Problem 11800. [AMM, October 2014]. Proposed by O. Klurman, Montreal, Canada. Let f be a continuous function from $[0,1]$ into \mathbb{R}^{+}. Prove that

$$
\int_{0}^{1} f(x) d x-\exp \left[\int_{0}^{1} \log f(x) d x\right] \leq \max _{0 \leq x, y \leq 1}(\sqrt{f(x)}-\sqrt{f(y)})^{2}
$$

Solution by Borislav Karaivanov, Lexington, SC, and Tzvetalin S. Vassilev, Nipissing University, North Bay, Ontario, Canada. Let $x_{k}=\frac{k}{n}$ and $y_{k}=f\left(x_{k}\right)$ for $k=0,1, \ldots, n$. Using the uniform continuity of f on $[0,1]$, we find

$$
\begin{aligned}
\int_{0}^{1} f(x) d x= & \lim _{n \rightarrow \infty} \sum_{k=1}^{n} f\left(x_{k}\right)\left(x_{k}-x_{k-1}\right)=\lim _{n \rightarrow \infty} \frac{y_{1}+y_{2}+\cdots+y_{n}}{n}, \\
\exp \left[\int_{0}^{1} \log f(x) d x\right] & =\exp \left[\lim _{n \rightarrow \infty} \sum_{k=1}^{n} \log f\left(x_{k}\right)\left(x_{k}-x_{k-1}\right)\right] \\
& =\lim _{n \rightarrow \infty} \exp \left[\sum_{k=1}^{n} \log f\left(x_{k}\right)\left(x_{k}-x_{k-1}\right)\right]=\lim _{n \rightarrow \infty} \sqrt[n]{y_{1} y_{2} \ldots y_{n}}
\end{aligned}
$$

and

$$
\max _{0 \leq x, y \leq 1}(\sqrt{f(x)}-\sqrt{f(y)})^{2}=\lim _{n \rightarrow \infty}\left(\sqrt{\max _{1 \leq k \leq n} y_{k}}-\sqrt{\min _{1 \leq k \leq n} y_{k}}\right)^{2}=\lim _{n \rightarrow \infty}(\sqrt{M}-\sqrt{m})^{2}
$$

where $M=\max _{1 \leq k \leq n} y_{k}$ and $m=\min _{1 \leq k \leq n} y_{k}$. Therefore, it suffices to show that

$$
\begin{equation*}
\frac{y_{1}+y_{2}+\cdots+y_{n}}{n}-\sqrt[n]{y_{1} y_{2} \cdots y_{n}} \leq(\sqrt{M}-\sqrt{m})^{2} \tag{1}
\end{equation*}
$$

Regarding the left-hand side of (1) as a function of $\sqrt[n]{y_{k}}$ for any one of the y_{k} 's, we obtain a function of the form $g(t)=\frac{1}{n} t^{n}-A t+B$ with $A \geq 0$. Since $g^{\prime}(t)=t^{n-1}-A$, we conclude that g attains its global maximum on $[\sqrt[n]{m}, \sqrt[n]{M}]$ at one of the endpoints. Hence, the left-hand side of (1) is majorized by $\frac{k M+(n-k) m}{n}-\sqrt[n]{M^{k} m^{n-k}}$ for some $0 \leq k \leq n$, and it suffices to prove that

$$
\frac{k M+(n-k) m}{n}-\sqrt[n]{M^{k} m^{n-k}} \leq(\sqrt{M}-\sqrt{m})^{2}
$$

for any $0 \leq k \leq n$, or equivalently

$$
\begin{equation*}
t^{a}+(1-a) t-2 \sqrt{t}+a \geq 0 \tag{2}
\end{equation*}
$$

where $a:=\frac{k}{n} \in[0,1]$ and $t:=\frac{M}{m} \geq 1$. Denoting the left-hand side of (2) by $h(t)$, we find
$h^{\prime}(t)=a t^{a-1}+(1-a)-\frac{1}{\sqrt{t}} \geq a t^{a-1}+(1-a) t^{-a}-\frac{1}{\sqrt{t}}=t^{-a}\left(t^{a-\frac{1}{2}}-1\right)\left(a t^{a-\frac{1}{2}}-(1-a)\right) \geq 0$,
for the last two factors are non-negative when $a \geq 1 / 2$ and non-positive when $a \leq 1 / 2$. Therefore, h is non-decreasing for $t \geq 1$ and $h(t) \geq h(1)=0$ which proves (2).

