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Problem 1. For any positive integers a1, . . . , ak , let n =
k∑

i=1
ai , and let

(
n

a1, . . . , ak

)
be the multinomial coefficient

n!∏k
i=1(ai !)

. Let d = gcd(a1, . . . , ak ) denote the greatest com-

mon divisor of a1, . . . , ak .

Prove that
d

n

(
n

a1, . . . , ak

)
is an integer.

Romania, Dan Schwarz[1]

Solution. The key idea is the fact that the greatest com-
mon divisor is a linear combination with integer coefficients
of the numbers involved[2], i.e. there exist ui ∈ Z such that

d =
k∑

i=1
ui ai . But

(
n

a1, . . . , ak

)
= n

ai

(
n −1

a1, . . . , ai−1, ai −1, ai+1, . . . , ak

)
,

so

d

n

(
n

a1, . . . , ak

)
=

k∑
i=1

ui

(
n −1

a1, . . . , ai−1, ai −1, ai+1, . . . , ak

)
,

which clearly is an integer, since multinomial coefficients
are known (and easy to prove) to be integer. �

Problem 2. A set S of points in space satisfies the property
that all pairwise distances between points in S are distinct.
Given that all points in S have integer coordinates (x, y, z),
where 1 ≤ x, y, z ≤ n, show that the number of points in S is
less than min

(
(n +2)

p
n/3, n

p
6
)
.
Romania, Dan Schwarz[3]

Solution. The critical idea is to estimate the total number
possible T of distinct distances realized by pairs of points
(x, y, z), of integer coordinates 1 ≤ x, y, z ≤ n. However, any
such distance is also realized by a pair anchored at (1,1,1),
from symmetry considerations.

But the number of distinct distances to points with no co-
ordinates x, y, z equal is at most

(n
3

) = 1
6 n(n − 1)(n − 2); the

number of distinct distances to points with two of the three
coordinates x, y, z equal is at most 2

(n
2

)= n(n −1); while the
number of distinct distances to points with all three coordi-
nates x, y, z equal is n −1, hence

T ≤ 1

6
n(n −1)(n −2)+n(n −1)+ (n −1) < 1

6
(n3 +3n2 +2n).

On the other hand, the total number of distinct distances
between the N points in S needs be

(N
2

) = 1
2 N (N − 1) ≤ T ,

yielding

(2N −1)2 < 1

3
(4n3 +12n2 +8n)+1 ≤ 1

3
(2n

p
n +3

p
n)2,

hence N < 1

2

(
(2n +3)

p
n/3+1

)
≤ (n+2)

p
n/3 for n ≥ 3. One

can easily check that the inequality is true for n = 2 also,
since then[4] T = 3.

On the other hand, since the squares of the distances can
only take the integer values between 1 and the trivial upper
bound 3(n−1)2 (for the diagonal of the cube), it follows that
T ≤ 3(n −1)2, yielding N < n

p
6. �

Problem 3. Given four points A1, A2, A3, A4 in the plane,
no three collinear, such that

A1 A2 · A3 A4 = A1 A3 · A2 A4 = A1 A4 · A2 A3,

let us denote by Oi the circumcenter of ∆A j Ak A`, with
{i , j ,k,`} = {1,2,3,4}.

Assuming Ai 6= Oi for all indices i , prove that the four
lines Ai Oi are concurrent or parallel.

Bulgaria, Nikolai Ivanov Beluhov

Solution. (D. Schwarz) The given triple equality being in-
variated by any permutation in S4, it is enough to prove that
the lines Ai Oi for 2 ≤ i ≤ 4 are concurrent or parallel. The
relations can then be written

A1 A2

A1 A3
= A4 A2

A4 A3
,

A1 A3

A1 A4
= A2 A3

A2 A4
,

A1 A4

A1 A2
= A3 A4

A3 A2
.

