2+3(¢—2)+2=3¢-2,
R c

c R

whence the conclusion.

Finally, let the p cells coloured C' lie on k rows and ¢ columns and notice that k& 4+ £ > 3,
for p > 1. By the preceding, the total number of 3 x 1 rectangular subarrays bearing C' does not
exceed 3p/2 — k, and the total number of 1 x 3 rectangular subarrays bearing C' does not exceed
3p/2 — ¢, so the total number of 1 x 3 and 3 x 1 rectangular subarrays bearing C' does not exceed
(Bp/2 —k)+ (3p/2—¢)=3p—(k+¢) <3p—3=3(p—1). This completes the proof.

Remarks. In terms of the total number of cells, the number N = [(n + 2)%/3] of colours
is asymptotically close to the minimum number of colours required for some 1 x 3 or 3 x 1
rectangular subarray to have all cells of pairwise distinct colours, whatever the colouring. To see
this, colour the cells with the coordinates (4, j), where i+j = 0 (mod 3) and 7,5 € {0, 1,...,n—1},
one colour each, and use one additional colour C' to colour the remaining cells. Then each 1 x 3
and each 3 x 1 rectangular subarray has exactly two cells coloured C', and the number of colours
is [n?/3] +1if n=1or 2 (mod 3), and [n?/3] if n = 0 (mod 3). Consequently, the minimum
number of colours is n?/3 4+ O(n).



Problem 6. Let ABC be a triangle and let I and O respectively denote its incentre and
circumcentre. Let w4 be the circle through B and C and tangent to the incircle of the triangle
ABC'; the circles wp and we are defined similarly. The circles wp and we through A meet again
at A’; the points B’ and C’ are defined similarly. Prove that the lines AA’, BB’ and CC’ are
concurrent at a point on the line 10.

Solution. Let v be the incircle of the triangle ABC and let Ay, By, Cy be its contact points
with the sides BC, C A, AB, respectively. Let further X4 be the point of contact of the circles
~v and wy. The latter circle is the image of the former under a homothety centred at X 4. This
homothety sends A; to a point M4 on wy such that the tangent to wa at M4 is parallel to BC.
Consequently, M4 is the midpoint of the arc BC of w4 not containing X 4. It follows that the
angles Mo X B and M4BC are congruent, so the triangles MsBA; and M X B are similar:
MaB/MaXa = MsA1/MaB. Rewrite the latter M4B? = M4A; - MaX 4 to deduce that My
lies on the radical axis £p of B and . Similarly, M4 lies on the radical axis £ of C and 7.

Define the points Xp, X¢o, Mp, Mo and the line £4 in a similar way and notice that
the lines ¢4, ¢p, fo support the sides of the triangle M4 MpMc. The lines £4 and B1Cy are
both perpendicular to AI, so they are parallel. Similarly, the lines /g and /¢ are parallel to
C1A; and Ay By, respectively. Consequently, the triangle M4 MpMc is the image of the triangle
A1 B;C} under a homothety ©. Let K be the centre of © and let k = My K/A1K = MpK/B1 K =
McK/C1 K be the similitude ratio. Notice that the lines M4 A;, MpB; and McCy are concurrent
at K.

Since the points A1, By, X4, Xp are concyclic, A1 K - KX = B1K - KXp. Multiply both
sides by k to get MaK - KX 4 = MpK - KXp and deduce thereby that K lies on the radical axis
CC'" of wa and wp. Similarly, both lines AA’ and BB’ pass through K.

My

Finally, consider the image O" of I under O. It lies on the line through M4 parallel to A1 1
(and hence perpendicular to BC); since M4 is the midpoint of the arc BC, this line must be
M40O. Similarly, O’ lies on the line MO, so O’ = O. Consequently, the points I, K and O are
collinear.

Remark 1. Many steps in this solution allow different reasonings. For instance, one may



see that the lines A1 X4 and B1Xp are concurrent at point K on the radical axis CC’ of the
circles wgq and wp by applying Newton’s theorem to the quadrilateral X4 XpA;B; (since the
common tangents at X4 and Xp intersect on CC”). Then one can conclude that KA;/KB; =
KMy /K Mgp, thus obtaining that the triangles My MpM¢ and A B1C; are homothetical at K
(and therefore K is the radical center of wy, wp, and we). Finally, considering the inversion
with the pole K and the power equal to K X; - KM4 followed by the reflection at P we see
that the circles w4, wp, and we are invariant under this transform; next, the image of ~y is the
circumcircle of MaMpM¢e and it is tangent to all the circles wa, wp, and we, hence its center
is O, and thus O, I, and K are collinear.

Remark 2. Here is an outline of an alternative approach to the first part of the solution.
Let Ja4 be the excentre of the triangle ABC opposite A. The line J4A; meets v again at
Ya; let Z4 and N4 be the midpoints of the segments A;Y4 and Jg A1, respectively. Since the
segment [.J4 is a diameter in the circle BC'Zy, it follows that BA; - CA; = Z4A1 - JaA1, so
BA; - CA; = NjA; - YaA;. Consequently, the points B, C', N4 and Yy lie on some circle w’y.

It is well known that N4 lies on the perpendicular bisector of the segment BC, so the
tangents to w’y and v at N4 and A; are parallel. It follows that the tangents to these circles at
Y4 coincide, so wf4 is in fact w4, whence X4 = Y4 and My = Ny. It is also well known that the
midpoint S4 of the segment IJ4 lies both on the circumcircle ABC and on the perpendicular
bisector of BC'. Since SyM4 is a midline in the triangle A;1.J4, it follows that SA4My = r/2,
where r is the radius of v (the inradius of the triangle ABC'). Consequently, each of the points
My, Mp and M is at distance R 4 r/2 from O (here R is the circumradius). Now proceed as
above.




