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Problem 4. Prove that there are infinitely many positive integer numbers n such that 22
n+1+1

be divisible by n, but 2n + 1 be not.

Solution 1. Throughout the solution n stands for a positive integer. By Euler’s theorem,
(23

n
+ 1)(23

n − 1) = 22·3
n − 1 ≡ 0 (mod 3n+1). Since 23

n − 1 ≡ 1 (mod 3), it follows that 23
n
+ 1

is divisible by 3n+1.
The number (23

n+1
+ 1)/(23

n
+ 1) = 22·3

n − 23
n
+ 1 is greater than 3 and congruent to 3

modulo 9, so it has a prime factor pn > 3 that does not divide 23
n
+1 (otherwise, 23

n ≡ −1 (mod
pn), so 22·3

n − 23
n
+ 1 ≡ 3 (mod pn), contradicting the fact that pn is a factor greater than 3 of

22·3
n − 23

n
+ 1).

We now show that an = 3npn satisfies the conditions in the statement. Since 2an + 1 ≡
23

n
+ 1 ̸≡ 0 (mod pn), it follows that an does not divide 2an + 1.
On the other hand, 3n+1 divides 23

n
+1 which in turn divides 2an +1, so 23

n+1
+1 divides

22
an+1 + 1. Finally, both 3n and pn divide 23

n+1
+ 1, so an divides 22

an+1 + 1.
As n runs through the positive integers, the an are clearly pairwise distinct and the con-

clusion follows.

Solution 2. (Géza Kós) We show that the numbers an = (23
n
+ 1)/9, n ≥ 2, satisfy the

conditions in the statement. To this end, recall the following well-known facts:

(1) If N is an odd positive integer, then ν3(2
N + 1) = ν3(N) + 1, where ν3(a) is the exponent

of 3 in the decomposition of the integer a into prime factors; and

(2) If M and N are odd positive integers, then (2M + 1, 2N + 1) = 2(M,N) + 1, where (a, b) is
the greatest common divisor of the integers a and b.

By (1), an = 3n−1m, where m is an odd positive integer not divisible by 3, and by (2),

(m, 2an + 1)
∣∣ (23n + 1, 2an + 1) = 2(3

n,an) + 1 = 23
n−1

+ 1 <
23

n
+ 1

3n+1
= m,

so m cannot divide 2an + 1.
On the other hand, 3n−1

∣∣ 22an+1 + 1, for ν3(2
2an+1 + 1) > ν3(2

an + 1) > ν3(an) = n − 1,
and m

∣∣ 22an+1+1, for 3n−1
∣∣ an, so 3n

∣∣ 2an +1 whence m
∣∣ 23n +1

∣∣ 22an+1+1. Since 3n−1 and
m are coprime, the conclusion follows.

Remarks. There are several variations of these solutions. For instance, let b1 = 3 and bn+1 =
2bn + 1, n ≥ 1, and notice that bn divides bn+1. It can be shown that there are infinitely many
indices n such that some prime factor pn of bn+1 does not divide bn. One checks that for these
n’s the an = pnbn−1 satisfy the required conditions.

Finally, the numbers 3n · 571, n ≥ 2, form yet another infinite set of positive integers
fulfilling the conditions in the statement — the details are omitted.

Solution 3. (Dušan Djukić) Assume that n satisfies the conditions of the problem. We
claim that the number N = 2n + 1 > n also satisfies these conditions.

Firstly, since n ̸
∣∣ N , the fact (2) from Solution 2 allows to conclude that 2n + 1 ̸

∣∣ 2N + 1,
or N ̸

∣∣ 2N + 1. Next, since n
∣∣ 22

n+1 + 1 = 2N + 1, we obtain from the same fact that

N = 2n + 1
∣∣ 22N+1 + 1, thus confirming our claim.

Hence, it suffices to provide only one example, hence obtaining an infinite series by the
claim. For instance, one may easily check that the number n = 57 fits.
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Problem 5. Given a positive integer number n ≥ 3, colour each cell of an n × n square array
one of [(n + 2)2/3] colours, each colour being used at least once. Prove that the cells of some
1× 3 or 3× 1 rectangular subarray have pairwise distinct colours.

(Russia) Ilya Bogdanov, Grigory Chelnokov, Dmitry Khramtsov

Solution. For more convenience, say that a subarray of the n× n square array bears a colour if
at least two of its cells share that colour.

We shall prove that the number of 1×3 and 3×1 rectangular subarrays, which is 2n(n−2),
exceeds the number of such subarrays, each of which bears some colour. The key ingredient is
the estimate in the lemma below.

Lemma. If a colour is used exactly p times, then the number of 1 × 3 and 3 × 1 rectangular
subarrays bearing that colour does not exceed 3(p− 1).