Consider the Apollonius circles Γk of centers ωk ∈ Ai A j , for
{i , j ,k} = {2,3,4}, determined by the point A1, which there-
fore lies on all three, while the points Ak lie onΓk . Moreover,
the points ωk are collinear, since the point A′

k which is the
other meeting point (than A1, if any) of Γi and Γ j fulfills

A′
k A j

A′
k Ak

= Ai A j

Ai Ak
and

A′
k Ai

A′
k Ak

= A j Ai

A j Ak
, thus

A′
k Ai

A′
k A j

= Ak Ai

Ak A j
,

therefore A′
k also lies on Γk , hence all three circles Γk share

the same meeting point(s), thus their centers are collinear.
Now, the circumcenters Oi and O j , as well as the point

ωk , lie on the perpendicular bisector of the segment A1 Ak ,
for {i , j ,k} = {2,3,4}. It follows that the pairs of lines Ai A j ,
Oi O j meet at the collinear points ωk . Desargues’ theorem
for the perspective triangles ∆Ai A j Ak and ∆Oi O j Ok yields
the claim. �

Alternate Solution. The author’s original solution makes
use of inversions of poles Ai to reach the same conclusion
via Desargues, in a dual-by-inversion to the solution above
manner, with a lot more details than concepts. We feel that
making use of the well-known properties of the Apollonius
circles renders the idea in a more striking way. �

Remark. There exists a particular (degenerate) case,
when the points are the vertices of a kite of π

6 equal angles,
hence one of the associated ratios is 1, so a corresponding
Apollonius circle degenerates to the perpendicular bisector.
This (together with the use of Desargues) shows the deep
projective nature of the problem, better handled through
projective methods.

Also, there is no converse implication, since the case of
concyclic points trivially warrants the conclusion, without
fulfilling the stated condition (as in conflict with Ptolemy’s
relation).
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Problem 4. For a finite set X of positive integers, let

Σ(X ) = ∑
x∈X

arctan
1

x
.

Given a finite set S of positive integers for which Σ(S) < π
2 ,

show that there exists at least one finite set T of positive in-
tegers for which S ⊂ T and Σ(T ) = π

2 .
United Kingdom, Kevin Buzzard

Solution. (D. Schwarz) We will step-by-step augment the
set S with positive integers tn , by taking each time tn as the
least positive integer larger than max(S), and not already
used, such that Σ(S ∪ {t1, t2, . . . , tn}) remains at most π

2 (this
is possible since arctan 1

t → 0 when t →∞). If at some point
we get exactly π

2 we are through, since we have augmented
S to a set T as required, so assume the process continues
indefinitely. Clearly the sequence (tn)n≥1 is built (strictly)
increasing, so for all n ≥ 1 we have tn+1 > tn > max(S).

We will make some useful notations. Take S0 = S, Sn+1 =
Sn ∪ {tn+1}, for n ∈ N. Also take xn = tan

(
π
2 −Σ(Sn)

)
. Using

the well-known formula tan(α+β) = tanα+ tanβ

1− tanα tanβ
one can

easily prove by simple induction that a lesser than π
2 sum

of arcs of rational tangents is as well an arc of rational tan-
gent, therefore xn = pn

qn
, with pn , qn ∈N∗, (pn , qn) = 1. Since

arctan is increasing, we need take tn+1 ≥
⌈

1
xn

⌉
in order that

we may augment Sn with tn+1 to obtain Sn+1.
Assume that for all n ≥ 1 we have 1

xn
≤ tn . Since we

need both tn+1 ≥
⌈

1
xn

⌉
and tn+1 > tn ≥ 1

xn
, it follows that

tn+1 = tn + 1 (the least available value), so tk+1 = t1 +k for

all k ≥ 0. But then
π

2
> Σ({t1, t2, . . . , tn}) =

n−1∑
k=0

arctan
1

t1 +k
>

1

2

n−1∑
k=0

1

t1 +k
→∞ when n →∞, absurd (see Lemma).