Assume the lemma for the moment, let N = [(n+ 2)2/3] and let ni be the number of cells
coloured the ith colour, i = 1, . . . , N , to deduce that the number of 1× 3 and 3× 1 rectangular
subarrays, each of which bears some colour, is at most

N∑
i=1

3(ni − 1) = 3

N∑
i=1

ni − 3N = 3n2 − 3N < 3n2 − (n2 + 4n) = 2n(n− 2)

and thereby conclude the proof.

Back to the lemma, the assertion is clear if p = 1, so let p > 1.
We begin by showing that if a row contains exactly q cells coloured C, then the number r

of 3× 1 rectangular subarrays bearing C does not exceed 3q/2− 1; of course, a similar estimate
holds for a column. To this end, notice first that the case q = 1 is trivial, so we assume that
q > 1. Consider the incidence of a cell c coloured C and a 3×1 rectangular subarray R bearing C:

⟨c,R⟩ =
{

1 if c ⊂ R,
0 otherwise.

Notice that, given R,
∑

c⟨c,R⟩ ≥ 2, and, given c,
∑

R⟨c,R⟩ ≤ 3; moreover, if c is the leftmost or
rightmost cell, then

∑
R⟨c,R⟩ ≤ 2. Consequently,

2r ≤
∑
R

∑
c

⟨c,R⟩ =
∑
c

∑
R

⟨c,R⟩ ≤ 2 + 3(q − 2) + 2 = 3q − 2,

whence the conclusion.
Finally, let the p cells coloured C lie on k rows and ℓ columns and notice that k + ℓ ≥ 3,

for p > 1. By the preceding, the total number of 3× 1 rectangular subarrays bearing C does not
exceed 3p/2− k, and the total number of 1× 3 rectangular subarrays bearing C does not exceed
3p/2− ℓ, so the total number of 1× 3 and 3× 1 rectangular subarrays bearing C does not exceed
(3p/2− k) + (3p/2− ℓ) = 3p− (k + ℓ) ≤ 3p− 3 = 3(p− 1). This completes the proof.

Remarks. In terms of the total number of cells, the number N = [(n + 2)2/3] of colours
is asymptotically close to the minimum number of colours required for some 1 × 3 or 3 × 1
rectangular subarray to have all cells of pairwise distinct colours, whatever the colouring. To see
this, colour the cells with the coordinates (i, j), where i+j ≡ 0 (mod 3) and i, j ∈ {0, 1, . . . , n−1},
one colour each, and use one additional colour C to colour the remaining cells. Then each 1× 3
and each 3× 1 rectangular subarray has exactly two cells coloured C, and the number of colours
is ⌈n2/3⌉ + 1 if n ≡ 1 or 2 (mod 3), and ⌈n2/3⌉ if n ≡ 0 (mod 3). Consequently, the minimum
number of colours is n2/3 +O(n).
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Problem 6. Let ABC be a triangle and let I and O respectively denote its incentre and
circumcentre. Let ωA be the circle through B and C and tangent to the incircle of the triangle
ABC; the circles ωB and ωC are defined similarly. The circles ωB and ωC through A meet again
at A′; the points B′ and C ′ are defined similarly. Prove that the lines AA′, BB′ and CC ′ are
concurrent at a point on the line IO.

(Russia) Fedor Ivlev

Solution. Let γ be the incircle of the triangle ABC and let A1, B1, C1 be its contact points
with the sides BC, CA, AB, respectively. Let further XA be the point of contact of the circles
γ and ωA. The latter circle is the image of the former under a homothety centred at XA. This
homothety sends A1 to a point MA on ωA such that the tangent to ωA at MA is parallel to BC.
Consequently, MA is the midpoint of the arc BC of ωA not containing XA. It follows that the
angles MAXAB and MABC are congruent, so the triangles MABA1 and MAXAB are similar:
MAB/MAXA = MAA1/MAB. Rewrite the latter MAB

2 = MAA1 · MAXA to deduce that MA

lies on the radical axis ℓB of B and γ. Similarly, MA lies on the radical axis ℓC of C and γ.
Define the points XB, XC , MB, MC and the line ℓA in a similar way and notice that

the lines ℓA, ℓB, ℓC support the sides of the triangle MAMBMC . The lines ℓA and B1C1 are
both perpendicular to AI, so they are parallel. Similarly, the lines ℓB and ℓC are parallel to
C1A1 and A1B1, respectively. Consequently, the triangle MAMBMC is the image of the triangle
A1B1C1 under a homothety Θ. LetK be the centre of Θ and let k = MAK/A1K = MBK/B1K =
MCK/C1K be the similitude ratio. Notice that the linesMAA1, MBB1 andMCC1 are concurrent
at K.