Therefore there exists some N ≥ 1 for which 1
xN

> tN ,

so
⌈

1
xN

⌉
is available for tN+1. Moreover, for any n ≥ N

with tn+1 =
⌈

1
xn

⌉
, we have xn+1 =

xn − 1
tn+1

1+xn
1

tn+1

= xn tn+1 −1

tn+1 +xn
<

xn

tn+1 +xn
< 1

tn+1
, since tn+1 =

⌈
1

xn

⌉
implies xn tn+1 −1 < xn ;

and so we can take tn+1 =
⌈

1
xn

⌉
indefinitely for n ≥ N . Now

we use the fact that xn = pn
qn

.

Then
pn+1

qn+1
=

pn
qn

− 1
tn+1

1+ pn
qn

1
tn+1

= pn tn+1 −qn

qn tn+1 +pn
, hence pn+1 ≤

pn tn+1 −qn < pn , since tn+1 =
⌈

qn

pn

⌉
, and so tn+1 < qn

pn
+1.

Therefore the sequence (pn)n≥1 of the numerators of xn

eventually becomes (strictly) decreasing, absurd for any se-
quence of positive integers. �

Lemma. For x ∈ (0, π2 ) one has arctan x > x
2 .

Proof. We start by proving that under given condition one

has sin x > tan x
2 , in turn equivalent to 2sin

x

2
cos

x

2
> sin x

2

cos x
2

,

2cos2 x
2 −1 > 0, and finally cos x > 0, patently true.

Now, arctan is increasing, hence applied to the above,
together with the well-known inequality x > sin x, true for
all x > 0, yields arctan x > arctansin x > arctantan x

2 = x
2 . �

As a corollary, arctan 1
n > 1

2n , for all positive integers
n, inequality used to yield the divergence of the series∑
n≥1

arctan
1

n
in the above solution.

Remark. The above solution shows that it is irrelevant

that we start with the arc
π

2
− ∑

s∈S
arctan

1

s
; in fact we may

state the problem like this

Prove that for any arc α ∈ (0, π2 ) of some rational
tangent τ= tanα, and any finite set S of distinct
positive integers, there exists some finite set T of
distinct positive integers such that T ∩S =; and

∑
t∈T

arctan
1

t
=α.

The problem is strongly reminiscent of a strengthened
form of the famous Egyptian fraction[5] theorem

Prove that for any rational number r ∈ (0,1), and
any finite set S of distinct positive integers, there
exists a finite set T of distinct positive integers
such that T ∩S =; and

∑
t∈T

1

t
= r.

All the ingredients are there: the greedy algorithm, going
beyond the largest element of S, using the divergence of the

series
∑

n≥1

1

n
, and the (Fermat) infinite descent method of a

(strictly) decreasing sequence of positive integers.

In fact, it is enough to consider a (strictly) increasing func-
tion f :Q+ →R+ with the properties that there exists a func-
tion ϕ : Q+×Q+ → Q+ such that f (r )− f (s) = f (ϕ(r, s)) for

any 0 ≤ s < r inQ, lim
x→0

f (x) = 0, and lim
n→∞

n∑
k=1

f

(
1

k

)
=∞.

Moreover, we need that ϕ(r, s) has not larger numerator
than r − s, and not lesser denominator. Then the Egyptian
fraction method extends perfectly. Or f (x) = arctan x and
ϕ(x, y) = x−y

1+x y conform to this model. END

[1] Based on a property of quasi-Catalan numbers of J. Conway,
see [GUY, R.K., Unsolved Problems in Number Theory].

[2] Easily proven by induction from the classical Bézout’s relation
gcd(M , N ) = uM + v N for some integers u, v .

[3] A 3-dimensional extrapolation of a plane lattice points case
study of P. Erdös and R.K. Guy.

[4] An example of N = 3 points for n = 2 is (1,1,1), (2,2,1), (2,2,2);

and of N = 4 points for n = 3 is (1,1,1), (1,1,2), (2,2,1), (2,3,3).
[5] An Egyptian fraction is written as a finite sum of fractions with

all unit numerators and all distinct denominators. Such frac-
tions were used by ancient Egyptians, as apparent in the Rhind
Papyrus, but their use is discontinued today.