Since the points A1, B1, XA, XB are concyclic, A1K ·KXA = B1K ·KXB. Multiply both
sides by k to get MAK ·KXA = MBK ·KXB and deduce thereby that K lies on the radical axis
CC ′ of ωA and ωB. Similarly, both lines AA′ and BB′ pass through K.

A

B C
A1

B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1

C1

MA

MB

MC

XA

XBXBXBXBXBXBXBXBXBXBXBXBXBXBXBXBXBXBXBXBXBXBXBXBXBXBXBXBXBXBXBXBXBXBXBXBXBXBXBXBXBXBXBXBXBXBXBXBXBXBXBXBXBXBXBXBXBXBXBXBXBXBXBXBXB

IOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO
K

ℓA

ℓB

ℓC

γ

ωA

Finally, consider the image O′ of I under Θ. It lies on the line through MA parallel to A1I
(and hence perpendicular to BC); since MA is the midpoint of the arc BC, this line must be
MAO. Similarly, O′ lies on the line MBO, so O′ = O. Consequently, the points I, K and O are
collinear.

Remark 1. Many steps in this solution allow different reasonings. For instance, one may
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see that the lines A1XA and B1XB are concurrent at point K on the radical axis CC ′ of the
circles ωA and ωB by applying Newton’s theorem to the quadrilateral XAXBA1B1 (since the
common tangents at XA and XB intersect on CC ′). Then one can conclude that KA1/KB1 =
KMA/KMB, thus obtaining that the triangles MAMBMC and A1B1C1 are homothetical at K
(and therefore K is the radical center of ωA, ωB, and ωC). Finally, considering the inversion
with the pole K and the power equal to KX1 · KMA followed by the reflection at P we see
that the circles ωA, ωB, and ωC are invariant under this transform; next, the image of γ is the
circumcircle of MAMBMC and it is tangent to all the circles ωA, ωB, and ωC , hence its center
is O, and thus O, I, and K are collinear.

Remark 2. Here is an outline of an alternative approach to the first part of the solution.
Let JA be the excentre of the triangle ABC opposite A. The line JAA1 meets γ again at
YA; let ZA and NA be the midpoints of the segments A1YA and JAA1, respectively. Since the
segment IJA is a diameter in the circle BCZA, it follows that BA1 · CA1 = ZAA1 · JAA1, so
BA1 · CA1 = NAA1 · YAA1. Consequently, the points B, C, NA and YA lie on some circle ω′

A.
It is well known that NA lies on the perpendicular bisector of the segment BC, so the

tangents to ω′
A and γ at NA and A1 are parallel. It follows that the tangents to these circles at

YA coincide, so ω′
A is in fact ωA, whence XA = YA and MA = NA. It is also well known that the

midpoint SA of the segment IJA lies both on the circumcircle ABC and on the perpendicular
bisector of BC. Since SAMA is a midline in the triangle A1IJA, it follows that SAMA = r/2,
where r is the radius of γ (the inradius of the triangle ABC). Consequently, each of the points
MA, MB and MC is at distance R + r/2 from O (here R is the circumradius). Now proceed as
above.

A

B C
A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1

B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1

C1

NA = MA

MB

MC

YA = XAYA = XAYA = XAYA = XAYA = XAYA = XAYA = XAYA = XAYA = XAYA = XAYA = XAYA = XAYA = XAYA = XAYA = XAYA = XAYA = XAYA = XAYA = XAYA = XAYA = XAYA = XAYA = XAYA = XAYA = XAYA = XAYA = XAYA = XAYA = XAYA = XAYA = XAYA = XAYA = XAYA = XAYA = XAYA = XAYA = XAYA = XAYA = XAYA = XAYA = XAYA = XAYA = XAYA = XAYA = XAYA = XAYA = XAYA = XAYA = XAYA = XAYA = XAYA = XAYA = XAYA = XAYA = XAYA = XAYA = XAYA = XAYA = XAYA = XAYA = XAYA = XAYA = XAYA = XAYA = XA

XBXBXBXBXBXBXBXBXBXBXBXBXBXBXBXBXBXBXBXBXBXBXBXBXBXBXBXBXBXBXBXBXBXBXBXBXBXBXBXBXBXBXBXBXBXBXBXBXBXBXBXBXBXBXBXBXBXBXBXBXBXBXBXBXB

I

OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO

KKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKK

JA

SASASASASASASASASASASASASASASASASASASASASASASASASASASASASASASASASASASASASASASASASASASASASASASASASASASASASASASASASASASASASASASASASA

ZAZAZAZAZAZAZAZAZAZAZAZAZAZAZAZAZAZAZAZAZAZAZAZAZAZAZAZAZAZAZAZAZAZAZAZAZAZAZAZAZAZAZAZAZAZAZAZAZAZAZAZAZAZAZAZAZAZAZAZAZAZAZAZAZA

γ

ωA
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